
'
&

$
%

Fast Practical EvolutionaryTimetablingDave Corne, Peter Rossand Hsiao-Lan FangDAI Research Paper No. 708
To appear in Proceedings of the AISB Workshop on Evolution-ary Computation, Springer Verlag, 1994.

Copyright c
Dave Corne, Peter Ross, and Hsiao-Lan Fang 1994



Fast Practical Evolutionary TimetablingDave Corne, Peter Ross, Hsiao-Lan FangDepartment of Arti�cial Intelligence, University of Edinburgh, 80 South Bridge,Edinburgh EH1 1HN, U.K.Abstract. We describe the General Examination/Lecture TimetablingProblem (GELTP), which covers a very broad range of real problemsfaced continually in educational institutions, and we describe how Evo-lutionary Algorithms (EAs) can be employed to e�ectively address arbi-trary instances of the GELTP. Some benchmark GELTPs are described,including real and randomly generated problems. Results are presentedfor several of these benchmarks, and several research and implementationissues concerning EAs in timetabling are discussed.1 IntroductionA number of researchers have applied evolutionary algorithms (EAs) to timetablingproblems [2, 1, 7, 3, 8, 9]. Work so far has however tended to be isolated, apply-ing a range of techniques to disconnected problems with little cross-comparison.The intent of this paper is to fully set out the nature of the problems addressedin EA timetabling research, and to present a series of results on some real andrandomly generated problems which form part of a benchmark set we are col-lecting, using the (so far) most successful variant of the `direct' approach. Thesebenchmarks will hopefully spawn further, focussed work in the EA timetablingarena.Section 2 describes the general form of the timetabling problem addressedby researchers using EAs and/or other techniques. Section 3 then notes howan EA may be set up to address an arbitrary instance of such a problem. InSect. 4, we describe various test problems, both real and random, and givestables of results on these problems. Section 5 then discusses a variety of aspectsof the general approach which are worth mentioning, and some summary andconclusions appear in Sect. 6.2 Evolutionary TimetablingA large class of timetabling problems can be described as follows. There is a�nite set of events E = fe1; e2; : : : ; evg (for example, exams, seminars, projectmeetings), a �nite set of potential start-times for these events T = ft1; t2; : : : ; tsg,a �nite set of places in which the events can occur P = fp1; p2; : : : ; png, and a�nite set of agents which have some distinguished role to play in particular events(eg: lecturers, tutors, invigilators, : : : ) A = fa1; a2; : : : ; amg . Each event ei canbe regarded as an ordered pair ei = (eli; esi ), where eli is the length of event ei (eg:



in minutes), and esi is its size (eg: if ei is an examination, esi might be the numberof students attending that examination). Further, each place can be regarded asan ordered pair pi = (pei ; psi ), where pei is the event capacity of the place (thenumber of di�erent events that can occur concurrently in this place), and psiis its size (eg: the total number of students it can hold). The event capacitymatters: two exams can take place in the same room simultaneously, but twolectures cannot. There is also an n � n matrix D of travel-times between eachpair of places.An assignment is an ordered 4-tuple (a; b; c; d), where a 2 E, b 2 T , c 2 P ,and d 2 A. An assignment has the straightforward general interpretation: \eventa starts at time b in place c, and with agent d". If, for example, the problem wasone of lecture timetabling then a more natural interpretation would be: \lecturea starts at time b in room c, and is taught by lecturer d".GivenE,T ,P ,A, and the matrixD, theGELTP involves producing a timetablewhich meets a large set of constraints C. A timetable is simply a collection ofv assignments, one per event. How easy it is to produce a useful timetable inreasonable time depends crucially on the kind of constraints involved. In the restof this section, we discuss what C may contain.2.1 GELTP ConstraintsDi�erent instances of GELTPs are distinguished by the constraints and objec-tives involved, which typically make many (or even all) of the svmn possibletimetables poor or unacceptable. Each constraint may be hard (must be sat-is�ed) or soft (should be satis�ed if possible). Many conventional timetablingalgorithms address this distinction inadequately: if they cannot solve a givenproblem they relax one or more constraints and restart, thus trying to solve adi�erent problem. The kinds of constraints that normally arise can be conve-niently classi�ed as follows.Unary Constraints Unary constraints involve just one event. Examples in-clude: \The science exam must take place on a Tuesday", or \The Plenary talkmust be in the main function suite". They naturally fall into two classes:Exclusions : An event must not take place in a given room, must not start ata given time, or cannot be assigned to a certain agent.Speci�cations : An event must take place at a given time, in a given place, ormust be assigned to a given agent.Binary constraints A binary constraint involves restrictions on the assign-ments to a pair of events. These also fall conveniently into two classes:Edge Constraints : These are the most common of all, arising because ofthe simple fact that people cannot be in two places (or doing two di�erentthings) at once. A general example is: \event x and event y must not overlap



