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a  b  s  t  r  a  c  t

The  growing  costs  of  fuel  and  operation  of power  generating  units  warrant  improvement  of  optimiza-
tion  methodologies  for  economic  dispatch  (ED)  problems.  The  practical  ED  problems  have  non-convex
objective  functions  with  equality  and inequality  constraints  that  make  it much  harder  to  find  the  global
optimum  using  any  mathematical  algorithms.  Modern  optimization  algorithms  are  often  meta-heuristic,
and  they  are  very  promising  in  solving  nonlinear  programming  problems.  This  paper  presents  a novel
approach  to  determining  the  feasible  optimal  solution  of  the  ED  problems  using  the  recently  devel-
oped  Firefly  Algorithm  (FA).  Many  nonlinear  characteristics  of  power  generators,  and  their  operational
constraints,  such  as  generation  limitations,  prohibited  operating  zones,  ramp  rate  limits,  transmission
irefly Algorithm
etaheuristic

loss,  and nonlinear  cost  functions,  were  all contemplated  for practical  operation.  To  demonstrate  the
efficiency  and  applicability  of the  proposed  method,  we  study  four  ED  test  systems  having  non-convex
solution  spaces  and  compared  with  some  of the  most  recently  published  ED  solution  methods.  The results
of  this  study  show  that the  proposed  FA  is able  to  find  more  economical  loads  than  those  determined  by
other methods.  This  algorithm  is  considered  to be a promising  alternative  algorithm  for  solving  the  ED
problems  in  practical  power  systems.
. Introduction

Economic dispatch (ED) has become a fundamental function
n operation and control of modern power systems. The ED prob-
em can be stated as determining the least cost power generation
chedule from a set of online generating units to satisfy the load
emand at a given point of time [1]. Though the core objective of
he problem is to minimize the operating cost satisfying the load
emand, several types of physical and operational constraints make
D highly nonlinear constrained optimization problem, especially
or larger systems [2]. However, accurate and intelligent scheduling
f the units not only can decrease the operating cost significantly
ut also can assure higher reliability with improved security and

ess environmental impact [3]. In traditional ED approaches, the
nput–output characteristics (or cost function) of a generator is
pproximately shown by utilizing a single quadratic function. In

ractice, operating conditions of many generating units require
he cost function to be modeled as a piecewise quadratic function
4].  However, higher-order nonlinearities and discontinuities are
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observed in real input–output characteristics, owing to valve-point
loading in fossil fuel burning plants [5].  Besides, due to physical
operation limitations (such as faults in the machines themselves)
or the associated auxiliaries (such as boiler, feed pumps), units can
have prohibited operating regions and generators that operate in
these zones may  experience amplification of vibrations in their
shaft bearing, which should be prevented in practical applications
[6]. Also due to the change restriction in the unit generation out-
put, the units in the actual operation can have ramp rate limits [7].
So, ramp rate limits, prohibited operating zones (POZs) and valve
loading effects should be considered to solve a realistic ED problem,
which makes the finding of the optimum solution extremely hard.

Several deterministic optimization techniques were proposed
to solve the ED problem, including gradient method [8],  lambda
iteration method [9],  linear programming [10], quadratic program-
ming [11], non-linear programming [12], Lagrangian relaxation
algorithm [13] and dynamic programming [14]. By modeling of
the final cost of generation accurately and taking valve-loading
effect into account, the cost function of generators takes a non-
convex form [15]. The theoretical assumptions behind previously

mentioned algorithms (except dynamic programming) make them
unsuitable for the ED formulation regarding non-convexity and dif-
ferentiability. Furthermore, they are local optimizers by nature, i.e.,
they might converge to local solutions instead of global ones if the
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nitial guess happens to be in the neighborhood of a local solution.
ynamic programming method may  cause the dimensions of the
D problem to become extremely large, thus requiring enormous
omputational efforts.

