
Successful Lecture Timetabling withEvolutionary AlgorithmsPeter Ross, Dave Corne, Hsiao-Lan FangDepartment of Arti�cial IntelligenceUniversity of Edinburgh80 South Bridge, Edinburgh EH1 1FNemail: fpeterjdavejhsiaolang@aisb.ed.ac.ukAbstractArranging a lecture/tutorial/lab timetable in a large university department or school isa hard problem faced continually in educational establishments. We describe how this prob-lem has been solved in one institution via the use of evolutionary algorithms. The techniqueextends easily and straightforwardly to any lecture timetabling problem. Although theremay be more e�ective ways to handle particular instances of the general lecture timetablingproblem, we note that the combination of speedy, good results and ease of development forthe particular application in hand make the EA-based technique we present potentiallywidely useful in general.1 IntroductionLecture timetabling is the problem of assigning times and places to a many separate lectures,tutorials, etc : : : , to satisfy several constraints concerning capacities and locations of availablerooms, free-time needs and other such considerations for lecturers, and relationships betweenparticular courses. The most prominent overall constraint (central to all timetabling problems)is that there should be no clashes; that is: any pair of lectures (or tutorials, etc : : : ) which areexpected to share common students or teachers should not be scheduled simultaneously.Typically, this is addressed by drawing up an initial draft timetable, followed by perhapsweeks of redrafting as complaints about the most recent draft 
ow in from various sources. Thespace of possible timetables can be nightmarish to traverse, and there have been several attemptsto �nd useful AI/OR approaches to aid the process [2, 15, 4, 11, 3]. Success has been recentlyreported for using evolutionary algorithms (EAs) for timetabling [1, 6, 14, 7, 8, 17, 16]. Here wedescribe one such EA approach, and present illustrative results on some real lecture timetablingproblems.In presenting results on some real problems, we augment similar work which also reportsresults on real problems [6, 7, 8, 17, 16], but we also present a fuller and deeper discussion of thegeneral approach, clarifying how it may be used on a much wider range of problems than thatstudied. Some comparison is also made between the use of di�erent EA selection schemes. Also,1



in reporting EA-based results in comparison with the independently and `expertly' calculatedtimetables for four real lecture timetabling problems we show clearly how this approach can yieldvery bene�cial improvements.OverviewWe �rst describe the kind of problem addressed in more detail in section 2. Description of ourEA based approach follows in section 3, and notes on implementing the approach then appearin section 4. Illustrative experiments on real problems appear in section 5, followed by generaldiscussion in section 6.2 Lecture Timetabling ProblemsThe basic element of a lecture timetabling problem is a set of events E = fe1; e2; : : : ; evg. Eachmember of E is a unique event requiring assignment of a time and a place. That is, it may be alecture, a tutorial, a lab session, or some other event which plays a part in the term timetable.We could alternatively formulate this, for example, in terms of a set of subjects S, each of whichhas associated numbers of lectures, tutorials, lab sessions, etc : : :per week. However it is simplerto take as our starting point the set E as described, which is easily generated from the latterkind of data. Eg, two separate Lisp Programming lectures and �ve Lisp Programming tutorialswill constitute seven members of E.Each event ei has an associated length li (how long the event is in, say, minutes), and anassociated size si, which is either known or an estimate of the number of students expected toattend that event. There is also a set of `agents' A = fa1; a2; : : : ; atg; these are lecturers, tutors,technicians, etc : : :| people with some kind of distinguished role to play in an event. Finally,there is a set of places P = fp1; p2; : : : ; pqg, and a set of times T = ft1; t2; : : : ; tsg. An assignmentis a four-tuple (a; b; c; d), in which a 2 E; b 2 T; c 2 P; d 2 A, with the interpretation "event astarts at time b in place c and is taught (lectured, tutored, : : : ) by agent d. A lecture timetableis simply a collection of n assignments, one for each event.Such problems are beset by many kinds of constraint. A fuller presentation of these appearsin [18], and various more simpli�ed treatments have been presented elsewhere [2, 1, 3]. Thefollowing brie