in time". The term `edge' arises from a commonly employed abstraction ofsimple timetabling problems as graph colouring problems [12].Juxtaposition Constraints : This is a wide class of constraints in which theordering and/or time gap between two events is restricted in some way.Examples include: \event x must �nish at least 30 minutes before event ystarts", and \event x and event y must start at the same time".Edge constraints are of course subsumed by juxtaposition constraints, but wesingle out the former because of their importance and ubiquity. Edge constraintsappear in virtually all timetabling problems, and in some problems they may bethe only constraints involved.Capacity Constraints Capacity constraints specify that some function of thegiven set of events occurring simultaneously at a certain place must not exceeda given maximum. Eg: in lecturing timetabling we must usually specify that aroom can hold just one lecture at a time. In exam timetabling this capacity maybe higher for many rooms, but in both cases we need also to consider the totalstudent capacity of a room. We may allow up to six examinations at once in agiven hall, but only as long as that hall's maximum capacity of 200 candidatesis not exceeded.Event-Spread Constraints Timetablers are usually concerned with the waythat events are spread out in time. In exam timetabling, for example, there maybe an overall constraint of the form \A candidate should not be expected to sitmore than four exams in two days". In lecture timetabling, we may require thatmultiple lectures on the same topic should be spread out as evenly as possible(using some problem-speci�c de�nition of what that means) during the week.Event-spread constraints can turn a timetabling problem from one that can besolved easily by more familiar graph-colouring methods into one which requiresgeneral optimisation procedures and for which we can at best hope for a nearoptimal solution.Agent Constraints Agent constraints can involve restrictions on the total timeassigned for an agent in the timetable, and restrictions and speci�cations onthe events that each individual agent can be involved in. In addition to thosealready discussed (exclusions and speci�cations) we typically also need to dealwith constraints involving agnet's preferences (for teaching certain courses, forexample), and constraints involving teaching loads.3 Applying EAs to the GELTPIn applying an EA to a problem, central considerations are the choice of a chro-mosome representation and the design of the �tness function. In this section wedescribe the approach we have found most successful so far.



3.1 RepresentationFor the GELTP, a chromosome is a vector of symbols of total length 3v (wherev is the number of events), divided into contiguous chunks each containing threegenes. The three alleles in the ith chunk, where 1 <= i <= v, represent the time,place, and agent assignments of event i. Naturally, the set of possible alleles attime, place, and agent genes are respectively identi�ed with the sets T , P , andA. The simple example chromosome \abcdef" represents a timetable in whichevent e1 starts at time a in place b, involving agent c, and event e2 starts at timed in place e, involving agent f .Very many timetables thus represented will involve edge-constraint violations(`clashes'). Eg, the chromosome \abcabcabc: : : ..." is well-formed, even thoughit puts every event in the same place at the same time and involving the sameagent. The job of the EA is to gradually remove such violations of constraintsduring the arti�cial evolutionary process.3.2 The Evaluation functionIt is important to be able to di�erentiate the relative quality of di�erent timeta-bles. An apparently satisfactory solution is widely used in the EA literature:it is simply to have �tness inversely proportional to the number of constraintsviolated in a timetable with each instance of a violated constraint weighted ac-cording to how important or not it is to satisfy it.Let Cj be the set of constraints of type j (for example, event-spread con-straints). The speci�c type classi�cation used can be tailored to suit the prob-lem. Each violated member of Cj attracts a speci�c penalty wj. For each c 2 Cj,let v(c; t) = 1 if c is violated in timetable t, and v(c; t) = 0 if c is satis�ed. Asimple �tness function for a GELTP is thus:f(t) = 1=(1 + Xtypesj wj Xc2Cj v(c; t)) (1)Assuming that all the penalties are positive, this function is 1 if and only ifall the constraints hold, otherwise it is less than 1. The general idea is that anappropriate choice of values for the penalty terms should lead both to reason-able tradeo�s between di�erent kinds of constraint violations, and (by virtue ofde�ning the shape of the �tness landscape) e�ective guidance of the EA towardshighly �t feasible timetables.The approach works best if the constraint set C is �ne grained. For example,if C contained only the `single' constraint: \the timetable has no clashes", thenthe �tness landscape would contain a few spikes in an otherwise 
at space, whichis quite intractable to any form of search. C is hence best composed of low orderconstraints, each of which involves only one or two events. For example, theimportant constraint \No lectures which share common students should clash"appears in C as a large collection of separate constraints each involving a distinctpair of lectures which (are expected to) share common students or teachers. The