To overcome these deficiencies, artificial intelligence meth-
ds have been used to solve the ED problem, and these methods
nclude Genetic Algorithm (GA) [16], real-coded genetic algo-
ithm (RCGA)[17], Tabu Search (TS) [5],  Hopfield neural network
18], different types of Evolutionary Programming (EP) [19],
iogeography-based optimization (BBO) [20], Evolutionary Strat-
gy (ES) [21], Particle Swarm Optimization (PSO) ([22–25]), an
mproved coordinated aggregation-based particle swarm opti-

ization (ICA-PSO) [26,27], Bacterial Foraging (BF) [28], harmony
earch (HS) [29] and Hopfield Neural Network (HNN) [30].

Although several optimization methodologies have been devel-
ped for the ED problem, the complexity of the task reveals the
ecessity for development of efficient algorithms to accurately

ocate the optimum solution. In this context, the objective of this
ork is to demonstrate a new approach for solving ED problems,

iming to provide a practical alternative for conventional methods.
ere, Firefly Algorithm, developed by Yang [31], is used which has
een successful to solve mixed variable and constrained engineer-

ng problems [32]. A more detailed description concerning theoreti-
al and implementation feature of the proposed method is provided
n the later sections. To show the efficiency and applicability of the
roposed method, several types of ED problems are analyzed and
esults are compared with those available in the literature.

This paper is organized as follows. Section 2 illustrates the ED
roblem formulation considering valve-loading effect, prohibited
perating zone (POZ) constraints and ramp rate limits. Moreover,
he proposed method for constraints handling is demonstrated in
his section. In Section 3, the Firefly Algorithm is described. In
ection 4, simulation results are presented that demonstrate the
otential of the proposed algorithm. Finally, Section 5 concludes
he paper with discussions

. Economic load dispatch problems with valve-point
oadings problem

The goal of economic dispatch (ED) problem is to find the opti-
al  combination of power generations that minimizes the total

eneration cost, while satisfying an equality constraint and inequal-
ty constraints. Cost efficiency is the most significant subproblem
f power system operations. Owing to the highly nonlinearity char-
cteristics of power systems and generators, ED belongs to a class
f nonlinear programming optimization including equality and
nequality constraints. Practically speaking, while the scheduled
ombined units for each specific period of operation are listed from
nit commitment, the ED planning must carry out the optimal gen-
ration dispatch among the operating units in order to meet the
oad demands and practical operation constraints of generators,

hich consist of ramp rate limits, maximum and minimum lim-
ts, and prohibited operating zones. In general, the generation cost
unction is usually stated as a quadratic polynomial. Mathemati-
ally, the problem can be modeled as:

in  f =
n∑
i=1

Fi(Pi) (1)

here Fi is the total generation cost for the generator unit i, which
s defined by the following equation:

2

i(Pi) = aiPi + biPi + ci (2)

here ai, bi and ci are coefficients of generator i.
The valve-opening process of multivalve steam turbines pro-

uces a ripple-like effect in the heat rate curve of the generators.
uting 12 (2012) 1180–1186 1181

This curve contains higher order nonlinearity because of the valve-
point effect, and should be refined by a sine function. Also the
solution procedure can easily trap in the local minima in the vicinity
of optimal value. To take account for the valve-point effects, sinu-
soidal terms are added to the quadratic cost functions as follows:

∼
Fi = aiP

2
i + biPi + ci +

∣∣ei sin(fi(P
min
i − Pi)

∣∣ (3)

where ei and fi are constants of the unit with valve-point effects.
The model in Eq. (3) is subject to the following constraints:

2.1. Power balance constraint

NG∑
i=1

Pi = PD + PL (4)

where PD is the load demand and PL is the total transmission net-
work losses of system. To compute network losses, the B-coefficient
method [7] is commonly utilized by the power utility industry. In
the B-coefficient method, the transmission losses are expressed as
a quadratic function:

PL =
n∑
i=1

n∑
j=1

PiBijPj +
n∑
i=1

B0iPi + B00. (5)

2.2. Ramp rate limits

One of the unrealistic assumptions that prevailed for simplifying
the problem in many of the earlier research is that the adaptations
to the power output are instantaneous. However, under practical
circumstances, ramp rate limit restrains the operating range of all
the online units for tuning the generator operation between two
operating periods [33]. The generation may  increase or decrease
with corresponding upper and lower ramp rate limits. Therefore,
units are restricted due to these ramp rate limits as mentioned
below.

