
Parallel Evolutionary Algorithms on Graphics Processing Unit

Man-Leung Wong
Dept. of Computing & Decision Sci.

Lingnan University
Tuen Mun, Hong Kong

mlwong@ln.edu.hk

Tien-Tsin Wong
Dept. of Comp. Sci. & Engineering
The Chinese University of Hong Kong

Shatin, Hong Kong
ttwong@acm.org

Ka-Ling Fok
Dept. of Comp. Sci. & Engineering
The Chinese University of Hong Kong

Shatin, Hong Kong
klfok@cse.cuhk.edu.hk

Abstract- Evolutionary Algorithms (EAs) are effective
and robust methods for solving many practical problems
such as feature selection, electrical circuits synthesis,
and data mining. However, they may execute for a long
time for some difficult problems, because several fitness
evaluations must be performed. A promising approach
to overcome this limitation is to parallelize these algo-
rithms. In this paper, we propose to implement a par-
allel EA on consumer-level graphics cards. We perform
experiments to compare our parallel EA with an ordi-
nary EA and demonstrate that the former is much more
effective than the latter. Since consumer-level graph-
ics cards are available in ubiquitous personal computers
and these computers are easy to use and manage, more
people will be able to use our parallel algorithm to solve
their problems encountered in real-world applications.

1 Introduction

Evolutionary Algorithms (EAs) are weak search and opti-
mization techniques inspired by natural evolution. They
have been demonstrated to be effective and robust in search-
ing very large and varied spaces in a wide range of applica-
tions such as feature selection [1], electrical circuits syn-
thesis [2], and data mining [3, 4]. In general, EAs include
all population-based algorithms that use selection and re-
combination operators to generate new search points in a
search space. They include genetic algorithms, genetic pro-
gramming, evolutionary programming, and evolution strate-
gies [5].

Although EAs are effective in solving many practical
problems in science, engineering, and business domains,
they may execute for a long time to find solutions for some
huge problems, because several fitness evaluations must be
performed. A promising approach to overcome this lim-
itation is to parallelize these algorithms for parallel, dis-
tributed, and networked computers. However, these com-
puters are relatively more difficult to use, manage, and
maintain. Moreover, some people may not have access to
this kind of computers. Consequently, we propose to imple-
ment a parallel EA on consumer-level graphics cards which
are available in ubiquitous personal computers. Given the
ease of use, maintenance, and management of personal
computers, more people will be able to use our parallel al-
gorithm to solve huge problems encountered in real-world
applications such as data mining.

In the following section, graphics processing unit will be
discussed. We will present our parallel evolutionary algo-

rithm in Sections 3 and 4. A number of experiments have
been performed and the experimental results will be dis-
cussed in Section 5. We will give a conclusion and a de-
scription of our future work in the last section.

2 Graphics Processing Unit

In the last decade, the need from the multimedia and games
industries for accelerating 3D rendering has driven several
graphics hardware companies devoted to the development
of high-performance parallel graphics accelerator. This re-
sults the birth of GPU (Graphics Processing Unit), which
handles the rendering requests using 3D graphics applica-
tion programming interface (API). The whole pipeline con-
sists of the transformation, texturing, illumination, and ras-
terization to the framebuffer. The need for cinematic ren-
dering from the games industry further raised the need for
programmability of the rendering process. Starting from
the recent generation of GPUs launched in 2001 (including
nVidia GeforceFX series and ATI Radeon 9800 and above),
developers can write their own C-like programs, which are
called shaders, on GPU. Due to the wide availability, pro-
grammability, and high-performance of these consumer-
level GPUs, they are cost-effective for, not just game play-
ing, but also scientific computing.

These shaders control two major modules of the render-
ing pipeline, namely vertex and fragment engines. As an
illustration to the mechanism in GPU, we describe the ren-
dering of a texture-mapped polygon. The user first defines
the 3D position of each vertex through the API in graphics
library (OpenGL or DirectX). It seems irrelevant to define
3D triangles for evolutionary computation. However, such
declaration is necessary for satisfying the input format of
the graphics pipeline. In our application, we simply define
2 triangles that cover the whole screen. The texture coordi-
nate associating with each vertex is also defined at the same
time. These texture coordinates are needed to define the cor-
respondence of elements in textures (input/output data) and
the pixels on the screen (shaders are executed on per-pixel
basis). The defined vertices are then passed to the vertex
engine for transformation (dummy in our case).

