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Abstract—Biogeography-based optimization (BBO) is a
population-based evolutionary algorithm that is based on the
mathematics of biogeography. Biogeography is the science and
study of the geographical distribution of biological organisms.
In BBO, problem solutions are analogous to islands, and
the sharing of features between solutions is analogous to the
migration of species. This paper derives Markov models for
BBO with selection, migration, and mutation operators. Our
models give the theoretically exact limiting probabilities for each
possible population distribution for a given problem. We provide
simulation results to confirm the Markov models.

Index Terms—Biogeography-based optimization (BBO), evolu-
tionary algorithms (EAs), Markov models.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) are a growing field,
commonly used for global optimization. Biogeography-

based optimization (BBO) is a new EA and was first presented
in [1] as an application of the mathematics of biogeography [2],
[3] to evolutionary computation. BBO is an example of how a
natural process can be modeled to solve general optimization
problems. Ongoing research provides empirical evidence of the
potential of BBO compared to other evolutionary computing
algorithms [4]–[7]; however, as with most other EAs, there are
limited theoretical results for BBO [8]. This paper derives a
Markov chain model for BBO that can help in understanding
its convergence and performance properties.

Markov models have already been developed for other EAs,
such as simple genetic algorithms [9], [10] and simulated
annealing [11]. Due to the unique migration mechanism in
BBO (discussed in Section II), we need to use the generalized
multinomial theorem [12] in this paper to derive a Markov
model for BBO’s selection, migration, and mutation operators.

A Markov chain is a random process that has a discrete
set of possible state values si (i = 1, . . . , T ) [13, Ch. 11].
The probability that the system transitions from state si to sj

is given by the probability pij , which is called a transition
probability. The T × T matrix P = [pij ] is called the transition
matrix. A Markov chain is called regular if it is possible to go
from any state to any other state (not necessarily in one step).
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The fundamental limit theorem for regular Markov chains states
that if P is regular, then

lim
n→∞

Pn = Pss (1)

where each row pss of Pss is the same. The ith element of
pss denotes the probability that the Markov chain is in state
si after an infinite number of transitions. pss is independent of
the initial state.

As applied to BBO, a Markov state represents a BBO popu-
lation distribution. The probability pij is the probability that the
population transitions from the distribution si to the distribution
sj after one generation. If the mutation rate is nonzero, this
probability is greater than zero, which means that the transition
matrix is regular. This means that there is a unique nonzero
limiting probability for each possible population distribution as
the number of generations approaches infinity.

If BBO does not incorporate mutation, then it may converge
to a uniform population, i.e., a population in which each
individual is identical. This type of Markov chain is called
absorbing [13, Ch. 11]. In this case, we can calculate the
probability that the population will converge to each state,
and the expected time to convergence. We do not consider
BBO with zero mutation in this paper, but the mathematical
foundation that we lay allows this variation to be explored in
future research.

Section II gives an introduction to BBO. Section III derives
Markov models for BBO, which allows us to obtain the limiting
probability (as the generation count approaches infinity) of
all possible populations. Section IV gives a simple simulation
to confirm the Markov model. We provide some concluding
remarks and directions for future work in Section V. The ap-
pendices give a review of generalized multinomial probability,
and three different expressions for the dimension of the BBO
population transition matrix.

II. BBO

Suppose that we have a set of candidate solutions to some
problem. Each candidate solution is defined by specific fea-
tures. BBO is based on the idea of probabilistically sharing fea-
tures between solutions based on the solutions’ fitness values.
In BBO, if a copy of feature s from solution x replaces one of
the features in solution y, we say that s has emigrated from x
and immigrated to y.

The probability that solution x shares its features with some
other individual in the population is proportional to the fitness
of x. The probability that solution y receives a feature from
some other individual in the population decreases with the
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Fig. 1. Illustration of two candidate solutions to some problem using symmet-
ric migration curves. S1 is a relatively poor solution, and S2 is a relatively good
solution. S1 has high immigration and low emigration, which means that it is
likely to receive features from other solutions but unlikely to share features with
other solutions. S2 has low immigration and high emigration, which means that
it is unlikely to receive features from other solutions but likely to share features
with other solutions.

fitness of y. We base these migration probabilities on curves,
such as those shown in Fig. 1. For the sake of simplicity, we
assume that all solutions have identical migration curves. Fig. 1
shows two solutions in BBO. S1 represents a poor solution, and
S2 represents a more fit solution. The immigration probability
for S1 will therefore be higher than the immigration probability
for S2. The emigration probability for S1 will be lower than the
emigration probability for S2.

