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Abstract. This paper describes extensions to an evolutioaéggrithm that
timetables classes for an entire University. A newgthod of dealing with
multi-objectives is described along with a useeiféce designed for it. New
results are given concerning repair of poor recaovatibn choices during local
search. New methods are described and evaluatediltbes timetables to be
produced which have minimal changes compared tdlaf partial reference
timetable. The paper concludes with a discussioscafe-up issues, and gives
some initial results that are very encouraging.

1. Introduction

Napier University uses a timetable that was produgg an evolutionary algorithm
incorporating a local search. The system timetahl@d% of classes and optimises
them according to twelve competing objectives.

Timetabling the classes of a University involvesdfhg timeslots for the events
such that each event can have the resources (raiogents, and lecturers) that it
requires, and so that constraints on the relatmeg of events are maintained. This
process produces feasible timetables. In additoproducing feasible timetables, we
want to produce timetables that are ‘good’ measuagdinst some criteria. The
production of feasible timetables involves satisfyithe hard constraints of the
problem. The production of good timetables involgasisfying as many of the soft
constraints as possible.

The Napier University problem involves placing 2G8@nts into 45 timeslots and
183 rooms, and optimising the timetables of 70@uiers and 1000 student groups.
The number of ways to put 2000 events into 45 tioieds 45°%° Clearly, the vast
majority of these timetables are infeasible, beeasmme hard constraint is broken.
The problem then becomes how to find good timetalite a search space that
contains very few feasible timetables.

There have been several attempts to solve this afmeoblem with evolutionary
algorithms; some examples of these can be fouf,ifi2], [4], [5], [6], [7], [8], [10]
and [18]. The method used here is distinguishedtdyse of local search to deal
mainly with hard constraints and genetic operatorsolve mainly soft constraints.
Others have used evolutionary algorithms combinét lecal search in other ways.



For example, in [3] Burke et al. describe a systhat timetables examinations using
a local search, in this case the local searched uginly to solve soft constraints.

2. Summary of Previous Work

The algorithm described here was originally presdrin [11] where the principle of
using an indirect representation was establishefinBnents were made in [12]. In
[13] the idea of timeslot suggestion lists was tfigresented and suitable
recombination operators were defined. Directedtangeted mutation were addressed
in [14]. In [15] the advantages of local search hatharckian writeback were clearly
shown, and results for a large real problem werewshto give a considerable
improvement over manual methods.

In order to solve the feasibility problem, a loseahrch is employed which searches
from a point in the search space specified by e@h chromosome to a point with
greater feasibility. The result of this is tha¢ #volutionary algorithm can now search
through the smaller space of feasible and neadgifide timetables for timetables that
are good.

An indirect representation is used which codes How a timetable will be
produced by the local search engine. The repreemta split into two parts.

The first is a permutation that specifies the oralewhich the events should be
considered when trying to fit them in to the tim#&a When building an unseeded
population the permutation is initialised usingeatistic which ensures that the more
difficult-to-place events are considered first.

The second part of the representation specifiagmber of suggested timeslots for
each event (normally there are two suggestionscongng from each parent). When
building an unseeded population, the suggestedstatsefor an event are assigned
randomly from the list of possible timeslots foatlevent (those times when the event
could take place if there were no other eventotsitler).

The search proceeds as follows: events are coesiderthe order specified by the
permutation. For each event an attempt is maddacepthe event in the primary
suggested timeslot. If this fails (because somel lcanstraint would be broken by
doing so) then the other suggested timeslots aeel in order. If none of the
suggested timeslots is possible, then other tinesiee tried according to a problem
specific heuristic that examines the timeslots Wwido not incur a penalty first.

If at the end of this process the event has nat pésced, it is considered unplaced
(which attracts a fithness penalty) and the nexheirethe permutation is considered.

If an event is placed then the timeslot used istenriback into the chromosome as
the primary suggested timeslot. The timeslot thas veccupying this position (if
different) is moved into the second position (ang athers are shuffled down). This
writing back of the local search results makesalgerithm Lamarckian.

For each event a child inherits its primary timé¢slaggestion from one parent and
its secondary timeslot suggestion (if more than suggestion is stored) from the
other. The operator is based on multi-point recoration, and as the chromosome is
traversed there is an equal chance at every pbatt the parent contributing the
primary suggestion will be switched. When using entiran two suggested timeslots,



the subsequent suggestions are taken alternatehy éach parent. This operator
conforms with the concepts from Forma Theoryespect andassortment [16]. The
permutation is inherited from one parent only.

