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Abstract

Purpose – Nature-inspired algorithms are among the most powerful algorithms for optimization.
The purpose of this paper is to introduce a new nature-inspired metaheuristic optimization algorithm,
called bat algorithm (BA), for solving engineering optimization tasks.

Design/methodology/approach – The proposed BA is based on the echolocation behavior of bats.
After a detailed formulation and explanation of its implementation, BA is verified using eight
nonlinear engineering optimization problems reported in the specialized literature.

Findings – BA has been carefully implemented and carried out optimization for eight well-known
optimization tasks; then a comparison has been made between the proposed algorithm and other
existing algorithms.

Originality/value – The optimal solutions obtained by the proposed algorithm are better than the
best solutions obtained by the existing methods. The unique search features used in BA are analyzed,
and their implications for future research are also discussed in detail.

Keywords Iterative methods, Programming and algorithm theory, Optimization techniques,
Bat algorithm, Engineering optimization, Metaheuristic algorithm

Paper type Research paper

1. Introduction
Design optimization forms an important part of any design problem in engineering and
industry. Structural design optimization focuses on finding the optimal and practical
solutions to complex structural design problems under dynamic complex loading
pattern with complex nonlinear constraints. These constraints often involve thousands
of and even millions of members with stringent limitations on stress, geometry as well
as loading and service requirements. The aim is not only to minimize the cost and
materials usage, but also to maximize their performance and lifetime service. All these
designs are of scientific and practical importance (Deb, 1995; Yang, 2010). However,
most structural design optimization problems are highly nonlinear and multimodal with
noise, and thus they are often NP-hard. Finding the right and practically efficient
algorithms are usually difficult, if not impossible. In realistic, the choice of an algorithm
requires extensive experience and knowledge of the problem of interest. Even so, there is
no guarantee that an optimal or even suboptimal solution can be found.
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Metaheuristic algorithms including evolutionary and swarm intelligence algorithms
are now becoming powerful methods for solving many tough problems (Gandomi and
Alavi, 2011) and especially real-world engineering problems (Gandomi et al., 2011;
Alavi and Gandomi, 2011). The vast majority of heuristic and metaheuristic algorithms
have been derived from the behavior of biological systems and/or physical systems in
nature. For example, particle swarm optimization was developed based on the swarm
behavior of birds and fish (Kennedy and Eberhart, 1995) or charged system search
inspired from physical processes (Kaveh and Talatahari, 2010). New algorithms are also
emerging recently, including harmony search (HS) and the firefly algorithm. The former
was inspired by the improvising process of composing a piece of music (Geem et al.,
2001), while the latter was formulated based on the flashing behavior of fireflies
(Yang, 2008). Each of these algorithms has certain advantages and disadvantages. For
example, simulating annealing (Kirkpatrick et al., 1983) can almost guarantee to find the
optimal solution if the cooling process is slow enough and the simulation is running long
enough; however, the fine adjustment in parameters does affect the convergence rate of
the optimization process. A natural question is whether it is possible to combine major
advantages of these algorithms and try to develop a potentially better algorithm?

This paper is such an attempt to address this issue. In this paper, we intend to propose
a new metaheuristic method, namely, the bat algorithm (BA), based on the echolocation
behavior of bats, and preliminary studies show that this algorithm is very promising
(Yang, 2010). The capability of echolocation of microbats is fascinating as these bats can
find their prey and discriminate different types of insects even in complete darkness. We
will first formulate the BA by idealizing the echolocation behavior of bats. We then
describe how it works and make comparison with other existing algorithms. Finally, we
will discuss some implications for further studies.

2. Echolocation of microbats
Bats are fascinating animals. They are the only mammals with wings and they also have
advanced capability of echolocation. It is estimated that there are about 1,000 different
species which account for up to about one-fifth of all mammal species (Altringham,
1996). Their size ranges from the tiny bumblebee bat (of about 1.5-2 g) to the giant bats
with wingspan of about 2 m and weight up to about 1 kg. Microbats typically have
forearm length of about 2.2-11 cm. Most bats uses echolocation to a certain degree;
among all the species, microbats are a famous example as microbats use echolocation
extensively while megabats do not (Richardson, 2008).

Most microbats are insectivores. Microbats use a type of sonar, called, echolocation,
to detect prey, avoid obstacles, and locate their roosting crevices in the dark. These bats
emit a very loud sound pulse and listen for the echo that bounces back from the
surrounding objects. Their pulses vary in properties and can be correlated with their
hunting strategies, depending on the species. Most bats use short, frequency-modulated
signals to sweep through about an octave, while others more often use
constant-frequency signals for echolocation. Their signal bandwidth varies depends
on the species, and often increased by using more harmonics.

Though each pulse only lasts a few thousandths of a second (up to about 8-10 ms);
however, it has a constant frequency which is usually in the region of 25-150 kHz. The
typical range of frequencies for most bat species are in the region between 25 and
100 kHz, though some species can emit higher frequencies up to 150 kHz. Each ultrasonic
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burst may last typically 5-20 ms, and microbats emit about 10-20 such sound bursts
every second. When hunting for prey, the rate of pulse emission can be sped up to about
200 pulses per second when they fly near their prey. Such short sound bursts imply
the fantastic ability of the signal processing power of bats. In fact, studies show the
integration time of the bat ear is typically about 300-400ms.