As with every other EA, each solution might also have some
probability of mutation. In this paper, mutation is implemented
in a standard way. We deal with discrete optimization problems,
so each solution feature is either a 0 or a 1. The probability of
mutation for BBO is defined as a constant pm ∈ [0, 1]. At each
generation and for each feature in each solution, we generate
a uniformly distributed random number r ∈ [0, 1]. If r < pm,
then we mutate (i.e., complement) the bit under consideration.

Also, similar to other population-based algorithms, we often
incorporate elitism in BBO in order to retain the best solutions
in the population from one generation to the next. This prevents
the best solutions from being corrupted by immigration or mu-
tation. Elitism can be implemented by setting the immigration
rate λ equal to zero for the α best solutions, where α is a user-
selected elitism parameter. Elitism is not used in this paper but
was modeled in [14].

There are several different ways to implement the details
of BBO, but in this paper, we use the original BBO formu-
lation [1], which is called partial immigration-based BBO in
[8]. In this approach, for each feature in each solution, we
probabilistically decide whether to immigrate. If immigration
is selected for a given feature, then the emigrating solution is
probabilistically selected based on fitness (e.g., using roulette
wheel selection). This gives the algorithm shown in Fig. 2 as a
description of one generation of BBO. Migration and mutation
of the entire population take place before any of the solutions
are replaced in the population, which requires the use of the
temporary population z in the algorithm.

III. MARKOV MODELS FOR BBO

A Markov chain model provides us with the probability pij

of transitioning from state si to sj . This probability is, by

definition, independent of how the system reached state si. All
of the transition probabilities can be used to form the transition
matrix P = [pij ]. In this section, we derive a Markov model of
BBO based on its selection, migration, and mutation operators.

Suppose that we have a problem whose solutions are in a
binary search space. The possible solutions are represented by
all bit strings xi consisting of q bits each. Therefore, the car-
dinality of the search space is n = 2q. We use N to denote the
population size, and we use v to denote the population vector,
where vi is the number of xi individuals in the population. We
see that

n∑
i=1

vi = N. (2)

We use yk to denote the kth individual in the population. The
population of the search algorithm can be depicted as

Population

= {y1, . . . , yN}
= {x1, x1, . . . , x1︸ ︷︷ ︸

v1 copies

, x2, x2, . . . , x2︸ ︷︷ ︸
v2 copies

, . . . , xn, xn, . . . , xn︸ ︷︷ ︸
vn copies

}

(3)

where the yi’s have been ordered to group identical individuals.
We use λi to denote the immigration probability of xi, and
μi to denote the emigration probability of xi. Note that μi

is proportional to the fitness of xi, and λi decreases with the
fitness of xi. We use the notation xi(s) to denote the sth bit
of solution xi. We use the notation Ji(s) to denote the set of
population indices j such that the sth bit of xj is equal to the
sth bit of xi. That is

Ji(s) = {j : xj(s) = xi(s)} . (4)

We order yk in the same order as xi. That is

yk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1, for k = 1, . . . , v1

x2, for k = v1 + 1, . . . , v1 + v2

x3, for k = v1 + v2 + 1, . . . , v1 + v2 + v3
...

...
xn, for k =

∑n−1
i=1 vi + 1, . . . , N .

(5)

This is also shown in (3) and can be written more com-
pactly as

yk = xm(k), for k = 1, . . . , N (6)

where m(k) is defined as

m(k) = min r, such that
r∑

i=1

vi ≥ k. (7)

If we need to denote the generation number of the algorithm,
we use an additional subscript. For example, yk(s)t is the value
of the sth bit of the kth individual at generation t.



SIMON et al.: MARKOV MODELS FOR BIOGEOGRAPHY-BASED OPTIMIZATION 301

Fig. 2. One generation of the BBO algorithm. y is the entire population of candidate solutions, yk is the kth candidate solution, and yk(s) is the sth feature
of yk .