y notes the necessary aspects of the approach discussed in [18] which are neededfor understanding the rest of this paper. Following this we describe the constraints which need tobe met in a speci�c series of lecture timetabling problems; this serves as a background case-studyagainst which we can illutrate some general aspects of the implementation of the approach to anarbitrary timetabling problem.3 Evolutionary TimetablingAssuming familiarity with the basic processes in EAs, it su�ces to describe our approach byreference only to the chromosome representation and the �tness function. Those unfamiliar withthe basics of EAs can consult good texts such as [12, 10].2



The Chromosome RepresentationA `timetable' chromosome is a vector of symbols of total length 3v (recall: v is the number ofevents), divided into contiguous three-gene chunks. The three alleles in the ith chunk, where1 <= i <= v, represent the time, place, and agent assignments of ith event. Naturally, the setsof possible alleles at time, place, and agent genes are respectively identi�ed with the sets T , P ,and A. The simple example chromosome \abcdef" represents a timetable in which event e1 startsat time a in place b, involving agent c, and event e2 starts at time d in place e, involving agentf . This constitutes a `direct' representation, as opposed to the more indirect style common in EA-based job shop scheduling work, and recently implemented for timetabling in =citePaechter+94.Relative advantages and disadvantages of these two styles are beyond the scope of this paper,but are a central point of interest. Su�ce to say here that comparison of the two is beset bycomplications, but it so far seems that the direct approach enhanced with the introduction ofintelligentmutation operators (which take great advantage of the directness of the representation,and hence cannot be feasibly constructed for use with the indirect style) [8], vies on equal termswith an ingenious version of the indirect style [16]; these observations are yet to be properlybacked up empirically.3.1 The Fitness FunctionA maximally �t timetable is clearly one which satis�es all of the imposed constraints. Also, itseems reasonable to distinguish between timetables in terms of �tness based on the numbers andkinds of di�erent constraints violated. A choice of �tness function which meets this behaviouris as follows, where C is the set of constraints in the problem, Pi is a penalty associated withconstraint i, and vi(g) = 1 if timetable g violates constraint i, and 0 otherwise:f(g) = 1=(1 +Xi2C Pivi(g)) (1)The relative penalty values may be chosen to re
ect intuitive judgement of the relative im-portance of satisfying di�erent kinds of constraint. Further discussion of this kind of objectivefunction and other possibilities is beyond the scope of this paper, but appears elsewhere, eg:[8, 19, 13]. In general, however, a penalty function as above, using a rough choice of penaltysettings derived from the course organisers' notion of relative importance of di�erent constraints,appears adequately robust for many problems.4 A Speci�c Lecture Timetabling ProblemAn MSc course in the Department of Arti�cial Intelligence, University of Edinburgh (EDAI)involves eight taught course modules spread over two terms. The course is organised into `themes',each involving a particular combination of 8 modules, of which some are compulsory and someoptional. As well as choices from among the 30+ modules available in the AI Department,3



students may also choose modules from the Computer Science (CS) Department and others. Acomplicating factor here is that the CS Dept is an inconvenient bus ride away from the AI Dept.T comprises 80 start times, 16 per day on each day of a �ve day week. Each day's slots areat half-hourly intervals from 9am to 4:30pm. E comprises a large collection of lectures, tutorials,and lab sessions, mostly an hour long, but sometimes two hours long. A student enrolled on acourse must attend all the lectures in E involving the course, but only one of the tutorials orlabs (E will include several tutorials or labs for each course). Separate courses are pre-assignedto either term 1 or term 2. Hence, in one academic year there is a separate lecture timetablingproblem for each term involving roughly half of the modules available on the course as a whole.The full set of constraints which need to be faced are as follow:Options : Student's options should be kept open as far as possible. No pair of lectures in thesame theme should overlap in the timetable. More generally, lectures x and y should notoverlap if there is expectation that one or more students may wish to take both courses xand y.Event Spread : The individual timetable for any student must be spread out fairly evenly. Eg:A student should not have to sit through four lectures in a single day. Rather, the