If power generation increases, we have

Pi − P0
i ≤ URi. (6)

If power generation decreases, we  have

P0
i − Pi ≤ DRi (7)

where P0
i

is the previous power generation of unit i. URi and DRi are
the up-ramp and down-ramp limits of the ith generator, respec-
tively. The inclusion of ramp rate limits changes the generator
operation constraints (5) as follows:

max(Pmax
i , URi − Pi) ≤ Pi ≤ min(Pmax

i , P0
i − DRi). (8)

2.3. Prohibited operating zones

A generator with prohibited operating zones has discontinuous
fuel-cost characteristics. The conception of prohibited operating
zones is consisted of the following constraint in the ED:⎧⎪⎨
⎪⎩
Pmin
i

≤ Pi ≤ PLB
i,1

PUB
i,j−1 ≤ Pi ≤ PLB

i,j
j = 2, 3, . . . , NPi

PUB
i,j

≤ Pi ≤ Pmax
i

j = NPi

. (9)
where PLB
i,j

and PUB
i,j

are the lower and upper boundaries of prohibited
operating zone j of generator i, respectively; NPi is the number of
prohibited operating zones of generator i.
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. Firefly Algorithm

The Firefly Algorithm was developed by Yang ([34,35]), and it
as based on the following idealized behavior of the flashing char-

cteristics of fireflies:

All fireflies are unisex so that one firefly is attracted to other
fireflies regardless of their sex;
attractiveness is proportional to their brightness, thus for any
two flashing fireflies, the less bright one will move towards the
brighter one. The attractiveness is proportional to the brightness
and they both decrease as their distance increases. If no one is
brighter than a particular firefly, it moves randomly;
the brightness or light intensity of a firefly is affected or deter-
mined by the landscape of the objective function to be optimized.

For a maximization problem, the brightness can simply be
roportional to the objective function. Other forms of brightness
an be defined in a similar way to the fitness function in genetic
lgorithms or the bacterial foraging algorithm (BFA) ([36]).

Firefly Algorithm
Objective function f(x), x = (x1, . . .,  xd)T

Initialize a population of fireflies xi(i = 1, 2, . . .,  n)
Define light absorption coefficient �
while (t < MaxGeneration)
for i = 1: n all n fireflies

for j = 1: i all n fireflies
Light intensity Ii at xi is determined by f(xi)
if (Ij > Ii)

Move firefly i towards j in all d dimensions
end if
Attractiveness varies with distance r via exp [− �r2]
Evaluate new solutions and update light intensity

end for j
end for i
Rank the fireflies and find the current best
end while
Postprocess results and visualization

The movement of a firefly i is attracted to another more attrac-
ive (brighter) firefly j is determined by

t+1
i

= xti + ˇ0e
−�r2

ij (xti − xti ) + ˛εti (12)

here ˇ0 is the attractiveness at r = 0, the second term is due to the
ttraction, while the third term is randomization with the vector
f random variables εi being drawn from a Gaussian distribution.
he distance between any two fireflies i and j at xi and xj can be the
artesian distance rij =

∥∥xi − xj
∥∥

2
or the l2-norm. For other applica-

ions such as scheduling, the distance can be time delay or any suit-
ble forms, not necessarily the Cartesian distance. For most cases
n our implementation, we can take ˇ0 = 1,  ̨ ∈ [0, 1] , and � = 1.
n addition, if the scales vary significantly in different dimensions
uch as −105 to 105 in one dimension while, say, −10−3 to 103 along
thers, it is a good idea to replace � by ˛Sk where the scaling param-
ters Sk(k = 1, . . .,  d) in the d dimensions should be determined by
he actual scales of the problem of interest. In essence, the param-
ter � characterizes the variation of the attractiveness, and partly
ontrols how the algorithm behaves. It is also possible to adjust �
o that multiple optima can be found at the same during iterations.
.1. Constraint handling