Example: Suppose that we have a two-bit problem (q =
2, n = 4) with a population size N = 3. The search space con-
sists of the bit strings x = {x1, x2, x3, x4} = {00, 01, 10, 11}.
Suppose that the three individuals in the current population
are y = {x2, x2, x4} = {01, 01, 11}. Then, we have v1 = 0,
v2 = 2, v3 = 0, and v4 = 1.

Let us consider the derivation of J1(1). We arbitrarily num-
ber bits from left to right, i.e., in any given bit string, bit 1 is the
leftmost bit, and bit 2 is the rightmost bit. From (4), we see that

J1(1) = {j : xj(1) = x1(1)} . (8)

Since x1 = 00, we see that x1(1) = 0 (i.e., the leftmost bit).
Then, (8) can be written as

J1(1) = {j : xj(1) = 0} .

However, xj(1) = 0 for xj ∈ {00, 01}, which, in turn, indi-
cates that j ∈ [1, 2]; therefore, J1(1) = {1, 2}. Continuing this
process, we see that

J1(1) = {1, 2}, J1(2) = {1, 3}
J2(1) = {1, 2}, J2(2) = {2, 4}
J3(1) = {3, 4}, J3(2) = {1, 3}
J4(1) = {3, 4}, J4(2) = {2, 4}.

A. Migration

We make some assumptions in the Markov model develop-
ment in this section. First, all of the new BBO solutions are
created before any solutions are replaced in the population, i.e.,
we use a generational BBO algorithm rather than a steady-state
BBO algorithm. This is clear from the use of the temporary
population z in Fig. 2.

Second, a solution can emigrate a bit to itself. This means
that, in the statement “use the μ values to probabilistically select
the emigrating solution yj” in Fig. 2, j might be chosen to be
equal to k. That is, when a bit is replaced via migration in a
given solution zk, the new bit might be chosen to come from
zk itself. In this case, the bit is not actually replaced in zk.

However, the probabilistic choice of the emigrating solution
allows this to happen on occasion.

Third, the migration rates λ and μ are independent of the
population distribution, i.e., absolute fitness values are used to
obtain λ and μ, as opposed to a rank-based fitness. Alternatives
to these assumptions will change the Markov model develop-
ment of this section, but this is left for future work.

If the sth feature of yk is not selected for immigration during
generation t, then

yk(s)t+1 = xm(k)(s) (immigration did not occur). (9)

That is, yk(s) does not change from generation t to gen-
eration t + 1. However, if the sth feature of yk is selected
for immigration during generation t, then the probability that
yk(s)t+1 is equal to xi(s) is proportional to the combined
emigration rates of all individuals whose sth feature is equal
to xi(s). This probability can be written as

Primm (yk(s)t+1 = xi(s))

=

∑
j∈Ji(s)

vjμj∑n
j=1 vjμj

(immigration occurred). (10)

We can combine (9) and (10), along with the fact that the
probability of immigration to yk(s) is equal to λm(k), to obtain
the total probability

Pr (yk(s)t+1 = xi(s))

= Pr(no immigration)

× Pr (yk(s)t+1 = xi(s)|no immigration)

+ Pr(immigration)

× Pr (yk(s)t+1 = xi(s)|immigration)

=
(
1 − λm(k)

)
10

(
xm(k)(s) − xi(s)

)
+ λm(k)

∑
j∈Ji(s)

vjμj∑n
j=1 vjμj

(11)

where 10 is the indicator function on the set {0}.
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Now, recall that there are q bits in each solution. Use Pki(v)
to denote the probability that immigration results in yk = xi,
given that the population is described by the vector v. This
probability can be written as

Pki(v) = Pr (yk,t+1 = xi)

=
q∏

s=1

[ (
1 − λm(k)

)
10

(
xm(k)(s) − xi(s)

)

+ λm(k)

∑
j∈Ji(s)

vjμj∑n
j=1 vjμj

]
. (12)

Pki(v) can be computed for each k ∈ [1, N ] and each i ∈
[1, n] in order to form the N × n matrix P (v). The kth row
of P (v) corresponds to the kth iteration of the outer loop in
Fig. 2. The ith column of P (v) corresponds to the probability
of obtaining island xi during each outer loop iteration.