For each vertex, a vertex shader (user-defined program)
is executed (Fig. 1). The shader program must be Single-
Instruction-Multiple-Data (SIMD) in nature, i.e. the same
set of operations has to be executed on different vertices.
The polygon is then projected onto the 2D screen and raster-
ized (discretized) into many fragments (pixels) in the frame-
buffer as shown in Fig. 1. From now on, the two termi-
nologies, pixel and fragment, are interchangeable through-

out this paper. Next, the fragment engine takes place. For
each pixel, a user-defined fragment shader is executed to
process data associated with this pixel. Inside the shader,
the input textures can be fetched for computation and re-
sults are output via the output textures. Again, the fragment
shader must also be SIMD in nature.

As an example of utilizing GPU for scientific comput-
ing, we illustrate the addition of two M × N matrices, P
and Q. Firstly, we define two right triangles (one upper
and one lower) covering the M × N pixels as shown on
the left hand side of Fig. 2. The vertex shader basically
does nothing but only projects the six vertices (of two tri-
angles) onto the 2D screen. After rasterization, these two
triangles are broken down into M × N fragments (or pix-
els). For each pixel, a fragment shader is executed. We then
fed matrices P and Q to this shader as two input textures
(Fig. 2). A texture is basically an image with each pixel
composed of four components, (r, g, b, α). Each compo-
nent can be represented as 32-bit floating point. Therefore,
one way to add two matrices is to store P ’s elements in the
r component of one input texture and Q’s elements in the
r component of another texture. Obviously, a more com-
pact and practical representation is to store elements of P
and Q in two components, say r and b, of the same texture.
For presentation clarity, we use two input textures. As the
fragment shader is executed at each pixel (x, y) indepen-
dently and in parallel, it only contains one single addition
statement and no looping is needed (Fig. 2). The statement
fetches and sums P (x, y).r and Q(x, y).r, and stores the
output in the third texture, O(x, y).r. The notation .r spec-
ifies the r component of the pixel. The high performance
is mainly contributed by this SIMD-type parallelism. Most
GPU nowadays impose certain limitations on the usage of
textures. For example, the total number of textures being
accessed simultaneously is usually limited (e.g. 16 textures
on nVidia GeForceFX 6800). Furthermore, the input texture
cannot be used for output.

Figure 2: Addition of two matrices on GPU.

3 Data Organization

Suppose we have µ individuals and each contains k vari-
ables (genomes). The most natural representation for an in-
dividual is an array. As GPU is tailored for parallel process-
ing and optimized multi-channel texture fetching, all input
data to GPU should be loaded in the form of textures. Fig. 3

shows how we represent µ individuals in form of texture.
Without loss of generality, we take k=32 as an example of
illustration throughout this paper.

As each pixel in the texture contains quadruple of 32-bit
floating point values (r, g, b, α), we can encode an individ-
ual of 32 genomes into 8 pixels. In other words, the memory
is more efficiently utilized if k is multiple of 4. This is also
why we take k = 8×4 = 32 as a working example. Instead
of mapping an individual to 8 consecutive pixels in the tex-
ture, we divide an individual into quadruple of 4 genomes.
The same quadruples from all individuals are grouped and
form a tile in the texture as shown in Fig. 3. Each tile
is w × h = µ in size. The reason we do not adopt the
consecutive-pixel representation is that the implementation
will be complicated when k varies. Imagine the complica-
tion of genomes’ offsets within the texture when k increases
from 32 to 48. On the other hand, the fragmentation-and-
tiling representation is more scalable because increasing k
can be easily achieved by adding more tiles. In our specific
example of k = 32, 4×2 tiles are formed. It is up to user to
decide the organization of these tiles in the texture. The first
tile (upper-left tile) in Fig. 3 stores genomes 1 to 4, while the
next tile stores genomes 5 to 8, and so on.

Texture on GPU is not as flexible as main memory.
Current GPUs impose several limitations. One of them
is the size of texture must not exceed certain limit, e.g.
4096×4096 on nVidia GeforceFX 6800. In other words,
to fit the whole population in one texture on our GPU, we
must satisfy kµ ≤ 4 × 40962. For extremely large pop-
ulations with a large number of variables, multiple textures
have to be used. Note that there are also limitation on the to-
tal number of textures that can be accessed simultaneously.
The actual number varies on different GPU models. Nor-
mally, at least 16 textures can be supported.

