Fast Practical Evolutionary

Timetabling

Dave Corne, Peter Ross

and Hsiao-Lan Fang

DAI Research Paper No. 708

To appear in Proceedings of the AISB Workshop on Evolution-
ary Computation, Springer Verlag, 1994.

Copyright (¢ Dave Corne, Peter Ross, and Hsiao-Lan Fang 1994



Fast Practical Evolutionary Timetabling

Dave Corne, Peter Ross, Hsiao-Lan Fang

Department of Artificial Intelligence, University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, U.K.

Abstract. We describe the General Examination/Lecture Timetabling
Problem (GELTP), which covers a very broad range of real problems
faced continually in educational institutions, and we describe how Evo-
lutionary Algorithms (EAs) can be employed to effectively address arbi-
trary instances of the GELTP. Some benchmark GELTPs are described,
including real and randomly generated problems. Results are presented
for several of these benchmarks, and several research and implementation
issues concerning EAs in timetabling are discussed.

1 Introduction

A number of researchers have applied evolutionary algorithms (EAs) to timetabling
problems [2, 1, 7, 3, 8, 9]. Work so far has however tended to be isolated, apply-
ing a range of techniques to disconnected problems with little cross-comparison.
The intent of this paper is to fully set out the nature of the problems addressed
in EA timetabling research, and to present a series of results on some real and
randomly generated problems which form part of a benchmark set we are col-
lecting, using the (so far) most successful variant of the ‘direct’ approach. These
benchmarks will hopefully spawn further, focussed work in the EA timetabling
arena.

Section 2 describes the general form of the timetabling problem addressed
by researchers using EAs and/or other techniques. Section 3 then notes how
an EA may be set up to address an arbitrary instance of such a problem. In
Sect. 4, we describe various test problems, both real and random, and gives
tables of results on these problems. Section b then discusses a variety of aspects
of the general approach which are worth mentioning, and some summary and
conclusions appear in Sect. 6.

2 Evolutionary Timetabling

A large class of timetabling problems can be described as follows. There is a

finite set of events F = {e1,ea,...,¢e,} (for example, exams, seminars, project
meetings), a finite set of potential start-times for these events T' = {t1,%2,...,t5},
a finite set of places in which the events can occur P = {py,p2,...,pn}, and a

finite set of agents which have some distinguished role to play in particular events
(eg: lecturers, tutors, invigilators, ...) A = {a1,as,...,an} . Each event e; can

be regarded as an ordered pair ¢; = (¢!, ef), where ¢! is the length of event e; (eg:



in minutes), and e is its size (eg: if ¢; is an examination, ef might be the number
of students attending that examination). Further, each place can be regarded as
an ordered pair p; = (p¢,p?), where pf is the event capacity of the place (the
number of different events that can occur concurrently in this place), and p?
is its size (eg: the total number of students it can hold). The event capacity
matters: two exams can take place in the same room simultaneously, but two
lectures cannot. There is also an n x n matrix D of travel-times between each
pair of places.

An assignment is an ordered 4-tuple (a,b,¢,d), where a € E, b€ T, c € P,
and d € A. An assignment has the straightforward general interpretation: “event
a starts at time b in place ¢, and with agent d”. If, for example, the problem was
one of lecture timetabling then a more natural interpretation would be: “lecture
a starts at time b in room ¢, and 1s taught by lecturer d”.

Given ET P, A and the matrix D, the GELTP involves producing a timetable
which meets a large set of constraints C'. A timetable is simply a collection of
v assignments, one per event. How easy it is to produce a useful timetable in
reasonable time depends crucially on the kind of constraints involved. In the rest
of this section, we discuss what C' may contain.

2.1 GELTP Constraints

Different instances of GELTPs are distinguished by the constraints and objec-
tives involved, which typically make many (or even all) of the ™" possible
timetables poor or unacceptable. FEach constraint may be hard (must be sat-
isfied) or soft (should be satisfied if possible). Many conventional timetabling
algorithms address this distinction inadequately: if they cannot solve a given
problem they relax one or more constraints and restart, thus trying to solve a
different problem. The kinds of constraints that normally arise can be conve-
niently classified as follows.