The BBO algorithm entails N trials (i.e., N iterations of the
outer loop in Fig. 2), where the probability of the ith outcome
on the kth trial is given as Pki(v). We use ui to denote the
total number of times that outcome i occurs after N trials have
been completed, and define u = [u1 · · · un]T. Then, the
probability Pr(u|v) that we obtain a population vector u after
one generation, given that we start with a population vector v,
can be derived from the generalized multinomial theorem [12].

The generalized multinomial theorem gives the probability
of obtaining a certain set of experimental outcomes when the
probability of each trial is dependent on the trial number. See
Appendix A for an overview. The reason that the generalized
multinomial theorem applies to BBO is that the probability of
obtaining a specific individual xi in the population depends on
the migration trial number k, as shown in (12). We can therefore
use the generalized multinomial theorem to find Pr(u|v) as

Pr(u|v) =
∑
J∈Y

N∏
k=1

n∏
i=1

[Pki(v)]Jki

Y =

{
J ∈ RN×n : Jki ∈ {0, 1},

n∑
i=1

Jki = 1 for all k,

N∑
k=1

Jki = ui for all i

}
. (13)

In order to find the probability that the BBO population
transitions from v to u after one generation, we find all of the
J matrices that satisfy the conditions of (13). For each of these
J matrices, we compute the product of products given in (13).
We then add up all the product of products to obtain the desired
probability.

B. Mutation

The previous section considered only migration. In this sec-
tion, we add the possibility of mutation. We use U to denote
the n × n mutation matrix, where Uij is the probability that
xj mutates to xi. The probability that the kth immigration trial

followed by mutation results in xi is denoted as P
(2)
ki (v). This

can be written as

P
(2)
ki (v) =

n∑
j=1

UijPkj(v)

P (2)(v) = P (v)UT (14)

where the elements of P (v) are given in (12). P (v) is the
N × n matrix containing the probabilities of obtaining each of
n possible individuals at each of N trials, where only migration
is considered. P (2)(v) contains those probabilities when both
migration and mutation are considered. In this case, we can
write the probability of transitioning from population vector v
to u after one generation as

Pr(2)(u|v) =
∑
Y

N∏
k=1

n∏
i=1

[
P

(2)
ki (v)

]Jki

(15)

where Y is given in (13). Equation (15) can be used to find the
transition matrix for BBO with migration and mutation.

The Markov transition matrix Q is obtained by computing
(15) for each possible v and each possible u. The element Qij

will give the probability of transitioning from population vector
v to u after one generation. The matrix Q is therefore a T × T
matrix, where T is the total number of possible populations.
That is, T is the number of possible n × 1 integer vectors v
whose elements sum to N and each of whose elements vi ∈
[0, N ]. The number T can be calculated in several different
ways, as discussed in Appendix B. After we calculate the
transition matrix, we can apply a wealth of Markov tools [15]
to the transition matrix to find the statistical properties of BBO
populations, including the limiting probability of each possible
BBO population.

IV. SIMULATION RESULTS

This section confirms the BBO Markov model with simu-
lation. We use the 3-b one-max problem with a search space
cardinality of eight and a population size of four. The one-max
problem has a fitness function that is proportional to the number
of ones in the population member, and is a popular test function
in EA research [16]. From (22) in Appendix B, we calculate the
total number of possible populations as

T =
(

n + N − 1
N

)
=

(
8 + 4 − 1

4

)
= 330.

Equation (15) can be used to find the limiting population
distribution of BBO. This is the probability, in the limit as the
generation count approaches infinity, that the BBO population
consists of any particular set of individuals.