4 Evolutionary Programming on GPU

Evolutionary programming (EP) and genetic algorithm
(GA) have been both successfully applied to several numeri-
cal and optimization problems. While classical GA requires
the processes of crossover and mutation, EP requires the
mutation process only. Hence, for each generation of evolu-
tion, EP is less computational intensive than GA. When im-
plementing on GPU, the crossover process of GA induces
more rendering passes than that of EP.

One complete execution of the fragment shader is re-
ferred as one rendering pass. On current GPU, there is a
significant overhead for each rendering pass. The more ren-
dering passes are needed, the slower the program is. Since
fragment shaders are executed independently on each pixel,
no information sharing is allowed among pixels. If the com-
putation result of a pixel A has to be used for computing an
equation at pixel B, the computation result of A must be
written to an output texture first. This output texture has to
be fed to the shader for computation in next rendering pass.
Therefore, if the problem being tackled involves a chain of
data dependency, more rendering passes are needed, and
hence the speed-up is decreased.

Since the crossover process of GA requires more passes

Figure 1: The 3D rendering pipeline.

Figure 3: Representing individuals of 32 genomes on textures.

and more data transfer than that of EP, EP is more GPU-
friendly (efficient to implement on GPU) than GA. Hence,
in this paper, we study the GPU implementation of EP in-
stead of the classical GA. Without loss of generality, we
assume the optimization is to minimize a cost function.
Hence, our EP is used to determine a �xmin, such that

∀�x, f(�xmin) ≤ f(�x)

where �x = {xi(1), xi(2), . . . , xi(k)} is the individual con-
taining k variables; f : Rn �→ R is the function being op-
timized. We implement a fast evolutionary programming
(FEP) based on Cauchy mutation [6] as follows:

1. Generate the initial population of µ individuals, each
of which can be represented as a set of real vectors,
(�xi, �ηi), i = 1, . . . , µ. Both �xi and �ηi contain k inde-
pendent variables,
�xi = {xi(1), . . . , xi(k)}
�ηi = {ηi(1), . . . , ηi(k)}

2. Evaluate the fitness score for each individual (x i, ηi),
i = 1, . . . , µ, of the population based on the objective
function, f(�x).

3. For each parent (�xi, �ηi), i = 1, . . . , µ, create an off-
spring (�xi

′, �ηi
′) as follows:

for j = 1, . . . , k
x′

i(j) = xi(j) + ηi(j)R(0, 1),
η′

i(j) = η(j) exp(1√
2k

R(0, 1) + 1√
2
√

k
Rj(0, 1))

where xi(j), ηi(j), x′
i(j), and η′

i(j) denote the j-th
component of �xi, �ηi, �xi

′, and �ηi
′ respectively. R(0, 1)

denotes a normally distributed 1D random num-
ber with zero mean and standard deviation of one.
Rj(0,1) indicates a new random variable for each
value of j.

4. Calculate the fitness of each offspring (�xi
′, �ηi

′).

5. Conduct pairwise comparison over the union of par-
ents (�xi, �ηi) and offspring (�xi

′, �ηi
′), for i = 1, . . . , µ.

For each individual, q (tournament size) opponents
are chosen randomly from all the parents and off-
spring. For each comparison, if the individual’s fit-
ness is smaller than or equal to that of opponent, it
receives a “win”.

6. Select µ individuals out of (�xi, �ηi) and (�xi
′, �ηi

′),
i = 1, . . . , µ, that receive more win’s to be parents
of next generation.

7. Stop if the stopping criterion is satisfied; otherwise go
to Step 3.

In the above pseudocode, �xi is the individual evolving
and �ηi controls the vigorousness of mutation of �x i. In gen-
eral, the computation of FEP can be roughly divided into
three types: (a) mutation and reproduction (step 3), (b) fit-
ness value evaluation (steps 2 and 4), and (c) competition
and selection (steps 5 and 6). These types of operations will
be discussed in the following sub-sections.

4.1 Mutation and Reproduction

Unlike GA, EP omits crossover and carries out mutation
only. Fogel [7] introduced EP using Gaussian distribution.
Yao and Liu [6] proposed a mutation operation based on
Cauchy distribution to increase the speed of convergence.
From the pseudocode above, mutation operation is executed
on each genome. Genomes are assumed to be independent
of each other. Thus mutation process is perfectly paralleliz-
able. In pure software (CPU for short) implementation, a
loop is needed to perform mutation on each genome. On
the SIMD-based GPU, a fragment shader is executed in par-
allel to perform mutation on each component (r, g, b, α) of
each pixel. GPU solution is thus ideal for this independent
mutation and can achieve significant speed-up.