Unary Constraints Unary constraints involve just one event. Examples in-
clude: “The science exam must take place on a Tuesday”, or “The Plenary talk
must be in the main function suite”. They naturally fall into two classes:

Exclusions : An event must not take place in a given room, must not start at
a given time, or cannot be assigned to a certain agent.

Specifications : An event must take place at a given time, in a given place, or
must be assigned to a given agent.

Binary constraints A binary constraint involves restrictions on the assign-
ments to a pair of events. These also fall conveniently into two classes:

Edge Constraints : These are the most common of all, arising because of
the simple fact that people cannot be in two places (or doing two different
things) at once. A general example is: “event z and event y must not overlap



in time”. The term ‘edge’ arises from a commonly employed abstraction of
simple timetabling problems as graph colouring problems [12].

Juxtaposition Constraints : This is a wide class of constraints in which the
ordering and/or time gap between two events is restricted in some way.
Examples include: “event x must finish at least 30 minutes before event y
starts”, and “event x and event y must start at the same time”.

Edge constraints are of course subsumed by juxtaposition constraints, but we
single out the former because of their importance and ubiquity. Edge constraints
appear in virtually all timetabling problems; and in some problems they may be
the only constraints involved.

Capacity Constraints Capacity constraints specify that some function of the
given set of events occurring simultaneously at a certain place must not exceed
a given maximum. Eg: in lecturing timetabling we must usually specify that a
room can hold just one lecture at a time. In exam timetabling this capacity may
be higher for many rooms, but in both cases we need also to consider the total
student capacity of a room. We may allow up to six examinations at once in a
given hall, but only as long as that hall’s maximum capacity of 200 candidates
is not exceeded.

Event-Spread Constraints Timetablers are usually concerned with the way
that events are spread out in time. In exam timetabling, for example, there may
be an overall constraint of the form “A candidate should not be expected to sit
more than four exams in two days”. In lecture timetabling, we may require that
multiple lectures on the same topic should be spread out as evenly as possible
(using some problem-specific definition of what that means) during the week.
Event-spread constraints can turn a timetabling problem from one that can be
solved easily by more familiar graph-colouring methods into one which requires
general optimisation procedures and for which we can at best hope for a near
optimal solution.

Agent Constraints Agent constraints can involve restrictions on the total time
assigned for an agent in the timetable, and restrictions and specifications on
the events that each individual agent can be involved in. In addition to those
already discussed (exclusions and specifications) we typically also need to deal
with constraints involving agnet’s preferences (for teaching certain courses, for
example), and constraints involving teaching loads.

3 Applying EAs to the GELTP

In applying an EA to a problem, central considerations are the choice of a chro-
mosome representation and the design of the fitness function. In this section we
describe the approach we have found most successful so far.



3.1 Representation

For the GELTP, a chromosome is a vector of symbols of total length 3v (where
v is the number of events), divided into contiguous chunks each containing three
genes. The three alleles in the ¢th chunk, where 1 <= i <= v, represent the time,
place, and agent assignments of event i. Naturally, the set of possible alleles at
time, place, and agent genes are respectively identified with the sets 7', P, and
A. The simple example chromosome “abcdef” represents a timetable in which
event ey starts at time a in place b, involving agent ¢, and event e starts at time
d in place e, involving agent f.

Very many timetables thus represented will involve edge-constraint violations
(‘clashes’). Eg, the chromosome “abcabcabe......” is well-formed, even though
it puts every event in the same place at the same time and involving the same
agent. The job of the EA is to gradually remove such violations of constraints
during the artificial evolutionary process.

3.2 The Evaluation function

It is important to be able to differentiate the relative quality of different timeta-
bles. An apparently satisfactory solution is widely used in the EA literature:
it is simply to have fitness inversely proportional to the number of constraints
violated in a timetable with each instance of a violated constraint weighted ac-
cording to how important or not it is to satisfy it.