set of such edge constraints are usually the largest single block of constraintsin a timetabling problem. Commonly, applications will be faced with data ina form like: \student Jones sits exams Maths, Physics, Chemistry, : : :"; thisis then easily transformed to collections of binary constraints between events.In this case, each distinct pair of exams taken by the same student constitutesan edge constraint; typically, we may also automatically create an event-spreadconstraint between the same pair.Given such a collection, a question arises as to how to treat them: theymay either be treated as a uniform collection of distinct edge constraints ofidentical importance, or each edge may be weighted according to how manystudents share these events. In this way, and typically throughout this `problemtransformation' process, the constraint satisfaction problem (CSP) of �nding atimetable which satis�es all the constraints can be transformed into any of severaldi�erent constrained optimisation problems (COPs)[4]; each such COP will shareat least one global optimumwith the CSP (and preferably all of them) but will beotherwise di�erent. In general, it seems important to make the landscape of thisCOP as meaningful as possible. For example, in an exam timetabling problem inwhich we treat each distinct edge constraint the same and each distinct event-spread constraint the same (but typically with event-spread constraints beingless important edge constraints), we may �nd that the best we can do is �nd acollection of answers which violate a single event-spread constraint. These maybe markedly di�erent however; although each answer has just one pair of edge-constrained events timetabled too closely, some may involve only one student,while others may involve several. By weighting edge-constrained pairs of events(in this case according to the number of students sharing the given exams), theCOP becomes more meaningful in that it is able to distinguish between suchcases. This is particularly important in cases where the CSP has no solution, orwhere its solution is di�cult to �nd; one or other of which is quite common normin exam and lecture timetabling problems. In such cases, the COPs addressedby the EA (or some other method) may have di�erent global optima, and so itbecomes particularly important to use as `meaningful' a COP as possible. In anexample similar to that just discussed, for example, the less meaningful COPmay have an optimum which violates just one event-spread constraint (whichinvolves 50 students su�ering consecutive exams, say), while a global optimumof the more meaningful version may involve just 2 students su�ering consecutiveexams, although having violations of two distinct event-spread constraints.3.3 SpeedAn important general consideration is that calculation of �tness be fast. For-tunately, this is usually true for most of the constraints we need to consider inthe GELTP, which mainly comprise unary and binary constraints. More to thepoint, however, when using the direct representation it is particularly easy toset up `delta evaluation', whereby to evaluate a timetable we need only considerthe changes between it and an already-evaluated reasonably similar one such asone of its parents.