Three mutation operators are used; all work onptti@ary suggested timeslot for
one event. The first operator is a blind mutatibattrandomly reassigns the primary
suggested timeslot to some other possible time$los mutation operator ensures
that all parts of the search space are reachable.

The other two mutation operators make use of probspecific knowledge to
direct the mutation in a way that may be usefule Tirst is selfish mutation which
involves an event “stealing” the timeslot used Iopther event. The second ds-
operative mutation which involves an event finding another event withich it can
swap primary timeslot suggestions, to the possildleantage of both. The directed
mutation operators also make changes to the petioiteo ensure that during the
local search the events end up getting the timeshaty expect. These operators are
very useful, particularly in the later stages ofia and when used in conjunction with
targeted mutation.

Targeted mutation allows mutations of the chromasdm be targeted at those
parts of the chromosome that code for parts ofpthenotype that attract penalties on
evaluation. During evaluation, a score is keptdach event of the extent to which
that event detracts from the fitness of the whateetable. When calculating the
chance that the genetic material for an eventmiltate, each event has a base chance
of mutating, an amount is then added to this whgldirectly proportional to the
degree to which this event detracts from the fignefsthe whole timetable. Targeted
mutation has little effect, if any, when used wibfind mutation alone, but a
significant effect when used with directed mutatoperators, particularly in the early
stages of a run.

Ross et al. in [17] have described other mutatiperators for timetabling that use
problem specific knowledge. There they are usechiyao solve hard constraints in
an algorithm that does not employ a local searchitalifon operators which use
problem specific knowledge were described earlieElben et al. in [9].

After recombination and mutation a child may beslésasible than either of its
parents. This decrease in feasibility will often kepaired by the local search
mechanism undergone by all new chromosomes.

3. User Interfacefor the Evaluation of Multi-Objectives

During the local search hard constraints are ndweken. This means that the
resulting timetables never have broken hard coimgsrabut that some events may
remain unplaced. The number of unplaced eventsh@mmbe reduced by treating the
constraintall events must be placed as a soft constraint. This soft constraint is then
considered along with the other soft constraintse Breaking of soft constraints is
measured usingroblem measures. Each problem measure counts the number of
occurrences of some problem with the timetableywsovant to reduce the values of
the problem measures.
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Fig. 1. The User Interface

The way in which the quality of a timetable is maasl reflects the fact that users
have targets for individual problem measures. Gheetarget for a problem measure
has been met the user does not wish the algorithwaste more effort reducing the
value further. Users also care more about reachiegtargets for some problem
measures than they do for others. If users are albyved to specify weights then
they tend to change these as the run progresses eenain problem measures reach
acceptable levels or levels beyond which they kmawmprovement is possible. If a
run is going to take more than a few minutes thenuser either has to sit and watch
the evolution in case a weight needs to be chargdths to accept that the algorithm
may waste time optimising something that cannatesd not be optimised further.

In order to take account of this, a user interfaas been designed that allows the
user to specify (and change during the courserohfaa target and a weightv, for
each of the twelve problem measures: see Figularbeted mutation rates are then
calculated so as not to try to improve problem mess beyond the target and the
evaluation function is then constructed so asve go extra benefit to a chromosome
that reduces a problem measure below the target.

In order to evaluate a chromosome we need to know mmuch progress it has
made towards each of the problem measure targetsder to measure the progress
towards a target we have to define the start psinThis is approximated by
examining 200 random chromosomes and taking thestwemore that occurs on that
problem measure (users can provide other values foso required). If a problem
measure has the valuethen the progress on that problem meagurean then
normally be calculated bys = max(0, (v-t)/ (s-t)). If p has the value 0 then the
target has been met. The progress of the algoriten all problem measurd® can
be calculated as the weighted average over albgabip.

The user can also specify that placing eventssisegial priority. If this is the case
then the comparison of two timetables is done satiplyy. First the number of
unplaced events is considered. If one timetableféasr unplaced events then it is
considered the better timetable. Only if the nundfaunplaced events is the same (or
both timetables have reached the target for unglasents) is the progress on the
other problem measures considered.



4. Experimentswith Timeslot Suggestion Lists

Experiments have been conducted to measure thet effdvaving different numbers
of timeslot suggestions within the chromosome. Vditle suggestion, only one parent
contributes to the placing of that event. With tawaggestions there is a back-up
timeslot from the other parent. When we have theeefour suggestions then
information from grandparents is stored (as a tesfuthe recombination operator).

