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Abstract Previous work has shown that immune-inspired

techniques have good potential for solving problems

associated with the development of real-time embedded

systems (RTES), where for various reasons traditional real-

time development techniques are not suitable. This paper

examines in more detail the general applicability of the

Dendritic Cell Algorithm (DCA) to the problem of task

scheduling in RTES. To make this possible, an under-

standing of the problem characteristics is formalised, such

that the results produced by the DCA can be examined in

relation to the overall problem difficulty. The paper then

contains a detailed understanding of how well the DCA

which demonstrates that it generally performs well, how-

ever it clearly identifies properties of anomalies that are

difficult to detect. These properties are as anticipated based

on real-time scheduling theory.

Keywords Artificial immune systems �
Dendritic cell algorithm � Real-time systems �
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1 Introduction

Traditional approaches to the development of real-time

embedded systems (RTES) often feature a trade-off

between using static analysis methods, which are expensive

to apply and maintain, or having errors that only manifest

themselves infrequently. The static analysis techniques

normally involve worst-case analysis of the tasks’ sched-

uling [1], however this does not account for anomalies that

may occur in cases other than the worst-case [2, 3]. Even

then, it is extremely difficult to obtain the tasks’ worst-case

execution times (WCET), on which the scheduling and

timing analysis relies, on even for the simplest of proces-

sors [4]—to date there are only two tools that statically

obtain the WCET of tasks, Bound-T [5] and AiT [6], and

these only cover a small percentage of the microprocessors

available to the embedded systems market.

The problems with static analysis suggest that better

techniques are therefore needed to develop RTES in order

to avoid in-service problems. In [7], a technique for

detecting one class of potential anomalies within RTES –

deadline overruns – was presented. The technique, which

made use of the Dendritic Cell Algorithm (DCA) first

introduced in [8], was based on treating the overrun as a

danger signal. However while the results showed the strong

potential of the technique, they also showed that consid-

erable further investigation of the concepts was required.

From this, the following research challenges are formu-

lated, which form the basis of this paper:

1. Evaluate the technique on more than one example to

determine its general applicability;

2. Determine which classes of anomalies are more

difficult to detect,

3. Identify the quality attributes of a good solution.

The structure of the paper is as follows. Section 2 gives an

overview of the real-time and embedded systems domains,

and outlines some of the characteristics possessed by

RTES. Section 3 gives a detailed explanation of the

specific real-time problems encountered during the devel-

opment of RTES, and outlines some of the static analysis
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techniques traditionally used to solve them. Section 4

explores the application of biologically-inspired techniques

to problems in real-time and embedded systems and

discusses in particular the application of immune-inspired

techniques and the DCA. Section 5 gives details of our

work employing the DCA to detect deadline overruns.

Finally, the results of our experiments, conclusions and

ideas for future research directions are presented in

Sects. 6, 7.

2 Real-time and embedded systems

The work detailed in this paper is targeted towards solving

anomalies in the domain of real-time and embedded sys-

tems. This section discusses the characteristics of these

systems and the classes of anomalies which occur, and

provides motivation for the application of biologically-

inspired solutions in solving these anomalies. Further sec-

tions will then discuss the application of these techniques

in a specific example with a view to solving the problems

posed in Sect. 1.

2.1 Real-time systems

In the field of systems engineering, systems are often

considered to possess so-called ‘‘real-time’’ requirements.

In these systems, the correctness of an operation depends

not just on the result of the computation, but also on the

time at which that result is produced [1].

Real-time systems are traditionally associated with

safety-critical or high-integrity applications, where incor-

rect behaviour cannot be tolerated as it may result in

catastrophic consequences. In addition, a large number of

systems exist where real-time properties are desirable,

although the failure to meet these will not have the same

severe consequences. A system can be considered to be

‘‘hard’’ real-time if it is imperative that all the real-time

constraints are met. So-called ‘‘soft’’ real-time systems are

ones where ideally real-time requirements should be met,

but where the occasional failure can be tolerated. Most

systems contain a mixture of ‘‘hard’’ and ‘‘soft’’ tasks.

The properties of real-time systems and the various

complexities with their development has been the subject

of active research over many years and consequently they

are relatively well understood, with a wide range of spe-

cialist development and analysis tools available. In the

safety-critical domain, software must frequently be ana-

lysed and verified to ensure that it is correct and that it

meets its timing requirements [9]. However, these tech-

niques are time-consuming and often require specialist

knowledge: consequently, the development of reliable real-

time software is too expensive for anything except safety or

security-critical projects. In addition, many of the tech-

niques used are based on worst-case circumstances and are

therefore pessimistic: this leads to an under-utilisation of

the system resources in the majority of cases.

2.2 Embedded systems

The adoption of computer systems has increased dramat-

ically throughout the last few decades. In particular,

classical computer systems are now significantly out-

numbered by embedded computer systems, that is,

computers which are encapsulated inside another device.

Although used in a number of new devices classes (such

as mobile telephones) frequently embedded computer

systems are employed as a replacement for discrete control

logic or custom control circuits. Particular domains in

which embedded systems are frequently found include

automobiles and consumer electronics devices [10]. It is

widely anticipated that the market for these embedded

computer systems will increase exponentially over the

next 10 years [11].

There are a number of factors which are specific to the

development of embedded systems, particularly those

which are to be utilised in mass-market products. Most

significant is the need to keep the manufacturing costs

down: where a system may be included in hundreds of

thousands (or even millions) of units, a small saving on the

cost of each unit combines to produce a considerable

overall saving [12]. It is important to consider the costs

associated with developing the product, as these must be

recovered through sales of the final product. In a compet-

itive marketplace, it is crucial that a product enters the

market at the correct time: if it is late, it may lose sales to

rival products. It is also important that the product is reli-

able and contains features appropriate for its class.

With the general increase in complexity in computer

systems, many embedded systems have started to include

components with real-time properties, effectively creating

a new class of ‘‘real-time embedded systems’’ (RTES). In

some cases, such as in automobiles, these systems are

safety-critical, and are generally engineered using real-time

systems techniques. Typically, the automotive industry

makes use of a standardised range of components from a

few specialised suppliers, to reduce development costs.

Safety-critical components are generally isolated from non-

essential ones, to ensure that their operation is not affected

by the failure or malfunctioning of non-essential systems

[10].

Systems with definite real-time properties are being

increasingly utilised in the consumer electronics domain.

These systems are clearly not safety-critical, and conse-

quently it is not economically feasible to engineer them

using real-time analysis techniques; however the system
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must still be engineered with regard to its real-time prop-

erties, as inability to meet these may still cause problems.