[9] discusses the use of delta evaluation further, noting that it is slightlymore than just an obvious speedup measure. In particular, [9] notes that speedcomparisons made in terms of `number of evaluations', as commonly done, mayoften be overturned when delta evaluation is in use. That is, EA con�gurationX might regularly �nd results in fewer evaluations than EA con�guration Y(and hence be faster when full evaluation is in use, but Y may be found to befaster than X when delta evaluation is employed. The reason for this is just thatevaluations when using X in conjunction with delta evaluation generally takelonger than with Y , because, for example, X employs a highly diversifying re-combination operator which means that delta evaluation has to consider severalchanges each time (though will typically still be faster than full evaluation). Itis important to note here that delta evaluation leads to the notion of evaluationequivalents ees, which we employ later on. This simply records the time takenfor a run in terms of the number of full evaluations that would have been donein the same time. We measure this, for example, by dividing the total numberof constraint checks made during a delta evaluation run by the (constant) num-ber that would be made during a full evaluation. This measure hence allowsa machine independent measure of the time taken by an EA/timetabling runemploying delta evaluation. An alternative is simply to record the total numberof constraint checks made, but ee's provide a more accessible measure and givea more reasonable indication of total time taken.3.4 Penalty SettingsClearly, we can choose penalty terms for di�erent constraints according to ourparticular idea of how we would trade o� the advantages and disadvantages ofdi�erent solutions to the problem in hand. Penalties must be set with care, how-ever. If the ratio between two penalties (say, ordering constraints vs event-spreadconstraints) is too high, then search will quickly concentrate on a region of thespace low in violations of the more penalised constraint, but perhaps missinga less dense region in which better tradeo�s could be found. If too low, thenthe capacity for the search to trade o� between di�erent objectives is lost. Ev-idently, optimal penalty settings depend on many things, primarily involvingthe density of regions of the �tness landscape in relation to each constraint, aswell as the subjective relative disadvantages of di�erent constraint violationsin the problem at hand. Alternative possibilities include the approach in [10](in the context of multiple objective facility layout problems), in which penaltysettings are revised dynamically in accordance with the gradually discoverednature of the constrained �tness landscape. Also, a principled method for con-structing scalar functions for multi-objective problems is discussed in the contextof EA optimisation in [6]. In this method, called MAUA (Multi-Attribute Util-ity Analysis), extensive questioning of an expert decision maker (in our case, anexperienced timetable constructor) on example cases (pairs of distinct timeta-bles) would lead to the construction of a nonlinear function M of the vector ofsummed constraint violations, designed so as to best match the judgement ofthe expert in that the ordering on timetables imposed by M optimally matches



that imposed by the expert. The e�ort involved in performing MAUA, however,is unlikely to be rewarded with a function M which is signi�cantly closer to theexpert decision-maker's judgement than an essentially ad-hoc but intuitive linearweighted penalty function and it is not clear that this is desirable. MAUA in-volves no attempt to structure M such that the �tness landscape is more helpfulto the search process.It su�ces to say here that extensive experience so far suggests that for awide range of problems we can settle for a simple linear penalty-weighted sumof violations with an intuitive choice of penalty settings.3.5 Violation Directed Mutation OperatorsIn [9], a family of Violation Directed Mutation VDM operators for timetablingproblems are examined, and it is found that a certain subclass of variations onvdm are particularly powerful for use on a range of realistic problems. Similaroperators are studied in [4] for graph colouring and other constraint satisfactionproblems. Here we adopt the use of one particular vdm variant, called (rand,tn10), as standard. The action of this operator is roughly as follows (fuller de-scription appears in [9]): an application of (rand, tn10) to a timetable amountsto randomly choosing an event (gene), and then selecting a new allele (timeslot)for it via tournament selection with a tournament size of 10; an allele's `�tness'for this purpose is a measure of the degree to which it will reduce the degree ofconstraint violation involving the chosen event. This `allele choice' operation in-volves some computational expense, but since the substantial part of it involvesnumbers of constraint checks, the time it takes can be meaningfully absorbedinto our ee measure.4 Some Benchmark Timetabling ProblemsWe �rst look at �ve real examination timetabling problems, and later consider 32randomly generated highly over-constrained test problems. These are not fullygeneral, in the sense of having a full repertoire of place and agent constraintsas well as several kinds of timeslot constraint, but only consider edge, event-spread, exclusion, and, in the case of two of the real problems, timeslot capacityconstraints (arising from a limit on the number of seats available in examinationhalls at any one time). Realistic fully general benchmarks will appear anon, butfor now it seems reasonable to provide more simply de�ned problems (and hencemore accessible for comparative performance research) which are neverthelessrealistically di�cult and/or common GELTP variants..4.1 Some Real Examination Timetabling ProblemsThree of these arise fromMSc examinations at the EDAI1, and two fromKingstonUniversity, London. Each of the EDAI problems, named in turn: edai-ett-91,1 University of Edinburgh Department of Arti�cial Intelligence