To accomplish the mutation process on GPU, we de-
signed two fragment shaders, one for computing �x ′ and the
other for �η′. Fig. 4 illustrates these two shaders graphically.
The parents �xi and �ηi are stored in two input textures while
the offspring are generated and written to two output tex-
tures �xi

′ and �ηi
′. One fragment shader is responsible for

computing �xi
′ while the other is responsible for �ηi

′. Be-
sides, we also need two input textures of random numbers.

Mutation requires normally distributed random vari-
ables. Unfortunately, current GPU is not equipped with ran-
dom number generator. Hence the random numbers have to
be generated by CPU and fed to GPU in the form of input
textures. We divide the process of random number genera-
tion into two steps. Firstly, CPU is used to generate random
variables with uniform distribution. This is a sequential pro-
cess. The generated random numbers are fed to GPU via
input textures. Then, inside the two fragment shaders, GPU
converts them from uniform distribution to Gaussian distri-
bution in parallel.

Traditionally, the well-known Box-Muller transforma-
tion [8] is used to transform random numbers of uniformly
distribution to normal distribution. The polar form of Box-
Muller transformation algorithm provides even faster and
more robust solution [9]. However, the number of itera-
tions in Box-Muller transformation depends on the data val-
ues. Such data-dependent looping is undesirable for SIMD-
based GPU, as various processors execute different numbers
of iterations.

Instead of using Box-Muller transformation, we employ
the direct inverse cumulative normal distribution function
(ICDF) as it does not require looping. It trades accuracy for
speed. The algorithm uses minimax approximation and the
error introduced is relatively little. Our experiment shows
that GPU implementation of ICDF is 2 times faster than
CPU implementation of ICDF. ICDF on GPU is even more
than 4 times faster than Box-Muller transformation on CPU.

Current GPU has a slow performance in data transferal
from GPU texture to main memory. Therefore, such data
transfer should be avoided as much as possible. Hence, our
strategy is to keep the parent and offspring resided in GPU
memory. Only the final result, after several generations of
evolution, is transferred from GPU textures to main mem-
ory.

4.2 Fitness Value Evaluation

Fitness value evaluation determines the “goodness” of indi-
viduals. It is one of the core parts of EP. After each evolu-
tion, the fitness value of each individual in the current pop-
ulation is calculated. The result is then passed to the later
stage of EP process. Each individual returns a fitness value
by feeding the objective function f with the genomes of the
individual. This evaluation process usually consumes most
of the computational time.

Since no interaction between individuals is required dur-
ing evaluation, the evaluation is fully parallelizable. Fig. 5
illustrates the evaluation shader graphically. Recall that the
individuals are broken down into quadruples and stored in
the tiles within the textures. The evaluation shader hence
looks up the corresponding quadruple in each tile during the
evaluation. The fitness values are output to an output texture
of size w × h, instead of 4w × 2h, because each individual
only returns a single value.

Figure 5: The shader for fitness evaluation.

4.3 Competition and Selection

Replacing the old generation is the last stage of each evolu-
tion. There are two major processes involved, competition
and selection. EP employs a stochastic selection (soft se-
lection) through the tournament schema. Each individual in
the union set of parent and offspring population takes part
in a q-round tournament. In each round, an opponent is ran-
domly drawn from the union set of parents and offsprings.
The number of opponents defeated is recorded by the vari-
able win. After the tournament, a selection process takes
place and chooses the best µ individuals having the highest
win values as parents for next generation.

Figure 4: The two fragment shaders for mutation process.

4.3.1 Competition

Exploitation is the process of using information gathered to
determine which searching direction is profitable. In EP, ex-
ploitation is realized by competition. Individuals in the pop-
ulation compete with q randomly drawn opponents, where
q is the predefined tournament parameter. The considered
individual wins if its fitness value is better than (in our case
smaller than or equal to) that of the opponent. The times
of winning is recorded in win. It tells us how good this
individual is.