A significant factor in the application of optimization tech-
iques is how the algorithm handles the constraints concerning the
uting 12 (2012) 1180–1186

problem. The POZ constraints (9) are utilized as follows. If the gen-
eration of unit i is settled in its jth POZ, i.e.:

PLB
i,j ≺ Pi ≺ PUB

i,j (13)

then the amount of generation is cut to the nearest boundary of the
jth POZ as follows:

Pave
i,j =

(
PLB
i,j

+ PUB
i,j

2

)
(14)

Pi =
{
PLB
i,j

ifPLB
i,j

≺ Pi ≤ Pave
i,j

PUB
i,j

if Pave
i,j

≺ Pi ≺ PUB
i,j

. (15)

For a nonlinear optimization problem with equality and inequal-
ity constraints, a common method is the penalty method. The idea
is to define a penalty function so that the constrained problem is
transformed into an unconstrained problem. Now we can define

∏
(x, �i, vj) = f (x) +

M∑
i=1

�iϕ
2
i (x) +

N∑
j=1

vj 2
j (x) (16)

where �i ≥ 1 and vj ≥ 0 which should be large enough, depending
on the solution quality needed. As we  can see, when an equality
constraint it met, its effect or contribution to

∏
is zero. How-

ever, when it is violated, it is penalized heavily as it increases∏
significantly. Similarly, it is true when inequality constraints

becomes tight or exactly. It should be mentioned that generation
and ramp rate limits are similar type of constraints. These con-
straints together state the overall upper/lower generation limits of
the units.

4. Implementation and numerical experiments

All the EAs for the ED problems are implemented using
MATLABTM 7.0 on a PC with a Pentium IV, Intel Dual core 2.2 GHz,
1 GB RAM. Owing to the random nature of the FA (and in fact all
metaheuristic algorithms), their performance cannot be judged by
the result of a single run. Many trials with independent popula-
tion initializations should be made to obtain a useful conclusion of
the performance of the approach. Therefore, the results should be
analyzed using statistic measures such as mean and standard devi-
ation. The best, worst and mean obtained in 100 trials are used to
compare the performances of different EAs. To find the effective-
ness of the proposed FA, the test results are also compared with the
results already reported by the most recently published methods
for solving the ED problem.

There are 4 important parameters in the Firefly Algorithm: ˛0,
ˇ0, � , and the population size n. In order to obtain the right param-
eters, we  have carried out a detailed parametric study by varying
these parameters. More specifically, we  varied ˛0, ˇ0 from 0.1 to 1.0
with a step increase of 0.1, � from 0.01 to 100 with a step increase
of 0.01 up to 1, and then 5 up to 100. We  also varied n from 5 to
100 with an interval of 5. By analyzing the optimal solutions for
a wide range of test functions, we found that the best values or
ranges of the parameters are: ˛0 = 0.4–0.9, ˇ0 = 0.5–1.0, � = 0.1–10
and n = 25–50. For most problems, we can use the fixed value of
ˇ0 = 1. Therefore, the parameters of the proposed FA to solve the
ED problem in the four test cases are: ˇ0 = 1, � = 1/L  (where L is
the characteristic scale of the problem),  ̨ = 0.5 and then is gradu-

ally reduced to 0.01 as iterations proceed. n varies from 25 to 50,
depending on the complexity of the problem. In addition, the max-
imum number of function evaluations varies from 5000 to 50,000,
depending on the size of the ED problem.
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Table  1
Comparison of FA and global optimal on the three benchmark constrained problems.