edai-ett-92, and edai-ett-93, involve a four slots per day timetable structure,and involve a number of edge constraints and exclusions. In each case, there isan event-spread constraint as follows: if any pair of edge-constrained events aretimetabled to appear on the same day, then they must have at least one full slotbetween them. That is, they must occupy the �rst and third, �rst and fourth, orsecond and fourth slots. edai-ett-91 has 314 edge constraints, and no exclu-sions, and must be timetabled over six days (hence 24 slots). edai-ett-92 has431 edges, no exclusions, and must occupy seven days, while edai-ett-93 has414 edges, 480 exclusions, and must occupy nine days.The Kingston University problems respectively represent the �rst and sec-ond semester exams faced by Kingston University students in 1994. In the �rstsemester problem, ku-ett-94-1, 97 exams have to be arranged over 5 days withwith 3 slots per day. There are 399 edge constraints, and hence 399 individualevent spread constraints. The event-spread constraint in this case is that if anedge constrained pair of exams both occur on the same day, they must occupythe �rst and third slot. ku-ett-94-2 is the second semester problem; 128 examsmust be arranged over an 8 day period, with 3 slots per day. The event spreadobjective this time is to avoid a student facing more than one exam per day.Hence, edge-constrained pairs of events should not occupy slots on the sameday. There are 536 edge constraints, and hence 536 event spread constraints too.An additional constraint faced by both of the Kingston University problems isthat a maximum of just 470 candidates can be seated in any timeslot. Hence,associated with each event is a weight representing the number of students tak-ing the appropriate exam. These weights are then used by the �tness function(as well as by the vdm operator) to penalise (avoid) violations of this capacityconstraint.4.2 Default EA Con�gurationThe EA con�guration used in all experiments was as follows. A reproductioncycle consisted of a breeding step (in which one new chromosome was produced)followed by an insertion step, in which this new chromosome replaced the cur-rently least �t individual (but only if the new individual was �tter). With prob-ability 0.2, a breeding step involved the selection of one parent and the simplegene-wise mutation of it with a probability of 0.02 of randomly reassigning theallele of each gene in turn. With probability 0.8, a breeding step involved theselection of one parent, and the application of the vdm operator (rand, tn10.Tournament selection was used with a tournament size of 6, and the populationsize was always 1,000.Using the default con�guration, we examine the reliability of this EA on �vereal timetabling problems. The default con�guration was applied in 100 separatetrials to each of the �ve problems detailed above. We record, in each case, thenumber of such trials which found an optimum (the `number of perfect trials'column; on each of these problems, optima violating no constraints exist), theleast, average, and most evaluations taken to reach an optimum for those trialswhich did, and the the least, average, and most evaluation equivalents taken to



reach an optimum for those trials which did. These results appear in Table 1.Each trial on an edai problem was run for 25,000 evaluations, while trials onthe ku problems ran for 40,000 evaluations each.Table 1. Performance on �ve real lecture timetabling problemsNo. Perfect Evaluations Eval. Equiv'sProblem Trials Lowest Mean Highest Lowest Mean Highestedai-ett-91 84 4595 7693 24933 4793 8084 26241edai-ett-92 50 7701 14087 21703 5000 13771 21179edai-ett-93 98 6611 9592 14818 4717 8501 13166ku-ett-94-1 93 10273 14890 20243 4227 6181 8420ku-ett-94-2 57 12594 19241 28808 3731 6109 9103It may �rst be pointed out that these results show great general potential forEAs on timetabling problems. All trials are relatively fast; for example. Speedon the problems above ranged 250 to 400 evaluations per second2 Even in thetwo cases where the EA found an optimum only 50% or so of the time, thismeans that a small number of trials would be more or less guaranteed to stum-ble on a perfect timetable soon enough. In the case of the edai-ett-91 andedai-ett-92, the timetables actually used for these problems were indepen-dently produced by the relevant course administrators. As detailed in [3], thesewere very poor in relation to average EA-produced timetables on the same prob-lems, and certainly far from the perfect timetables that the EA used here cantypically �nd. From the edai-ett-93 case on, the course administrators havebeen (thankfully) using an EA to do their timetabling work, and hence we donot have independently produced e�orts for comparison. In the case of the kuproblems, the course administrators at Kingston University tried to manuallyproduce timetables for these problems but were having great di�culty, owingin particular to the recent modularisation of the underlying course; they alsonote that satisfying the capacity constraint in each case was particularly trou-blesome. Kingston University's timetablers noti�ed us of their problems halfwaythrough their troubled attempts, and sent us the relevant data, whereupon theEA managed to �nd perfect results regularly in each case.The main intent in presenting these results is to provide benchmarks for fu-ture comparisons with other techniques. As detailed at the end of the paper,all problems we use are freely available. Comparative performance results onthe above problems will focus on the reliability �gure. That is, in looking for im-provements on our timetabling EA, we are looking for a single method which willimprove reliability in �nding the optimum over all of the above set (and others).without any major speed sacri�ce. Alternative valid targets include achieving2 On a Sun Sparcstation 2, using a not-necessarily optimised C program.



