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Abstract. Local search algorithms operate by making small changes to
candidate solutions with the aim of reaching new and improved solu-
tions. The problem is that often the search will become trapped at sub
optimal states from where there are no improving neighbours. Much re-
search has gone into creating schemes to avoid these local optima and
various strategies exist mainly based around altering the acceptance func-
tion. Another approach is Variable Neighbourhood Search which aims to
bypass optima by linearly switching through multiple search neighbour-
hoods. We propose a new method where the selection of neighbourhoods
is dynamically decided dependant on the violations of the problem con-
straints, Constraint Directed Variable Neighbourhood Search. We com-
pared Constraint Directed Variable Neighbourhood Search to Variable
Neighbourhood Search and show that the same search progress can be
achieved whilst exploring only a fraction of the states.

1 Introduction

All problems in the real world are subject to some form of constraints on their
possible solutions. Without constraints then there would be no way to differen-
tiate between valid solutions and those which are infeasible. Scheduling manu-
facturing processes, timetabling exams, and rostering employees’ shift patterns
are common, heavily constrained problems. The laws of physics are surprisingly
inflexible and any attempt to schedule two jobs to occur simultaneously on the
same machine is destined to fail. Not all constraints are impossible to violate,
but it may be undesirable; few employees would be happy to find they had been
rostered to work for 24 consecutive hours!

Local search is one technique which has been successfully applied to numer-
ous hard constrained problems. It is capable of producing high quality solu-
tions within acceptable time limits where other techniques such as Constraint
Programming and Linear Programming struggle. Perhaps one of its greatest
strengths is that it retains an appealing conceptual simplicity. The basic idea
is that by making small changes to a series of improving solutions the global
optima can be reached. Unfortunately this is rarely the case and one of the main
weaknesses of local search is its propensity to become trapped at local optima.
These are states which appear to be better than all the surrounding solutions but
are not the global optima. Much research has gone into allowing local search to
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escape from, or avoid becoming trapped at, these local optima. Meta-heuristics
such as Simulated Annealing and Tabu Search advocate manipulating the ac-
ceptance function. Solutions may be accepted which are not strictly better than
the current solution in the hope that the search will explore new areas and avoid
becoming trapped. Iterated Local Search takes the local optima and then applies
some perturbation to it to create a new solution which is hopefully sufficiently
different to allow the search to progress in a more fruitful direction.

In the late 1990s Mladenović and Hansen [1] put forward a new framework
for local search algorithms, Variable Neighbourhood Search (VNS). They take
a different perspective to the problem of local optima; while there may be no
improving states in a current neighbourhood a different neighbourhood may
allow the search to progress to better solutions. Local optima are specific to
neighbourhoods and so by exploring more neighbourhoods the likelihood of con-
verging towards the global optima increases.

In the canonical form of VNS the order in which the neighbourhoods are
explored is defined by the algorithm designer. The most common configuration
is for the neighbourhoods to be explored in ascending order of size. This gives
a good trade off between intensification and diversification. Once an improving
solution is selected VNS usually restarts from the first neighbourhood in its
linear sequence.

There have been some interesting developments applied to the Unit Commit-
ment problem by Viana, de Sousa and Matos [2]. Viana et al make the assertion
that certain neighbourhood moves are hard to recover from, that is to say they
leave the solution in an infeasible state that requires several other moves to
reestablish feasibility. They attempt to precompute chains of potential neigh-
bourhood moves which can quickly return a solution to feasibility. The neigh-
bourhood chains they apply are determined by the violations of the problem’s
constraints.

We propose a new strategy where the neighbourhoods are varied dynami-
cally depending upon the number of violations of the problem constraints. With
Constraint Directed Variable Neighbourhood Search (CDVNS) we aim to show
that by using information about the constraint violations then only a subset of
the neighbourhoods need to be explored to reach the same goal states.

2 The Problem

To perform some experimentation a suitable problem domain was required. The
Bin Packing Problem seemed a good choice. In its basic form the problem is
easy to understand and implement. There was also a large number of problem
instances available for use. This work uses instances from the Operations Re-
search Library [3].