The fitness values of the 3-b one-max problem are given as

f(000) = 1, f(001) = 2

f(010) = 2, f(011) = 3

f(100) = 2, f(101) = 3

f(110) = 3, f(111) = 4. (16)
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TABLE I
BBO MARKOV MODEL AND SIMULATION RESULTS FOR THE 3-B

ONE-MAX PROBLEM. THE TABLE SHOWS THE MOST PROBABLE

POPULATIONS, AND THE COMBINED PROBABILITY OF CONVERGENCE

TO POPULATIONS THAT CONTAIN NO OPTIMAL SOLUTIONS

(∗= “don’t care” bit). SIMULATION RESULTS ARE THE

AVERAGE OF 100 MONTE CARLO RUNS

Table I shows the most probable populations, along with the
combined probabilities of the populations that do not contain
any optimal solutions. The population vector {v1, v2, . . . , v8}
in Table I indicates the numbers of individuals that are equal to
{000, 001, . . . , 111}, respectively. The Markov model and sim-
ulation results match well, which confirms the model. Table I
shows that a high mutation rate of 10% per bit results in too
much exploration, so the uniform optimal population is not one
of the most probable populations—in fact, it is only the seventh
most probable population with a probability of 2.5% (not shown
in the table). With this high 10% mutation rate, the probability
that the population does not have any optimal individuals is
30%, as shown in the table. However, as the mutation rate
decreases to the more reasonable values of 1% and 0.1%, the
probabilities that the population is composed entirely of optimal
individuals increase to 53% and 86%, respectively, and the
probabilities that the population has no optimal individuals
decrease to 11% and 9%, respectively.

Fig. 3 shows typical simulation results of 20 000 generations
of BBO for the 3-b one-max problem with a mutation rate of
1% per bit. It is seen that the uniform optimal population occurs
just over 50% of the time, in agreement with Table I.

Our second benchmark is a 3-b deceptive problem, again
with a search space cardinality of eight and a population size
of four. The fitness values were the same as that of the one-max
problem shown in (16), except that the bit string of all zeros had
the highest fitness, i.e., f(000) = 5. Table II shows the most
probable populations, along with the combined probabilities
of the populations that do not contain any optimal solutions.
Once again, the Markov model and simulation results match
well. Table II shows that a high mutation rate of 10% per bit
results in too much exploration, resulting in a probability of no
optima in the population of over 50%. However, as the mutation
rate decreases to the more reasonable values of 1% and 0.1%,
the probabilities that the population is composed entirely of
nonoptimal individuals decrease to 12% and 6%, respectively.

Fig. 3. Typical BBO simulation results for a 3-b one-max optimization
problem with a mutation rate of 1% per bit. The three most probable populations
are shown, along with the cumulative probability of all populations that have
no optimal individuals.

TABLE II
BBO MARKOV MODEL AND SIMULATION RESULTS FOR A 3-B

DECEPTIVE PROBLEM. THE TABLE SHOWS THE MOST PROBABLE

POPULATIONS, AND THE COMBINED PROBABILITY OF CONVERGENCE TO

POPULATIONS THAT CONTAIN NO OPTIMAL SOLUTIONS. SIMULATION

RESULTS ARE THE AVERAGE OF 100 MONTE CARLO RUNS

Note that the migration curves that we used to derive these
results were linear, as shown in Fig. 1. An optimization problem
with a search space size of eight and linear migration curves,
like the problems explored in this section, could have the
following migration values, listed in order from least fit to
most fit:

λ = { 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 }
μ = { 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 }.

If nonlinear migration curves are used in BBO, as suggested
in [17], the migration values would change, but the Markov
model derived in this paper would remain the same.

V. CONCLUSION

We have derived a Markov model for BBO. The model gives
the theoretical probability of the occurrence of each possible
population as the generation count goes to infinity. The theory
was confirmed with simulation results.
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The Markov model development in this paper is computa-
tionally expensive because the size of the Markov transition
matrix is (n + N − 1)-choose-N , where n is the cardinality of
the search space and N is the population size. Computational
savings can be obtained by grouping Markov states together and
then computing the probability that the population transitions
from one group of populations to another group, as discussed in
[15], but this is left for further research. Computational savings
could also be obtained by not allowing duplicate individuals in
the population. This would require an adjustment to the Markov
model and would reduce the size of the transition matrix to
n-choose-N .

Other future work includes extending the Markov model to
variations of BBO. This paper focused on the original BBO
algorithm, which is called partial immigration-based BBO. An
extension of the Markov model in this paper to BBO variations
would analytically show their advantages or disadvantages.
Some of these variations include partial emigration-based BBO,
total immigration-based BBO, total emigration-based BBO [8],
and BBO with different migration curve shapes [17]. Also, the
Markov model in this paper could be extended to other EAs
so that comparisons could be made between EAs theoretically
rather than based only on simulations.