Let C; be the set of constraints of type j (for example, event-spread con-
straints). The specific type classification used can be tailored to suit the prob-
lem. Each violated member of C} attracts a specific penalty w;. For each ¢ € Cj,
let w(e,t) = 1if ¢ is violated in timetable ¢, and v(e,t) = 0 if ¢ is satisfied. A
simple fitness function for a GELTP is thus:

FO =10+ Y w )y ve) (1)

typesj ceC;

Assuming that all the penalties are positive, this function i1s 1 if and only if
all the constraints hold, otherwise it is less than 1. The general idea 1s that an
appropriate choice of values for the penalty terms should lead both to reason-
able tradeoffs between different kinds of constraint violations, and (by virtue of
defining the shape of the fitness landscape) effective guidance of the EA towards
highly fit feasible timetables.

The approach works best if the constraint set (' is fine grained. For example,
if C' contained only the ‘single’ constraint: “the timetable has no clashes”, then
the fitness landscape would contain a few spikes in an otherwise flat space, which
is quite intractable to any form of search. C'is hence best composed of low order
constraints, each of which involves only one or two events. For example, the
important constraint “No lectures which share common students should clash”
appears in C' as a large collection of separate constraints each involving a distinct
pair of lectures which (are expected to) share common students or teachers. The



set of such edge constraints are usually the largest single block of constraints
in a timetabling problem. Commonly, applications will be faced with data in
a form like: “student Jones sits exams Maths, Physics, Chemistry, ...”; this
is then easily transformed to collections of binary constraints between events.
In this case, each distinct pair of exams taken by the same student constitutes
an edge constraint; typically, we may also automatically create an event-spread
constraint between the same pair.

Given such a collection, a question arises as to how to treat them: they
may either be treated as a uniform collection of distinct edge constraints of
identical importance, or each edge may be weighted according to how many
students share these events. In this way, and typically throughout this ‘problem
transformation’ process, the constraint satisfaction problem (CSP) of finding a
timetable which satisfies all the constraints can be transformed into any of several
different constrained optimisation problems (COPs)[4]; each such COP will share
at least one global optimum with the CSP (and preferably all of them) but will be
otherwise different. In general, it seems important to make the landscape of this
COP as meaningful as possible. For example, in an exam timetabling problem in
which we treat each distinct edge constraint the same and each distinct event-
spread constraint the same (but typically with event-spread constraints being
less important edge constraints), we may find that the best we can do is find a
collection of answers which violate a single event-spread constraint. These may
be markedly different however; although each answer has just one pair of edge-
constrained events timetabled too closely, some may involve only one student,
while others may involve several. By weighting edge-constrained pairs of events
(in this case according to the number of students sharing the given exams), the
COP becomes more meaningful in that it is able to distinguish between such
cases. This is particularly important in cases where the CSP has no solution, or
where 1ts solution is difficult to find; one or other of which is quite common norm
in exam and lecture timetabling problems. In such cases, the COPs addressed
by the EA (or some other method) may have different global optima, and so it
becomes particularly important to use as ‘meaningful’ a COP as possible. In an
example similar to that just discussed, for example, the less meaningful COP
may have an optimum which violates just one event-spread constraint (which
involves 50 students suffering consecutive exams, say), while a global optimum
of the more meaningful version may involve just 2 students suffering consecutive
exams, although having violations of two distinct event-spread constraints.

3.3 Speed

An important general consideration is that calculation of fitness be fast. For-
tunately, this is usually true for most of the constraints we need to consider in
the GELTP, which mainly comprise unary and binary constraints. More to the
point, however, when using the direct representation 1t is particularly easy to
set up ‘delta evaluation’, whereby to evaluate a timetable we need only consider
the changes between it and an already-evaluated reasonably similar one such as
one of its parents.



[9] discusses the use of delta evaluation further, noting that it is slightly
more than just an obvious speedup measure. In particular, [9] notes that speed
comparisons made in terms of ‘number of evaluations’, as commonly done, may
often be overturned when delta evaluation is in use. That is, EA configuration
X might regularly find results in fewer evaluations than EA configuration Y
(and hence be faster when full evaluation is in use, but ¥ may be found to be
faster than X when delta evaluation is employed. The reason for this 1s just that
evaluations when using X in conjunction with delta evaluation generally take
longer than with Y, because, for example, X employs a highly diversifying re-
combination operator which means that delta evaluation has to consider several
changes each time (though will typically still be faster than full evaluation). Tt
1s important to note here that delta evaluation leads to the notion of evaluation
equivalents EEs, which we employ later on. This simply records the time taken
for a run in terms of the number of full evaluations that would have been done
in the same time. We measure this, for example, by dividing the total number
of constraint checks made during a delta evaluation run by the (constant) num-
ber that would be made during a full evaluation. This measure hence allows
a machine independent measure of the time taken by an EA/timetabling run
employing delta evaluation. An alternative is simply to record the total number
of constraint checks made, but EE’s provide a more accessible measure and give
a more reasonable indication of total time taken.

