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Abstract
In this paper, we review the work applying computational evolutionary methods in software engineering, especially in

software testing. Testing is both technically and economically vital for high quality software production. About half of the

expenses in software production has been estimated to be due to testing. Much of the testing is done manually or using other

labor-intensive methods. To develop efficient, cost effective, and automatic means and tools for software testing is thus highly

tempting for software industry. Searching software errors by using evolution based methods like genetic algorithms is one

attempt towards these goals.

Software testing is a field, where the gap between the means and needs is exceptionally wide. Despite the great advances in

computing during the last 30 years the software development and the testing process in most companies is still very immature,

meanwhile the complexity and criticality of the software has increased tremendously.

When testing software, by using any optimization method as a test data generator, we are optimizing the given input

according to a selected software metric encoded as a fitness function. The success of genetic algorithms in optimization is based

on the so called building block hypothesis. Basically, the genetic algorithms do not find any solitary bug at any higher probability

than pure random search. However, evolutionary algorithms adapt to the given problem, in practice this means that a genetic

algorithm-based tester generates several parameter combinations that reveal minor bugs and based on this information constructs

sequences that will reveal, on the average, more bugs than pure random testing.
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1. Introduction

Evolutionary algorithms include a branch of

evolution inspired heuristic optimization methods,

the most well known being: evolution strategies,

genetic algorithms, evolutionary algorithms, cultural

algorithms, and genetic programming. For further

references of evolutionary algorithms see, e.g.
.
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Fig. 1. The number of papers, where GAs are applied to software

testing (�, N = 98) according to Vaasa GA bibliography database. For

comparison total GA papers ( , N = 19,114), GP papers (&, N =

917), and GAs in VLSI testing (*, N = 70). Observe that the last few

years are most incomplete in the database. However, it seems that

the number of annual GA papers has been settling at about 2000

papers since and including the year 1995.
bibliographies [1–4]. There already exist several

international patents [5–8] about using genetic

algorithms for software testing, and a number of

Ph.D. theses [9–13].

1.1. Genetic algorithms

Genetic algorithms (GA) [14,15] are a group of

evolutionary algorithms, that use the evolution

principle that was originally proposed by Charles

Darwin [16]. Genetic algorithms form a kind of

electronic population that mimics the fight for

survival, adapting as well as possible to its environ-

ment, which is an optimization problem. Surviving

and crossbreeding possibilities depend on how well

individuals fulfil the target function. GAs are used to
Fig. 2. The one-point crossover and mutation operations applied to Parent 1

The genes of Child 1 are shown in bold. The mutated gene is shown in i
solve complex optimization tasks, they do not require

the optimized function to be continuous or derivable,

or even be a mathematical formula, and that is perhaps

the most important factor why they are gaining more

and more popularity in practical technical optimiza-

tion (Fig. 1).

A GA searches the optimum of a problem by

calculating fitness values and selecting those indivi-

duals that get the best fitness values (selection). The

idea of using a GA is self-analytic in the sense that new

individuals are created automatically based on fitness

values without any human intervention during the test

run. However, the need for a manual analysis of test

data cannot totally be eliminated, and usually some

statistical analysis of test data (results) needs to be

done after test runs.

The example in Fig. 2 shows how the crossover and

mutation operations, the most common genetic

operations, are performed in a real coded GA. In

one-point crossover we choose randomly a crossover

point, up to which the genes of the Parent 1 are taken to

the chromosome of Child 1, while after it the genes of

Parent 2 are taken and vice versa for Child 2. In

Section 1.8, we will use a more natural uniform

crossover, where each gene is randomly taken

alternately from either parent. The mutation operator

randomly changes the value of a randomly selected

gene of the offspring.

Fig. 3 shows how the genetic algorithm operates.

At first we create an initial population, e.g. by a

random number generator or by supplying known

good solutions. The initial population is then

evaluated against the fitness function. At this point

we usually test the termination condition: we found a

solution that is fit enough or a given number of trials

has been evaluated. If the termination condition is not

satisfied we continue iteration by first selecting new
and Parent 2 chromosomes resulting new trials Child 1 and Child 2.

talics.
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Fig. 3. A genetic algorithm.
parents and those who survive and then generating

new offspring by crossover and mutation operations.

The new individuals are then tested by the fitness

function.

1.2. Other evolutionary methods

Another evolutionary algorithm, Genetic Program-

ming (GP, [17]), is directly related to the evolutionary

software engineering. It is one of the few methods to

generate code automatically guided only by given

criteria, fitness function, that the resulting routine

should fulfil. The fitness function gives the distance to

the solution. A GP system generates trial solutions,

which are then tested against the criteria, the better the

criteria is met, the better the fitness. In this review, we

will omit automatic code generation. The interested

reader is referred to, e.g. bibliography [2] for further

references to GP.

1.3. Software testing

The quality of a software system is primarily

determined by the quality of the software process that

produced it. Likewise, the quality and effectiveness of

the software testing process are mainly determined by

the quality of the test processes used. More than half of

the errors are usually introduced in the requirements

phase. The cost of errors is the lower the earlier they

are detected. An effective test program prevents the
migration of errors between development phases. It

has been estimated that an error caught during the

system specification phase may be about 50 times

cheaper to repair than an error not detected until in the

system testing phase [18]. Boehm [19] reports that

12% of the errors discovered in a software system over

a three-year period were due to errors in the original

system requirements. In practice, we often do not have

the mechanism to detect these errors in place until

much later—often not until in the function and system

test phase [20].