similar reliability faster, or perhaps less (but >50%, say) reliability but muchfaster.4.3 Some Random Over-Constrained Timetabling ProblemsA further kind of target, as is commonly the case with benchmark job shopscheduling problems, for example [11], is �nd increasingly lower bounds on thetotal penalty values for a suite of problems. Here we describe some timetablingproblems involving edge and event-spread constraints which are constrainedenough for this purpose, and present our best results so far using the EA de-scribed, and running to a limit of 200,000 evaluations in each of 10 trials foreach problem. Each of these problems involves the same temporal structure andevent-spread constraint as the edai-ett problems; that is, there are four times-lots per day, and for each edge constrained pair of events there is also an edgeconstraint which speci�es that there should be at least one entire slot betweenthem these events if they appear on the same day.Each problem is named bench-ett(X,Y,Z,W), where:{ X is simply an identi�er of the set of random edge constraints involved.{ Y is the number of events to be timetabled.{ Z is the number of days allowed; hence there will be 4� Z slots altogether.{ W is the number of edge constraints. Each edge constraint is a pair of events,(e1; e2), constrained not to appear in the same timeslot. Associated with eachconstraint is the edai-ett style event-spread constraint, Further, associatedwith each edge constraint c in the set of edge constraints C is a weight cw.This is an integer between 1 and 100 inclusive.In each case, the EA applied a penalty P to a candidate timetable t as follows,in which v(c; t) for c 2 C is 1 (0) if edge constraint c is violated (satis�ed) intimetable t, while e(c; t) for is 1 only if the event-spread constraint is violatedbut the corresponding edge constraint is not violated.P (t) = �c2C2v(c; t)cw + e(c; t)cw (2)Figures in the second column of Table 2 are hence the minimal value for P wehave so far found on these problems. The third and fourth columns respectivelygive the weighted penalty for edge constraints violated by the best timetablefound, and the weighted penalty for event-spread constraints violated in thesame timetable.The problems in Table 2 are extremely highly constrained; almost certainlymore so than any real timetabling problem. Nevertheless, comparative perfor-mance of techniques (EA-based or not) on this set (and similar sets) of problemswill be useful because these are indeed timetabling-style problems, similar inthe nature of the constraints involved than a very common class of real examtimetabling problems. Hence, better performance on these benchmarks will al-most certainly re
ect potential for better performance on real timetabling prob-lems. Also, since these are very highly constrained COPs, it seems likely that