3.4 Penalty Settings

Clearly, we can choose penalty terms for different constraints according to our
particular idea of how we would trade off the advantages and disadvantages of
different solutions to the problem in hand. Penalties must be set with care, how-
ever. If the ratio between two penalties (say, ordering constraints vs event-spread
constraints) is too high, then search will quickly concentrate on a region of the
space low in violations of the more penalised constraint, but perhaps missing
a less dense region in which better tradeoffs could be found. If too low, then
the capacity for the search to trade off between different objectives is lost. Ev-
idently, optimal penalty settings depend on many things, primarily involving
the density of regions of the fitness landscape in relation to each constraint, as
well as the subjective relative disadvantages of different constraint violations
in the problem at hand. Alternative possibilities include the approach in [10]
(in the context of multiple objective facility layout problems), in which penalty
settings are revised dynamically in accordance with the gradually discovered
nature of the constrained fitness landscape. Also, a principled method for con-
structing scalar functions for multi-objective problems is discussed in the context
of EA optimisation in [6]. In this method, called MAUA (Multi-Attribute Util-
ity Analysis), extensive questioning of an expert decision maker (in our case, an
experienced timetable constructor) on example cases (pairs of distinct timeta-
bles) would lead to the construction of a nonlinear function M of the vector of
summed constraint violations, designed so as to best match the judgement of
the expert in that the ordering on timetables imposed by M optimally matches



that imposed by the expert. The effort involved in performing MAUA | however,
is unlikely to be rewarded with a function M which is significantly closer to the
expert decision-maker’s judgement than an essentially ad-hoc but intuitive linear
weighted penalty function and it is not clear that this is desirable. MAUA in-
volves no attempt to structure M such that the fitness landscape is more helpful
to the search process.

It suffices to say here that extensive experience so far suggests that for a
wide range of problems we can settle for a simple linear penalty-weighted sum
of violations with an intuitive choice of penalty settings.

3.5 Violation Directed Mutation Operators

In [9], a family of Violation Directed Mutation VDM operators for timetabling
problems are examined, and it is found that a certain subclass of variations on
vDM are particularly powerful for use on a range of realistic problems. Similar
operators are studied in [4] for graph colouring and other constraint satisfaction
problems. Here we adopt the use of one particular vDM variant, called (rand,
tn10), as standard. The action of this operator is roughly as follows (fuller de-
scription appears in [9]): an application of (rand, tni10) to a timetable amounts
to randomly choosing an event (gene), and then selecting a new allele (timeslot)
for it via tournament selection with a tournament size of 10; an allele’s ‘fitness’
for this purpose is a measure of the degree to which it will reduce the degree of
constraint violation involving the chosen event. This ‘allele choice’” operation in-
volves some computational expense, but since the substantial part of 1t involves
numbers of constraint checks, the time it takes can be meaningfully absorbed
into our EE measure.

4 Some Benchmark Timetabling Problems

We first look at five real examination timetabling problems, and later consider 32
randomly generated highly over-constrained test problems. These are not fully
general, in the sense of having a full repertoire of place and agent constraints
as well as several kinds of timeslot constraint, but only consider edge, event-
spread, exclusion, and, in the case of two of the real problems, timeslot capacity
constraints (arising from a limit on the number of seats available in examination
halls at any one time). Realistic fully general benchmarks will appear anon, but
for now it seems reasonable to provide more simply defined problems (and hence
more accessible for comparative performance research) which are nevertheless
realistically difficult and/or common GELTP variants..