Software errors are human errors, software is

written by man, and indeed man does make mistakes.

In every commercial software some errors are always

present. Some errors are more harmful, visible or

costly than others, and testing may never be able to

reveal all of them. It seems that software errors cannot

be totally prevented, so the best we can do is to try to

locate them as early as possible, and at least find and

fix the most harmful ones.

The definition of ‘testing’ according to IEEE/ANSI

standard [21] is: ‘‘The process of operating a system

or component under specified conditions, observing

or recording the results, and making evaluation of

some aspect of the system or component’’. The

definition of ‘software testing’ according to IEEE/

ANSI standard [22] is: ‘‘The process of analyzing a

software item to detect the difference between existing

and required conditions and evaluate the features of

the software items’’. ‘Software quality’ means the

degree to which a software product conforms to both

explicit and implicit requirements. There are excellent

online glossaries that explains common terms used

in software testing [23] and software engineering

[24], and a glossary of terms used in evolutionary

algorithms [25].

1.4. Embedded systems

In these days, more and more new products

contain microprocessors. The programs of these

embedded systems grow and become more complex,

causing serious quality problems. A lot of important

programming work in Finland during these days is

related to embedded electronic devices—mobile

phones. Performance is also an important quality

and competitiveness factor of modern computer

systems.
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Fig. 4. GA testing system.
1.5. History of software engineering

In the early days of software development, testing

was regarded as ‘‘debugging’’, or fixing the known

bugs in the software, and was usually performed by the

developers themselves. There was rarely any specific

resources dedicated for testing [20]. References to

program testing can be traced back to 1950 [26]. In the

1950’s even the advanced software systems had very

limited interaction, if any, with other systems [27].

Automatic test equipments (ATE) date back to the

mid-1950’s, when the maintenance of U.S. military

electronics started to face formidable problems due to

complexity. The solution was the concept of multi-

purpose ATE, which promised testing at computer

speeds, fully automatic operation by less-skilled

operators, the virtual elimination of maintenance

documents, and universal designs adaptable to any test

problem through the flexibility of programming [28].

By 1957, software testing was distinguished from

debugging and became regarded as detecting the bugs

in the software [29]. But the testing was still an after-

development activity, the underlying objective was to

show that the given product worked—and then ship it

to the customer. The researchers of computing science

did not talk much about testing either. Computer

science curricula dealt with numerical methods and

algorithm development, but not with software

engineering or testing [20].

The term ‘‘software engineering’’ was invented in

the late 1960’s. At that time there was a ‘‘software

crisis’’, software being expensive, bug ridden, and

impossible to maintain [30]. By the 1970’s the term

software engineering was used more often, thought

there was little consensus as to what it really meant

[20]. The first formal conference on testing was held at

the University of North Carolina in 1972 [29].

By the early 1980s ‘‘quality’’ became the popular

theme in industry. Software development and testers

started to get together to talk about software

engineering and testing. Groups were formed to

eventually create the many standards we have today

(IEEE, ANSI, ISO). International standards are

currently becoming too weighty to digest in their

full-published form for everyday practical purposes.

However, they include important guidelines, baseline

for contracts and provide invaluable reference [20]. In

1981, Browne and Shaw [31] stated that the software
engineering is a technical activity for which we have

developed a large set of ad hoc engineering techniques

without a corresponding scientific foundation.

Today, only about 10% of the cost of a large

computer system lies in the hardware, while it was

over 80% in the 1950s [30]. It has been reported that

software costs are growing 15% annually, while

productivity is increasing at less than 3% [32]. Despite

the enormous advances during the last 30 years or so,

the software development and testing process in most

companies is still very immature. The complexity and

criticality of software has become greater. Even many

well-proven methods are still largely unused in

industry today, and the development of software

systems remains inordinately expensive [20].

1.6. Applying GAs for software testing

Fig. 2 represents the principle of genetic algorithm-

based software testing. A GA test generator runs as its

own application and communicates with the tested

software. The input domain is mediated between the

softwares by software interfaces, i.e. with subroutine

calls, digital or analog inputs, field bus or Ethernet

messages, and message packages. The response might

be, e.g. state change in the digital outputs, returned

calculation sum, or response message.

The location of the fitness evaluation module

(Fig. 4) varies depending on the software metric used.

If we are optimizing calculation errors or any metric,

that can be directly measured from the response, the

fitness evaluation can be combined with the GA

application (location 1). However, if we are optimiz-

ing, e.g. code coverage that requires code tracing,

the fitness evaluation is done at the software side

(location 3). If fitness evaluation is done indirectly

somewhere between the two routines, e.g. measuring

timings in the interfaces, it could be on either side, or it

might be somewhere in between the two applications

(location 2).
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Fig. 5. Toy example: the time delays caused by parameters p1, . . .,
p6.