Two experiments were conducted. In the first thieiwaf P that could be achieved
in a set elapsed time was measured, given tarfieero on all problem measures. In
the second the time taken fBrto reach 0.05 (within 95% of the overall targegswv
measured for targets reflecting those commonly usedsers. For each experiment
real data for a single large department was usdid ¥ problem measures. Results
were averaged over 50 runs. The same initial 5Qiladipns were used for each set of
runs. The results can be seen in figures 2 andh&.chart in figure 2 is truncated at a
point thought to be around the optimum valu®of

0.31
= 0.2564
8o 0.26
) o
22 021
33
Z~ 016
1 2 3 4

Number of timeslot suggestions

Fig. 2. Progress Achieved Over Given Time

Elapsed time is used as a measure in these expesiraimce the time taken to
perform an evaluation depends on the chromosomeglmialuated and the method
being used. Hence, measuring against the numbevaluations would produce
erroneous results. All experiments in this paperewearried out on a dedicated
200MHz Pentium Pro computer.
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Fig. 3. Time Taken for Given Progress



For each experiment a paired Student’s T-test shawry highly significant
(probability greater than 99.99%) improvement ussnggestions from both parents,
and no significant difference using suggestionanfrgrandparents. For the first
experiment we can say with 99% confidence thataterage value oP with one
suggested timeslot is 0.25810069 and with two suggested timeslots is
0.235%0.0087. For the second experiment we can say véi#h Bonfidence that the
average time with one suggested timeslot ist28%nd with two suggested timeslots
is 248:231

These results are as we might expect, as storiggestions from both parents is
equivalent to repairing “mistakes” made by the mbmation operator. If the
“wrong” parent was chosen to contribute a partictilaeslot, then this is rectified by
the search mechanism. The lack of significant diffiee for increasing numbers of
suggested timeslots is probably because any befrefit storing the timeslots
suggested by grandparents is counteracted by the gnocessing overhead required.

5. Using Reference Timetables and Minimising Change

A requirement that is often made of scheduling f@ols is that the solution should
be as close as possible to some reference schdhdeaeference schedule may have
been produced manually, or may have been produgtednatically from incomplete
or partially different data (for example when trak changes to data). This is a
feature that is often required of university clésgetabling systems.

An initial population can be seeded with the refiese timetable and small
variations on it. This feature alone allows progeg4o begin before all the data has
been collected as runs with new data can be seeitledhe results of previous runs.
Of course there is a danger here that what waslzafbptimum may become a local
optimum of the new data, so care is needed in deridhen is it better to start a run
from scratch.

The seeding is done by first finding all the evetttat are common to both the
present timetable data and the reference timetdlble. primary timeslot suggestion
for each of these events is then copied from tfereace timetable. All but one of the
chromosomes then undergoes a mutation in orderdth some variety to the
population. Where all the events are common td biotetables, and the reference
timetable is the result of a previous run, the pgation can also be copied. Where
the reference timetable is feasible given the mreimetable data, the local search
will not change it and the reference timetable wxist in the initial population.

Where it is also necessary to minimise changes,ntimaber of changes to the
reference timetable can be counted and treatechasbdem measure. Hence changes
can be minimised in the same way that the breakihgther soft constraints is
minimised.

1 Note that for the second experiment, results famma initial population were ignored. This
was because the result for using one suggestedslimeras over 6000 seconds. The
algorithm had become trapped in a local minimuni=a0.06. It was considered that this
value was such an outlier that we could safely katethat this was a very “unlucky” run
and that more could be learned by not consideting i



When minimising changes a modified search algorittmused: events are
considered in the order specified by the permutatieor each event an attempt is
made to place the event in the primary suggestedsit. If this fails (because some
hard constraint would be broken by doing so) thendvent is considered unplaced
and the next event in the permutation is consideWten all events have been
considered a further attempt is then made to ptheeunplaced events. First, the
secondary suggested timeslot is tried, then therotimeslots according to the
heuristic that examines the timeslots which doinatr a penalty first.

This type of search is designed to minimise thenfuohm” effect of changing an
event’s timeslot when conducting the search. Tffergince between this method and
the standard method is that with this method aknéy get to try their primary
suggested timeslot before any gets to try otheegdiots. There is no chance that an
event unable to use its slot will cause an avalarafichanges by “stealing” another
event’s timeslot.