4.1 Some Real Examination Timetabling Problems

Three of these arise from MSc examinations at the EDAI', and two from Kingston
University, London. Each of the EDAI problems, named in turn: edai-ett-91,

! University of Edinburgh Department of Artificial Intelligence



edai-ett-92, and edai-ett-93,involve a four slots per day timetable structure,
and involve a number of edge constraints and exclusions. In each case, there is
an event-spread constraint as follows: if any pair of edge-constrained events are
timetabled to appear on the same day, then they must have at least one full slot
between them. That 1s, they must occupy the first and third, first and fourth, or
second and fourth slots. edai-ett-91 has 314 edge constraints, and no exclu-
sions, and must be timetabled over six days (hence 24 slots). edai-ett-92 has
431 edges, no exclusions, and must occupy seven days, while edai-ett-93 has
414 edges, 480 exclusions, and must occupy nine days.

The Kingston University problems respectively represent the first and sec-
ond semester exams faced by Kingston University students in 1994. In the first
semester problem, ku-ett-94-1, 97 exams have to be arranged over 5 days with
with 3 slots per day. There are 399 edge constraints, and hence 399 individual
event spread constraints. The event-spread constraint in this case is that if an
edge constrained pair of exams both occur on the same day, they must occupy
the first and third slot. ku-ett-94-2 is the second semester problem; 128 exams
must be arranged over an 8 day period, with 3 slots per day. The event spread
objective this time is to avoid a student facing more than one exam per day.
Hence, edge-constrained pairs of events should not occupy slots on the same
day. There are 536 edge constraints, and hence 536 event spread constraints too.
An additional constraint faced by both of the Kingston University problems is
that a maximum of just 470 candidates can be seated in any timeslot. Hence,
associated with each event 1s a weight representing the number of students tak-
ing the appropriate exam. These weights are then used by the fitness function
(as well as by the vDM operator) to penalise (avoid) violations of this capacity
constraint.

4.2 Default EA Configuration

The EA configuration used in all experiments was as follows. A reproduction
cycle consisted of a breeding step (in which one new chromosome was produced)
followed by an insertion step, in which this new chromosome replaced the cur-
rently least fit individual (but only if the new individual was fitter). With prob-
ability 0.2, a breeding step involved the selection of one parent and the simple
gene-wise mutation of it with a probability of 0.02 of randomly reassigning the
allele of each gene in turn. With probability 0.8, a breeding step involved the
selection of one parent, and the application of the vDM operator (rand, tnio.
Tournament selection was used with a tournament size of 6, and the population
size was always 1,000.

Using the default configuration, we examine the reliability of this EA on five
real timetabling problems. The default configuration was applied in 100 separate
trials to each of the five problems detailed above. We record, in each case, the
number of such trials which found an optimum (the ‘number of perfect trials’
column; on each of these problems, optima violating no constraints exist), the
least, average, and most evaluations taken to reach an optimum for those trials
which did, and the the least, average, and most evaluation equivalents taken to



reach an optimum for those trials which did. These results appear in Table 1.
Each trial on an edai problem was run for 25,000 evaluations, while trials on
the ku problems ran for 40,000 evaluations each.

Table 1. Performance on five real lecture timetabling problems

No. Perfect Evaluations Eval. Equiv’s
Problem Trials  |Lowest|Mean |[Highest|Lowest|Mean|Highest
edai-ett-91 84 4595 | 7693 | 24933 | 4793 | 8084 | 26241
edai-ett-92 50 7701 |14087| 21703 | 5000 |13771| 21179
edai-ett-93 98 6611 | 9592 | 14818 | 4717 | 8501 | 13166
ku-ett-94-1 93 10273 |14890| 20243 | 4227 | 6181 | 8420
ku-ett-94-2 57 12594 |19241| 28808 | 3731 | 6109 | 9103

It may first be pointed out that these results show great general potential for
EAs on timetabling problems. All trials are relatively fast; for example. Speed
on the problems above ranged 250 to 400 evaluations per second? Even in the
two cases where the EA found an optimum only 50% or so of the time, this
means that a small number of trials would be more or less guaranteed to stum-
ble on a perfect timetable soon enough. In the case of the edai-ett-91 and
edai-ett-92, the timetables actually used for these problems were indepen-
dently produced by the relevant course administrators. As detailed in [3], these
were very poor in relation to average EA-produced timetables on the same prob-
lems, and certainly far from the perfect timetables that the EA used here can
typically find. From the edai-ett-93 case on, the course administrators have
been (thankfully) using an EA to do their timetabling work, and hence we do
not have independently produced efforts for comparison. In the case of the ku
problems, the course administrators at Kingston University tried to manually
produce timetables for these problems but were having great difficulty, owing
in particular to the recent modularisation of the underlying course; they also
note that satisfying the capacity constraint in each case was particularly trou-
blesome. Kingston University’s timetablers notified us of their problems halfway
through their troubled attempts, and sent us the relevant data, whereupon the
EA managed to find perfect results regularly in each case.