These may range from small issues, such a perception of

unresponsiveness or ‘‘lag’’ having a negative effect on

usability, through to more severe issues such as complete

failure of the system. These conflicting design criteria

result in the need for trade-offs during the design and

implementation of embedded systems [13].

This is particularly true for digital broadcasting plat-

forms, which transmit digitally-encoded audio and video

signals. A digital receiver must be able to decode the

incoming signal, separate it into audio and video streams,

and these must then be decompressed.

2.3 Characteristics of RTES

The overall operation of a RTES can be thought of as a

series of tasks, each of which is responsible for a subset of

the system’s total functionality. Each of these tasks has a

number of properties, which can be combined to form a

profile for each task. A typical RTES will contain a set of

tasks with a variety of different properties.

The most significant property of any task concerns its

temporal behaviour. Some tasks are periodic: they execute

repeatedly with a fixed period. Others have no fixed repe-

tition period, and so are classed as aperiodic or sporadic. If

the system has multiple modes of operation, it is possible

that a particular task might be periodic in one mode, but

aperiodic in another.

The majority of other properties relating to a task

revolve around that task’s execution time. It is rare that a

task will execute for the same amount of time every exe-

cution cycle: rather, the execution time will vary depending

on the data to be processed or the presence/absence of

external signals. Consequently, a task’s execution time can

be considered to fall between two values: a minimum

‘‘best-case’’ execution time (BCET) and a maximum

‘‘worst-case’’ execution time (WCET). These values may

differ substantially, and it is also important to consider the

average execution time of each task when performing

execution time analysis.

Another important property of a real-time task is the

task’s deadline. This is the point in time where the task

must have finished its execution in order for the system to

meet its real-time constraints. Typically, any system which

employs multi-tasking will incorporate a scheduler, which

is responsible for allocating processor time to each task in

the system. In a real-time system, the scheduler must

allocate sufficient processor time to each task to allow it to

complete before the task reaches its deadline.

The utilisation of a task is an important measure from a

scheduling perspective. For any given task this is defined as

the execution time divided by the task period, giving a

proportion of the total time spent executing by that task. In

a system where execution times are defined in terms of

WCET and BCET, it is normal to also consider utilisation

values in terms of best-case and worst-case. The utilisation

of an entire system can easily be calculated as the sum of

the utilisations of all tasks within that system.

2.3.1 Similarities to job-shop scheduling

At first glance, the problem of scheduling tasks in a real-

time system looks similar to job-shop scheduling, to which

bio-inspired techniques have been applied with good

results [14, 15]. However, there are some significant dif-

ferences between job-shop scheduling and task scheduling.

Job-shop scheduling typically involves a scenario with

multiple jobs and multiple machines, where jobs must be

processed on a sequence of machines in a specific order.

Task scheduling typically only requires that each job be

processed on a single processor, although in more complex

situations, tasks may require access to specific resources as

a part of their execution which may introduce further

constraints.

An important differentiation is that job-shop schedules

are finite: once a job is completed, it remains completed,

and eventually the point will be reached where every

possible job is completed. Task scheduling, conversely, has

to deal with repeating periodic tasks, and can therefore be

considered to run indefinitely. The occurrence in sporadic

tasks, and the fact that tasks often experience variable

execution times on each execution, result in the overall

scheduling scheme being largely unpredictable in advance.

2.3.2 Problems with typical analysis techniques

Traditional analysis techniques used during the develop-

ment of real-time systems frequently make use of worst-

case values when execution times or utilisations are

required in calculations. In systems where reliability is

frequently the most important consideration, a system

which meets all its deadlines in a worst-case scenario

should never suffer from a deadline overrun in normal

operation.

There are several issues with traditional real-time anal-

ysis techniques. To fully analyse a real-time system

requires significant amounts of time and specialist knowl-

edge, and consequently is financially expensive. The cost

of undertaking this analysis increases the overall engi-

neering costs of the system, which must be earned back

through sales revenue.

There are also practical difficulties in obtaining accurate

information which can be used in the analysis of systems.

For scheduling analysis, it is necessary to obtain accurate

values for each task’s WCET: this can be achieved through
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either analysis or measurement. Determination of WCET

by analysis requires detailed knowledge of the hardware on

which the task will be run, and frequently gives pessimistic

results as it is difficult to analyse the effects of caches and

out-of-order execution strategies on the WCET of a par-

ticular task [16].

Measurement-based techniques rely on repeatedly tim-

ing the execution of a specific task and recording the

longest observed execution time. Although this is fre-

quently simpler than detailed analysis, there is no

guarantee that the WCET has actually been observed dur-

ing the measurement process, requiring a safety margin to

be added on top of the observed worst-case time [17].

Worst-case execution times values derived from both

analysis and measurement are specific to the hardware and

software analysed, and therefore are rendered irrelevant if

either the software or underlying hardware are changed

after the analysis has been performed. The result of this is

that an independent analysis must be carried out for each

different version of a system – knowledge cannot be

transferred from one version of a product to the next.

The use of WCET values in the analysis of real-time

systems frequently leads to under-utilisation of the avail-

able hardware [16]. This is because to ensure reliability a

system must be able to cope with all tasks running to their

worst case completion times 100% of the time, even

though in practice it is likely that those tasks will complete

with time to spare in most instances. Clearly in safety-

critical systems, where reliability is considered to be more

important than cost, over specification of processing can be

built into the cost; however this cannot be afforded in sit-

uations where the unit cost must be kept as low as possible.

2.4 Anomalies and anomaly detection in RTES

Problems encountered during the development and opera-

tion of RTES can cause the system to suffer from a variety

of anomalies. There are a number of different anomalies

but their effects are similar, normally causing partial or

even total non-responsiveness. In [7] three types of

anomaly were discussed – deadline overruns, deadlock/

livelock and bandwidth bottlenecks. This paper considers

deadline overruns in further detail.

Deadline overruns occur when one of a system’s con-

stituent tasks fails to complete before its deadline. This

may cause problems such as poor response times, or errors

in certain operations. It is possible for an overrun in one

task to induce further overruns in other parts of the system,

potentially leading to a worsening cycle of overruns which

may result in total system failure if left unchecked. The

presence of deadline overruns in a system can therefore be

viewed as evidence that problems exist with the operation

of that system. Ideally, deadline overruns should therefore

not occur; hence there is a need to reduce the possibility of

deadline overruns as a part of the development process. It

is also desirable to be able to detect the presence of

deadline overruns in a running system, ideally before they

actually occur.

There exist techniques to analyse the schedulability of

tasks in a system at the design stage, which can be used to

determine whether any overruns will occur in a given task

set (e.g. [18, 19]). Unfortunately, these techniques are

limited in their scope: for instance, it is straightforward to

analyse a purely periodic task set, but much more difficult

to analyse a system containing sporadic or aperiodic tasks.