Table 1

Descriptive statistics of the maximum execution times for systema-

tic, random, and GA methods for our WCET toy example

Systematic Random GA

Maximum 3.00 3.50 5.88

Minimum 0.00 0.00 0.00

Mean 0.60 0.49 1.93

S.D. 0.63 0.54 1.70

N 15,625 15,625 15,625
1.7. VLSI testing

In the field of automatic test data generation GAs

have had great success in VLSI circuit test pattern

generation. In VLSI testing the goal is to find the

smallest test set that can test the circuit completely.

Circuit and software testings differ from each other in

that only one program instance needs to be tested

while every individual circuit must be tested

thoroughly. When the software version is acceptable

it can be copied infinitely without a worry of copying

errors, i.e. the need of testing each individual. For

further references of GAs in VLSI testing see, e.g.

bibliography [3].

1.8. A toy example

In software testing the two most commonly studied

areas where the genetic algorithms are applied are the

test coverage optimization and finding the worst case

execution times (WCET). In our own research we have

mostly concentrated on the latter one. Our toy example

below will demonstrate why it is so tempting to try to

find WCET with GAs.

Let us assume that the input domain of a software

consists of six parameters pi, i = 1, . . ., 6, pi 2 [0, 1]

and WCET = 6 s, but the allowed maximum time is

defined to be 5 s. The traditional way to find WCET

could be random or systematic search by testing all the

possible combinations with boundary and certain

amount of intermediate values, in total nv values.

However, with larger number of parameters np this

becomes impossible, the number of systematic tests

needed nt increases exponentially as nt ¼ n
np
v .

Fig. 5 shows how the time delay is influenced by the

input parameters. It is easy to see that the assignment

p1 = 0.0, p2 = 0.2, p3 = 0.4, p4 = 0.6, p5 = 0.8, and p6 =

1.0 would produce the maximum time delay. However,

in the real software several parameters together effect

the execution time, and there is also some non-

deterministic behavior caused by the state machine

nature of programs. If we systematically test all

possible parameter combinations when each para-

meter can have values: 0.00, 0.25, 0.50, 0.75, and 1.00

we have 56 = 15,625 possible combinations.

To compare the GA, random, and systematic

approaches we solve the toy problem and record the

number of parameter combinations used by each
method. The GA has population size = 50, mutation

rate = 2%, and 50% elitism, i.e. 50% of the best

solutions are always selected to the next generation.

Table 1 shows how the maximum execution time

varied for these three methods. The GA found much

longer maximum and average execution times than the

random or systematic methods. This difference is

caused by the tendency of GAs to favor those

parameters that cause high fitness values. As can be

seen the random and systematic methods could not

find any test case that comes even near the allowed

time limit 5 s. Usually there is some safety limit, e.g.

so that in the testing the software execution must not

exceed 70 or 80% of the allowed absolute limit. In this

example both random and systematic search did not

reach even 60% of the absolute limit, and thus the

software might have passed our test. The GA was the

only method able to reach and even exceed the given

time limit.

Fig. 6 shows the distribution of execution times

found by the three methods. All methods generate

mostly test cases with execution time zero. Our

systematic method was chosen so that it generated

only values i/2, i = 0, . . ., 6. The GA has clearly found
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Fig. 6. The distribution of the execution times found by systematic,

random, and GA testing.
parameter combinations that cause long response

times and have long tail towards the possible global

maximum of 6 s.

This example shows clearly how the GA is able to

favor those parameter combinations that cause high

response values, and this is why it is so tempting to use

it for this kind of optimization problems. In this

example, we could have found the global maximum

easily by statistically analyzing how the parameters

effect the execution time with random testing or by

being more lucky when choosing the values for the

systematic testing. In real life software the dependence

between parameter combinations and execution time

is not so straightforward as in our toy example,

causing often difficulties for statistical analysis or

systematic testing. Researchers have assumed that the

GAs search ability is caused by its population-based

procedure and the building block hypothesis, which

claims that the population contains good building

blocks and by combining them the GA can generate

even better solutions.

Table 2 shows how the fitness of the best individual

develops in a GA optimization. From each population

only the best individual and the parents of the best

solution of the next generation are shown. From the

table we can see that in the later generations many

individuals share identical gene values. This is a

symptom of population convergence. In the early

generations the development is more due to crossover

(shown in bold), only in the last few generations the

mutation (shown in italics) have been the most

important operation. In the early generation the best

individual is not produced from the best individuals

of the previous generation. In the later generations
the best individual of the previous generation is

usually the parent of the new best individual (see also

Fig. 2).
2. Genetic algorithms in software testing

Usually, when using genetic algorithms for func-

tion optimization, the GA creates trials, which are then

tested by a static fitness function in order to evaluate

their fitness as a problem solution. When we are

testing software with GAs there is usually not any

static fitness function that directly would evaluate the

goodness of the trial. Instead GA supplies the test data

to the object system under test, which executes some

operations according to the received data. The fitness

value is evaluated indirectly by observing what the

tested system does. The observing can be done, e.g.

from the interfaces or by instrumenting the code

properly.

When testing software by using a GA as a test data

generator we are optimizing the given input according

to some criteria. In order to do that, we must define or

choose some software metric we are optimizing, and

which is measurable from the software, either directly

or indirectly. Evolutionary testing can be used with

either white box or black box testing techniques. In the

white box approach, the optimized metric can be

chosen to be, e.g. some test coverage metric; code,

condition, or path coverage. There the software

execution must be traced, and the aim is to generate

a test set that leads to the best coverage. In the black-

box approach, there is no need to trace the software

execution, but instead to trace what happens in the

software interfaces. The optimized metric can be

error based, e.g. amount of warnings, calculation or

rounding error, leakage of memory, or temporal based,

e.g. B/WCET, best or worst execution times or

response time.