The main intent in presenting these results 1s to provide benchmarks for fu-
ture comparisons with other techniques. As detailed at the end of the paper,
all problems we use are freely available. Comparative performance results on
the above problems will focus on the reliability figure. That is, in looking for im-
provements on our timetabling EA | we are looking for a single method which will
improve reliability in finding the optimum over all of the above set (and others).
without any major speed sacrifice. Alternative valid targets include achieving

2 On a Sun Sparcstation 2, using a not-necessarily optimised C program.



similar reliability faster, or perhaps less (but >50%, say) reliability but much
faster.

4.3 Some Random Over-Constrained Timetabling Problems

A further kind of target, as is commonly the case with benchmark job shop
scheduling problems, for example [11], is find increasingly lower bounds on the
total penalty values for a suite of problems. Here we describe some timetabling
problems involving edge and event-spread constraints which are constrained
enough for this purpose, and present our best results so far using the EA de-
scribed, and running to a limit of 200,000 evaluations in each of 10 trials for
each problem. Each of these problems involves the same temporal structure and
event-spread constraint as the edai-ett problems; that is, there are four times-
lots per day, and for each edge constrained pair of events there is also an edge
constraint which specifies that there should be at least one entire slot between
them these events if they appear on the same day.
Each problem is named bench-ett(X,Y,Z,W), where:

— X is simply an identifier of the set of random edge constraints involved.

— Y is the number of events to be timetabled.

— Z 1s the number of days allowed; hence there will be 4 x Z slots altogether.

— W is the number of edge constraints. Each edge constraint is a pair of events,
(e1, €2), constrained not to appear in the same timeslot. Associated with each
constraint is the edai-ett style event-spread constraint, Further, associated
with each edge constraint ¢ in the set of edge constraints C' is a weight ¢,,.
This is an integer between 1 and 100 inclusive.

In each case, the EA applied a penalty P to a candidate timetable ¢ as follows,
in which v(c,t) for ¢ € C is 1 (0) if edge constraint ¢ is violated (satisfied) in
timetable ¢, while e(¢,t) for is 1 only if the event-spread constraint is violated
but the corresponding edge constraint is not violated.

P(t) = Zecc2v(c,t)ey + e(e, ey (2)

Figures in the second column of Table 2 are hence the minimal value for P we
have so far found on these problems. The third and fourth columns respectively
give the weighted penalty for edge constraints violated by the best timetable
found, and the weighted penalty for event-spread constraints violated in the
same timetable.

The problems in Table 2 are extremely highly constrained; almost certainly
more so than any real timetabling problem. Nevertheless, comparative perfor-
mance of techniques (EA-based or not) on this set (and similar sets) of problems
will be useful because these are indeed timetabling-style problems, similar in
the nature of the constraints involved than a very common class of real exam
timetabling problems. Hence, better performance on these benchmarks will al-
most certainly reflect potential for better performance on real timetabling prob-
lems. Also, since these are very highly constrained COPs, it seems likely that