As the speed of sound in air is typically v ¼ 340 m/s, the wavelength l of the
ultrasonic sound bursts with a constant frequency f is given by l ¼ v/f, which is in the
range of 2-14 mm for the typical frequency range from 25 to 150 kHz. Such
wavelengths are in the same order of their prey sizes.

Amazingly, the emitted pulse could be as loud as 110 dB, and, fortunately, they are
in the ultrasonic region. The loudness also varies from the loudest when searching for
prey and to a quieter base when homing towards the prey. The travelling range of such
short pulses is typically a few meters, depending on the actual frequencies (Richardson,
2008). Microbats can manage to avoid obstacles as small as thin human hairs.

Studies show that microbats use the time delay from the emission and detection of
the echo, the time difference between their two ears, and the loudness variations of the
echoes to build up three dimensional scenario of the surrounding. They can detect the
distance and orientation of the target, the type of prey, and even the moving speed of
the prey such as small insects. Indeed, studies suggested that bats seem to be able to
discriminate targets by the variations of the Doppler effect induced by the wing-flutter
rates of the target insects (Altringham, 1996).

Obviously, some bats have good eyesight, and most bats also have very sensitive
smell sense. In reality, they will use all the senses as a combination to maximize the
efficient detection of prey and smooth navigation. However, here we are only interested
in the echolocation and the associated behavior.

Such echolocation behavior of microbats can be formulated in such a way that it can
be associated with the objective function to be optimized, and this makes it possible to
formulate new optimization algorithms. In the rest of this paper, we will first outline the
basic formulation of the BA and then discuss the implementation and comparison in
detail.

3. Bat algorithm
If we idealize some of the echolocation characteristics of microbats, we can develop
various bat-inspired algorithms or BAs. For simplicity, we now use the following
approximate or idealized rules:

. All bats use echolocation to sense distance, and they also “know” the difference
between food/prey and background barriers in some magical way.

. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength l and loudness A0 to search for prey. They can
automatically adjust the wavelength (or frequency) of their emitted pulses and
adjust the rate of pulse emission r in the range of [0, 1], depending on the
proximity of their target.

. Although the loudness can vary in many ways, we assume that the loudness
varies from a large (positive) A0 to a minimum constant value Amin.

Another obvious simplification is that no ray tracing is used in estimating the time
delay and three dimensional topography. Though this might be a good feature for the
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application in computational geometry, however, we will not use this feature, as it is
more computationally extensive in multidimensional cases.

In addition to these simplified assumptions, we also use the following
approximations, for simplicity. In general the frequency f in a range [fmin, fmax]
corresponds to a range of wavelengths [lmin, lmax]. For example, a frequency range of
[20, 500 kHz] corresponds to a range of wavelengths from 0.7 to 17 mm.

For a given problem, we can also use any wavelength for the ease of implementation.
In the actual implementation, we can adjust the range by adjusting the wavelengths
(or frequencies), and the detectable range (or the largest wavelength) should be chosen
such that it is comparable to the size of the domain of interest, and then toning down to
smaller ranges. Furthermore, we do not necessarily have to use the wavelengths
themselves; instead, we can also vary the frequency while fixing the wavelength l. This
is becausel and f are related due to the factlf is constant. We will use this later approach
in our implementation.

For simplicity, we can assume f is within [0, fmax]. We know that higher frequencies
have short wavelengths and travel a shorter distance. For bats, the typical ranges are a
few meters. The rate of pulse can simply be in the range of [0, 1] where 0 means no
pulses at all, and 1 means the maximum rate of pulse emission.

Based on these approximations and idealization, the basic steps of the BA can be
summarized as the pseudo code shown in Figure 1.

3.1 Velocity and position vectors of virtual bats
In simulations, we use virtual bats naturally. We have to define the rules how their
positions xi and velocities vi in a d-dimensional search space are updated. The new
solutions xt

i and velocities vt
i at time step t are given by:

f i ¼ fmin þ ð fmax 2 fminÞb ð1Þ

vti 5 vt21
i 1 ðxt

i 2 x*Þf i ð2Þ

Figure 1.
Pseudo code of the BA

Bat Algorithm

Objective function f (x), x = (x1, ...,xd)T

 Initialize the bat population xi (i = 1,2, ...,n) and vi
Define pulse frequency fi at xi
Initialize pulse rates ri and the loudness Ai
while (t < Max number of iterations)
    Generate new solutions by adjusting frequency,
    and updating velocities and locations/ solutions [equations (1) to (3)]
    if (rand <ri)
       Select a solution amoung the best solutions
      Generate a local solution around the selected best solution
   end if
   Generate a new solution by flying randomly
   if (rand < Ai & f (xi) < f (x*))
       Accept the new solutions
      Increase ri and reduce Ai
  end if
  Rank the bats and find the current best x*
 end while
 postprocess results and visualization
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xt
i 5 xt21

i 1 vt
i ð3Þ

where b [ [0, 1] is a random vector drawn from a uniform distribution. Here x* is the
current globalbest location (solution) which is located after comparing all the solutions
among all the n bats. As the product li fi is the velocity increment, we can use either
fi (or li) to adjust the velocity change while fixing the other factor li (or fi), depending
on the type of the problem of interest. In our implementation, we will use fmin ¼ 0 and
fmax ¼ 100, depending the domain size of the problem of interest. Initially, each bat is
randomly assigned a frequency that is drawn uniformly from [fmin, fmax].