This is simply because it is not possible to determine the

frequency at which a sporadic or aperiodic task is executed.

Most techniques represent a sporadic task as a periodic one,

with a period equal to the sporadic’s minimum inter-arrival

time: this is guaranteed to be safe, but is unlikely to be

representative of the task’s true behaviour and is likely to

cause the analysis to be pessimistic. As with most analysis

techniques, the results are specific to the particular task set

being analysed, and are not valid if even a small change is

made to either the system hardware or software. This

limitation also causes a priori analysis to be impossible on

systems which allow the user to make alterations or addi-

tions to the system’s software.

Given the characteristics of RTES and the types of

anomalies which occur within them, we can begin to iden-

tify deficiencies in many of the existing anomaly detection

methods. These methods are normally classified as static or

dynamic, and both classes have characteristics which can

make them unsuitable for application in a RTES scenario.

Static approaches require detailed knowledge of the

current system state, which is then used to deduce the

presence of problems. This requires a large amount of

system analysis, which often makes the techniques inflex-

ible. Particularly, if problems are detected towards the end

of the development cycle, it can be difficult to fix them, as

any changes to the system require the analysis to be

completely redone. Conversely, dynamic approaches rely

on easily-computable metrics, such as overall utilisation.

These are simpler to apply but can be difficult to generalise

for more complex systems.

Our work investigates the use of an adaptive, biologi-

cally inspired approach which should allow an accuracy

level close to that of static detection methods without the

complex analysis procedures normally associated with

them.

3 Task scheduling

As outlined in Sect 2.4, task scheduling is a significant

problem in the development of RTES, as the ability of
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tasks to meet their deadlines is important in guaranteeing

the system’s real-time properties and thus ensuring its

reliability.

A variety of scheduling approaches are examined in the

real-time literature, each of which has a differing range of

properties and characteristics. For the purposes of this

work, fixed-priority scheduling is used. The characteristics

of this are such that static analysis can be readily applied

for small problems, however the run-time ordering is

determined dynamically, so giving rise to interesting

properties during the course of system operation. In addi-

tion, fixed-priority scheduling is one of the scheduling

strategies most frequently used in the industrial design of

real-time systems [1]. This section explains the fixed-pri-

ority scheduling model, along with the static analysis

techniques traditionally used for its verification. It also

examines the model for deadline overruns and explains

the quality attributes for a deadline overrun detection

mechanism.

3.1 Fixed priority scheduling

Fixed-priority scheduling was initially examined in [20], in

the context of a simple conceptual framework where the

executing task at any point in time is always the highest

priority task which is runnable, such that the tasks execute

in a pre-emptive manner.

A typical implementation of fixed-priority scheduling

features three queues: a run queue, which contains tasks

which are released but which have not yet commenced

execution; a suspend queue, containing those tasks which

have commenced execution but have then been suspended,

for example due to pre-emption by a higher-priority task;

finally the waiting queue contains all tasks which are nei-

ther released nor executing.

In [20], tasks are assigned priorities based on their

periods, such that the task with the shortest period is that

with the highest priority. This policy is known as rate-

monotonic priority assignment, and was proven optimal for

task sets where each tasks deadline is equal to its period,

and where there are zero offsets—i.e. where at some point

in the execution of the system, there exists a point where all

tasks are released simultaneously, known as a critical

instant.

3.2 Static analysis of fixed priority scheduling

The purpose of performing static analysis on a scheduling

scheme is to determine formally, with the knowledge of the

scheme’s properties, whether it meets certain real-time

requirements. A fundamental aspect of this is schedula-

bility analysis, the purpose of which is to determine

whether all tasks in a task set will meet their deadlines

when a specific scheduling scheme is employed. For this

purpose, there exist a number of schedulability tests which

can be conducted. These tests fall into three categories,

based on the accuracy of the test results:

• Sufficient and necessary The analysis always indicates

correctly when a task set is schedulable. In addition, the

analysis always indicates correctly when a task set is

unschedulable.

• Sufficient and not necessary The analysis always

indicates correctly when a task set is schedulable.

However, there are cases when the task set is sched-

ulable contrary to the results of the analysis.

• Not sufficient The analysis indicates a schedulable

solution when the task set is in fact not schedulable.

Clearly, the most desirable tests are those which fall into

the sufficient and necessary category. However, in cases

where no sufficient and necessary analysis technique is

available, or where it is considered computationally

infeasible, a sufficient and not necessary test may be

regarded as acceptable. Tests which are not sufficient are

undesirable as they give incorrect assurances regarding the

schedulability of task sets.

The schedulability of a task set using fixed-priority

scheduling can be verified by the application of a simple

utilisation-based test [20] given in Eq. (1):

Umax ¼
Xn

i¼1

Ci

Ti
� n 2

1
n � 1

� �
ð1Þ

where: n is the number of tasks; i is a task in the set of

tasks; Ci is the worst-case execution of task i; Ti is the

period of task i; Umax is the maximum processor utilisation.

A system is always schedulable provided that the com-

bined utilisation of all tasks in that system is less than the

value determined by Eq. (1), according to the number of

tasks in the system. Consequently, if n is 1 and Umax is less

than or equal to 100%, then the task set is schedulable. As n

tends to infinity, then the maximum utilisation guaranteed

to be schedulable, Umax, tends to 69.31%.

The results provided by this test, however, are pessi-

mistic. An example of this is a task set with two tasks

whose period and deadline are both equal to T, and with

WCET of T/2. The test implies that the combined utilisa-

tion of these tasks (100%) is unschedulable since,

according to Eq. (1), Umax = 82.82% where n = 2. How-

ever, it can be demonstrated that this task set is

schedulable: as the tasks are simultaneously released, one

task is dispatched immediately and executes for time T/2.

On its completion the second is dispatched and executes for

a further time T/2, finishing at time T. Both tasks complete

execution within their deadlines, and so the task set is

schedulable. Consequently, this test can be considered to

be sufficient and not necessary.
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This pessimism was observed in [21], where it was also

noted that rate-monotonic priority assignment is sub-opti-

mal for task sets where task deadlines are not equal to task

periods, or where tasks have non-zero offsets (i.e. a critical

instant does not exist). The pessimism in this test indicates

that a better schedulability analysis method is needed.

An alternative schedulability test was derived in [22],

and is valid for task sets where there is a critical instant.

The analysis assumes that all tasks have a fixed unique

priority, and that the task deadline is not greater than the

period.

For each individual task, the response time can be

computed using Eq. (2) [22]:

Ri ¼ Ci þ Ii þ Bi ð2Þ

where: i is a task in the set of tasks for a given node; Ri is

the worst-case response time of task i; Ci is the WCET of

task i; Bi is the blocking time of task i; Ii is the interference

of task i.