eventsan individual student must attend should be evenly spaced out during the week. Also,di�erent lectures on the same topic (eg: there may be 2 Prolog lectures per week) shouldoccur on di�erent days.Travel Time : A student should have at least 30 minutes free for travel between events in theCS Dept and events in the AI Dept.Slot Exclusions : CS lectures should occur in morning slots, and AI lectures in afternoon slots(this arises from an inter-departmental agreement). Also, lectures at lunchtime (startingat 1:00pm or 1:30pm) should be avoided if possible. In a similar vein, various constraintsof the form \event e cannot start at time t" arise owing to other commitments of the sta�involved.Slot Speci�cations : Various constraints are given in the form \event e must start at time t",arising for various reasons.Capacity : The size of a lecture or tutorial should not exceed the capacity of the room it occursin. Also, a room can only cope with one event (lecture, tutorial, or lab) at a time (this isthe main di�erence between lecture and examination timetabling).Room Exclusions : Many constraints on room assignments for particular events can easily bederived from the Capacity constraints, along with information about the expected sizes ofevents. In addition however, there are other considerations which lead to several a prioriconstraints of the form \event e cannot occur in room r". For example, event emay demanddisabled access, or certain audio-visual requirements unavailable in room r.Room Speci�cations : Similarly, several constraints are apparent of the form \event e mustoccur in room r". 4



Juxtaposition : Preferably, all tutorials or laboratory sessions for any course should occur laterin the week than the week's �rst lecture on that course. Sometimes this is particularlynecessary, since a tutorial or lab session may be based on the lectures which were held(hopefully) earlier in the week. In other cases this is desirable but not vital.Translating the Constraints into a Fitness FunctionIn this case, it so happens that every lecture's agent (ie: lecturer) is predetermined, and individuallecturers have already decided in advance (providing details in the style of exclusion constraints)which slots they are not available for. Tutors for tutorials and lab sessions are not pre-determinedin this way, but for these there is no point in incorporating them into the timetable at this stage(usually well in advance of term), since we simply do not know for sure who will be available andwhen. For this problem we therefore need not consider the set A, and hence can use chromosomesof length 2v. The above constraints can be dealt with as follows:Keeping Options OpenThe Options constraint is handled by interpreting it as a large collection of binary constraints,each involving a distinct pair of events expected to share students. For convenience, we derivea set of `virtual' students, each of whom takes a distinct one of the set of possible four or �ve-module options for the term. This set of virtual students is then used to derive the collectionof distinct binary constraints between events. Here, such a binary constraint occurs betweenevery pair of distinct lectures taken by some virtual student. A similar constraint also holdsbetween distinct lectures on the same module, and between lectures and tutorials on the samemodule. No such constraint is needed between di�erent tutorials or labs for the same course, oreven between tutorials and labs on di�erent courses. Such may be scheduled simultaneously, andoften are; in due course this gives rise to constraints which a�ect each students' choice from theset of tutorial and/or lab sessions available for each module.This amounts to a collection of binary constraints of the form \e1 must not overlap in timewith e2"; the �tness function must check for violation of each of these in turn. Similarly, it shouldbe clear how the basic problem of avoiding clashes in any other lecture or exam timetablingproblem can be dealt with. Notice too that we can incorporate the Travel Time constraint here.If e1 and e2 are timetabled with a break of, say, k minutes between them, but are assigned torooms which take more than k minutes to travel between, then any Options constraint betweenthem is e�ectively violated. Hence, the violation check for Options constraints can, simply viaaccessing the `place' genes for e1 and e2 and a given travel-timematrix for the places, also accountfor Travel Time constraints.Event Spread constraintsEvent spread constraints can be handled in a number of ways. Eg, to even out the event spreadfor individual students we might explicitly calculate some measure or measures of event spreadfor each virtual student. Alternatively, we could reasonably approximate this by examining some5