For the local search part, once a solution is selected among the current best
solutions, a new solution for each bat is generated locally using a local random walk:

xnew 5 xold 1 1At ð4Þ

where 1 [ [21, 1] is a random number, while At ¼ , At
i . is the average loudness of

all the bats at this time step.
The update of the velocities and positions of bats have some similarity to the

procedure in the standard particle swarm optimization (Geem et al., 2001) as fi essentially
controls the pace and range of the movement of the swarming particles. To a degree,
BA can be considered as a balanced combination of the standard particle swarm
optimization and the intensive local search controlled by the loudness and pulse rate.

3.2 Variations of loudness and pulse emission
Furthermore, the loudness Ai and the rate ri of pulse emission have to be updated
accordingly as the iterations proceed. As the loudness usually decreases once a bat has
found its prey, while the rate of pulse emission increases, the loudness can be chosen as
any value of convenience. For example, we can use A0 ¼ 100 and Amin ¼ 1. For
simplicity, we can also use A0 ¼ 1 and Amin ¼ 0, assuming Amin ¼ 0 means that a bat
has just found the prey and temporarily stop emitting any sound. Now we have:

Atþ1
i ¼ aAt

i ; rtþ1
i ¼ r0

i ½1 2 expð2gtÞ� ð5Þ

where a and g are constants. In fact, a is similar to the cooling factor of a cooling
schedule in the simulated annealing (Kirkpatrick et al., 1983; Yang, 2008). For any
0 , a , 1, 0 , g, we have:

At
i ! 0; rti ! r0

i ; as t !1 ð6Þ

In the simplicity case, we can use a ¼ g, and we have in fact used a ¼ g ¼ 0.9 in our
simulations. The choice of parameters requires some experimenting. Initially, each bat
should have different values of loudness and pulse emission rate, and this can be achieved
by randomization. For example, the initial loudness A0

i can typically be [1, 2], while the
initial emission rate r0

i can be around zero, or any value r0
i [ [0, 1] if using (equation (5)).

Their loudness and emission rates will be updated only if the new solutions are improved,
which means that these bats are moving towards the optimal solution.

4. Non-linear engineering design tasks
Most real-world engineering optimization problems are nonlinear with complex
constraints, sometimes the optimal solutions of interest do not even exist. In order to see
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how BA performs, we will now test it against some well-known, tough but yet diverse,
benchmark design problems. We have chosen eight case studies as:

(1) mathematical problem;

(2) Himmelblau’s problem;

(3) three-bar truss design;

(4) speed reducer design;

(5) parameter identification of structures;

(6) cantilever stepped beam;

(7) heater exchanger design; and

(8) car side problem.

The reason for such choice is to provide a validation and test of the proposed BA
against a diverse range of real-world engineering optimization problems. As we will
see below, for most problems, the optimal solutions obtained by BA are far better than
the best solutions reported in the literature. In all case studies, the statistical measures
have been obtained, based on 50 independent runs.

4.1 Case 1: mathematical problem
Now let us start with a nonlinear mathematical benchmark problem. This problem has
been used as a benchmark constrained optimization problem with some active
inequality constraints (Chen and Vassiliadis, 2003). In this problem, N is the number of
variables and it is a multiple of four (N ¼ 4n, n ¼ 1, 2, 3, . . .). This problem has N/2
inequality constraints and 2N simple bounds or limits. The problem can be stated as
follows:

Minimize : f ðXÞ ¼
XN
i¼1

ffiffi
i

p
ðxi 2 1Þ2 þ

XN
i¼1

x2
i 2 25

" #2

ð7Þ

Subject to:

gj ¼ x4ð j21Þþ1 þ 2x4ð j21Þþ2 þ 3x4ð j21Þþ3 þ 4x4ð j21Þþ4 2 20 ð8Þ

0 # gj # 30 and j ¼ 1; 2; . . . ;
N

4
ð9Þ

with simple bounds:

0:5 # xi # 10ði ¼ 1; 2; . . .N Þ:

For this problem, the global optimum and best known optimum for N ¼ 12 and N ¼ 60
obtained by BA is given in Table I. It can clearly be seen from Table I that the BA

ID Variables no. Constraints no. Global optimum Best BA result

1 12 6 256.75 256.75
2 60 30 30,945.28 30,945.28

Table I.
BA results and global

optimums for the
mathematical problem
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successfully find the global minimum. The statistical results of the mathematical
problem are also presented in Table II.