Table 2. Performance on Very Highly Constrained Random Timetabling ProblemsProblem Smallest Penalty Edge Penalty Event-Spread Penaltybench-ett(1,50,5,1000) 1116 212 692bench-ett(1,50,6,1000) 613 81 451bench-ett(1,50,7,1000) 248 17 214bench-ett(1,50,8,1000) 79 2 75bench-ett(2,50,5,1000) 1011 174 663bench-ett(2,50,6,1000) 477 57 363bench-ett(2,50,7,1000) 151 15 121bench-ett(2,50,8,1000) 84 7 70bench-ett(3,50,5,1000) 1129 180 769bench-ett(3,50,6,1000) 550 65 420bench-ett(3,50,7,1000) 205 24 157bench-ett(3,50,8,1000) 61 3 55bench-ett(1,100,10,4000) 1359 159 1041bench-ett(1,100,11,4000) 825 125 575bench-ett(1,100,12,4000) 479 49 381bench-ett(1,100,13,4000) 312 29 254bench-ett(2,100,10,4000) 1492 265 962bench-ett(2,100,11,4000) 1025 158 709bench-ett(2,100,12,4000) 620 60 500bench-ett(2,100,13,4000) 346 44 258bench-ett(3,100,10,4000) 1493 331 831bench-ett(3,100,11,4000) 874 170 534bench-ett(3,100,12,4000) 400 46 308bench-ett(3,100,13,4000) 232 35 162bench-ett(1,500,1,5000) 122502 30619 61264bench-ett(1,500,2,5000) 23576 3948 15680bench-ett(1,500,3,5000) 4580 411 3758bench-ett(1,500,4,5000) 453 48 357there is great scope for continual improvement on the `best so far' �gures givenabove. That is, techniques better than the EA we have used so far may befound which achieve 100% reliability on the �ve real timetabling problems dis-cussed earlier, and hence be indistinguishable on those problems. However, suchtechniques are likely to be separated in terms of their comparative performanceon these highly constrained benchmarks, while still leaving room for furtherimprovement. Lastly, being COPs with (almost certainly) no perfect solutionspossible in each case, these problems re
ect the di�culties involved in manyreal modular lecture timetabling problems; in such a problem, for example, atypical approach may be to attempt to allow any combination of courses as fea-sible in the timetable, to give students greater 
exibility in their module choices.Since this goal is almost always infeasible, such a problem becomes a COP, withweightings on pairs of module choices re
ecting the desirability of allowing these



as viable combinations for a student.5 Prospects for EAs in TimetablingIndications so far point to the approach we have described as highly promisingfor general timetabling needs, at least of the kind usually found in educationalinstitutions. However, several matters need pointing out with respect to its moregeneral application. Firstly, as may be discerned, and as we have found, it is notalways immediately apparent how best to describe the problem itself in terms ofthe kinds of constraints processed. Eg, to incorporate the overall event-spreadconstraint \no student should sit more than four exams in two successive days",one choice would be to have the objective function (partially) calculate eachstudent's individual timetable, and directly penalise every instance of a studentsu�ering the appropriate constraint violation. A potentially far less computa-tionally expensive choice, however, might be simply to penalise all consecutiveedge-constrained events which are less than, say, 2 hours apart in the overalltimetable; though not addressing the constraint directly, this certainly appliesthe arti�cial evolutionary pressure in the right direction. These are just two ofseveral possibilities for addressing this constraint. Generally, choices occur atmany stages in the process of translating the constraints of a real GELTP intoa penalty function, and much work is needed to discern the best way to do this.The di�culty may not be too great, however. At least some way of handling anygiven constraint will be naturally apparent, and, in our experience, it is unlikelythat di�erent choices will bring signi�cantly di�erent results, unless the probleminstance is very large and hence solution speed is a major factor.Another important aspect is comparative performance with other techniques.There is reason to suggest that the EA approach described will succeed more as ageneral timetabling tool than some other methods. In many cases, however, someother technique may be signi�cantly preferable. Eg, a large, continually facedproblem which changes little (in terms of the kinds of constraints involved) frominstance to instance may be better o� treated with some speci�cally designedalgorithm. This may itself be based on an EA, involve an alternative EA-basedapproach, or be based on best-�rst search with a speci�cally designed heuristic,for example. In general, much work is required to discern what promises to bethe best method for di�erent kinds of GELTP.Also, several aspects of the approach itself warrant much further study.Among these are the design of the objective function itself, as brie
y discussedabove and also in Sect. 3.4, the use of alternative operators, and various aspectsof the underlying EA con�guration.Finally, timetablers (ie; human course organisers, for example) often haveneeds which are not directly met within the described approach. There maybe some desire to generate several di�erent possible timetables, for example, orthere may be need for extensive preprocessing and altering of the constraints(which may initially contain several inconsistencies). Use of the EA described(via iterative applications, for example) may be useful as a tool in each case,