The basic premise of the Bin Packing Problem is very simple. There are N
packages of various sizes, Wi, which need to be allocated to a series of bins which
have a fixed capacity C. The problem is subject to a single constraint, namely
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bins cannot be filled beyond their capacity. The object of the problem is try and
assign the packages into as few bins as possible.

As the focus of this work was into the interaction between the problem con-
straints and local search neighbourhoods we decided to add several additional
constraints to the problem. These constraints were designed to be representative
of properties commonly found in other constrained problems. They were also
chosen to explicitly guide the search towards sensible solutions. Although the
problem instances are for the Bin Packing Problem we treated them as con-
straint satisfaction problems. Rather than trying to reduce the number of bins
used we were attempting to take a solution created by an uninformed greedy
heuristic and remove all the constraint violations from it. Another addition we
made to the basic problem structure is that packages must be assign to a position
within a bin. The number of positions within the bins was fixed as the number
of smallest packages from an instance that a bin could feasibly accommodate.

Clashing Packages Constraint For this constraint we split the packages into
two different categories based on whether their id’s were odd or even. The con-
straint specifies that all the packages in a bin should be of the same type. Only
neighbourhoods which add or remove packages from bins can affect this con-
straint. If the contents of a bin are left unchanged this constraint cannot be
affected. Constraints like this occur in manufacturing scenarios where it is com-
mon to find machines which cannot be assigned different types of jobs.

Inter-Bin Constraint The Inter-Bin Constraint states that a bin must be as
full as, or more full than any of the following bins. This constraint means that
optimal solutions will have the bins arranged in order of total content amount.
Often preferences like this are built into the evaluation function of an algorithm
but by explicitly stating it as a constraint we are providing richer model of
the problem. The most efficient neighbourhood for solving this constraint is one
which swaps all the contents of two bins.

Package Ordering Constraint The final additional constraint states that
the packages inside a bin must be ordered so that the larger packages appear at
lower positions than smaller ones. This constraint is an example of one which is
entirely internal to a bin’s contents. The most appropriate neighbourhoods are
ones which only manipulate the positions of the packages within a bin.

3 Neighbourhoods

We defined twelve different neighbourhoods for our search to explore. Whilst we
manually implemented them for this work the eventual goal is that the neigh-
bourhoods will be automatically generated from a formal specification of the
problem. Thus while designing the neighbourhoods we tried to make them simi-
lar to those we could envisage being inferred. In Di Gaspero and Schaerf [4] they
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outline a system for composing neighbourhoods for the timetabling problem.
The neighbourhoods can be combined using conventional set notation opera-
tors; more complex neighbourhoods are created from basic atomic components.

A recent technical paper by Ågren, Flener and Pearson [5] takes problems
specified in Constraint Satisfaction Problem (CSP) notation with the goal of
automatically inferring incremental algorithms. Their work focuses on main-
taining a complex set representation of the constraint violations which can be
used to predict the potential effect of altering a variables assignment. Our work
differs from this in that it is more concerned with the interplay between the
neighbourhoods and the constraints, however their adoption of CSP formalism
is interesting and one which we intend to look into in future work.

A solution to the problem is a list of packages with the bin they have been
placed in and the position they occupy within that bin. The most basic possible
neighbourhoods would be to alter either the bin or position of a single package.
These two neighbourhoods can be augmented by a third neighbourhood in which
both the position and bin of a package must be altered. We decided against
including a neighbourhood which was the result of a logical union since all the
possible solutions could be reached via the other three move neighbourhoods.

The decision to split what could feasibly be a single move neighbourhood
which allowed a package have it’s bin or position altered into three separate
neighbourhoods was intentional. By searching all three neighbourhoods then any
possible assignment from the general move neighbourhood could be found so we
have not sacrificed any reachability. The benefit is we now have neighbourhoods
with guaranteed properties which we can exploit. In addition the three resulting
neighbourhoods are all smaller and can be explored more quickly than one more
general move neighbourhood.