2.1. Early works

The short history of applying genetic algorithms to

the software-testing problems seems to be traced back

to the year 1992. The earliest usually referenced paper

is Ellis and coworkers [33], in which the testing

prototype TAGGER is introduced. The system was used

for generating test data for programs written in Pascal.
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Table 2

The evolution of fitness in GA optimization

Fitness value Param. values

1 2 3 4 5 6

Initial population

Best individual 1.8218 0.7321 0.1077 0.3865 0.0107 0.7880 0.3495

Parent 1 1.3891 0.1905 0.2282 0.4755 0.8752 0.8574 0.0479

Parent 2 0.9424 0.2502 0.7578 0.9472 0.7099 0.0868 0.9942

Second generation

Best individual 2.0861 0.1905 0.2282 0.9472 0.7099 0.8574 0.9942

Parent 1 1.7841 0.9721 0.4788 0.6832 0.5805 0.7979 0.7916
Parent 2 1.5940 0.0056 0.4579 0.9217 0.2083 0.0595 0.9650

Third generation

Best individual 2.7282 0.0056 0.4579 0.6832 0.5805 0.79 0.7916

Parent 1 1.8114 0.7321 0.3493 0.3865 0.6934 0.7880 0.3495
Parent 2 1.5940 0.0056 0.3493 0.9978 0.0269 0.0239 0.9650

Fourth generation

Best individual 2.7555 0.0056 0.3493 0.3865 0.6934 0.7880 0.3495

Parent 1 2.6537 0.0427 0.7739 0.2195 0.5805 0.8428 0.9703

Parent 2 2.6159 0.0993 0.2282 0.3407 0.6884 0.8574 0.9942

Fifth generation

Best individual 3.6104 0.0427 0.2282 0.2195 0.5805 0.8428 0.9942

Parent 1 3.5291 0.0056 0.2761 0.4675 0.5805 0.7880 0.9335

Parent 2 3.4804 0.0056 0.0031 0.6832 0.5805 0.7979 0.9752

Sixth generation

Best individual 4.1297 0.0056 0.2761 0.4675 0.5989 0.7880 0.9752

Parent 1 3.9816 0.0056 0.2282 0.2195 0.5805 0.8428 0.9942
Parent 2 3.5155 0.0056 0.8273 0.2195 0.5805 0.8176 0.9942

Seventh generation

Best individual 4.2333 0.0056 0.2282 0.2195 0.5805 0.8176 0.9942
Parent 2 4.1297 0.0056 0.2761 0.4675 0.5989 0.7880 0.9752

Eighth generation

Best individual 4.2899 0.0056 0.2282 0.2195 0.5805 0.7880 0.9942
Parent 2 4.1297 0.0056 0.2761 0.4675 0.5989 0.7880 0.9752

Ninth generation

Best individual 4.5647 0.0056 0.2282 0.4675 0.5805 0.7830 0.9942

Parent 1 4.2899 0.0056 0.2282 0.2195 0.5805 0.7880 0.9942
Parent 2 4.1297 0.0056 0.2761 0.4675 0.5989 0.7880 0.9752

Tenth generation

Best individual 5.2079 0.0056 0.2282 0.3735 0.5989 0.7880 0.9942

Numbers in bold indicate that this gene is forwarded to the offspring. In the case of the best individual having gene values in italics that gene is not

inherited from either parent, but generated by mutation.
Other early papers describing the use of GA for

testing behavior based control software for autono-

mous vehicles, are from Schultz et al. [34–36]. Their

goal was to find a minimal set of faults that can be

tolerated without significant performance loss of the

control system. A chromosome represents a set of

initial conditions followed by rules, which specify
various fault modes that could be present in the control

system. A GAwas used to search for potential faults in

the software. The object controller software was

designed for aircraft and an autonomous underwater

vehicle.

The first Ph.D. thesis in the area was by Sthamer [9]

who studied the use of GA as a test data generator for
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structural testing. The example programs are small

procedures written in ADA, including triangle

classification, linear search, remainder calculation,

and direct sort. Sthamer applies the GA for branch,

boundary, and loop testing, and also for mutation

testing. He observed that ‘‘GAs show good results in

searching the input domain for the required test sets,

however, other heuristic methods may be as effective,

too’’. ‘‘GAs may not be the final answer to the

software testing problem, but do provide an effective

strategy’’.

2.2. Coverage testing

Pei et al. [37] concentrate on pathwise test data

generation. By using test data generation by GA they

try to define if the selected subpath is feasible or not.

They compare their system with Korel [38] and

believe that a GA-based system works better because

it processes the whole path simultaneously. Pei et al.

also claim that their system is superior when compared

with many of the commonly used methods.

Watkins [39] deals with path coverage optimization

by a GA, using the popular triangle classification

problem as an example. The GA reached the same

coverage as the random method while sampling a

smaller percentage of the complete search space.

Roper et al. [40] have also studied optimization by

a GA, trying to find a set of data that will test the

program until the required level of coverage is met.