In Eq. (2), the blocking time Bi is the longest time that

a runnable task can be prevented from executing by a

lower-priority task. This is dependent on the computa-

tional model being used. For an ideal pre-emptive system,

this blocking time is zero. A non pre-emptive system, or a

pre-emptive system where tasks access shared resources,

will involve some degree of task blocking which must be

accounted for.

When executing in a priority-based system, each task

suffers interference from other tasks which are higher in

priority than itself. For any task, the maximum interference

is suffered at a critical instant, where all tasks higher in

priority than itself are released simultaneously. The inter-

ference over a period of interest, (in this case the response

time of the task being analysed), is derived from the higher

priority tasks’ periods and WCETs, as shown in Eq. (3).

Ii ¼
X

j2hpðiÞ

Ri

Tj

� �
Cj ð3Þ

where: hp(i) is the set of higher priority tasks than task i; Ii

is the interference of task I; Ri is the worst-case response

time of task i; Tj is the period of task j; Cj is the WCET of

task j.

Equations (2) and (3) can be combined to form a

recurrence relation as shown in Eq. (4), to give the worst-

case response time for each task in the system:

Rnþ1
i ¼ Ci þ Bi þ

X

j2hpðiÞ

Rn
i

Tj

� �
Ci ð4Þ

with R0
i ¼ Ci

which terminates when Rnþ1
i ¼ Rn

i ; or Rnþ1
i [ Di

where Di is the deadline of task i.

If this recurrence successfully indicates that, for each

task in the system, Ri \ Di, then the task set is schedulable.

This test has been found to be sufficient and necessary

providing the task set meets the assumptions outlined above.

3.3 Deadline overrun model

In general, work on scheduling and timing analysis only

considers systems which meet their timing requirements, or

providing tests to ensure that requirements are met.

Although some papers consider soft real-time require-

ments, such as [23] this is generally only in the context of

providing best effort scheduling. There appears to be little

work in the RTS literature which attempts to formalise an

understanding of that happens when tasks fail to meet their

requirements. This work aims to formalise the effect of

deadline overruns.

Figure 1 shows a typical deadline overrun, with four

variables. The task’s deadline is denoted by D. C indicates

the time at which the task completes: in the case of a

deadline overrun, the value of C will be greater than D. The

value R represents the time at which the task is released,

i.e. the point at which it is transferred into the run queue

from the waiting queue. Finally, the task dispatch time,

shown as Dis, is the time at which the task begins execu-

tion following its release. Although in Fig. 1, R and Dis are

shown as occurring before and after the deadline D

respectively, these points can in fact occur at any point in

time providing that R B Dis, and therefore either can be

less than, equal to or greater than D.

One key property of real-world systems is that execution

times of tasks is not constant, caused by differences in task

behaviour between cycles, and often also by external fac-

tors such as user interaction. As a result, the times at which

tasks are dispatched and completed relative to their release

and deadlines will vary between execution instances. This

has a number of implications for this work.

Task 
release 

(R)

Task 
deadline 

(D)

Task 
dispatch 

(Dis)

Task 
completion 

(C)

= Task executing = Task blocked

time

Fig. 1 Typical deadline overrun
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The likelihood that a task will overrun varies between

the task’s release and its completion. It is quite possible

that, although the possibility of an overrun is identified at

some point during a task’s execution cycle, that the task

will not actually overrun. In some cases, this is due to

errors in the overrun prediction model, or with the infor-

mation supplied to it by the system. Generally, however,

the likelihood of an overrun is reduced as other tasks in the

system complete before their worst-case time. Conversely,

the release of higher priority tasks into the system during a

task’s execution cycle may result in an overrun being

predicted where previously no risk had been identified.

Frequently, these two behaviours will combine, such that

the likelihood of a task overrunning is low on its release,

increases as other higher priority tasks are released into the

system, and decreases again as those tasks complete ahead

of their worst-case times.

In addition, in non pre-emptive systems it is possible

that overruns can occur when tasks execute for durations

less than their WCET. An example of this is shown in

Fig. 2. In the first scenario on the left, task A completes

after 4 clock cycles, permitting the execution of task C.

When task B is released in cycle 5 it is then blocked from

executing until task C has completed at cycle 7. If the

deadline of task B is 7, the task misses its deadline.

However, in the second scenario, task A executes for 5

cycles. By this point, task B has already been released, and

so it is the next to execute after task A completes. The

execution of task B is then completed before its deadline at

cycle 7.

This complexity makes the analysis and detection of

overruns particularly difficult. In a small system, it is

possible to exhaustively search through all combinations of

task properties to establish all the possible conditions

which lead to overruns. However, this quickly becomes

infeasible as the complexity of the system increases.

4 RTES problems and biologically-inspired solutions

The use of RTES in consumer electronics devices leads to a

significant conflict during the design process. There is a

need for the device to meet all its real-time requirements to

achieve a high level of reliability, but at the same time,

market forces dictate that the development must be both

fast and cheap, to ensure the product reaches the market on

time and to maximise profitability. As well as being

expensive and time-consuming, current real-time devel-

opment techniques are inflexible, and do not readily

support changes during the development process. This

makes them unsuitable for use in the majority of CE

development.

As well as the traditional real-time development tech-

niques, there are a variety of different methods which can

be employed during the design and production of devices,

including methods such as model-driven development.

Unfortunately, the use of such techniques suffers from

problems similar to those encountered with static analysis

approaches: problems frequently arise at the implementa-

tion stage due to mismatches between the models and the
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Fig. 2 Overrun caused by task executing for less than worst case time
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physical implementations, and solutions derived from

iterative development techniques are specific to one par-

ticular system configuration, and cannot be transferred to

another similar system without restarting the entire devel-

opment process.

What is required is a mechanism for fault tolerance

which can adapt to accommodate differences in the system

and its environment. For this, we look to biology for

inspiration: in the natural world, biological systems exist

which are clearly fault-tolerant and able to adapt success-

fully to their surroundings. In particular, we draw

inspiration from the natural immune system, the purpose of

which is to protect its host organism from attack.

The development of biologically inspired computer

systems is one of many areas of computer science which is

considered to fall outside the realm of ‘‘classical’’ com-

putational methods, despite being a source of inspiration

for many of the founders of the computer science discipline

[24]. Despite this, there are many models present in mod-

ern day computer science which have been successfully

derived from biological counterparts. In particular, there is

a considerable body of research which has focussed on the

development of systems which derive inspiration from

immunology, known as ‘‘artificial immune systems’’ (AIS)

[25]. This work looks to exploit the anomaly-detection

properties of AIS.