The next step up from just altering a single package was to extend the three
basic neighbourhoods so that they exchanged the assignments of a pair of pack-
ages. Neighbourhoods which swap assignments in this fashion have been ap-
plied in problem types such the Travelling Salesman Problem, Timetabling and
Scheduling. The next abstraction of the initial atomic neighbourhoods was to
group together all the packages which were assigned in the same bin. Moving
packages as complete groups has the benefit of maintaining any internal re-
lationships those packages may have. The final group of neighbourhoods were
created by taking the previous group moves and making them into group swaps.
The twelve neighbourhoods presented are not designed to be exhaustive, merely
representative of those which could potentially be inferred.

MoveBin Assign a package to a new bin.
MovePosition Assign a package to a new position within the same bin.
MoveBinAndPosition Assign a package to a new bin and location.
SwapBin Exchange two package’s bin values.
SwapPosition Exchange two package’s position values.
SwapBinAndPosition Exchange two package’s bin and positions.
MoveAllBin Move all the packages in one bin to a new bin.
MoveAllPosition Move all the packages in a bin to new positions in that bin.
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MoveAllBinAndPosition Move all the packages to new positions in a new
bin.

SwapAllBin Swap all the contents between two bins preserving orderings.
SwapAllPosition Swap the positions of packages within the same bin.
SwapAllBinAndPosition Swap all the positions of all the packages in two

bins.

4 Constraint Direction

The goal of CDVNS is the intelligent exploitation of the interaction between
neighbourhoods and constraints to create a more efficient and stable search
progress. Neighbourhoods allow the search to traverse between potential so-
lutions in the state space, crucially though they perform these traversals in a
predictable manner. The SwapAllBin neighbourhood maintains the internal or-
dering of packages within a bin, since the Package Ordering Constraint can only
be violated by a change in packages’ relative positions any search within the
SwapAllBin neighbourhood is guaranteed to neither violate nor satisfy that par-
ticular constraint. By examining the current level of constraint violations the aim
is to pick the neighbourhood which can reduce the target constraint’s violations
whilst leaving as many as possible of the other constraints unaffected.

Algorithm 1 Constraint Directed Variable Neighbourhood Search

1: while violations > 0 and iterations < limit do
2: currentConstraint← GetDominantConstraint
3: neighbourhoods[]← neighbourhoodMatrix[currentConstraint]
4: for all n in neighbourhoods[] do
5: currentScore← explore(n)
6: if currentScore < bestScore then
7: bestScore← currentScore
8: end if
9: end for

10: violations← bestScore.violations
11: end while

In any given situation the algorithm must be able to select the most ap-
propriate set of neighbourhoods, this is achieved by storing the possible choices
in a matrix structure which is indexed by most pressing constraint. Wherever
possible the matrix will return the most specific neighbourhood, however it may
be that several neighbourhoods need to be explored. It should be noted that if
more than one neighbourhood is returned from the matrix then CDVNS explores
them exactly as a conventional VNS would.

The decision about which neighbourhoods should be associated with which
constraints is crucial to the performance of CDVNS. If all the available neigh-
bourhoods are associated with every constraint then there would be no perfor-
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mance advantage over VNS. CDVNS reduces it’s exploration by only exploring
neighbourhoods which can reduce the number of violations of the dominant con-
straint. Ideally each constraint type will have only one neighbourhood to search.
The best neighbourhood to select is the one which can alter the desired con-
straint and yet does not impinge on the other constraint types. Unfortunately
this clean separation is unlikely to be achievable for all constraints so the selec-
tion of neighbourhoods which affects more than just the desired constraint may
be unavoidable. The disruption using a less specific neighbourhood can cause to
the search progress is explored in more detail in section 5.

Algorithm 1 gives the structure of the CDVNS algorithm. The currentScore
and bestScore variables are objects which contain information about the number
of violations of each type of constraint. The violations variable is the summa-
tion of the number of violations of each of the constraint types. When this
value reaches zero then the search terminates as it has found a solution. The
GETDOMINANTCONSTRAINT method evaluates the bestScore and returns
which of the constraint types has been violated the largest number of times.
This currentConstraint is used to access the neighbourhoodMatrix which stores
the associations between constraints and neighbourhoods. The neighbourhoods[]
are explored and the best state is selected. In the experiment the bestScore is
defined as the one which reduces the target violations. An interesting point to
note is that currently the implementation of CDVNS is entirely deterministic.