No. Decision var. no. Constraint no. Global optimal Predicted by FA

Continues Discrete [Xmin; Fmin] [Xmin; Fmin]

1 1 1 1 [1.375, 1; 2.124] [1.375, 1; 2.124]
2  2 1 2 [0.94194, 2.1, 1; 1.07654] [0.94194, 2.1, 1; 1.07654]
3 3 4 8 [0.2, 1.280624, 1.954483, 1, 0, 0, 1; 3.557463] [0.2, 1.280624, 1.954483, 1, 0, 0, 1; 3.557463]

Table 2
The best, average and worst results of different ED solution methods for the 3 unit test system.

Methods Generation cost ($/h)

Best Average Worst Standard deviation No. of evaluation

GAB [19] 8234.08 NA NA NA 10,000
GAF  [19] 8234.07 NA NA NA 10,000
CEP  [19] 8234.07 8235.97 8241.83 NA 1000
FEP  [19] 8234.07 8234.24 8241.78 NA 1000
MFEB  [19] 8234.08 8234.71 8241.8 NA 1000

8234.54 NA 1000
8241.23 3.63 5000
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Table 3
Output power of generators in the best result of the proposed FA for the 3 unit test
system.

Unit Power (MW)

1 300.267
2  149.733
3  400.000
IFEP  [19] 8234.07 8234.16 

FA  8234.07 8234.08 

A: not available.

.1. Validation

Before solving economic dispatch problems, FA was  bench-
arked using three mixed-variable numerical examples which are

iven as follows in detail. The example 1 is chosen from Floudas [37]
nd the examples 2 and 3 are selected from Costa and Oliveria [38].
he results obtained by FA and the global optimal are presented in
able 1. As it can be seen from this table the FA obtained the global
ptimal solution correctly in all the three examples.

xample 1.

inimize : f (x, y) = −y + 2x − ln
(
x

2

)

ubject to : g1 = −x − ln
(
x

2

)
+ y ≤ 0

where 0.5 ≤ x ≤ 1.5 and y ∈
{

0, 1
}
.

xample 2.

inimize : f (x, y) = −0.7y + 5(x1 − 0.5)2 + 0.8

g1 = − exp(x1 − 0.2) − x2 ≤ 0
Subject to : g2 = x2 + 1.1y + 1.0 ≤ 0

g3 = x1 − 1.2y − 0.2 ≤ 0

where 0.2 ≤ x1 ≤ 1.0, −2.22554 ≤ x2 ≤ − 1.0 and y ∈
{

0, 1
}
.

xample 3.

Minimize : f (x, y) = (y1 − 1)2 + (y2 − 1)2 + (y3 − 1)2

− ln(y4 + 1) + (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

g1 = y1 + y2 + y3 + x1 + x2 + x3 − 5.0 ≤ 0
g2 = y2

3 + x2
1 + x2

2 + x2
3 − 5.5 ≤ 0

g3 = y1 + x1 − 1.2 ≤ 0
g4 = y2 + x2 − 1.8 ≤ 0
g5 = y3 + x3 − 2.5 ≤ 0

Subject to : g6 = y4 + x1 − 1.2 ≤ 0
g7 = y2

2 + x2
2 − 1.64 ≤ 0
g8 = y2
3 + x2

3 − 4.25 ≤ 0
g9 = y2

2 + x2
3 − 4.64 ≤ 0

where 0 ≤ x1, x2, x3 and y1, y2, y3, y4 ∈
{

0, 1
}
.

Total generation (MW) 850
Generation cost ($/h) 8234.074

4.2. Economic dispatch problems

4.2.1. Case 1: 3 generating units
This test case includes three generating units. The expected load

demand to be met  by all the three generating units is 850 MW.
The description of the system can be found from [19]. It has
been reported in Ref. [5] that the global minimum found for the
three-generator system is 8234.07. Based on the above mentioned
parameters, the Firefly Algorithm has been executed for 100 trials
with various starting points to verify its performance and efficiency.
The best, average and worst of cost functions achieved by various
methods are shown in Table 2. All methods give a similar ‘best solu-
tion’, whereas ‘average’ and ‘worst’ costs differ. Table 3 shows that
the proposed method has accomplished in finding the global opti-
mal  solution presented in Ref. [5].  The average execution time of
the FA for this test system is 2.07 s.