4.1 RTES considerations

Our work focuses on the detection of task scheduling

anomalies in a device with real-time and embedded char-

acteristics, allowing increases in reliability while at the

same time keeping development time and costs to a mini-

mum. AIS has previously been applied to other types of

scheduling with positive results [14, 26], and our initial

investigations indicate that AIS techniques show good

potential in the case of task scheduling [7]. As task sched-

uling has specific complexities which do not apply to other

types of scheduling, and as resource issues are particularly

important, we anticipate significant research challenges.

Many of the AIS techniques which have been developed

are based on the principles of the adaptive immune system

[25]. The adaptive immune system is able to alter its

behaviour in response to previously unseen antigens to

provide defence against them. Consequently, systems using

adaptive techniques are able to ‘‘evolve’’ to provide solu-

tions in previously unknown situations, and to maintain a

memory of those situations so that they can be dealt with

quickly and effectively should they arise again. This allows

a system to change as its environment and circumstances

change, resulting in a more effective solution.

Frequently, however, adaptive techniques have signifi-

cant processing and memory requirements, to support the

adaptation and learning properties of the system. In sys-

tems where hardware is severely limited, such as embedded

systems, it is therefore impractical to make effective use of

adaptive AIS techniques.

4.2 Innate immunity and the Danger Model

Current immunological research suggests that the function

of the innate immune system is more important to the

overall immune behaviour of an organism than previously

thought [27]. As a result of this a new class of AIS has been

established based around techniques derived from innate

immunity [28].

The innate immune system makes significant use of the

emission and detection of patterns and chemical signals.

These may be specific protein patterns only associated with

invading pathogens, or signals generated by the tissues and

cells of the body itself as a response to events in the

environment or inside individual cells. The presence of

these signals induces a response from other immune system

components, including those of the adaptive immune sys-

tem [27].

There have already been a number of applications of

innate immune-inspired techniques in the AIS literature,

mainly aimed at anomaly detection, such as [29] and [30].

These techniques are unable to adapt to changes in envi-

ronment or respond to unknown issues, but generally

require fewer resources than a fully adaptive system and

offer effective solutions to problems that they are designed

to solve.

Although innate immune-inspired systems operate in a

different manner from ‘‘classic’’ adaptive AIS, they are

generally based around the same concept of self/non-self

discrimination which has been the basis of immunological

theory for nearly 40 years [31]. However, the process of

distinguishing ‘‘self’’ from ‘‘non-self’’ has been problematic

in artificial systems, particularly when the negative selection

model has been applied [32]. In addition, there remain a

number of immunological issues which the generally

accepted theory is unable to explain adequately. Matzinger’s

Danger Model [33] suggests a set of fundamentally different

principles around which the immune system is based. Rather

than the immune system being able to distinguish between

‘‘self’’ and ‘‘non-self’’, instead the Danger Model suggests

that the immune system in fact detects signals produced

when cells in an organism die unexpectedly.

The Danger Model is based around the idea of signal

transmission between cells, the fundamental concept being

that cells which die unexpectedly (necrosis) send out sig-

nals which are distinct from those sent out by cells which

die naturally (apoptosis). These ‘‘danger signals’’ are

detected by components of the immune system, which is

then mobilised to fight the infection.

120 Evol. Intel. (2008) 1:113–132

123



Since it was first proposed, the Danger Model has been

controversial amongt immunologists and is not widely

regarded as being a correct model of how the immune

system functions (for example [34]). However regardless

of their plausibility or biological correctness, the concepts,

structures and methods around which the model is based

provide a useful basis from which in silico AIS can be

derived.

4.3 The Dendritic Cell Algorithm

The Dendritic Cell Algorithm (DCA) is an innate immune

concept derived from the Danger Model. The broad func-

tion of the DCA is to provide an indication of danger levels

associated with different parts of the system. This is

accomplished by the collection and aggregation of signals

and antigen derived during the operation of the system. The

idea of basing an immune-inspired system on dendritic cells

(DCs) was first outlined in [35], and further clarified in [8].

The DCA is based on a series of in vitro observations of

the behaviour of individual living DCs. When a DC is

created, it starts in an ‘‘immature’’ state. The function of

immature DCs is to collect a range of chemical signals,

produced when cells belonging to the host organism

undergo apoptosis or necrosis, or by other components of

the immune system. At the same time, DCs collect samples

of potential antigen they encounter.

A DC which experiences high levels of chemical signals

associated with ‘‘danger’’, caused for example by cells

dying through necrosis, or by the DC encountering high

concentrations of pathogenic associated molecular patterns

(PAMPs – chemical signals which are directly linked to

the presence of pathogenic agents), undergoes transfor-

mation into a ‘‘mature’’ state once the number of danger

signals encountered within a given time frame exceeds a

threshold: it then travels to a lymph node where it presents

its antigen. Depending on the response of other DCs, an

immune response can then be initiated against that antigen.

If a DC detects low levels of danger signals, then it enters a

different ‘‘semi-mature’’ state: these semi-mature DCs

travel to a lymph node and present antigen in the same way

as mature DCs, however their semi-mature status does not

cause the initiation of an immune response, instead leading

to tolerance of the antigen.

As well as danger and PAMP signals, the DCA allows

for other categories of signals, which affect how the DCs

mature. In particular, the notion of a ‘‘safe’’ signal is

supported: the presence of such a signal often serving to

reduce the effect of danger signals within the DC. The

notion of inflammation can also be supported, by the

generation of specific inflammatory signals when a DC

becomes mature; these inflammatory signals are then

detected by other DCs in the system.

The method by which DCs link danger to specific

antigens relies heavily on guilt by association – that is, an

antigen observed in the presence of danger signals is

assumed to be the cause of that danger. Although in iso-

lated cases this may lead to individual DCs falsely

presenting benign antigens, the combined effect of many

DCs presenting the same antigen can be taken to indicate

that particular antigen is indeed dangerous and requires the

initiation of an immune response against it. The likelihood

of an immune response being initiated against an antigen

increases as the ratio of mature DCs presenting that antigen

increases, compared to the number of times the antigen is

presented in total. In [8] this value is referred to as the

mean context antigen value or MCAV; the closer this value

is to 1, the higher the danger level associated with the

particular antigen is.

This method by which DCs function in vivo can be

transferred easily to in silico systems, providing them with

a mechanism to detect problems. Based on the idea of a DC

detecting chemical signals, a virtual DC can be created to

detect virtual signals which are derived from specific

attributes of the system which they are monitoring. The

combination of these input signals causes the virtual DC to

mature in the same way as its biological counterpart. By

using a population of DCs monitoring different compo-

nents of the system, the output from a number of DCs can

be combined to deduce information about the overall state

of the system.