5 Selecting the Dominant Constraint

In the original concept for this algorithm the idea was that the next neighbour-
hood to be explored would simply be chosen to affect the constraint which had
the largest number of violations. During our experimentation it became apparent
that this approach was too naive and caused the search to explore more states
than was strictly necessary. This can be seen in Figure 1(a) where the search is
selecting neighbourhoods based solely upon the amount of violations. Initially
the Inter-Bin Constraint violations are dominant and so the search focuses on
reducing those. A steady descent of the violations is witnessed until the point
where the Clashing Package Constraint violations becomes greater. The neigh-
bourhoods used to solve this particular constraint whilst reducing the intended
violations have the side effect of introducing more Inter-Bin Constraint viola-
tions. This results in the search focusing on reducing the Inter-Bin Constraints
once more until another constraint becomes more violated. This constant disrup-
tion of existing constraint violations is counter productive and should be avoided
where possible.

To combat this we artificially weighted the Clashing Packages Constraint
violations so that the search would always attempt to reduce these before re-
solving the other constraints. The weighting essentially multiplied the number
of Clashing Packages Constraint violations by a thousand so that even a single
violation of this constraint would be chosen over hundreds of violations of the
other constraints. Figure 1(b) shows the effect of this decision, search progress
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Fig. 1. The effect of constraint weighting on search progress.
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becomes much smoother and less than half the amount of state exploration is re-
quired. The remaining constraints are selected using the original method. Since
the neighbourhoods used to solve the Inter-Bin Constraints and the Package
Ordering Constraints do not interact with each other they can safely be inter-
leaved without disrupting the solution. The issue of automatically resolving the
order constraints should be tackled in is something we intend to explore in future
work. The weighting obviously has limitations, if another constraint happens to
be violated more than the arbitrary value which we have selected then the search
may still choose to tackle the constraints in a inefficient manner.

6 Initial Results

The initial results have been encouraging Tables 2 & 3 show that the CDVNS
algorithm performs better on all the instances. This can be more clearly seen
in the graphs, Figures 2(a) & 2(b). We ran the experiment with four different
configurations; two acceptance strategies, Best Improvement (BI) and First Im-
provement (FI), were trialed with both CDVNS and VNS. Each configuration
was started from the same initial solution for each instance and we measured the
number of solutions explored before reaching one with no constraint violations.

The results are described in terms of state exploration as the objective of
CDVNS was to reduce unnecessary exploration. During the experimental runs
we did not gather any accurate run time readings, something which we intend
to rectify in future experiments. Informally the run times did exhibit differences
of similar magnitudes to the state exploration but without proper timing data
we cannot make any definitive claims regarding this.

On all the problem instances CDVNS with the BI strategy was the most
efficient. Initially this seemed counter intuitive since the BI strategy commits to
a complete traversal of each neighbourhood whereas FI only needs to explore
until a better state is found. After looking closely at some individual runs it
became apparent what was happening was that during the final stages of the
search when the Inter-Bin Constraints were being resolved the FI strategy would
always choose small swaps. This decision proves to be quite inefficient as an
incorrectly placed bin requires several swaps to reach the right position; in effect
what happens is a Bubble Sort.

Another interesting point to note is that the performance of CDVNS with
BI is the most stable over all the instances. In Table 1 the amount of standard
deviation, σ, is far less than the other configurations. Indeed the variation of
exploration between the instances in the the VNS strategies is often greater
than the total amount of exploration CDVNS required to solve the problem.

7 Conclusions

We have created a variable neighbourhood search algorithm which explores only
a subset of the possible neighbourhoods. This subset is determined dynamically
during the search based upon how many of the problem constraints remain
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Configurations Mean σ Min Q1 Median Q3 Max

120

CDVNS & BI 119800.0 16223.7 90220.0 112000.0 117000.0 132500.0 147400.0
CDVNS & FI 202200.0 51532.7 120800.0 159300.0 196300.0 238200.0 292900.0

VNS & BI 4244000.0 319112.5 3634000.0 4010000.0 4246000.0 4447000.0 4821000.0
VNS & FI 1133000.0 245937.8 711300.0 956300.0 1132000.0 1355000.0 1465000.0

250

CDVNS & BI 988100.0 128223.1 860900.0 907600.0 970800.0 1007000.0 1278000.0
CDVNS & FI 2297000.0 327170.7 1773000.0 2093000.0 2269000.0 2433000.0 2807000.0

VNS & BI 38650000.0 2234899.0 33500000.0 38210000.0 38250000.0 40330000.0 41070000.0
VNS & FI 15100000.0 1825347.0 12250000.0 13900000.0 15740000.0 15980000.0 17210000.0

Table 1. Descriptive statistics of state exploration.