Table 2. Performance on Very Highly Constrained Random Timetabling Problems

|Pr0blem |Smallest Penalty|Edge Penalty|Event—Spread Penalty|
bench-ett(1,50,5,1000) 1116 212 692
bench-ett(1,50,6,1000) 613 81 451
bench-ett(1,50,7,1000) 248 17 214
bench-ett(1,50,8,1000) 79 2 75
bench-ett(2,50,5,1000) 1011 174 663
bench-ett(2,50,6,1000) 477 57 363
bench-ett(2,50,7,1000) 151 15 121
bench-ett(2,50,8,1000) 84 7 70
bench-ett(3,50,5,1000) 1129 180 769
bench-ett(3,50,6,1000) 550 65 420
bench-ett(3,50,7,1000) 205 24 157
bench-ett(3,50,8,1000) 61 3 55
bench—ett(l,100,10,4000) 1359 159 1041
bench-ett(1,100,11,4000) 825 125 575
bench-ett(1,100,12,4000) 479 49 381
bench-ett(1,100,13,4000) 312 29 254
bench—ett(2,100,10,4000) 1492 265 962
bench—ett(2,100,ll,4000) 1025 158 709
bench-ett(2,100,12,4000) 620 60 500
bench-ett(2,100,13,4000) 346 44 258
bench—ett(3,100,10,4000) 1493 331 831
bench-ett(3,100,11,4000) 874 170 534
bench-ett(3,100,12,4000) 400 46 308
bench-ett(3,100,13,4000) 232 35 162
bench—ett(l,500,l,5000) 122502 30619 61264
bench—ett(l,500,2,5000) 23576 3948 15680
bench—ett(l,500,3,5000) 4580 411 3758
bench-ett(1,500,4,5000) 453 48 357

there 1s great scope for continual improvement on the ‘best so far’ figures given
above. That 1s, techniques better than the EA we have used so far may be
found which achieve 100% reliability on the five real timetabling problems dis-
cussed earlier, and hence be indistinguishable on those problems. However, such
techniques are likely to be separated in terms of their comparative performance
on these highly constrained benchmarks, while still leaving room for further
improvement. Lastly, being COPs with (almost certainly) no perfect solutions
possible in each case, these problems reflect the difficulties involved in many
real modular lecture timetabling problems; in such a problem, for example, a
typical approach may be to attempt to allow any combination of courses as fea-
sible in the timetable, to give students greater flexibility in their module choices.
Since this goal is almost always infeasible, such a problem becomes a COP, with
weightings on pairs of module choices reflecting the desirability of allowing these



as viable combinations for a student.

5 Prospects for EAs in Timetabling

Indications so far point to the approach we have described as highly promising
for general timetabling needs, at least of the kind usually found in educational
institutions. However, several matters need pointing out with respect to its more
general application. Firstly, as may be discerned, and as we have found, it is not
always immediately apparent how best to describe the problem itself in terms of
the kinds of constraints processed. Eg, to incorporate the overall event-spread
constraint “no student should sit more than four exams in two successive days”,
one choice would be to have the objective function (partially) calculate each
student’s individual timetable, and directly penalise every instance of a student
suffering the appropriate constraint violation. A potentially far less computa-
tionally expensive choice, however, might be simply to penalise all consecutive
edge-constrained events which are less than, say, 2 hours apart in the overall
timetable; though not addressing the constraint directly, this certainly applies
the artificial evolutionary pressure in the right direction. These are just two of
several possibilities for addressing this constraint. Generally, choices occur at
many stages in the process of translating the constraints of a real GELTP into
a penalty function, and much work is needed to discern the best way to do this.
The difficulty may not be too great, however. At least some way of handling any
given constraint will be naturally apparent, and, in our experience, it is unlikely
that different choices will bring significantly different results, unless the problem
instance is very large and hence solution speed is a major factor.

Another important aspect is comparative performance with other techniques.
There is reason to suggest that the EA approach described will succeed more as a
general timetabling tool than some other methods. In many cases, however, some
other technique may be significantly preferable. Eg, a large, continually faced
problem which changes little (in terms of the kinds of constraints involved) from
instance to instance may be better off treated with some specifically designed
algorithm. This may itself be based on an EA| involve an alternative EA-based
approach, or be based on best-first search with a specifically designed heuristic,
for example. In general, much work is required to discern what promises to be
the best method for different kinds of GELTP.

Also, several aspects of the approach itself warrant much further study.
Among these are the design of the objective function itself, as briefly discussed
above and also in Sect. 3.4, the use of alternative operators, and various aspects
of the underlying EA configuration.