measure or measures of the spread of the timetable as a whole. Both would seem to o�er thesame overall e�ect; the latter will typically be computationally cheaper, but the former approachwould seem to o�er more potential for control and tradeo� of di�erent aspects of the event spreadfor individual students.The method used in the experiments detailed later is as follows: the �tness function notes, foreach virtual student, the number of instances of the following two `o�enses': a) four events arescheduled in one day for this virtual student; b) �ve or more events are scheduled in one day forthis virtual student. A di�erent penalty term is associated with each, and the penalty weightedsum of instances of these o�enses, summed over virtual students, makes up the contribution to(or, rather, detraction from : : : ) �tness of the overall event spread constraint.Finally, `di�erent-day' constraints can clearly be handled in the same way as Options con-straints. For any pair of lectures on the same module, we simply check directly from the chromo-some whether or not their assigned slots are on the same day. If they are, then an appropriatepenalty is added.Exclusions and Speci�cationsIt is easy to see how exclusion constraints can be directly translated into one or more simpleviolation-check functions, given the chromosome representation in use. Notice however that wecan just as simply pre-arrange it so that chromosomes never violate these constraints in the �rstplace. We can doctor the allele range of each gene so that it is always the speci�ed allele (if any),or only ranges over the non-excluded alleles.Choosing between such pre-satisfaction of exclusion and speci�cation constraints, and theoption of penalising violations of them, is not always straightforward. If many such constraintsexist, the `pre-satis�ed' space may well lack excellent timetables which violate a few exclusions,for example, but make up for this in other ways. On the other hand, pre-satisfaction speeds upevaluation and promises to speed up search via reducing the search space. The full rami�cationsof this choice are beyond the scope of this paper, but it su�ces to point out here that either optionshould be available in a system which implements this technique. In the experiments discussedlater, most exclusion and speci�cation constraints were prespeci�ed. The only `penalised' suchconstraint was that for lunchtime lectures. According to the EDAI MSc course organisers, it ispreferable to avoid these, but acceptable to trade these o� against other constraint violations.Capacity constraintsTo check that a room's capacity isn't exceeded, we must �rst translate the overall room capacityconstraint into constraints of the form \room r should contain no more than rcap students intimeslot t", for each room r and timeslot t, where rcap is the student capacity of room r. Duringevaluation, the system simply precomputes from the current candidate timetable the studentload for each room in each slot, and then runs through this list of constraints checking each inturn and accumulating penalties for violations. Evidently, the same technique can be applied fora very wide range of similar problems, and also applies to constraints concerned with `teachingloads' constraints in problems for which agents must be considered in the representation.6



Juxtaposition ConstraintsFinally, it is evident how the ordering constraints between given groups of events can be incorpo-rated. We �rst derive a collection of binary constraints from those given. Eg, \all lisp tutorialsshould occur later than the �rst lisp lecture of the week" is translated into a collection of binaryconstraints of the form \lisp 1 must be before lisp t3". Checking for violations of such con-straints is then straightforward . Similarly, it should be clear how any juxtaposition constraint(eg: \there should be at least two days between event e1 and event e2") can be similarly handled.5 ExperimentsExperimental SetupWe address the EDAI MSc lecture/tutorial problems for both terms of the academic years 92/93and 93/94, respectively involving 76, 73, 82, and 73 events. Other features of these problems areas described in section 4, and full details are available from the authors.In all cases, the EA used a population size of 50, uniform crossover, gene-by-gene mutation,and elitist generational reproduction. The crossover and mutation rates pC and pM were dynam-ically altered as follows. pC started at 0.8 and was decreased by 0.001 after each generation (ie:after every 50 evaluations), with a lower limit of 0.6, while pM started at 0.003 and increasedby 0.0003 each generation, with an upper limit of 0.02. Each trial was run for 200 