Table 1. Comparisons of Methods to Minimise Change

% Change| Standard Search Modified Search
Number of Changes is
not a Problem Measure 54.5:1.8 48.31.1
Number of Changes is
a Problem Measure 47.6:1.3 43.20.9

The following experiment was designed to test tluglified search algorithm and the
effect of treating changes to the reference a®bl@m measure. A real timetable data
set was optimised to produce a reference timetdltie.data set was then changed in
a number of ways so that about 18% of the evenitdawo longer be placed in the
timeslots specified by the reference timetable.sEhevents now had to find new slots
and in doing so some would have to displace othents. The new data set was then
optimised and changes to the reference were couhtexsystem was allowed to run
until all the events had been placed. The resolst 50 runs, can be seen in Table 1.
The figures are percentage change from the referéintetable and are given with
99% confidence intervals.
The results clearly show that each of the two masghgives an improvement, both
individually and together. A Student's paired Ttteshows an extremely high
significance in the improvements (greater than 99996 for each comparison pair).
While the modified search keeps the number of chartg a reference timetable
lower, it makes the algorithm less effective wheis inot necessary to stay close to a
reference. Thérogress Achieved Over Given Time experiment produced a result of
P=0.2656-0.008 for the modified search compared with0.235%0.0087 for the
standard search — clearly a worse result (99% dentie intervals). Th& me Taken
for Given Progress experiments produced a result of 6860 seconds for the
modified search compared with 248 for the standard search — over twice the
average time for the same result and a much inedesygread. This is partly surprising
since reducing the “domino” effect of changes te thromosome reduces epistasis.
The reduction in performance may be due to the tla&t since an unplaced event
does not have the chance to “steal” another evéintisslot, the unplaced events tend
to stay the same with each evaluation and the séan@stricted to a smaller part of



the search space. It may be possible to rectifg by increasing the amount of
directed mutation. Further work is required to istigate this area.

6. lIssuesof Scale-Up

One of the crucial questions asked by researclmmking at search algorithms is
“Will my algorithm scale up from test problems t@arde real world problems?”. A
solution that does not scale up to solve problemtheé real world is of little practical
use. Our experience has been that our algorithmsbaled up well from initial test
data, to data for a whole department, and finadlydata for a whole institution.
However, the way the solution scales up is somgthihat requires further
investigation, in order that general rules candagned.

Providing real data for scale-up experiments ifidlift. The first problem is how
to provide data sets of different sizes but simit@ture. The second is how to
measure the relative performance on data setshthat different ranges of problem
measures. The extent to which the algorithm appresdhe optimum might be an
appropriate measure, but unfortunately, for reallevalata, the optimum is not
known.

Table 2. Scale-Up Results

Number of Events Elapsed Time (seconds)
74 4H5
155 27@109
307 59%205
587 926:149

The following experiment is not perfect but canegivs at least an idea of how the
algorithm scales up as the search space grows erpally. A real data set was used
and smaller subsets of this were produced. For datdhset the room availability was
adjusted so that 91% utilisation of rooms was nexlifor each. Each of the data sets
was given a target for each problem measure that808&o of the approximated worst
case values. The time taken for all events to be placed and”fto reach 0.05 was
then measured over 25 runs. The results and 95%deoce intervals are shown in
Table 2 and Figure 4.

Because of the difficulty in constructing relialeeperiments we are careful not to
make strong claims about the results, but the t®suk very encouraging. Further
experiments are required to confirm them. Someheffactors that may contribute to
the favourable scale-up figures observed are diszlibelow:

Firstly, increasing the size of the problem incesathe number of rooms available.
The heuristic which initialises the ordering peratidn ensures that difficult to place
events are considered first, at least in the estdges of a run. This means that these
events have a greater choice of accommodatiorrgetdauns.

Secondly, timetabling problems partially partitionto departments, programmes
and levels. There is not a total partition sincé prtitions are connected by
conflicting requirements for resources. Howeveg #igorithm can still make good



use of implicit parallelism to work on several palrpartitions at once. In the test data
(and most real world timetabling problems) largesljfems have a larger number of
partial partitions and so the degree of implicitgli@lism employed increases as the
problem grows.

Finally, Ross et al. have shown in [19] that phaaesitions exist for evolutionary
algorithms applied to timetabling problems. Thegwad that for some problems that
were not completely partitioned, as the number@fstraints increased the problem
got harder to solve until a particular point wheistarted to get easier. This work is
not completely relevant because it examined anutielary algorithm without local
search and artificial rather than real data. loadxamined increases in constraints
rather than increases in events. It is possibleelver that phase transitions may be
playing a part in the results observed. Furtherwisirequired in this area.
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Fig. 4. Scale-Up Graph

7. Conclusions

We have described a new method for treating thienigdtion of multi-objectives that
fits with the way the user works, and we have dbedr a user interface which
facilitates it. We have shown that using back-upeslots from the other parent can
allow the search mechanism to repair “mistakes” enduking recombination, and that
this gives a significant improvement in results. Wave defined two methods for
dealing with optimisation relative to a referenoretable, and have shown that each
of these gives a significant improvement. Finallg tnave shown that initial studies
on the scalability of our approach to this problame very encouraging.
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