4.2 Case 2: Himmelblau’s problem
Now we solve a well-known benchmark problem, namely Himmelblau’s problem. This
problem was originally proposed by Himmelblau’s (1972) and it has been widely used as
a benchmark nonlinear constrained optimization problem. In this problem, there are five
design variables [x1, x2, x3, x4, x5], six nonlinear inequality constraints, and ten simple
bounds or limits. The problem can be stated as follows:

Minimize : f ðXÞ ¼ 5:3578547x2
3 þ 0:8356891x1x5 þ 37:293239x1 2 40792:141 ð10Þ

Subject to 0 # g1 # 92, 90 # g2 # 110, and 20 # g3 # 25 where:

g1 ¼ 85:334407 þ 0:0056858x1x5 þ 0:0006262x1x4 2 0:0022053x3x5 ð11Þ

g2 ¼ 80:51249 þ 0:0071317x2x5 þ 0:0029955x1x2 2 0:0021813x2
3 ð12Þ

g3 ¼ 9:300961 þ 0:0047026x3x5 þ 0:0012547x1x3 2 0:0019085x3x4 ð13Þ

with simple bounds:

78 # x1 # 102; 33 # x2 # 45; and 27 # x3; x4; x5 # 45:

The best known optimum for the Himmelblau’s problem obtained by BA is given in
Table III.

The problem was initially solved by Himmelblau (1972) using a generalized gradient
method. Since then, this problem has also been solved using several other methods such
as GA (Gen and Cheng, 1997; Homaifar et al., 1994), HS algorithm (Lee and Geem, 2004;
Fesanghary et al., 2008), and PSO (He et al., 2004; Shi and Eberhart, 1998). Table II
summarizes the results obtained by BA, as well as those published in the literature. It can
clearly be seen from Table IV that the result obtained by BA is better than the best
feasible solution previously reported.

4.3 Case 3: a three-bar truss design
This case study considers a three-bar planar truss structure shown in Figure 2. This
problem was first presented by Nowcki (1974). The volume of a statically loaded three-bar
truss is to be minimized subject to stress (s) constraints on each of the truss members. The
objective is to evaluate the optimal cross sectional areas. The mathematical formulation is

ID Best Mean Worst SD No. bats No. evals. Ave. time (s)

1 256.752 256.753 256.758 0.0016 10 10,000 1.539
2 30,945.278 35,622.163 46,707.949 4,770.34 25 50,000 32.50

Table II.
Statistical results of the
mathematical problem

X [x1, x2, x3, x4, x5] Fmin No. bats No. evals. Ave. time (s)

[78, 33, 29.995523554, 45, 36.77520645342] 230,665.4922 15 15,000 2.76224

Table III.
BA results for the
Himmelblau’s problem
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given as below:

Minimize : f ðXÞ ¼ ð2
ffiffiffiffiffiffiffi
2x1

p
þ x2Þ £ l ð14Þ

Subject to:

g1 ¼

ffiffiffi
2

p
x1 þ x2ffiffiffi

2
p

x2
1 þ 2x1x2

P 2 s # 0 ð15Þ

g2 ¼
x2ffiffiffi

2
p

x2
1 þ 2x1x2

P 2 s # 0 ð16Þ

g3 ¼
1

x1 þ
ffiffiffi
2

p
x2

P 2 s # 0 ð17Þ

where:

0 # x1 # 1 and 0 # x2 # 1; l ¼ 100 cm;P ¼ 2KN=cm2; and s ¼ 2KN=cm2

Author(s) SDa Best 0 # g1 # 92 90 # g2 # 110 20 # g3 # 25

Himmelblau (1972) N/A 230,373.9490 N/A N/A N/A
Gen and Cheng (1997) N/A 230,183.5760 N/A N/A N/A
Homaifar et al. (1994) N/A 230,005.7000 91.65619 99.53690 20.02553
Lee and Geem (2004) N/A 230,665.5000 92.00004 98.84051 19.99994
Fesanghary et al. (2008) N/A 231,024.3160 93.27834 100.39612 20.00000
He et al. (2004) 70.0400 230,643.9900 93.28536 100.40478 20.00000
Shi and Eberhart (1998) N/A 231,025.5610 93.28533 b 100.40473 19.99997
Coello (2000) 73.6335 231,020.8590 93.28381 100.40786 20.00191
Omran and Salman (2009) N/A 231,025.5560 93.28536 100.40478 20.00000
Present study 444.293 230,665.4922 91.99990 98.84039 20.00001

Notes: aSD is standard deviation; bitalized sets are violated sets

Table IV.
Statistical results for the

Himmelblau’s problem

Figure 2.
Three-bar truss

H

P

H H

A1

A2

A1 = A3
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This design problem is a nonlinear fractional programming problem. The statistical
values of the best solution obtained by BA are given in Table V. The best solution
by BA is (x1, x2) ¼ (0.78863, 0.40838) with the objective value equal to 263.896248.
Table VI presents the best solutions obtained by BA and those reported by Ray and Saini
(2001) and Tsai (2005). It can be seen clearly that the best objective value reported by
Tsai (2005) is not feasible because the first constraint (g1) is violated. Hence, it
can be concluded that the results obtained by BA are better than those of the previous
studies.