The Markov model development in this paper has been
restricted to binary problems, i.e., problems in which each so-
lution feature is a bit. Future work could explore the extension
of this paper to problems in which the solution features are
integers, as in the original BBO paper [1], or to problems in
which the solution features are real numbers.

Our current work involves the comparison of BBO and GA
Markov models and the use of the Markov model developed
here to develop a dynamic system model of BBO. Dynamic
system analysis of EAs is used to find the proportion of each
possible individual in a population as the population size tends
to infinity. This is exemplified by the extension of GA Markov
models to dynamic system analysis [15].

APPENDIX A
GENERALIZED MULTINOMIAL PROBABILITY

Suppose that an experiment has n possible outcomes
{a1, . . . , an} and that the experiment is repeated N times.
Suppose that the probability of obtaining outcome ai on the
kth trial is equal to Pki. Let C = [C1, . . . , Cn] be a vector
of random variables, where Ci denotes the total number of
times that ai occurs in N trials, and let γ = [γ1, . . . , γn] be a
realization of C. Define

Y (γ) =

{
J ∈ RN×n : Jki ∈ {0, 1},

n∑
i=1

Jki = 1 for all k,

N∑
k=1

Jki = γi for all i

}
. (17)

Note that the cardinality of Y (γ) is

|Y (γ)| =
N !

γ1! · · · γn!
. (18)

Then, the generalized multinomial theorem [12] gives the
following probability that the repeated experiment results in the
outcome vector γ:

Pr(C = γ) =
∑

J∈Y (γ)

N∏
k=1

n∏
i=1

P Jki

ki . (19)

Example: Prof. Smith submits three papers to three different
journals. Each journal has a probability Pa of acceptance, Pm of
acceptance with major revisions, Pn of acceptance with minor
revisions, and Pr of rejection. The probabilities are given as

Journal 1 : P1a = 0.1, P1m = 0.3, P1n = 0.5, P1r = 0.1

Journal 2 : P2a = 0.1, P2m = 0.1, P2n = 0.1, P2r = 0.7

Journal 3 : P3a = 0.1, P3m = 0.3, P3n = 0.1, P3r = 0.5.

Of Prof. Smith’s three papers, we want to calculate the
probability that one paper will be accepted, one paper will be
accepted with major revisions, and one paper will be rejected.
In order to calculate this probability, we use γ1 = 1, γ2 = 1,
γ3 = 0, and γ4 = 1 in (19) to obtain

Pr(C1 = 1, C2 = 1, C3 = 0, C4 = 1) =
∑

J∈Y (γ)

3∏
k=1

4∏
i=1

P Jki

ki

(20)

where

Y (γ) =

{
J ∈ R3×4 : Jki ∈ {0, 1},

4∑
i=1

Jki = 1 for all k,

3∑
k=1

Jki = γi for all i

}
. (21)

J belongs to Y if it satisifies all of the following conditions.

1) J is a 3 × 4 matrix.
2) Each element of J is either 0 or 1.
3) The elements in each row of J add up to 1.
4) The elements in the ith column of J add up to γi.

There are a total of N !/(γ1! · · · γn!) = 3!/(1! 1! 0! 1!) =
6 matrices J (t) that satisfy these conditions, and they are
found as

J (1) =

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 0 1

⎤
⎦ J (2) =

⎡
⎣ 0 1 0 0

1 0 0 0
0 0 0 1

⎤
⎦

J (3) =

⎡
⎣ 0 0 0 1

1 0 0 0
0 1 0 0

⎤
⎦ J (4) =

⎡
⎣ 1 0 0 0

0 0 0 1
0 1 0 0

⎤
⎦

J (5) =

⎡
⎣ 0 1 0 0

0 0 0 1
1 0 0 0

⎤
⎦ J (6) =

⎡
⎣ 0 0 0 1

0 1 0 0
1 0 0 0

⎤
⎦ .
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Substituting these matrices into (20) gives

Pr(C1 = 1, C2 = 1, C3 = 0, C4 = 1)

=
6∑

t=1

(
P

J
(t)
11

11 P
J

(t)
12

12 P
J

(t)
13

13 P
J

(t)
14

14

)

×
(

P
J

(t)
21

21 P
J

(t)
22

22 P
J

(t)
23

23 P
J

(t)
24

24

)(
P

J
(t)
31

31 P
J

(t)
32

32 P
J

(t)
33

33 P
J

(t)
34

34

)
= P11P22P34 + P12P21P34 + P14P21P32

+ P11P24P32 + P12P24P31 + P14P22P31

= 0.066.