The operation of the DCA is described by pseudocode in

Fig. 3, simplified from that in [8]. Each DC can be repre-

sented as a data structure storing observed antigen, input

signal levels, output signal levels and a migration thresh-

old. This is shown in Fig. 4.

The DCA has been employed effectively to solve

anomaly detection problems in a number of problem areas,

including intrusion detection [8] and in sensor networks

[36]. Its particular advantage is that, due to its origins in

innate immunity, it is generally a lightweight solution with

little on-line adaptation involved. This requires fewer

resources than AIS techniques which are based around

adaptive immune principles, and is therefore more likely to

be usable in a resource-constrained system. The DCA is

therefore a good choice for the detection of anomalies in

RTES, where resource availability is a significant concern

yet there is a need for reliable anomaly detection strategies.

4.3.1 DC parameters

The operation of the DCA relies on each DC in the pop-

ulation combining its input signals to produce an output.

Since the DCA is able to induce an immune response

correctly, it is necessary to assign appropriate levels of

danger to each of the input signals collected. In vivo, DCs
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treat some signals as being more dangerous than others, for

example, the presence of PAMPs is regarded as more

dangerous than the presence of signals generated by

necrosis. In silico, this behaviour is emulated by applying

weighting factors to the DC input signals, which are then

used by the DC when it is computing its output values

(Fig. 5). The weightings applied to each input signal during

this combination process play a vital part in determining

the output value of that DC, as do the thresholds defining

the output values at which the DC reaches maturation.

Current implementations of the DCA have made use of

fixed weightings specified by the designers. Although this

allows the artificial injection of knowledge from in vivo

observations (for example, the knowledge that DCs treat

PAMP signals as being more dangerous than those caused

by necrosis), it does cause the DC to be pre-biased to the

concept of what exactly is dangerous and what is not.

There is also no guarantee that the designer’s weightings

are optimal for the problem being solved—although they

may work acceptably, a better solution may exist. The

maturation thresholds are also a fixed range of values; this

effectively means that the sensitivity of the DCs is set by

the designer and cannot be changed as the system runs.

Our work therefore examines the potential for the DCA

parameters to be altered as the system runs. Allowing the

weightings for each individual DC to be variable, and

changed according to a specific search strategy, such as

simulated annealing or an evolutionary algorithm, should

allow each DC to be tuned with a specific set of parameters

for the problem being solved. Application of this process

across a population of DCs should therefore allow for a

highly effective (though not necessarily optimal) set of

DCs to be found.

This tuning process can be conducted as a part of the

system’s development process, producing a set of effective

DCs which can then be incorporated into the final system.

During system development, the evolutionary process can

be included as a natural part of a DC’s lifecycle; either

when they signal danger (i.e. they reach maturity), or when

they reach the end of their pre-determined lifecycle (i.e.

they reach semi-maturity). The potential search space for

DC parameters is large, and as each potential set of

parameters requires complex evaluation, the implementa-

tion of actual tuning techniques is left as future work.

while dc cycle count < max dc cycle count loop
   update antigen and signal levels from environment;

for all DCs in population loop
      sample associated antigen;
      sample associated signals;
      compute cycle output signal;
      compute cumulative output signal;

if cumulative output signal > migration threshold then
         DC becomes mature;
         remove DC from population;
         migrate DC to lymph node;

end if;

end loop;

   dc cycle count = dc cycle count + 1;

end loop;

all remaining immature DCs become semi-mature;
analyse DC antigen and output signal levels;

Fig. 3 Pseudocode for DCA (adapted from [8])

A 1 A 2 ... A n

...OS 1 OS n

S 1 S2 ... S n

M

DC antigen store

DC input signal accumulators

DC output signals

Migration threshold value

Fig. 4 DC data structure (adapted from [8])
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Any immune system incorporated in the final system is

still an innate immune system, however its parameters are

derived by adaptive methods to ensure that it is as effective

as possible. This can be considered analogous to the

continuing evolution of the human innate immune system

through mutation and natural variation over the course of

many generations.

5 Task scheduling with AIS

Our work applies immune-inspired techniques, specifically

the DCA, to situations which occur in RTES. As an

example of a typical RTES problem, we will examine the

application of the DCA to task scheduling.

Our implementation incorporates a population of artifi-

cial DCs into a system, so allowing that system to detect

problems with its scheduling strategy as they arise. Ini-

tially, our work is only concerned with identifying

scheduling problems, rather than with finding their solu-

tions. There are a variety of methods which can be used to

solve scheduling problems, but most of these are reliant on

information such as those provided by our solution.

As a part of this work we will enhance the DCA to make

it more effective in a limited-resource environment, and

establish the minimum population size which is effective at

diagnosing anomalies in these situations.

In [7], the DCA was applied to task scheduling with a

small set of purely periodic tasks, the properties of which

are shown in Table 1. These tasks were engineered such

that in most instances they complete normally, but that the

relatively infrequent release of a task with a long execution

time (task 4) can cause other tasks in the system to overrun.

Even when this task is released, the actual occurrence of an

overrun is determined by a number of additional factors,

such as the execution times and release rates of other tasks;

this results in this apparently simple problem being par-

ticularly difficult to analyse a priori.

In this paper, we aim to evaluate the general applica-

bility of the DCA to a variety of different task sets.

5.1 Measures

As outlined in Sect. 2.3, there are a huge variety of dif-

ferent measures from which the status of a particular task

can be derived. For the DCA to be effective it is important

to consider which of these measures should be used, and

how they will be mapped onto the input signals for each

individual DC. Some of these measurements relate to the

system as a whole, while others are linked only to indi-

vidual tasks.

System-wide measurements include the total utilisation

of all currently-running tasks in the system, giving an

indication of the system’s workload. Although it is possible

for systems to function correctly in overload situations, it is

inevitable that a system with a worst-case utilisation level

greater than 100% will eventually experience problems.

Utilisation is a useful measure of the overall health of a

system, but it can be difficult to attribute system failures to

any one task.

When considering execution properties of individual

tasks, a useful concept is that of slack time. This is the

interval between the completion of a task and its deadline.

Due to it not always being possible to determine the exe-

cution time of a task a priori (as outlined in Sect. 3.3), it is

also impossible to determine the actual slack time for any

given execution of a task until that task is completed.

However, by making use of worst-case properties, it is

possible to calculate the minimum possible slack time at

any point in a task’s execution. If this worst-case slack time

is less than (or equal to) zero, then the task will complete

on time and therefore not miss its deadline. If at any point

during the execution cycle the worst-case slack time is

negative, there is the possibility that the task may overrun,

although as the calculation is by necessity based on worst-

case values, it is still possible for the task to complete on

time.