Roper [41] has also stated that ‘‘by using a GA one

often neatly avoids many of the problems of automatic

test data generation encountered by other methods’’.

Smith and Fogarty [42] studied test coverage

optimization by a hybrid version of a GA and hill-

climbing local search. Their application was also the

triangle classification problem. They claim that their

system can generate test sets that fully satisfy the

given metric and reduce the size of evolved test sets.

Smith et al. [43] continue that work, by generating

with a GA test programs for verifying the design of a

microprocessor. The test problem is a VHDL model of

hardware, the test coverage is optimized and the

results are compared against the random method. The

distribution of the results for a GA is significantly

more skewed towards higher fitness values than for the

random method.
Warfield [5] has received a United States patent for

an automatic software testing tool that generates test

scripts based on state machine definitions. The system

measures the code coverage that each test script

achieves when fed to the tested user interface of

application program interface (API). Coverage metric

is used as the fitness value.

Another patent has been issued to Whitten [6] at

Sun Microsystems for a method for selecting a set of

test cases which may be used to test software program

products. The set of test cases is generated by the

designer in the form of software that exercises as many

of the code blocks in the product as possible. A GA is

applied to determine which subset of test cases to use.

This is done on the basis of the fitness value using a

combination of time and coverage measurements. The

aim is to determine the set of test cases that exercises a

maximum number of code blocks in the minimum

time.

Gounares and Sikchi [8] at Microsoft Corporation

have received a patent for a system for adaptively

solving sequential problems in a target software

system utilizing modified GAs. Stimuli to the target

system are presented as actions, and a sequence of

actions is a GA chromosome. These chromosomes are

applied to the target system one action at a time and

the changes in properties of the target are measured.

The fitness value is defined so that successive

generations of chromosomes will converge upon the

desired characteristics. For software testing these

characteristics are defect discovery and code cover-

age. Evolving ever-shorter chromosomes that produce

the same defect minimizes defects in a target software

system, and the defect discovery rate is thereby

maximized.

Michael and McGraw [44–46] have developed the

so-called genetic algorithm data generation tool

(GADGET) system that is fully automatic and supports

all C/C++ constructs. The system is used to obtain

condition/decision coverage. Michael et al. use

triangle classification and an autopilot control

program for a Boeing 737 as example problems.

They also studied the performance of different GA

variants and compared results with the random

method—GAs gained a much higher coverage than

the random method.

Pargas et al. [47] have experimented with genetic

algorithm-based test data generation for statement and
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branch coverage using a control-dependence graph to

guide optimization. They tested six relatively small

test programs and compared the results to the random

method. Their approach clearly outperformed the

random method for three of the six test programs, for

the other three programs both methods find the

optimal solution in the initial population. They suggest

that the use of GA could be more beneficial for

complex programs.

Bueno and Jino [48] have studied the possibility of

using a GA to identify the potentially infeasible

program paths. They propose that monitoring the

progress of the GA search could identify an infeasible

path. Their approach combines earlier works by other

authors and introduces a new fitness function using

control and data flow information to guide the search.

They use the so-called ‘‘path similarity metric’’ as

their fitness function. Results with their six small test

programs were promising. The GA-based approach

reached 100% success rate in unfeasible path identi-

fication in tenth of the amount of command executions

and time needed by random search to reach 70%

success rate.

2.3. Test data generation

Hunt [49] used a GA for testing cruise control

system software. In his implementation a GA

chromosome represents the input and corresponding

expected output. The fitness value is assigned, if the

measured output differs from the expected output. The

greater the difference, the higher the fitness value. The

expected output is derived from the original software

specification. Hunt states that software is often

developed by a third party, and the tester only has

the software, which he treats as a black box and tests

against the corresponding requirement specification.

A GA chromosome must be able to represent all input

values that the software can process, as well as the

values that its single output can have. He claims that

the chromosome must be able to represent both the

valid and erroneous inputs. In his approach the GA is

used as an aid for a human tester. The GA identifies

failure scenarios, but it is up to the human tester to

identify the faults that led to the failure.

Yang [10,50] has done a Ph.D. thesis on using

genetic algorithms to derive test cases and test data

from the formal Z specifications in order to test the
functional behavior of the software. His aim was to

show the conformance of the implementation to its

specifications, i.e. the correctness of the implementa-

tion with respect to the set of test data with which it

was exercised.

Minohara and Tohma [51] have used a GA for

parameter estimation of a so-called ‘‘hyper-geometric

distribution software reliability growth model’’, where

the increase of the number of errors is observed as a

function of time. Their GA chromosome represents a

set of parameter values. The fitness value is evaluated

by testing errors between the observed and the

estimated test-and-debug data. They are trying to

minimize the amount of errors. Their results suggest

that the GA may be a more stable method to get the

estimates.

Lin and Yeh [52] have also studied automatic test

data generation by a GA for a chosen subpath. Their

method uses a so-called ‘‘normalized extended Ham-

ming distance’’ to guide the optimization process and

to test the optimality of the candidate solutions. This

fitness function, called SIMILARITY, defines how similar

the traversed path is to the target path, is used to

choose the surviving test cases. Optimality here means

that the test case (i.e. a particular input) forces the

program to follow the given path of program

statements when executed. They claim that a GA is

able to significantly reduce the time required for

automatic path testing.