Competition can be done either on GPU or CPU. For
GPU implementation, q textures of random values have to
be generated by CPU and loaded to GPU memory for each
evolution. On the other hand, for CPU implementation, only
the fitness textures of both parent and offspring population
have to be transferred from GPU memory to main memory.
The final result of selected individuals is then transferred
back to GPU memory.

It seems that GPU implementation should be faster than
the CPU one, as it parallelizes the competition. However,
our experiments show that using GPU to implement the
competition is slower than that of using CPU. The major
bottleneck of GPU implementation is the transfer of q tex-
tures towards GPU memory. It evidences the limitation
of slow data transfer of current GPU. As the competition
does not involve any time-consuming fitness evaluation (it
only involves fitness comparison), the gain of paralleliza-
tion does not compensate the loss due to data transfer. The
data transfer rate is expected to be significantly improved in
the future GPU.

4.3.2 Median Searching and Selection

After the competition process, selection is performed based
on the win values. It selects the best µ individuals having
highest win values and assigns them as the parents for the
next generation. The most natural way is to sort the 2µ in-

dividuals in a descending order of win values. The first µ
individuals are then selected. For large population size, the
sorting time is unbearably slow even using O(N log(N))
sorting algorithm.

Note that our goal is to pick the best µ individuals, in-
stead of sorting the individuals. These two goals are differ-
ent. We can pick the best µ individuals without sorting them
if we know the median win value. The trick is to find the
median without any sorting.

Median searching has been well studied. Floyd and
Rivest [10] proposed a complex partition-and-conquer lin-
ear time algorithm. When the valid range of values is known
and countable, median searching can be done easily. To il-
lustrate the idea, we go through a running example in Fig. 6.
Suppose we have µ = 9 values (top of Fig. 6) and the valid
range of value is an integer within [0, q] where q = 5 in
our example. Now, we construct q + 1 = 6 bins as shown
in the middle of Fig. 6. Therefore, in a linear time, we scan
through all 9 values and form a histogram showing the count
of each valid value (bin). Next we compute the cumulative
distribution function (bottom part of Fig. 6) based on the
histogram. The median is the value whose cumulated sum
exceeds half the number of elements, i.e. µ/2 = 4.5. In
our example, value 3 is the median. Both the construction
of histogram and cumulative distributed function are linear
in time complexity. Therefore, we can find the median in
linear time without sorting. Once the median is known, we
can scan through the fitness values of all individuals and se-
lect those with fitness values below or equal to the median.
The process stops once µ individuals are selected.

4.3.3 Minimizing Data Transfer

To minimize the data transfer between the memory on GPU
and the main memory, an index array storing the offset
of each individual in the textures is constructed before the
competition and selection process. During the selection, we
only record the index of the selected individuals, instead of

Figure 6: Running example of median picking algorithm.

Test Functions N S

f1 :
∑

N

i=1
x2

i 32 (−100, 100)N

f2 :
∑

N

i=1
(
∑

i

j=1
xj)

2 32 (−100, 100)N

f3 :
∑

N−1

i=1
{100(xi+1 −x2

i)2 +(xi −1)2} 32 (−30, 30)N

f4 : −
∑

N

i=1
xi sin(

√
|xi|) 32 (−500, 500)N

f5 :
∑

N

i=1
{x2

i − 10 cos(2πxi) + 10} 32 (−5.12, 5.12)N

Table 1: The set of test functions. N is the number of vari-
ables and S indicates the ranges of the variables.

the whole individuals (all genomes). The index array is then
loaded to GPU in form of a texture. The actual individual
replacement is performed on GPU based on the index tex-
ture. The final result is rendered to a texture which stores
the individuals of the new generation. With this approach,
the textures of individuals are always retained in the GPU
memory. These textures of individuals are never transferred
to the main memory during the evolution, until the final gen-
eration is obtained. Only fitness textures, random textures
and index textures are transferred between GPU and CPU
during the evolution. Since the fitness, random and index
textures are smaller than the textures of individuals, this in-
dexing approach minimizes the data transfer and improves
the speed significantly.