Finally, timetablers (ie; human course organisers, for example) often have
needs which are not directly met within the described approach. There may
be some desire to generate several different possible timetables, for example, or
there may be need for extensive preprocessing and altering of the constraints
(which may initially contain several inconsistencies). Use of the EA described
(via iterative applications, for example) may be useful as a tool in each case,



but such considerations evidently require more useful refinements or extensions,
if not other methods entirely. A planned extension to a future version of the EA
described here, for example, is to have an ATMS-based constraint-checking front
end. Also, experiments are under way which involve the generation of multiple
distinct solutions in a single run, making use of EA variants specifically designed
for multimodal optimisation.

6 Summary and Conclusions

We have described and noted various matters in the application of EAs to gen-
eral educational-institution based timetabling problems. EAs seem to have great
potential in this arena, and we illustrate this via presentation of various re-
sults. First, we show that a particular EA described here (but more fully in [9]),
finds, quickly and reliably, perfect timetables for each of five real examination
timetabling problems. The particular reliability results are offered as bench-
marks against which to examine alternative techniques. Second, a collection of
very highly constrained random timetabling-style problems are described, and
our best results on these are given. Various research issues and considerations
are then noted.

Finally, the test problems addressed may be freely obtained (and explained)
from the authors, and/or via the FTP site ftp.dai.ed.ac.uk .

Acknowledgements

Thanks to Bob Fisher and Peter Sutcliffe for providing problem data. Thanks
also to the UK Science and Engineering Research Council for support of Dave
Corne via a grant with reference GR/J44513, and to the China Steel Corpora-
tion, Taiwan, R.O.C., for support of Hsiao-Lan Fang.

References

1. Abramson D., Abela, J. : A Parallel Genetic Algorithm for Solving the School
Timetabling Problem. IJCAT workshop on Parallel Processing in Al, Sydney, August
1991

2. Colorni, A., Dorigo, M., Maniezzo, V.: Genetic Algorithms and Highly Constrained
Problems: The Time-Table Case. Parallel Problem Solving from Nature I, Goos and
Hartmanis (eds.) Springer-Verlag, 1990, pages 55-59

3. Corne, D., Fang H-L., Mellish, C.: Solving the Module Exam Scheduling Problem
with Genetic Algorithms. Proceedings of the Sixth International Conference in In-
dustrial and Engineering Applications of Artificial Intelligence and Expert Systems,
Chung, Lovegrove and Ali (eds.), 1993, pages 370-373.

4. Fiben, A.E., Raue, P.E., Ruttkay, Z Heuristic Genetic Algorithms for Constrained
Problems. Working papers of the Dutch Al Conference, 1993, Twente, pages 341—
353.



10.

11.

12.

. Corne, D., Ross, P.; and Fang, H-L.: Fast Practical Evolutionary Timetabling. Pro-

ceedings of the AISB Workshop on Evolutionary Computation, Springer Verlag,
1994, to appear.

Horn, J., and Nafpliotis, N.: Multiobjective Optimisation Using The Niched Pareto
Genetic Algorithm. Illinois Genetic Algorithms Laboratory (IIliGAL) Technical Re-
port No. 93005, July 1993.

. Ling, S-E.: Intergating Genetic Algorithms with a Prolog Assignment Problem as

a Hybrid Solution for a Polytechnic Timetable Problem. Parallel Problem Solving
from Nature 2, Elsevier Science Publisher B.V., Manner and Manderick (eds.), 1992,
pages 321-329.

. Paechter, B. Optimising a Presentation Timetable Using Evolutionary Algorithms.

Proceedings of the AISB Workshop on Evolutionary Computation, Springer Verlag,
1994, to appear.

Ross, P., Corne, D.; and Fang, H-L.: Improving Evolutionary Timetabling with Delta
Evaluation and Directed Mutation.: Proceedings of PPSN III, Jerusalem, October
1994, Springer Verlag, to appear.

Smith, A.E.; and Tate, D. M.: Genetic Optimisation Using a Penalty Function.
Proceedings of the Fifth International Conference on Genetic Algorithms, San Ma-
teo: Morgan Kauffman, S. Forrest (ed), 1993, pages 499-503.

Taillard, E.: Benchmarks for basic scheduling problems. European Journal of op-
erations research, Volume 64, 1993, pages 278-285.

Wilson, R. J.: Introduction to Graph Theory. Longman, London, 1979.

This article was processed using the INTpX macro package with LLNCS style