4.4 Case 4: speed reducer design
The design of a speed reducer is a more complex case study (Golinski, 1973) and it is
one of the benchmark structural engineering problems (Gandomi and Yang, 2011).
This problem involves seven design variables, as shown in Figure 3, with the face
width b (x1), module of teeth m (x2), number of teeth on pinion z (x3), length of first shaft
between bearings l1 (x4), length of second shaft between bearings l2 (x5), diameter of
first shaft d1 (x6), and diameter of second shaft d2 (x7). The objective is to minimize the
total weight of the speed reducer. There are nine constraints, including the limits on the

Best Mean Worst SD No. bats No. evals. Ave. time (s)

263.896248 263.90614 263.9024677 0.003527 10 15,000 0.72

Table V.
Statistical results
of the best three-bar
truss model

Park et al. (2007) Ray and Saini (2001) Tsai (2005) Present study

x1(A1) 0.78879 0.79500 0.78800 0.78863
x2(A2) 0.40794 0.39500 0.40800 0.40838
g1 0.00000 20.00169 0.00082 a 0.00000
g2 20.26778 20.26124 20.26740 20.26802
g3 20.73223 20.74045 20.73178 20.73198
fmin 263.8965 264.3000 263.6800 263.8962

Note: aItalized set is violated sets

Table VI.
Best solutions
for the three-bar truss
design example

Figure 3.
Speed reducer

l1

z l2

d1

d2

EC
29,5

472



bending stress of the gear teeth, surface stress, transverse deflections of shafts 1 and 2
due to transmitted force, and stresses in shafts 1 and 2.

The mathematical formulation can be summarized as follows:

Minimize : f ðXÞ ¼ 0:7854x1x22ð3:3333x32 þ 14:9334x32 43:0934Þ2 1:508x1 x2
6 þ x2

7

� �
þ 7:477 x3

6 þ x3
7

� �
þ 0:7854 x4x

2
6 þ x5x

2
7

� �
Subject to:

g1 ¼
27

x1x
2
2x3

P 2 1 # 0 ð18Þ

g2 ¼
397:5

x1x
2
2x

2
3

2 1 # 0 ð19Þ

g3 ¼
1:93

x2x3x
3
4x

4
6

2 1 # 0 ð20Þ

g4 ¼
1:93

x2x3x
3
4x

4
7

2 1 # 0 ð21Þ

g5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð745x4=x2x3Þ

2 þ 1:69 £ 106

q
110x3

6

2 1 # 0 ð22Þ

g6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð745x4x2x3Þ

2 þ 157:5 £ 106
p

85x3
7

2 1 # 0 ð23Þ

g7 ¼
x2x3

40
2 1 # 0 ð24Þ

g8 ¼
5x2

B2 1
2 1 # 0 ð25Þ

g9 ¼
x1

12x2
2 1 # 0 ð26Þ

In addition, the design variables are also subject to simple bounds list in Table VII.
This problem has been solved by using BA, and the corresponding statistical values of
the best solutions are also presented in Table VII.

Table VIII summarizes a comparison of the results obtained by BA with those
obtained by other methods. Although some of the best objective values are better than
those of BA, these reported values are not feasible because some of the constraints are
violated. Thus, BA obtained the best feasible solution for this problem.

4.5 Case 5: parameter identification of structures
Estimation of structural parameter is the art of reconciling an a priori finite-element model
(FEM) of the structure with nondestructive test data. It has a great potential for use
in FEM updating. Sanayei and Saletnik (1996) developed a parameter estimation
benchmark using measured strains for simultaneous estimation of the structural
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parameters. The parameter estimation objective function is defined as follows:

Minimize :
XNMS

i¼1

ð½1a�m;i 2 ½1a�a;iÞ

½1�m;i

����
���� ð27Þ

where [1a]m is the measured strains, [1a]m ¼ number of measurements (NMS)
£ number of loading states (NLS), and [1a]a is the analytical strains.

Bound Value

x1 (b) [2.6-3.6] 3.50000
x2 (m) [0.7-0.8] 0.70000
x3 (z) [17-28] 17.0000
x4 (l1) [7.3-8.3] 7.30001
x5 (l2) [7.3-8.3] 7.71532
x6 (d1) [2.9-3.9] 3.35021
x7 (d2) [5.0-5.5] 5.28665
Objective function value 2,994.4671
No. bats 15
No. iterations 15,000
Time of each run (s) 2.53317

Table VII.
Statistical results
of the speed reducer
design example

Kuang
et al. (1998)

Akhtar et al.
(2002)

Golinski
(1973)

Ray and
Saini (2001)

Hsu and
Liu (2007)

Li and
Papalambros

(1985)
Present
study

Best 2,876.1176 3,008.08 2,985.2 2,732.9006 3,007.8 2,985.22 2,994.4671
x1 3.6 3.506122 3.5 3.514185 3.5197 3.500243 3.50000
x2 0.7 0.700006 0.7 0.700005 0.7039 0.70 0.70000
x3 17 17 17 17 17.3831 17 17.0000
x4 7.3 7.549126 7.3 7.497343 7.3 7.3 7.30001
x5 7.8 7.85933 7.3 7.8346 7.7152 7.8 7.71532
x6 3.4 3.365576 3.35 2.9018 3.3498 3.4 3.35021
x7 5 5.289773 5.29 5.0022 5.2866 5.0 5.2875
g1 20.100 20.076 20.074 20.078 20.246 20.074 20.074
g2 20.220 20.199 20.198 20.201 20.513 20.198 20.198
g3 20.528 20.456 20.499 20.036 20.907 20.528 20.499
g4 20.877 20.899 20.919 20.875 0.000 20.877 20.905
g5 20.043 20.013 0.000 0.540 0.000 20.043 0.000
g6 0.182 20.002 20.002 0.181 20.694 0.182 0.000
g7 20.703 20.703 20.703 20.703 0.000 20.703 20.703
g8 20.028 20.002 0.000 20.004 20.583 0.000 0.000
g9 20.571 20.583 20.583 20.582 20.051 20.583 20.583
g10 20.041 20.080 20.051 20.166 0.000 20.041 20.051
g11 20.051 20.018 0.057 20.055 20.246 20.051 0.000
Mean NA 3,012.120 NA 2,758.888 NA NA 2,994.4671
Max. NA 3,028.280 NA 2,780.307 NA NA 4,973.8644
SD NA NA NA NA NA NA 721.51803