2.4. Testing program dynamics

Kasik and George [53] have used a GA for

emulating software inputs in an unexpected, but not

totally random way. The GA is used as a repeatable

technique for generating user events that drive

conventional automated test tools, so that the system

can mimic different forms of novice user behavior.

The system tries to represent how a novice user learns

to use an application. The fitness value is given

according to how much the actions performed are

guided by the chromosome to resemble novice-like

behavior. The novice behavior is described by a

special reward system that was build based on

observations.

Boden and Martino [54] used a GA to generate

API tests. They concentrated on the operating system

error treatment routines. The fitness function was a
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weighted sum of various factors of a test response with

an attempt to assess the sequences of operating system

calls. Boden [7] has also received a US patent for an

order-based GA-based automated testing of software

application interface. The GA is used to search and

detect symptoms of software errors by generating test

sequences.

Wegener and co-workers [55–58] have studied the

search of the execution time extremes of real-time

software with a GA. They have compared their results to

the random testing and static analysis. Their object

software has mainly been some small examples or

DaimlerChrysler embedded automotive electronics

software. They think that the static analysis and

evolutionary testing together can effectively find the

lower and upper execution time limits. They claim that

there is not much support for temporal testing, and often

testers just use the methods that are designed to test the

logical correctness. In their research the GA-based

testing was much more effective than the random

testing, and particularly effective when a problem has

many variables and a large input domain. In their studies

they measure execution times as processor cycles, so

that interruptions etc. would not have an effect on

results. A few times their GA found more extreme time

than was previously known, the results were verified by

analyzing the control flow graph. They also introduced

the term ‘‘evolutionary testing’’, which means by their

definition: ‘‘the use of metaheuristic search methods for

test case generation’’.

Puschner and Nossal [59] have applied a GA for

test data generation for testing WCET. Tests were

executed in a simulation environment on a workstation

and compared against the random testing, best effort

data generation, and the static WCET analysis. The

GA results compared well with the static WCET

analysis, and clearly outperformed the random testing.

They conclude that the GA is well suited for the

WCET tests, and with large input spaces the GA-based

method proved to be particularly favorable. See also

our toy example in Section 1.8.

Ostrowski and Reynolds [60] present the imple-

mentation of the so-called cultural algorithms (CA)

embedded with both the white and black box testing

techniques. Cultural algorithms are GAs that has the

so-called belief space that is used to pass the culture

component, e.g. the acquired knowledge or accumu-

lated experiences, from generation to generation. The
idea is that the faults diagnosed by CA that does black

box testing are passed to the CA that does the white

box testing. The goal is automatic detection and

isolation of program faults.

Pohlheim and coworkers [61,62] applied exten-

sions of evolutionary algorithms (EA), called different

strategies and competing subpopulations to automatic

software testing. Several variants of GA are competing

with each other and the best result is selected as the

final solution of this technique. The object software

was a DaimlerChrysler engine control software

module, and the goal was to perform structure-

oriented testing and temporal testing of real time

software modules. The EA results were compared to

the results obtained by the software developer with

white box testing. The EA based automated test found

always equal or even better execution times. It was

observed that different EA strategies are successful

with different software modules, each of the strategies

were particularly successful at a specific point in time.

By using competitive subpopulations with different

EA strategies one can exclude unsuccessful ones.

The Ph.D. thesis of Gross [11] concentrates on the

temporal B/WCET testing of real-time systems. He

tries to measure ‘‘evolutionary testability’’ by study-

ing if there is a relationship between the complexity of

the test objects and the quality of the outcome

produced by evolutionary testing. The example

programs are short routines written in C++. Gross

states that complexity as it is seen by the evolutionary

algorithm is not much different from the way humans

may experience it. This means that programs that were

difficult for human analysis were also difficult for

evolutionary testing.

The Ph.D. thesis by Tracey [12] deals with

automatic test data generation for testing safety-

critical systems. He uses simulated annealing and

genetic algorithms, but also random search and hill

climbing as the optimization methods. He defines the

framework on how to use them for generating test data

for temporal WCET testing, assertion based testing,

and structural testing. It is observed that ‘‘genetic

algorithm-based approaches for structural test data

generation have a number of weaknesses that restricts

their application to real software industry’’. On the

other hand, GAs seems to be, on average, the most

effective and efficient of the techniques he imple-

mented in his work.



T. Mantere, J.T. Alander / Applied Soft Computing 5 (2005) 315–331 325
2.5. Black box testing

Bingul et al. [63] apply a GA to test the war

simulation software THUNDER with the black box

method. They applied multiobjective optimization

with the Pareto method, and define three different

ways to assign fitness values. They try to optimize

software behavior, war strategies, and the running

time. They claim that the GA was able to provide

optimal or near optimal solutions.

We have worked with genetic algorithm-based

software testing since 1995. The first application was

the testing of a large embedded software [64–67,13].

The object software was received from our industrial

partner, and the optimization goal was to find the

extreme timing conditions, in other words the input

combinations that caused the software response times

increase maximally long. The tested input domain

consisted of CAN and LON communication, and

digital measurement inputs. The testing was done

using the pure black box testing scheme: not any code

was traced, only the communication that the software

did with outside world and the timing of those

communications. The only fitness value the GA

received was the response time, the time which

software needed to reply to the input values generated

by the GA. The results showed that the GA is able to

learn input domain values that lead to the longer

response times than just by using the random testing.