4.2.2. Case 2: 13 generating units
This test case consists of thirteen generating units; the complex-

ity to the solution process has significantly increased. Inasmuch as
this is a larger system with higher non-linearity, it has more local
minima and thus it is difficult to attain the global solution. To be
able to deal with more complicated case with highly non-linearity
is one of the main goals of FA applications. The load demand of this
test system is 1800 MW.  Exactly the same data of all units as given
in Ref. [19] will be utilized in this case. Table 4 shows the best, aver-
age and worst results of different ED solution methods among 100
trial runs in the same way as listed in Table 2. The outcomes of the
other approaches shown in Table 4 have been directly quoted from

their corresponding references (‘NA’ means the related result is not
available in the corresponding reference). The average execution
time of the FA for this test system is 10.36956 s. The computa-
tion times of the FA are not compared with the other ED solution
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Table  4
The best, average and worst results of different ED solution methods for the 13 unit test system.

Methods Generation cost ($/h)

Best Average Worst Standard deviation No. of evaluation

CEP [19] 18,048.21 18,190.32 18,404.04 NA NA
PSO  [2] 18,030.72 18,205.78 NA NA 10,000
MFEP  [19] 18,028.09 18,192 18,416.89 NA NA
FEP [19] 18,018 18,200.79 18,453.82 NA NA
IFEP  [19] 17,994.07 18,127.06 18,267.42 NA NA
EP–SQP  [2] 17,991.03 18,106.93 NA NA 10,000
HDE  [39] 17,975.73 18,134.8 NA NA 100
CGA  MU [40] 17,975.34 NA NA NA NA
PSO–SQP  [2] 17,969.93 18,029.99 NA NA 10,000
HS [29] 17,965.62 17,986.563 18,070.176 26.3702 22,500
IGA MU [40] 17,963.98 NA NA NA NA
DEC(1)-SQP(1) [41] 17,963.94 17,973.13 17,984.81 NA NA
ST-HDE  [39] 17,963.89 18,046.38 NA NA 100
FA  17,963.83 18,029.16 18,168.80 148.542 25,000
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A: not available.

ethods, since the computation times of each ED method are com-
uted on a different hardware. Output power of the generators of
he 13 unit test system in the minimum solution of the FA is shown
n Table 5.

.2.3. Case 3: 40 generating units
The test system has forty generating units with non-convex fuel

ost function incorporating valve loading effects. The required load
emand to be met  by all the forty generating units is 10,500 MW.
he detailed information of generating units of test system is
iven in Ref. [19]. This case study has a larger and more complex
olution space than all the previous case studies, and so any dif-
erence between different ED solution techniques can be better
evealed in this test case. The Firefly Algorithm has been executed
or a hundred times with various starting points. The obtained
esults of the proposed FA to resolve the ED problem for this test
ystem are shown in Table 5. In this table, the detailed compar-
sons of the best, average and worst solutions of the proposed
A and most recently published ED solution methods are shown.
s seen from Table 6, the best solution of the proposed method

s better than those of all other methods, indicating FA’s higher
fficiency to solve the ED problem comparing with the other meth-
ds. Hence, for power system ED problems of greater size with

igher non-linearities, the proposed method is proved to be the
est approach among all the methods. The average execution time
f the FA for this test system is 4.72801 s, and such a computation
ime to solve the ED problem is reasonable and practical. Detailed

able 5
utput power of generators in the best result of the proposed FA for the 13 unit test

ystem.

Unit Power (MW)

1 628.31852
2 149.59952
3  222.74912
4  109.86655
5  109.86655
6  109.86655
7  109.86655
8  60.00000
9  109.86655
10 40.00000
11 40.00000
12 55.00000
13 55.00009

Total generation (MW)  1800
Generation cost ($/h) 17963.83080
results of the optimal solution of the proposed method, includ-
ing generation output of each unit for this test system, are shown
in Table 7.