Notes: Italized sets are violated sets

Table VIII.
Statistical results
of the speed reducer
design example
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The static FEM equation for a structural system is [F ] ¼ [K ][U ]. Thus, the
analytical strains can be calculated as follows:

½1� ¼ ½B�½K �21½F � ð28Þ

It is not required to measure all the strains, therefore, equation (32) is partitioned based
on measured strain a and unmeasured strain b:

1a

1b

� �
¼

Ba

Bb

� �
K½ �21 F½ � ð29Þ

Since there is no need for unmeasured strains [1b] is eliminated as:

½1a� ¼ ½B a�½K �21½F � ð30Þ

In this work, the case study is a frame structure presented by Sanayei and Saletnik
(1996) (Figure 4). The identified parameter in this example is moment of inertia I (X) for
each member.

A 445 N load is applied to degrees of freedom of 2, 5, 8 and 11, and each load set is
composed of only one force. Strains are measured on 3, 6 and 7 for each load set. The
cross section areas are, respectively, 484 and 968 cm2 for the horizontal and inclined
members. The elastic modulus is 206.8 GPa for all elements. The optimal solution is
obtained at X ¼ [869, 869, 869, 869, 869, 1,320, 1,320] (cm4) with corresponding function
value equal to f *(X) ¼ 0.00000. The statistical results for this case study provided by
BA are presented in Table IX.

The analytical algorithm proposed by Sanayei and Saletnik (1996) is not applicable
to this problem due to a singularity. Arjmandi (2010) solved this problem using GA.
A comparison of the results obtained by GA and BA with the measured values is
shown in Figure 5. The results show that BA has found the global optimum and
identified all the parameters without any error.

Figure 4.
Frame structure

used for parameter
identification example19

7

4

1

1

2

3 4 5 6

7

8

366 cm 427 cm427 cm 610 cm610 cm

6 7

1 3 4 52

610 cm

Best Mean Worst SD No. bats No. evals. Ave. time (s)

5.39 £ 10214 5.1052 £ 10210 5.1146 £ 1024 2.491 £ 1025 25 25,000 14.9

Table IX.
Best solutions for the

parameter identification
example using BA
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4.6 Case 6: cantilever stepped beam
The capability of BA for continuous and discrete variable design problems are verified
using a design problem with ten variables. The case is originally presented by Thanedar
and Vanderplaats (1995). Figure 6 shows a five-stepped cantilever beam with
rectangular shape. In this case study, the width (x1 2 x5) and height (x6 2 x10) of the
beam in all five steps of the cantilever beam are design variables. The volume of the
beam is to be minimized. The objective function is formulated as follows:

Minimize : V ¼
X5

i¼1

xixiþ5li ð31Þ

where li ¼ 100 cm (i ¼ 1, 2, . . . , 5).
Subject to the following constraints:

g1 ¼
600P

x5x
2
10

2 14000 # 0 ð32Þ

g2 ¼
6Pðls þ l4Þ

x4x
2
9

2 14000 # 0 ð33Þ

g3 ¼
6Pðls þ l4 þ l3Þ

x3x
2
8

2 14000 # 0 ð34Þ

Figure 5.
Parameter identification
results using GA and BA

Figure 6.
A stepped cantilever beam

P

543

L

bi

hi21

l1 l2 l3 l4 l5
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g4 ¼
6Pðls þ l4 þ l3 þ l2Þ

x2x
2
7

2 14000 # 0 ð35Þ

g5 ¼
6Pðls þ l4 þ l3 þ l2 þ l1Þ

x1x
2
6

2 14000 # 0 ð36Þ

g6 ¼
Pl 3

3E

1

I s
þ

7

I 4
þ

19

I 3
þ

37

I 2
þ

61

I 1

� �
2 2:7 # 0 ð37Þ

g7 ¼
x10

x5
2 20 # 0 ð38Þ

g8 ¼
x9

x4
2 20 # 0 ð39Þ

g9 ¼
x8

x3
2 20 # 0 ð40Þ

g10 ¼
x7

x2
2 20 # 0 ð41Þ

g11 ¼
x6

x1
2 20 # 0 ð42Þ

where P ¼ 50,000 N, E ¼ 2 £ 107 N/cm2 and the initial design space are: 1 # xi # 5
(i ¼ 1, 2, . . . , 5), and 30 # xj # 65 ( j ¼ 6, 7, . . . , 10).