generations(10000 evaluations). Separate experiments are recorded for each problem for each of three dif-ferent selection strategies: �tness-proportionate (FIT), GENITOR-style rank-based with bias 2(RANK) [20], and tournament selection with tournament size 10 (TOUR).The result of a trial was a maximally �t timetable found during the trial. From this we recorda vector of violations V = fc; j; p; l; e; d5+; d4; tg, which respectively denote violations of Optionsconstraints (clashes), important juxtaposition constraints, desirable juxtaposition constraints,lunchtime constraints, slot-exclusion constraints, cases where a `virtual student' faced more thanfour events in a a day, cases where a `virtual student' faced four events in a single day, and,�nally, travel time constraints. Violations of all other constraints mentioned above (eg: roomexclusions, capacity constraints) are not recorded, since they were fully satis�ed in all cases.Ten trials were run for each experiment, and results for each problem record the best V foundoverall, and the mean of V over the ten trials, for each of three selection schemes. We also presentV for the timetables produced by the course organisers for each problem, and which were theactual timetables used (or in use), since the EA system itself was not yet in regular use. `Best'means relative to the penalty-weighted sum of violations. The �xed penalty values used in thesetrials for the various violations were, in the order in which they appear in the tables: 500, 300,30, 30, 10, 5, 1, 1. Hence, violations are listed in order of decreasing importance, as judged bythe course organisers.5.1 Results 7



Problem c j p l e d5+ d4 t92/93 term1Course Organisers 0 0 4 4 14 0 2 65FIT / Best of 10 0 0 0 0 0 0 0 8FIT / Mean of 10 0 0.1 0.2 1.2 0 0 0.9 16.6RANK / Best of 10 0 0 0 0 0 0 0 17RANK / Mean of 10 0 0 0 1.6 0 0 0.6 17.2TOUR / Best of 10 0 0 0 0 0 0 0 0TOUR / Mean of 10 0 0 0 1 0 0 0.4 0.792/93 term2Course Organisers 0 1 9 2 0 1 4 49FIT / Best of 10 0 0 0 0 0 0 1 0FIT / Mean of 10 0 0 0.1 0.5 0 0 2.1 9.2RANK / Best of 10 0 0 0 0 0 0 3 9RANK / Mean of 10 0 0 0.5 1 0 0 2.4 13.4TOUR / Best of 10 0 0 0 0 0 0 0 0TOUR / Mean of 10 0 0 0.3 0.6 0 0 0.7 0.1Table 1: Comparative performance on the 93/94 problemsTables 1 and 2 clearly show that the EA approach leads to much better timetables in eachcase. One course-organiser produced timetable failed to keep all reasonable options open (ie: hadclashes), while many failed to fully keep lectures and tutorials away from various restricted slots,and all failed constraints at least as important as the need to avoid lunchtime events. Problemscaused involve lecturers and tutors being forced to work during timeslots previously designatedfor other things (eg: regular weekly seminars), forced to give up free afternoons or morningsdesignated for research, students facing excessively demanding days, and so on.On the other hand, for each problem, tournament selection found either a perfect timetableor one with a single travel-time violation in at least one of ten trial runs. For each selectionscheme, mean and best results compared very favourably with the experts' e�orts. Each EAtrial was completed within 5 minutes on a sun SPARC. Occasionally, a EA solution, was worsein terms of some attribute (eg: violations of desirable juxtaposition constraints) than the courseorganisers' solution, but better overall in terms of the penalty-weighted sum of violations. Thissuggests that the EA was more successful at trading o� the relative occurrences of violations ofdi�erent importance.Tournament selection appears to be the best choice, with rank-based selection of the styleused in [20] and �tness proportionate selection, in that order, being next best. This relativeperformance of di�erent selection schemes cannot strictly be taken as read from these resultswithout further experiments using di�erent tournament sizes, biases, and so on; however, muchEA literature backs up this ordering of relative performance.8



Problem c j p l e d5+ d4 t93/94 term1Course Organisers 0 0 0 5 7 0 2 84FIT / Best of 10 0 0 0 2 0 0 0 15FIT / Mean of 10 0 0 2.6 2.3 0 0 0.7 28.6RANK / Best of 10 0 0 1 2 0 0 0 23RANK / Mean of 10 0 0 2.2 2.5 0 0.1 0.3 31.5TOUR / Best of 10 0 0 0 0 0 0 0 1TOUR / Mean of 10 0 0 0.6 1.4 0 0 0.2 0.693/94 term2Course Organisers 2 0 3 3 1 0 0 50FIT / Best of 10 0 0 1 0 0 0 0 11FIT / Mean of 10 0 0 0.2 1.4 0 0 1.4 14RANK / Best of 10 0 0 0 1 0 0 1 13RANK / Mean of 10 0 0 0.6 1.7 0 0 1.3 13.6TOUR / Best of 10 0 0 0 0 0 0 0 0TOUR / Mean of 10 0 0 0 0.7 0 0 0.2 0.2Table 2: Comparative performance on the 93/94 problems6 DiscussionThe results clearly indicate the bene�ts of using a penalty-function based EA approach on thisproblem, and by implication