4.2.4. Case 4: 15 generating units
In this case study, all mentioned practical constraints and non-

linear characteristics of the ED problem are included. The valve
loading effects, ramp rate limits and POZs are considered for the
units of this test system, whose data is given in Ref. [22]. The
prohibited operating zones embedded in the 4 units, units 2, 5,
6, and 12. This problem proves particularly challenging because
these zones result in a non-convex decision space where 192
convex subspaces can be constituted for the dispatch problem.
The remaining units have simple operational zone. This challeng-
ing problem not only requires the proper implementation of the
constraints, but also employs an efficient search in different sub-
regions without wasting too much time on the prohibited regions.
This means that number of fireflies should be sufficient enough
so that they can distribute in most promising regions with high
probability, while they can also fly or jump to different regions
when necessary. Therefore, a fine balance between solution quality
and computational effort is required. To ensure the global opti-
mum solution is reachable, we have tried to do a few test runs
by varying the number of fireflies and the total number of func-
tional evaluations. From this initial learning experience, we can
get a crude estimate what parameters are appropriate for this
problem. We  then use these as a basis for the more intensive
100 runs.

The comparison of the best, average and worst solutions of the
proposed FA and most recently published ED solution methods, is
shown in Table 8. Again, the FA offers an improved generation cost
over the other methods, clearly showing the proposed approach of
locating better solutions is superior to others. Detailed results of the
optimal solution of the proposed method, discovered through the
proposed method are shown in Table 9. All mentioned constraints
were satisfied. The average execution time of the FA for this test
system is 16.05 s, which is again a good computation time.

From our simulations, we observed that Firefly Algorithms have
some advantages over other algorithms such as particle swarm
optimization. By comparing with PSO and other algorithms, Firefly
Algorithm has two  superiorities: automatic subdivision and ran-

dom reduction. The fireflies in the FA can automatically divide into
subgroups so that these subgroups swarm around the multimodal
optima. This makes it possible for the algorithm to find all global
optima simultaneously. Thus, the algorithm is particularly suitable
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Table  6
The best, average and worst results of different ED solution methods for the 40 unit test system.

Methods Generation cost ($/h)

Best Average Worst Standard deviation No. of evaluation

HGPSO [42] 124,797.13 126,855.70 NA 1160.91 NA
SPSO  [42] 124,350.40 126,074.40 NA 1153.11 NA
PSO  [2] 123,930.45 124,154.49 NA NA 10,000
CEP [19] 123,488.29 124,793.48 126,902.89 NA NA
HGAPSO [42] 122,780.00 124,575.70 NA 906.04 NA
FEP  [19] 122,679.71 124,119.37 127,245.59 NA NA
MFEP [19] 122,647.57 123,489.74 124,356.47 NA NA
IFEP  [19] 122,624.35 123,382.00 125,740.63 NA NA
TM  [43] 122,477.78 123,078.21 124,693.81 NA 4050
EP–SQP [2] 122,323.97 122,379.63 NA NA 10,000
MPSO [44] 122,252.26 NA NA NA NA
ESO  [21] 122,122.16 122,558.45 123,143.07 NA 75,000
HPSOM [42] 122,112.40 124,350.87 NA 978.75 NA
PSO–SQP [2] 122,094.67 122,245.25 NA NA 10,000
PSO-LRS [23] 122,035.79 122,558.45 123,461.67 NA 20,000
Improved GA [45] 121,915.93 122,811.41 123,334.00 NA 100,000
HPSOWM [42] 121,915.30 122,844.40 NA 497.44 NA
IGAMU [16] 121,819.25 NA NA NA NA
HDE  [39] 121,813.26 122,705.66 NA NA 100
DEC(2)-SQP(1) [46] 121,741.97 122,295.12 122,839.29 386.181 18,000
PSO  [24] 121,735.47 122,513.91 123,467.40 NA 20,000
APSO(1) [24] 121,704.73 122,221.36 122,995.09 NA 20,000
ST-HDE [39] 121,698.51 122,304.30 NA NA 100
NPSO-LRS [23] 121,664.43 122,209.31 122,981.59 NA 20,000
APSO(2) [24] 121,663.52 122,153.67 122,912.39 NA 20,000
SOHPSO [22] 121,501.14 121,853.57 122,446.30 NA 62,500
BBO  [20] 121,479.50 121,512.06 121,688.66 NA 50,000
BF  [28] 121,423.63 121,814.94 NA 124.876 10,000
GA–PS–SQP [47] 121,458.00 122,039.00 NA NA 1000
PS  [48] 121,415.14 122,332.65 125,486.29 NA 1000
FA 121,415.05 121,416.57 121,424.56 1.784 25,000