From the results we were able to draw some

conclusions of what effect the messages, and their

timings have on each other.

Next, we applied the same principles for testing

image processing and vision softwares with test

images and surfaces generated by genetic algorithms

[68,69]. The results of this work seems to confirm that

the GA is capable of generating test images and

surfaces that reveal some weaknesses in the image

processing or measurement software. To check the

approach we also did some error seeding. The seeded

errors were effectively found by using the optimized

test images. The test surface generation also revealed

the type of surfaces that have highest number of errors.

Our latest work has concentrated on applying co-

evolution in order to develop the software parameters

simultaneously with the testing [70]. In order to do

that, the object software must have some parameters

that we can change. The results seem to show that
when we can tune software parameters simultaneously

with the testing: a co-evolutionary GA can generate

the worst test case to the population of software

versions with the current parameter setup, while also

optimizing the parameter setups, so that the current

software population handles the worst test case as well

as possible [13].

2.6. Software quality

Hochman et al. [71,72] applied a GA to optimize

neural network architectural, learning, and training

parameters. They call the method ‘‘evolutionary

neural networks’’, and use them to detect fault-prone

and not-fault-prone software modules. They compare

their method against the discriminant analysis to

discover software reliability problems. The statistical

analysis of their results seems to confirm that their

approach is superior.

Mansour and coworkers [73,74] applied a GA to

the optimal regression-testing problem. They try to

determine the minimum number of test cases for

revalidating modified software in the maintenance

phase. They compare the GA-based method with the

branch and bound (B & B) and simulated annealing

(SA) based methods. The B & B method was the

fastest, when testing small modules, but as the size

increases, and the number of test cases grows, the GA-

based method becomes fastest. They conclude that in

contrast to analysis-based optimization methods, the

complexity of the GA and SA does not grow

exponentially with module sizes. Results show that

the GA and SA find an optimal or nearly optimal

number of regression testing tests in a reasonable time.

Baisch and Liedge [75,76] used GAs for tailoring a

fuzzy rule base of an expert system used for software

quality prediction. Their object software is from a

large real-time telecommunication system. The GA is

used to classify the software modules into two classes:

(1) few faults (<5), (2) many faults (>20). The authors

discovered that additional factors, like fault history,

change history, and size should be utilized. There were

also several faults that cannot be predicted by the

system. They claim that the proposed system helps to

decrease faults by up to 50% after changes in the

modules.

Evett et al. [88] used genetic programming (GP)

approach for software quality prediction. Their system
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Fig. 7. Needles: needles in a haystack type of problem. Software

bugs do not have any symptoms in the problem neighborhood. The

GA cannot adapt to the environment. Symptoms: a fitness landscape

that does indicate symptoms in the neighborhood of the problematic

situation. When this occurs GA can adapt to the environment and

gain advantage over random methods.
predicts the relative quality of each module, instead of a

classic classification into fault-prone and not-fault-

prone modules. Their GP used the size of code, degree

of reuse, and faults in the previous releases to predict

the number of expected faults in each module. Their

target was two industrial softwares, a large military

communication system, written in ADA, and a large

telecommunication system, written in a Pascal like

language. Both systems contain approximately 200

modules, from which they use two-thirds as training

data and the rest for validating the predictive accuracy

of the best model developed. Their conclusion was that

GP is able to generate software quality models based on

data collected earlier in the development phase.

Burges and Lefley [77] applied GP to the

estimation of a software project effort. They use data

collected from existing software projects, and gen-

erate estimation models for these with GP. The

estimation is done by using data available from the

specification stage. They compare their GP based

method against the statistical and neural network

based methods. It is concluded that while the GP and

artificial neural networks (ANN) are able to provide

better accuracy, they require more effort for set up and

training.

Aguilar-Ruiz et al. [78] used evolutionary algo-

rithms to estimate software development projects.

They use a software project simulator that generates a

database from the software project. EA is then used to

produce a set of management rules. The aim is that

these rules will help the project manager to keep the

project within the budget, and to reach the quality and

duration targets. The EA generated rules are generated

against rules generated by a commonly used C4.5 tool

that uses a recursive algorithm that optimizes rules

from decision trees. The practical results seem to

indicate that the approach using the EA finds better

solutions.

Jones et al. have produced several papers on using

GAs in testing [50,55,56,79–84]. In one article [84]

they call this new field of software engineering

research ‘‘search-based software engineering’’. They

argue that software engineering is ideal for the

application of metaheuristic search techniques. They

also note that the search-based technique must

outperform the random technique in order to be

qualified as worthy of even being considered a

successful application. The random method therefore
provides the lowest benchmark. If the metaheuristic

method does not outperform the random method, it is

likely that the reason is that it is poorly implemented.

They also expect to see a dramatic growth in the field

of search-based software engineering within the next

few years. They list the likely application areas and the

developments that the growing research capacity will

provide.