APPENDIX B
TRANSITION MATRIX DIMENSION

The elements of Q are the probabilities of transitioning from
one BBO population to another. Q is a T × T matrix, where
T is the total number of possible population distributions. That
is, T is the number of possible n × 1 integer vectors v whose
elements sum to N and each of whose elements vi ∈ [0, N ].
This number can be calculated in several different ways. In [18],
it is shown that

T =
(

n + N − 1
N

)
. (22)

We can also use the multinomial theorem [19] to find T . The
multinomial theorem can be stated in several ways, including
the following. Given K classes of objects, the number of
different ways that N objects can be selected (independent of
order) while choosing from each class no more than M times is
the coefficient qN in the polynomial

q(x) = (1 + x + x2 + · · · + xM )K

= 1 + q1x + q2x
2 + · · · + qNxN + · · · + xMK . (23)

Recall that the population vector v is an n-element vector
such that each element is an integer between 0 and N (inclu-
sive), and the sum of its elements is N . T is the number of
unique population vectors v. Thus, T is the number of ways that
N objects can be selected (independent of order) from n classes
of objects while choosing from each class no more than N
times. Applying the multinomial theorem to this problem gives

T = qN

q(x) = (1 + x + x2 + · · · + xN )n

= 1 + q1x + q2x
2 + · · · + xNn. (24)

A different form of the multinomial theorem can also be used
to find T . The multinomial theorem can be stated as

(x1 + x2 + · · · + xN )n =
∑
S(k)

n!∏N
j=0 kj !

N∏
j=0

x
kj

j

=
∑
S(k)

N∏
i=0

(∑i
j=0 kj

ki

) N∏
j=0

x
kj

j

S(k) =

{
k ∈ RN : kj ∈ {0, 1, . . . , n},

N∑
j=0

kj = n

}
. (25)

Now, consider the polynomial (x0 + x1 + x2 + · · · + xN )n.
From the multinomial theorem (25), we see that the coefficient
of [(x0)k0(x1)k1(x2)k2 · · · (xN )kN ] is given by

N∏
i=0

(∑i
j=0 kj

ki

)
. (26)

If we sum up these terms for all kj such that

N∑
j=0

jkj = N (27)

then we obtain the coefficient of xN . However, (24) shows that
T is equal to the coefficient of xN . Therefore

T =
∑
S′(k)

N∏
i=0

(∑i
j=0 kj

ki

)

S ′(k) =

{
k ∈ RN+1 : kj ∈ {0, 1, . . . , n},

N∑
j=0

kj = n,

N∑
j=0

jkj = n

}
. (28)

Equations (22), (24), and (28) give three different expres-
sions for the dimension of the Markov transition matrix Q.

Example: Suppose that our population consists of 2-b indi-
viduals (q = 2, n = 4) and a population size N = 4. Equation
(22) gives

T =
(

7
4

)
= 35.

Equation (24) gives

q(x) = (1 + x + x2 + x3 + x4)4

= 1 + · · · + 35x4 + · · · + x16

T = q4 = 35.

Equation (28) gives

T =
∑
S′(k)

4∏
i=0

(∑i
j=0 kj

ki

)

S ′(k) =

{
k ∈ R5 : kj ∈ {0, 1, . . . , 4},

4∑
j=0

kj = 4,

4∑
j=0

jkj = 4

}

= {( 3 0 0 0 1 ), ( 2 1 0 1 0 ),
( 2 0 2 0 0 ), ( 1 2 1 0 0 ),
( 0 4 0 0 0 )}

T = 4 + 12 + 6 + 12 + 1 = 35.
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