NA: not available.

Table 7
Output power of generators in the best result of the proposed FA for the 40 unit test
system.

Unit Power (MW)  Unit Power (MW)

1 110.8099 21 523.2793
2  110.8059 22 523.2793
3 97.40230 23 523.2832
4  179.7332 24 523.2832
5  92.70700 25 523.2793
6 140.0000 26 523.2793
7  259.6004 27 10.0000
8  284.6004 28 10.0000
9  284.6004 29 10.0000
10  130.0028 30 87.8008
11  168.8008 31 189.9989
12  168.8008 32 189.9989
13  214.7606 33 189.9989
14  304.5204 34 164.8036
15  394.2801 35 164.8036
16 394.2801 36 164.8036
17  489.2801 37 110.0000
18  489.2801 38 110.0000
19  511.2817 39 110.0000
20  511.2817 40 511.2794

Total
generation
(MW)

10500

Generation
cost  ($/h)

121415.0522

f
r
u
w

Table 8
The best, average and worst result of different ED solution methods for the 15 unit
test system including POZ constraints, ramp rate limits and transmission losses.

Methods Generation cost ($/h)

Best Average Worst Standard
deviation

No. of
evaluation

PSO [49] 32,858 33,039 33,331 NA 20,000
GA [49] 33,113 33,228 33,337 NA 20,000
SOH PSO [22] 32,751 32,878 32,945 NA 62,500
CPSO1 [50] 32,835 33,021 33,318 NA 8000
CPSO2 [50] 32,834 33,021 33,318 NA 8000
BF  [28] 32,784.5 32,796.8 NA 85.7743 10,000
FA  32,704.5 32,856.1 33,175.0 147.17022 50,000

NA: not available.

Table 9
Output power of generators and transmission losses in the best result of the pro-
posed FA for the 15 unit test system.

Unit Power (MW)

1 455.0000
2 380.0000
3  130.0000
4  130.0000
5  170.0000
6 460.0000
7  430.0000
8  71.7450
9  58.9164
10 160.0000
11 80.0000
12  80.0000
13  25.0000
14 15.0000
15 15.0000

Losses (MW) 30.6614
or nonlinear, multimodal optimization problems. In addition, the
andomness is reduced gradually by using a similar strategy as that

sed in simulated annealing, and this will speed up convergence
hen the global optimality is approaching.

Generation cost ($/h) 32,704.4501
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. Conclusions

In this paper, we have presented a new approach to non-convex
D problems based on the FA. Many of the nonlinear characteris-
ics of power systems such as valve-point loadings, ramp rate limits,
nd prohibited operating zones are considered for practical gener-
tor operation in the proposed method. Four test cases have been
tudied and comparisons of the quality of the solution and per-
ormance have been conducted against several of most recently
ublished ED solution methods. Based on simulation results, the
olution quality and reliability show the superiority of the FA over
ther approaches. The proposed algorithm capability and robust-
ess make it suitable to solve complex optimization problems like
on-convex ED. Future studies can focus on the inclusion of more
ealistic constraints to the problem structure. Large-scale, realistic
D problems can be attempted by the proposed methodology. In
ddition, it would be a good research topic to extend the proposed
pproach to solve mixed integer programming problems which are
ften NP-hard. A detailed parametric study of the algorithm may
lso prove fruitful.
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