suggest similar utility for the same approach on similar problems. Indesigning the penalty-weighted �tness function itself for these experiments, several of the designdecisions were ad hoc. For example, penalty values were chosen according to a rough judgementof relative importance. Also, there were several other possibilities, as discussed earlier, for dealingwith the event-spread constraints. Even the underlying EA itself was far from optimal in termsof parameter settings and general con�guration. Better choices of selection scheme, for example,are spatially-oriented schemes as presented in [5] and [9], while better overall choices for the EAare certainly possible.The `rough-and-ready' aspect of the experimental con�gurations used in this paper, coupledwith the good results reported and the ease of implementing the approach strongly suggests apromising future for both further research and also practical use of EAs on general timetablingproblems. Naturally, there are a considerable number of theoretical and practical issues thatneed to be answered. An illustrative collection of these follow:Scaling UpHow does this approach scale up to larger and more tightly constrained problems? The realproblems addressed here, and similarly those addressed in [6, 14, 7], are similar in size or largerthan a large proportion of the timetabling problems faced in many institutions. Hence the useful-ness of this approach seems justi�ed, inasmuch as we can expect the bene�cial results displayed9



here to carry over to di�erent timetabling problems of similar or smaller size. How the approachscales with increasing size and/or complexity is a harder question, which is the subject of con-tinuing research. Initial indications in unpublished work are that the basic approach scales well,but su�ers from a problem common to EA-based optimisation: that is, solutions near optimalregions are rapidly found on large complex problems, but further evolution towards optima be-comes considerably slow, and may stop altogether. Fortunately this di�culty is readily aided bythe use of smart hillclimbing mutation operators. As detailed in [8], use of such operators helpsto vastly increase the scope of the approach in terms of problem size. Similarly, an alternativechromosome representation used in [16] is also found to signi�cantly improve on solution qualitywhen compared with the basic approach as presented here.Generalising AcrossHow does the approach perform on other timetabling problems? The general nature of theapproach suggests that it would be just as well employed on many similar problems. A keyaspect which matters here is speed of evaluation. As long as the numbers of constraints whichneed checking coupled with the computational ease of checking themmake for a relatively speedyevaluation function, it seems safe to suggest that useful performance is promised. The kinds ofindividual constraints that usually occur in timetabling problems are computationally quick tocheck when using the direct chromosome representation. The general prospects for EA-basedtimetabling in this respect are in any case illustrated by the variety of real problems so farsuccessfully addressed.Di�erent ApproachesDi�erent representations, use of domain speci�c recombination operators, and hybridisationof the EA with other techniques are all candidates for re�nement of this approach. Much furtherresearch in this vein is in order. It is also interesting and important to compare EA approacheswith other methods such as branch & bound search, simulated annealing, and so on. Thisendeavour is complicated by the di�erences between the techniques themselves. Eg, the promiseof the EA-based approach is most strongly manifest in its robustness across a very wide range ofdi�erent timetabling problems. Comparison with rule-based approaches to test this claim on thesame variety of problems would then necessitate the lengthy and di�cult development processof building rule-based systems with similarly wide applicability. Comparison with simulatedannealing is a more likely prospect, and such is planned in due course.PracticeSome common needs are not met by the approach as discussed here. Eg: timetablers may wishto generate several distinct timetables to choose from. Such considerations require re�nementsand extensions, although the basic approach we have discussed remains a useful partial tool forsuch requirements. More relevantly, space prevents us from properly covering here the generalprocess and the many possible choices involved in interpreting the constraints of a problem intoa particular choice of �tness function. It is rarely apparent how best to do this, and further workis required to assess the various possibilities. Experience shows, however, that there is unlikelyto be a major di�erence in performance between di�erent such choices for problems of the sizeand type addressed here; hence, we feel that natural and/or arbitrary choices may be made withimpunity for penalty settings, pre-speci�cations, event-spread constraint handling, and so on : : : ,at least for problems of the size and type found in small or medium sized university departments.10