5 Experimental Results

We applied EP with Cauchy distribution to a set of bench-
mark optimization problems. Table 1 summarizes the
benchmark functions, number of variables and the search
ranges. We conducted the experiments for 20 trials on both
CPU and GPU. The average performance is reported in this

paper. The experiment test bed was an Pentium IV 2.4 GHz
with AGP 4X enabled consumer-level GeForce 6800 Ultra
display card, with 512 MB main memory and 256 MB GPU
memory. The following parameters were used in the exper-
iments:

• population size: µ = 400, 800, 3200, 6400

• tournament size: q = 10

• standard deviation: σ = 1.0

• maximum number of generation: G = 2000

In these experiments, we find that better solutions can be
obtained for all functions if a larger population size is used.
However, EP with a larger population size will take longer
execution time. Fig. 7 displays, by generation, the average
execution time of the GPU and CPU approaches with dif-
ferent population sizes. From the curves in this figure, the
execution time increases if a larger population is applied.
However, our GPU approach is much more efficient than
the CPU implementation because the execution time of the
former is much less than that of the latter if the population
size reaches 800. Moreover, the efficiency leap becomes
larger when the population size increases.

The ratios of the average execution time of the GPU
(CPU) approach with population sizes of 800, 3200, and
6400 to that of the corresponding approach with population
size of 400 are summarized in Table 2. It is interesting to no-
tice that, the CPU approach shows a linear relation between
the number of individuals and the execution time, while our
GPU approach has a sub-linear relation. For example, our
GPU approach with population sizes of 400 and 800 take
about the same execution time. Moreover, the execution
time of our approach with population size of 6400 is about
3 times of that with population size of 400. Definitely, this
is an advantage when huge population sizes are required in
some real-life applications.

To study why our approach can achieve this phe-
nomenon, the average execution time of different types of
operations of the GPU (CPU) approach for the test func-
tion f5 are presented in Table 3. It can be observed that the
fitness evaluation time of our GPU approach with different
population sizes are about the same, because all individu-
als are evaluated in parallel. Moreover, the mutation time
does not increase proportionally with the number of indi-
viduals, because the mutation operations are also executed
in parallel 1. Similar results are also obtained for other test
functions. Table 4 displays the speed-ups of our GPU ap-
proach with the CPU approach. The speed-ups depend on
the population size and the problem complexity. Generally,
GPU outperforms CPU when the population size is larger
than or equal to 800. The speed-up ranges from about 1.25
to about 5.02. For complicated problems that require huge
population sizes, we expect that GPU can achieve even bet-
ter performance gain.

1The mutation time increases with the number of individuals, because
our GPU approach requires a number of random numbers generated by
CPU.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350
Time vs. Generation

Generation

T
im

e
(s

ec
)

GPU 400
GPU 800
GPU 3200
GPU 6400
Software 400
Software 800
Software 3200
Software 6400

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350
Time vs. Generation

Generation

T
im

e
(s

ec
)

GPU 400
GPU 800
GPU 3200
GPU 6400
Software 400
Software 800
Software 3200
Software 6400

(a) (b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350
Time vs. Generation

Generation

T
im

e
(s

ec
)

GPU 400
GPU 800
GPU 3200
GPU 6400
Software 400
Software 800
Software 3200
Software 6400

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350
Time vs. Generation

Generation

T
im

e
(s

ec
)

GPU 400
GPU 800
GPU 3200
GPU 6400
Software 400
Software 800
Software 3200
Software 6400

(c) (d)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350
Time vs. Generation

Generation

T
im

e
(s

ec
)

GPU 400
GPU 800
GPU 3200
GPU 6400
Software 400
Software 800
Software 3200
Software 6400

(e)

Figure 7: Execution time of the GPU and CPU approaches for functions f 1 - f5. The results were averaged over 20
independent trials. (a)-(e) correspond to functions f 1 - f5 respectively.

µ type competition & se-
lection time (sec)

speed-up fitness evaluation
time (sec)

speed-up mutation time (sec) speed-up total time (sec) speed-up

400 CPU 3.32 0.80 7.28 0.28 16.19 7.39 26.79 0,82
GPU 4.14 26.46 2.19 32.79

800 CPU 6.70 0.91 14.86 0.68 32.49 9.00 54.05 1.65
GPU 7.33 21.84 3.61 32.78

3200 CPU 28.26 1.06 60.25 2.31 133.52 9.92 222.03 3.35
GPU 26.72 26.12 13.46 66.30

6400 CPU 56.69 1.08 118.91 5.41 267.30 10.44 442.95 4.42
GPU 52.57 21.96 25.61 100.25

Table 3: Experimental result summary of f5.