An alternative, and arguably more intuitive, measure

which is analogous to slack time is a process’s overrun

time, which is simply the inverse of the slack. A process

which has a positive overrun time is one which does not

complete before its deadline; a negative overrun time

indicates successful completion before the deadline.

The DCA supports multiple categories of input signal

which can be considered analogous to the different chem-

ical signals detected by DCs in vivo. Therefore, different

measurements are derived from the various task properties

outlined above, and these are employed as our input signals

(Table 2). Signals are included for the signal categories

PAMP, danger and safe: the use of inflammatory signals is

not considered in this paper.

5.2 Antigen

The DCA provides a danger level associated with a par-

ticular antigen. In this work, the tasks present in the system

are taken as the antigen, against which the danger level can

Table 1 Task properties of scenario system

Task ID WCET BCET Deadline Period

1 5 4 25 25

2 20 10 50 50

3 30 20 100 100

4 40 25 775 775

Evol. Intel. (2008) 1:113–132 123

123



be measured. A task which experiences a high level of

overruns should be flagged as having a high level of danger.

Our implementation of the DCA associates each DC

with a subset of the tasks present in the system, allowing

the population as a whole to monitor a variety of different

combinations of tasks. By combining the output of a

number of different DCs, it is possible to build up a picture

of the operation of the system as whole and therefore to

determine which parts of the system are experiencing

problems.

5.3 Learning system behaviour

As a part of investigating general applicability of the DCA

to a variety of problems, it is important that the DCA is not

provided with any prior knowledge of the system’s oper-

ation. Therefore, our solution includes support for the DCA

to learn the execution properties of each individual task as

the system’s execution progresses. The parameters learned

are used by the DCA in deriving the input signals.

This allows the DCA to be incorporated into a system

with no knowledge of how it operates, and for it to be able

to derive this knowledge as the system runs. This goes

some way towards addressing one of the major problems

with static analysis methods, which is the need for large

amounts of information about the system properties to be

gathered before the analysis can be completed.

Incorporating learning behaviour also allows the DCA

solution to go some way towards supporting systems with

dynamic run-time properties, for example where additional

tasks are added to the system, or where the task properties

change as the system runs. Given the increasing complexity

of many classes of RTES, it is important for any devised

technique to be able to support such systems.

5.4 DC parameters

As discussed in Sect. 4.3.1, a weakness with the DCA is its

incorporation of parameters solely derived from in vivo

observations of DCs. As the use of these parameters makes

potentially unrealistic assumptions about the problem

domain and its operation, one of the objectives of this work

is to investigate whether there is a set of DC parameters

which is universally suitable for solving a large number of

problems, and if there is not, the possibility of deriving

these parameters such that they are specific to the problem

being solved.

Our initial work [7] incorporated rudimentary evolution

of some of the DC parameters, driven by random mutation

of the DC’s weighting values and controlled by a fitness

function. This demonstrated that the signals output by the

DCA vary radically depending on the values assigned to

the weightings within each individual DC. Consequently, it

was established that there was good potential for improving

the operation of the DCA by allowing the parameters of

individual DCs to be altered depending on the correctness

of each DC’s reports.

Although in [7] mutation is concentrated solely on the

DC’s internal weighting values, there are a number of

parameters in addition to weightings which could poten-

tially be altered by evolution, including DC threshold

values, and the bindings between DCs and the parts of the

system they monitor.

Initially, to determine the general applicability of the

DCA to problems in its current state, we employ the DCA

as it has been applied to intrusion detection in [8] and [37],

with a fixed set of parameters, to a wide variety of task sets.

This allows us to determine the effectiveness of a specific

parameter set over a number of similar problems, each with

slightly different characteristics. The results obtained from

this will allow us to select potentially interesting task sets

with which further experimentation and analysis can be

carried out using different sets of DCA parameters.

This work makes use of the weighting values given in

Table 3. These values were chosen because, initially, there

is no need for the DCA to react differently to danger or

PAMP signals. It could be argued that, in this situation, the

detection of actual overruns is less important than the

prediction of potential overruns, as by the time an actual

overrun has been detected it is too late for the system to do

anything about it.

To maximise the likelihood of the DCA responding to a

danger or safe signal, the migration threshold is set to a

value of 5. This has the effect that any DC which detects

either danger or PAMP, and no further safe signals, will

Table 2 Derivation of DC input signals

Event Signal

category

Derivation

Actual overrun PAMP Task completion time [ task

deadline (Ci [ Di)

Potential overrun Danger At any point from task release

to completion, worst-case

response time is greater than

time to deadline (Ri [ Di)

No projected overrun Safe At all points from task release

to completion, worst case

response time is less than

time to deadline (Ri \ Di)

Table 3 DC weighting values

used
Signal Weighting

PAMP 6

Danger 6

Safe -6
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immediately mature and be analysed. The DC lifecycle is

set at 40 DC updates; assuming one update per simulation

clock cycle, a DC which experiences no danger or PAMP

signals will become semi-mature after 40 clock cycles.

Given the recurring nature of the task-scheduling problem,

each DC is regenerated into the population once it has

reached maturity or semi-maturity. This ensures a constant

refreshing of the DCs population, while maintaining a

relatively small population size.

The problems evaluated here make use of a population

size of 20 DCs. Given random assignment of tasks to DCs,

this number gives good coverage of the various permuta-

tions of tasks. The assignment of tasks (antigen) to DCs is

random at the start of the simulation and does not change

throughout the run.

6 Evaluation of AIS-based task scheduling

In this section we evaluate the DCA-based solution for

detecting anomalies in task scheduling. This evaluation

considers the accuracy of the DCA system for detecting

anomalies and the responsiveness of the system. These

measures are then considered with respect to the overall

utilisation of the system, and also the average slack time of

each process.

6.1 Task simulation environment

The results on which the analysis is based are obtained

using a task simulation environment. This simulates the

execution of a simple task set, using fixed priority non-

preemptive scheduling.

The simulator considers task execution time in terms of

‘‘cycles’’—one cycle being the smallest unit of execution

time available. The state of the scheduler is monitored each

and every clock cycle, both by static analysis, which pos-

sesses knowledge of the task parameters, and by a DCA

implementation, which initially has no knowledge of task

parameters and must learn these as the simulation is run.

Where the static analysis detects the presence of a potential

or actual overrun in the system, this is recorded and

compared with the output produced by the DCA imple-

mentation to give measures of accuracy and responsiveness

as defined below.

The simulator supports the execution of different task

sets, and is run in a framework which allows the generation

of random task sets with rate-monotonic priority assign-

ment. Each task set is simulated 10 times, each run for a

fixed number of cycles. The output from the 10 runs is then

combined to produce an aggregate output for each task set.

The framework repeats the simulation with a number of

different task sets.