BA has achieved a solution that satisfies all the constraints and it reaches the best
solution, possibly the unique global optimum. BA outperforms the previous other
methods in terms of the minimum objective function value. Table X presents the
results obtained by BA. We can see that the proposed method requires 25 bats and
1,000 iterations to reach the optimum.

This nonlinear constrained problem has been solved by other researchers shown in
Table XI. As it is seen, BA significantly outperforms other studies.

4.7 Case 7: heat exchanger design
As another case study, we now try to solve the heat exchanger design task, which is a
difficult benchmark minimization problem since all the constraints are binding.
It involves eight design variables and six inequality constraints (three linear and three
non-linear). The problem is expressed as follows:

Minimize : f ðXÞ ¼ x1 þ x2 þ x3 ð43Þ

Subject to:

g1 ¼ 0:0025ðx4 þ x6Þ2 1 # 0 ð44Þ

Best Mean Worst SD No. bats No. evals. Ave. time (s)

61,914.86841 61,914.86842 61,914.86845 0.00001 25 25,000 7.025

Table X.
Best solution results for

the stepped cantilever
beam examples
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g2 ¼ 0:0025ðx5 þ x7 2 x4Þ2 1 # 0 ð45Þ

g3 ¼ 0:01ðx8 2 x5Þ2 1 # 0 ð46Þ

g4 ¼ 833:33252x4 þ 100x1 2 x1x6 2 83333:333 # 0 ð47Þ

g5 ¼ 1250x5 þ x2x4 2 x2x7 2 125x4 # 0 ð48Þ

g6 ¼ x3x5 2 2500x5 2 x3x8 þ 125 £ 104 # 0 ð49Þ

Table XII shows the best solution for the heat exchanger design obtained by BA as
well as the best solutions obtained previously by other methods. The solution shown
for BA is the best generated using 25 bats. The solution generated by BA
(with X * ¼ [579.30675, 1,359.97076, 5,109.97052, 182.01770, 295.60118, 217.98230,
286.41653, 395.60118]) is better than the best solutions reported in the literature.
As shown in Table XII, the SD and the number of evaluations using BA are also much
less than those obtained by the other methods. This solution is feasible and

Thanedar and
Vanderplaats (1995)

Lamberti and
Pappalettere (2003)

Huang and
Arora (1997)

Present
study

x1 3.06 NA NA 2.99204
x2 2.81 NA NA 2.77756
x3 2.52 NA NA 2.52359
x4 2.2 NA NA 2.20455
x5 1.75 NA NA 1.74977
x6 61.16 NA NA 59.84087
x7 56.24 NA NA 55.55126
x8 50.47 NA NA 50.4718
x9 44.09 NA NA 44.09106
x10 35.03 NA NA 34.99537
Best objective 63,110 65,352.2 63,108.7 61,914.9

Table XI.
Statistical results
of the stepped cantilever
beam example using
different methods

Author(s) Best Mean Worst SD No. evalus.

Lee and Geem (2004) 7,057.2744 NA NA NA NA
Joines and Houck (1994) 7,068.688 7,244.2786 NA 107.7516 NA
Jaberipour and Khorram (2010) (1) 7,109.1901 NA NA NA 200,000
Jaberipour and Khorram (2010) (2) 7,051.3012 NA NA NA 200,000
Deb (2000) 7,060.221 NA NA NA 320,080
Michalewicz (1995) 7,377.976 NA NA NA NA
Shopova and Vaklieva-Bancheva (2006) 7,095.485 NA NA NA NA
Chootinan and Chen (2006) 7,049.2607 7,049.5659 7,051.6857 0.57 NA
Koziel and Michaelwicz (1999) 7,147.9 8,163.6 9,659.3 NA NA
Runarsson and Yao (2000) 7,054.316 7,559.192 8,835.655 530 NA
Farmani and Wright (2003) 7,061.34 7,627.89 8,288.79 373 NA
Amirjanov (2006) 7,054.316 7,372.613 8,835.655 1,000 128,000
Wright and Farmani (2001) 7,152.83 NA NA NA NA
Ben Hamida and Schoenauer (2000) 7,095.15 NA NA NA NA
Present study 7,049.248 7,049.2484 7,049.3307 0.00523 25,000

Table XII.
Statistical results
of the heat exchanger
design example by
different model
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the constraint values are G* ¼ [0.0000000, 0.0000000, 0.0000000, 20.0071449,
20.0061782, 20.0020000].

4.8 Case 8: car side impact design
Design of car side impact is used as a benchmark problem of the proposed BA. On the
foundation of European Enhanced Vehicle-Safety Committee procedures, a car is exposed
to a side impact (Youn et al., 2004). Here we want to minimize the weight using nine
influence parameters including, thicknesses of B-pillar inner, B-pillar reinforcement, floor
side inner, cross members, door beam, door beltline reinforcement and roof rail (x1 2 x7),
materials of B-pillar inner and floor side inner (x8 and x9) and barrier height and hitting
position (x10 and x11). The car side problem is formulated as follow:

Minimize f ðxÞ ¼ Weight; ð50Þ

Subject to:

g1ðxÞ ¼ Faðload in abdomenÞ # 1 kN; ð51Þ

g2ðxÞ ¼ V £ Cuðdummy upper chestÞ # 0:32 m=s; ð52Þ

g3ðxÞ ¼ V £ Cmðdummy middle chestÞ # 0:32 m=s; ð53Þ

g4ðxÞ ¼ V £ Clðdummy lower chestÞ # 0:32 m=s; ð54Þ

g5ðxÞ ¼ Durðupper rib deflectionÞ # 32 mm; ð55Þ

g6ðxÞ ¼ Dmrðmiddle rib deflectionÞ # 32 mm; ð56Þ

g7ðxÞ ¼ Dlrðlower rib deflectionÞ # 32 mm; ð57Þ

g8ðxÞ ¼ FpðPubic forceÞ # 4 kN; ð58Þ

g9ðxÞ ¼ VMBP ðVelocity of V 2 Pillar at middle po int Þ # 9 : 9 mm=ms; ð59Þ

g10ðxÞ ¼ VFDðVelocity of front door at V 2 PillarÞ # 15 : 7 mm=ms; ð60Þ

with simple bounds:

0:5 # x1; x3; x4 # 1:5; 0:45 # x2 # 1:35; 0:875 # x5 # 2:625; 0:4 # x6; x7

# 1:2; x8; x9 [ {0:192; 0:345}; 0:5 # x10; x11 # 1:5;

For solving this problem, we ran BA with 20 bats and 1,000 iterations. Because this case
study has not been solved previously in the literature, we also solved this problem using
PSO, DE and GA methods so as to benchmark and compare with the BA method.
Table XIII shows the statistical results for the car side impact design problem using the
proposed BA method and other well-known methods after 20,000 searches. As it can be
seen from Table XIII, in comparison with other heuristic algorithms, the proposed
algorithm is better than GA and it seems that the BA method performances similar to the
PSO and DE.

5. Discussions and conclusions
We have presented a new BA for solving engineering optimization problems. BA has
been validated using several benchmark engineering design problems, and it is found
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from our simulations that BA is very efficient. The extensive comparison study, carried
out over seven different nonlinear constrained design tasks, reveals that BA performs
superior to many different existing algorithms used to solve these seven benchmark
problems. It is potentially more powerful than other methods such as GA and PSO as
well as HS. The primary reason is that BA uses a good combination of major advantages
of these algorithms in some way. Moreover, PSO and HS are the special cases of BA
under appropriate simplifications. More specifically, if we fix the loudness asAi ¼ 0 and
pulse emission rate as ri ¼ 1, BA reduces to the standard particle swarm optimization.
On the other hand, if set Ai ¼ ri ¼ 0.7-0.9, BA essentially becomes a HS as frequency
change is equivalent to the pitch adjustment in HS.

Sensitivity studies can be an important issue for the further research topics, as the
fine adjustment of the parametersa andg can affect the convergence rate of the BA. This
is true for almost all metaheuristic algorithms. In fact, parameteraplays a similar role as
the cooling schedule in the simulated annealing. Though the implementation is more
complicated than many other metaheuristic algorithms; however, the detailed study of
seven engineering design tasks indicates that BA actually uses a balanced combination
of the advantages of existing successful algorithms with innovative feature based on the
echolocation behavior of microbats. New solutions are generated by adjusting
frequencies, loudness and pulse emission rates, while the proposed solution is accepted
or not depends on the quality of the solutions controlled or characterized by loudness
and pulse rate which are in turn related to the closeness or the fitness of the
locations/solution to the global optimal solution.

Theoretically speaking, if we simplify the system with enough approximations, it is
possible to analyze the behaviour of the BA using analysis in the framework of
dynamical systems. In addition, more extensive comparison studies with a more wide
range of existing algorithms using much tough test functions in higher dimensions will
pose more challenges to the algorithms, and thus such comparisons will potentially
reveal the virtues and weakness of all the algorithms of interest. Furthermore, a natural
extension is to formulate a discrete version of BA so that it can directly solve
combinatorial optimization problems such as the travelling salesman problem.

Method PSO DE GA BA

Best objective 22.84474 22.84298 22.85653 22.84474
x1 0.50000 0.50000 0.50005 0.50000
x2 1.11670 1.11670 1.28017 1.11670
x3 0.50000 0.5000 0.50001 0.50000
x4 1.30208 1.30208 1.03302 1.30208
x5 0.50000 0.50000 0.50001 0.50000
x6 1.50000 1.50000 0.50000 1.50000
x7 0.50000 0.50000 0.50000 0.50000
x8 0.34500 0.34500 0.34994 0.34500
x9 0.19200 0.19200 0.19200 0.19200
x10 219.54935 219.54935 10.3119 219.54935
x11 20.00431 20.00431 0.00167 20.00431
Mean objective 22.89429 23.22828 23.51585 22.89273
Worst objective 23.21354 24.12606 26.240578 23.21354
SD 0.15017 0.34451 0.66555 0.17383

Table XIII.
Statistical results of the
car side design example
by different methods
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On the other hand, for dynamical optimization problems and computational geometry, a
further natural extension to the current BA would be to use the directional echolocation
and Doppler effect, which may lead to even more interesting variants and new
algorithms. These further extensions will help us to design more efficient, often hybrid,
algorithms to solve a wider class of even tougher optimization problems.
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