Instance CDVNS & BI CDVNS & FI VNS & BI VNS & FI

00 113849 183162 4286047 1371544

01 115860 164363 4558652 1053418

02 147417 182228 4158136 748909

03 118154 209396 4200416 1349938

04 141418 178844 4771796 1464504

05 119660 145849 3930901 1462870

06 133351 230074 4346024 1188831

07 90252 120817 3633546 855290

08 100228 237652 4308257 989947

09 136341 149621 4568430 1132716

10 118425 239959 4474598 1304347

11 143026 292911 4206591 1274017

12 132214 152391 4820972 1397905

13 112440 142975 4400759 1436067

14 110720 161539 4158900 711343

15 110248 248441 4437433 1035583

16 114954 278210 4036979 1071884

17 132165 287235 3929229 1130588

18 114414 212831 3812641 829838

19 90216 224866 3830452 854105

Table 2. State exploration required on the 120 package problem instances.
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Instance CDVNS & BI CDVNS & FI VNS & BI VNS & FI

00 933302 1991219 39658678 15737363

01 1064895 2092704 38245873 13901122

02 970809 2387260 38197133 15979864

03 865854 1773027 33501055 15688430

04 907561 2231076 38231370 16954223

16 1278119 2432534 40333650 12250679

17 1006958 2269030 41066676 12408058

18 1004129 2807196 40388150 15767066

19 860916 2690185 38214876 17207818

Table 3. Partial results of state exploration from the 250 package problem instances.

violated. This approach has been contrasted against an uninformed VNS and
we achieved the same search reachability whilst using far less exploration. In
addition the performance of CDVNS is more uniform across problem instances.

We have achieved these results whilst retaining the generality of local search,
this technique should be applicable to any constrained problem. As our contri-
bution is focused around intelligent neighbourhood selection no stipulations are
made about the type of acceptance function used. CDVNS should be compatible
with successful meta-heuristics such as Simulated Annealing and Tabu Search.

8 Future Work

This is very much work in progress and there are various directions we wish
to explore further. At present the assignment of the weightings which specify
the relative importance of the different constraint violations is done manually.
We want to investigate whether this can be done automatically by creating a
directed graph structure which represents the interactions between constraints.
Standard graph labelling techniques should be applicable to resolve the ordering.
In more complex problems it is unlikely that we will be able to fully order the
constraints as there are liable to be cycles within the graph. However even a
partial ordering should still be able to guide the search more efficiently than a
static VNS.

Applying some formalism to the problem specification so we can automate the
neighbourhood generation is an interesting challenge. This is more in line with
Constraint Programming where the focus is on modelling the problem rather
than defining how to solve it. To be able to automatically generate the con-
straint orderings we will also need to investigate how to go about creating the
neighbourhood matrix and capturing the interactions between neighbourhoods
and constraints.

We are also looking to use the Comet language (Van Hentenryck and Michel) [6],
all our current work is implemented in Python. Switching to Comet would give
several benefits, namely a cleaner separation between the algorithm and the
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problem model and access to high performance delta calculation methods. Our
present evaluation function exhaustively recalculates the constraint violations
for each state which is a laborious and time consuming endeavour. The separa-
tion between the problem and algorithm should make it easy to apply CDVNS
to wide range of constrained problems.

We also propose that the interaction between neighbourhoods and constraints
can be harnessed to make more efficient delta calculation methods. As we know
which constraints cannot be affected by a move within a neighbourhood there
will be no need to reevaluate that constraint’s violations. If the neighbourhood
being searched can only affect a single constraint then the amount of time saved
could lead to significant performance gains.
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