For further references of evolutionary optimization

methods in software engineering see bibliography [4].
3. Discussion

The researchers in the field of evolutionary

software engineering usually tend to study the testing

of their private object software, that is usually

obtained from industrial partners, therefore comparing

results is problematic if not impossible. The only

commonly used benchmark problem seems to be the

triangle classification problem. The problem is to

classify whether three given numbers a, b, and c

(length of triangle edges) form a triangle and of which

type; sharp, straight or obtuse-angled. This problem is

used with the white box testing strategy, the path or

condition coverage is usually used as the correspond-

ing optimization target.

The genetic algorithm does not find any solitary

bug from the software with any higher probability than

the random search (see Fig. 7). However, if the bug is
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composed of a combination of input parameters, or a

chain of events that are caused by them, then the GA

gains advantage. In practice this means that a GA

tester generates several parameter combinations that

cause minor bugs and further constructs an input

sequence that will have a higher amount of instances

that cause more minor bugs than the pure random

testing. When testing nondeterministic time critical

software with a temporal fitness function, the GA

recognizes the inputs that cause delays, it starts to

favor those parameters, and eventually generates input

that causes maximum response delay. Note that the

maximum or minimum execution time found cannot

be guaranteed to be the global extreme. There are

methods like static analysis that can be used to validate

the extreme cases, but with a large software it comes

virtually impossible.

The GA-based testing do not need separate

boundary or zero testing, e.g. if a division by zero

exist in the software, the GA recognizes the symptoms

when near zero and soon reveals that error situation.

This however depends on the software metric that is

used, if we want to check boundaries and division by

zero, we must define software metric that reveals the

symptoms also for the neighboring values.

A GA has also been applied to mutation testing

[80], where it effectively killed the mutants, the

boundaries of which were changed.

The advantages of the GA-based approach over

random testing include:
(1) n
eeds less human analysis, the GA pre-analyses

the software according to the fitness function,
(2) a
utomatically tests combinations of suspicious

parameters, and
(3) m
ay find a combination of input that leads to a

more severe fault behavior.
One of the most beneficial features of the GA is that

it can be easily applied to a variety of different

problems. This applies to the software engineering and

testing, too. The automated testing algorithm can be

easily adapted to test other subroutines: the optimiza-

tion algorithm itself does not need to be modified at

all. Only the fitness function and the part of the

program that inputs test data to the target software

must be prepared so that it is compatible with the

interface of the new target. The chromosomes of the
GA are converted into corresponding parameters of

the tested subroutine. Hence the cost to automate

testing of every new routine in a software project with

a GA-based optimization approach should be lower

than the estimations represented in [85–87], and it

should be at least partly possible to make it

automatically. The GA-based approach may be best

suited for the timings and stress testing that are also

considered the testing types best suited for automation

in general.

One possible drawback of using the GAs with black

box testing method is that it by no means guarantee

code coverage. The GAs heavily favor those inputs

that cause high fitness value with the given software

metric, but may not cover much of the total search

space.

3.1. Fitness landscape

The obvious drawback of the evolutionary

approach is that solitary errors—needles in a hay

stack—cannot be detected by any greater efficiency

than using, e.g. random search. In this respect all

black-box type testing methods are equivalent. Only

white-box type methods have the possibility to reveal

such errors if they are related to some features of the

program structure. In practise most errors are not

solitary but appear in some context having some finite

extend. In other words the fitness landscape has some

correlation between neighboring points. The longer

the correlation length the more efficient is search

based testing when compared to random testing.

Especially this applies to testing of program execution

time extremes and other similar stress testing.

Unfortunately not much is known of the properties

of fitness landscapes neither in testing software nor in

optimization in general.
4. Conclusions and future

All researchers that have used genetic algorithm-

based optimization methods in the software testing

area have reported ‘‘good’’, ‘‘excellent’’, ‘‘positive’’

or at least ‘‘encouraging’’ results. The lack of negative

results might be partly due to the fact that researchers

do not want to release negative results. However, the

sheer expanding amount of research activity in the
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field [4] seems to suggest that this method is a serious

contender. The fact that many researchers that are now

active in this field have earlier used more traditional

software testing methods also strengthen this view.

GAs are well applicable to problems that are

discrete or have no exact mathematical expressions or

models as is the case of software testing. Harman and

Jones [84] claimed that software engineering is ideal

for evolutionary based optimization, none of our

findings contradicts this claim.

The effectiveness of GAs tend to depend on

implementation details, how the problem is encoded

etc. If GA does not seem to outpower the random

method, it is usually implemented poorly or in the

wrong way, or the GA operators: crossover, mutation,

selection schemes have been improperly selected or

have pathological values. However, GAs are robust,

small changes in GA parameter values do not usually

affect much the optimization efficiency or result.

When properly implemented GA is highly applicable

for software testing: testing coverage, timings,

parameter values, or finding calculation tolerances,

bottlenecks, problematic input combinations, and

sequences. If program parameters are changeable on

the fly, co-evolutionary GA can tune the tested

software during the testing.

We propose that GA-based automatic testing tools

can be used to automatically generate test data for

module testing. Although a random generator can just

as simply generate the test data, a GA-based testing

more easily reveals problematic parameters and starts

to construct more erroneous situations using only a

fraction of the test cases that the pure random search

method generates.

We expect that the studies involving evolutionary

optimization based software engineering will increase

in the following years and many of the questions still

unanswered will be studied.
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