but such considerations evidently require more useful re�nements or extensions,if not other methods entirely. A planned extension to a future version of the EAdescribed here, for example, is to have an ATMS-based constraint-checking frontend. Also, experiments are under way which involve the generation of multipledistinct solutions in a single run, making use of EA variants speci�cally designedfor multimodal optimisation.6 Summary and ConclusionsWe have described and noted various matters in the application of EAs to gen-eral educational-institution based timetabling problems. EAs seem to have greatpotential in this arena, and we illustrate this via presentation of various re-sults. First, we show that a particular EA described here (but more fully in [9]),�nds, quickly and reliably, perfect timetables for each of �ve real examinationtimetabling problems. The particular reliability results are o�ered as bench-marks against which to examine alternative techniques. Second, a collection ofvery highly constrained random timetabling-style problems are described, andour best results on these are given. Various research issues and considerationsare then noted.Finally, the test problems addressed may be freely obtained (and explained)from the authors, and/or via the FTP site ftp.dai.ed.ac.uk .AcknowledgementsThanks to Bob Fisher and Peter Sutcli�e for providing problem data. Thanksalso to the UK Science and Engineering Research Council for support of DaveCorne via a grant with reference GR/J44513, and to the China Steel Corpora-tion, Taiwan, R.O.C., for support of Hsiao-Lan Fang.References1. Abramson D., Abela, J. : A Parallel Genetic Algorithm for Solving the SchoolTimetabling Problem. IJCAI workshop on Parallel Processing in AI, Sydney, August19912. Colorni, A., Dorigo, M., Maniezzo, V.: Genetic Algorithms and Highly ConstrainedProblems: The Time-Table Case. Parallel Problem Solving from Nature I, Goos andHartmanis (eds.) Springer-Verlag, 1990, pages 55{593. Corne, D., Fang H-L., Mellish, C.: Solving the Module Exam Scheduling Problemwith Genetic Algorithms. Proceedings of the Sixth International Conference in In-dustrial and Engineering Applications of Arti�cial Intelligence and Expert Systems,Chung, Lovegrove and Ali (eds.), 1993, pages 370{373.4. Eiben, A.E., Raue, P.E., Ruttkay, Z Heuristic Genetic Algorithms for ConstrainedProblems. Working papers of the Dutch AI Conference, 1993, Twente, pages 341{353.



5. Corne, D., Ross, P., and Fang, H-L.: Fast Practical Evolutionary Timetabling. Pro-ceedings of the AISB Workshop on Evolutionary Computation, Springer Verlag,1994, to appear.6. Horn, J., and Nafpliotis, N.: Multiobjective Optimisation Using The Niched ParetoGenetic Algorithm. Illinois Genetic Algorithms Laboratory (IlliGAL) Technical Re-port No. 93005, July 1993.7. Ling, S-E.: Intergating Genetic Algorithms with a Prolog Assignment Problem asa Hybrid Solution for a Polytechnic Timetable Problem. Parallel Problem Solvingfrom Nature 2, Elsevier Science Publisher B.V., Manner and Manderick (eds.), 1992,pages 321{329.8. Paechter, B. Optimising a Presentation Timetable Using Evolutionary Algorithms.Proceedings of the AISB Workshop on Evolutionary Computation, Springer Verlag,1994, to appear.9. Ross, P., Corne, D., and Fang, H-L.: Improving Evolutionary Timetabling with DeltaEvaluation and Directed Mutation.: Proceedings of PPSN III, Jerusalem, October1994, Springer Verlag, to appear.10. Smith, A.E., and Tate, D. M.: Genetic Optimisation Using a Penalty Function.Proceedings of the Fifth International Conference on Genetic Algorithms, San Ma-teo: Morgan Kau�man, S. Forrest (ed), 1993, pages 499{503.11. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of op-erations research, Volume 64, 1993, pages 278{285.12. Wilson, R. J.: Introduction to Graph Theory. Longman, London, 1979.

This article was processed using the LaTEX macro package with LLNCS style