AcknowledgementsWe would like to thank Bob Fisher and Alan Smaill for their help in describing the lecturetimetabling problems used here and providing data. Thanks also to the UK Science and Engineer-ing Research Council for support of Dave Corne via a grant with reference number GR/J44513.References[1] D. Abramson and J. Abela, `A parallel genetic algorithm for solving the school timetablingproblem', Technical report, Division of Information Technology, C.S.I.R.O., (April 1991).[2] Alan M. Barham and John B.Westwood, `A simple heuristic to facilitate course timetabling',Journal of the Operational Research Society, 29, 1055{1060, (1978).[3] Mirjana Cangalovie and Jan A.M. Schreuder, `Exact colouring algorithm for weighted graphapplied to timetabling problems with lectures of di�erent lengths', European Journal ofoperations research, 51, 248{258, (1991).[4] Michael W. Carter, `A survey of pratical applications of examination timetabling algo-rithms', Operations Research, 34(2), 193{202, (March-April 1986).[5] Robert J. Collins and David R. Je�erson, `Selection in massively parallel genetic algorithms',in Proceedings of the Fourth International Conference on Genetic Algorithms, eds., R.K.Belew and L.B. Booker, pp. 249{256. San Mateo: Morgan Kaufmann, (1991).[6] Alberto Colorni, Marco Dorigo, and Vittorio Maniezzo, `Genetic algorithms and highlyconstrained problems: The time-table case', in Parallel Problem Solving from Nature, eds.,G. Goos and J. Hartmanis, 55{59, Springer-Verlag, (1990).[7] Dave Corne, Hsiao-Lan Fang, and Chris Mellish, `Solving the module exam schedulingproblem with genetic algorithms', in Proceedings of the Sixth International Conference inIndustrial and Engineering Applications of Arti�cial Intelligence and Expert Systems, eds.,Paul W.H. Chung, Gillian Lovegrove, and Moonis Ali, 370{373, Gordon and Breach SciencePublishers, (1993).[8] Dave Corne, Peter Ross, and Hsiao-Lan Fang, `Fast practical evaolutionary timetabling', inProceedings of the AISB Workshop on Evolutionary Computation, (1994).[9] Yural Davidor, `A naturally occuring niche & species phenomenon: The model and �rstresults', in Proceedings of the Fourth International Conference on Genetic Algorithms, eds.,R.K. Belew and L.B. Booker, pp. 257{263. San Mateo: Morgan Kaufmann, (1991).[10] Handbook of Genetic Algorithms, ed., L. Davis, New York: Van Nostrand Reinhold, 1991.[11] K. A. Dowsland, `A timetabling problem in which clashes are inevitable', Journal of opera-tions research society, 41, 907{918, (1990).11



[12] David E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning, Read-ing: Addison Wesley, 1989.[13] Sami Khuri, Thomas B�ack, and J�org Heitk�otter, `An evolutionary approach to combinatorialoptimization problems', in Proceedings of the 1994 Computer Science Conference (CSC94),Phoenix, Arizona, (March 1994). ACM Press. to appear.[14] Si-Eng Ling, `Intergating genetic algorithms with a prolog assignment problem as a hybridsolution for a polytechnic timetable problem', in Parallel Problem Solving from Nature, 2,eds., R. Manner and B. Manderick, 321{329, Elsevier Science Publisher B.V., (1992).[15] N. K. Mehta, `The application of a graph coloring method to an examination schedulingproblem', Interfaces, 11, 57{64, (1981).[16] B. Paechter, H. Luchian, A. Cumming, and M. Petruic, `Two solutions to the generaltimetable poblem using evolutionary methods', in Proceedings of the IEEE Conference onEvolutionary Computation, (1994).[17] Ben Paechter, `Optimising a presentation timetable using evolutionary algorithms', in Pro-ceedings of the AISB Workshop on Evolutionary Computation, (1994).[18] Peter Ross, Dave Corne, and Hsiao-Lan Fang, `Timetabling by genetic algorithms: Issuesand approaches', Technical Report AIGA-006-94, Department of Arti�cial Intelligence, Uni-versity of Edinburgh, (1994). revised version to appear in Applied Intelligence.[19] Alice E. Smith and David M. Tate, `Genetic optimisation using a penalty function', inProceedings of the Fifth International Conference on Genetic Algorithms, ed., S. Forrest,pp. 499{503. San Mateo: Morgan Kaufmann, (1993).[20] Darrell Whitley, `The genitor algorithm and selection pressure', in Proceedings of the ThirdInternational Conference on Genetic Algorithms, ed., J. D. Scha�er, 116{121, San Mateo:Morgan Kaufmann, (1989).
12