GPU CPU
µ f1 f2 f3 f4 f5 f1 f2 f3 f4 f5
800 1.00 1.00 1.00 1.00 1.00 2.01 2.02 2.02 2.02 2.02
3200 2.02 2.02 2.02 2.02 2.02 8.30 8.24 8.37 8.12 8.29
6400 3.11 3.09 3.04 3.05 3.05 16.57 16.45 16.75 16.40 16.53

Table 2: The ratios of the average execution time of the
GPU (CPU) approach with different population sizes to that
with population size of 400.

µ f1 f2 f3 f4 f5
400 0.62 0.85 0.62 0.93 0.82
800 1.25 1.71 1.25 1.88 1.65
3200 2.55 3.45 2.57 3.74 3.35
6400 3.31 4.50 3.42 5.02 4.42

Table 4: The speed-up of the GPU approach.

6 Conclusion

In this research, we have implemented a parallel EP on
consumer-level graphics cards and proposed indirect index-
ing and many optimization skills to achieve maximal effi-
ciency. The parallel EP is a hybrid of master-slave and fine-
grained models [11]. Competition and selection are per-
formed by CPU (i.e. the master) while fitness evaluation,
mutation, and reproduction are performed by GPU which is
essentially a massively parallel machine with shared mem-
ory. Unlike other fine-grained parallel computers such as
Maspar, GPU allows processors to communicate with any
other processors directly, thus more flexible fine-grained
EAs can be implemented on GPU. We have done experi-
ments to compare our parallel EP on GPU and an ordinary
EP on CPU. It is found that the speed-up factor of our par-
allel EP ranges from 1.25 to 5.02, when the population size
is large enough. Moreover, there is a sub-linear relation be-
tween the population size and the execution time. Thus, our
parallel EP will be very useful for solving difficult problems
that require huge population sizes.

For future work, we plan to implement a parallel genetic
algorithm on GPU and compare it with the approach re-
ported in this paper.

Acknowledgment

This work is supported by The Chinese University of Hong
Kong Young Researcher Award (Project No. 4411110) and
the Earmarked Grant LU 3009/02E from the Research Grant
Council of the Hong Kong Special Administrative Region.

Bibliography

[1] Il-Seok Oh, Jin-Seon Lee, and Byung-Ro Moon, “Hy-
brid genetic algorithms for feature selection,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 26, no. 11, pp. 1424–1437, 2004.

[2] John R. Koza, M. A. Keane, M. J. Streeter, W. Myd-
lowec, J. Yu, and G. Lanza, Genetic Program-
ming IV: Routine Human-Competitive Machine Intel-
ligence, Kluwer Academic Publishers, 2003.

[3] M. L. Wong, W. Lam, K. S. Leung, P. S. Ngan, and
J. C. Y. Cheng, “Discovering knowledge from med-
ical databases using evolutionary algorithms,” IEEE
Engineering in Medicine and Biology Magazine, vol.
19, no. 4, pp. 45–55, 2000.

[4] Man Leung Wong and Kwong Sak Leung, “An effi-
cient data mining method for learning Bayesian net-
works using an evolutionary algorithm based hybrid
approach,” IEEE Transactions on Evolutionary Com-
putation, vol. 8, no. 4, pp. 378–404, 2004.

[5] David B. Fogel, Evolutionary Computation: Toward a
New Philosohpy of Machine Intelligence, IEEE Press,
2000.

[6] X.Yao and Y.Liu, “Fast evolutionary programming,”
in Evolutionary Programming V: Processdings of the
5th Annual Conference on Evolutionary Program-
ming. 1996, Cambridge, MA:MIT Press.

[7] David B. Fogel, “An introduction to simulated evolu-
tionary optimization,” IEEE Transactions on Neural
Networks, vol. 5, no. 1, pp. 3–14, 1994.

[8] G. E. P. Box and M. E. Muller, “A note on the gener-
ation of random normal deviates,” Annals of Mathe-
matical Statistics, vol. 29, pp. 610–611, 1958.

[9] D. E. Knuth, “The art of computer programming. vol-
ume 2: Seminumerial algorithms (second edition),”
Addison-Wesley, Menlo Park, 1981.

[10] Robert W. Floyd and Ronald L. Rivest, “Expected
time bounds for selection,” Communications of the
ACM, vol. 18(3), pp. 165–172, 1975.

[11] Erick Cantú-Paz, Efficient and Accurate Parallel Ge-
netic Algorithms, Kluwer Academic Publishers, 2000.