To produce task sets with a reasonable likelihood of

errors, but in which normal execution occurs in the

majority of cases, the random task sets are constrained

according to the worst-case utilisation of the entire task set.

For this paper, each randomly generated task set com-

prises four tasks and is engineered to have a total worst-

case utilisation between 0.95 and 1.4.

6.2 Measurements: accuracy

The accuracy of the solution is determined by comparison

with traditional static analysis techniques for a number of

test cases. Both the DCA-based solution and a static

analysis solution are run simultaneously, allowing them to

monitor a task simulator. The static analysis technique is

assumed to be 100% accurate at detecting and predicting

overruns. The accuracy of the DCA-based solution is

measured against this.

Figure 6 shows the execution of a task, from the start of

its execution (at the point labelled Dis) to its completion (at

point C). It is assumed that the static analysis solution will

detect a potential overrun at the earliest possible opportu-

nity (shown as point SA). Therefore it is assumed that this

point is also the earliest that a DCA-based solution can

correctly identify the presence of a potential overrun in the

system. Any reports of danger produced by DCs in the time

window between Dis and SA (labelled 1) are assumed to be

incorrect, i.e. the DCA reports a false positive. It is pos-

sible, depending on the static analysis technique used, that

the point SA may actually occur before Dis.

For the DCA to correctly detect an overrun, it must

report the presence of danger in the system at some point in

the time window between SA and C (labelled 4). In the

case of a task which successfully completes before its

deadline, a report of danger in this window indicates suc-

cessful prediction of a potential overrun. Where the task

deadline occurs before the completion of its execution, any

report of danger in the time period between SA and D

(labelled 2) indicates successful prediction of an actual

overrun, while a report between D and C (labelled 3)

Dis SA D C

       Dis = Start of task execution
       SA = Static Analysis detects overrun condition
       D = Task deadline
       C = Task completion

321

Time

4

Fig. 6 Determining accuracy of DCA-based solution

Evol. Intel. (2008) 1:113–132 125

123



indicates successful detection. For the purposes of this

analysis, we do not discriminate between prediction and

detection of actual overruns and both are considered

equally accurate, however it is noted that in a real-world

system prediction is likely to be more desirable than

detection.

We record the accuracy of the DCA based system for all

instances of task execution where static analysis reports the

presence of a potential or actual overrun in the system

(only one report is made per execution instance). From this,

we calculate the accuracy for the DCA-based solution, as

the number of correctly detected overruns divided by the

total number of overruns present in the system. For the

purposes of the analysis in this paper, we consider the

accuracy of those execution instances where actual over-

runs occur separately from those where potential overruns

are raised.

6.3 Measurements: responsiveness

The responsiveness of the solution, as with accuracy, is

determined by comparison with static analysis of the

system.

We consider the responsiveness of the DCA-based

solution for all task execution instances where the static

analysis indicates the presence of a potential or actual

overrun in the system. The method by which responsive-

ness is calculated is shown in Fig. 7. For all the tasks where

an overrun is detected, we record the cycle time at which

the static analysis first highlights the presence of that

overrun (point SA in Fig. 7). We record the time at which

the task completes, or its deadline if it reaches this before

its execution has completed (point C|D). Finally, we record

the first report of danger from the DCA-based solution

(point DC).

Using these values, the responsiveness of the DCA-

based solution can be calculated using Eq. (5). This gives a

value for the responsiveness of the DCA-based solution, as

a proportion of the responsiveness of the static analysis. In

Fig. 7, this is shown as the duration labelled Y divided by

the duration labelled X

RspDCA ¼
CjD� DC

CjD� SA
: ð5Þ

As a consequence of this calculation of responsiveness,

any execution instance where the DCA-based solution

responds at the same time as the static analysis report has a

responsiveness of 1. For any instance where the DCA

solution responds on or after the task deadline, or where

there is no DCA response at all (i.e. the accuracy for that

instance is 0) the responsiveness value can be assumed to

be 0. Instances where the responsiveness tends towards 0

are less responsive, while those where the responsiveness

tends towards 1 are more so.

6.4 With respect to system utilisation

One of the objectives of this work as outlined in the

introduction is to derive some measure of ‘‘problem diffi-

culty’’ for a given task set. Initially, we consider the overall

utilisation of a task set as an indication of this. The util-

isation of each individual task, which can be combined to

give the overall system utilisation, is a classic measure of

the complexity of a task set used by many of the traditional

static-analysis techniques [1], for example the schedula-

bility test from [20] shown in Eq. (1) (Sect. 3.1). It could

potentially be a good base measure of ‘‘problem difficulty’’

in the context of this work.

The task sets used to test the DCA-based solution are

generated at random, each task having known BCET and

WCET, period and deadline (so allowing static analysis of

the task set to take place). From these values, we calculate

the best-case and worst-case system utilisation values for

each task, and combine these to obtain utilisation values for

the entire task set. These values are then used as a measure

of difficulty against which we evaluate the accuracy and

responsiveness of the DCA-based solution.

6.4.1 Accuracy

The accuracy of the DCA-based solution against total sys-

tem utilisation is shown in Fig. 8 (worst-case utilisation)

and Fig. 9 (best-case utilisation). Each point represents the

overall utilisation and average DC accuracy for an indi-

vidual randomly generated task set, comprising 4 tasks with

rate monotonic priority ordering.

It can be seen from both graphs that the detection of

actual overruns (shown as triangles), regardless of system

utilisation, is close to 100%. This demonstrates that the

DCA has good ability to detect overruns in a system when

they occur.

However, the ability of the DCA to detect potential

overruns (shown as diamonds) is less clear. For some task

sets, the detection rate is close to 100%, however for others

SA C|D

SA = Static Analysis detects overrun condition
DC = DCA solution detects overrun condition
C|D = Task completion or task deadline
  (whichever reached first)

X

Time

Y

DC

Fig. 7 Calculating responsiveness of DCA-based solution
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the detection rate is considerably lower. There appears to

be a slight correlation between utilisation and accuracy in

both best- and worst-case graphs—higher utilisations in

general showing slightly higher accuracy in the detection

of potential overruns than lower utilisations. This is due to

the increased probability and magnitude of overruns in

higher utilisation task sets, making detection more

straightforward. However, the data points are too widely

scattered to make any significant correlation between

utilisation and accuracy.

6.4.2 Responsiveness

The responsiveness of the DCA-based system with respect

to worst-case system utilisation is shown in Fig. 10.

As with the accuracy graph, there is a slight correlation

between system utilisation and DC responsiveness; this is

for the same reason as with the accuracy graph. Again,

however, the data points are too widely scattered to draw

any definite conclusions regarding the correlation between

the total system utilisation and the responsiveness of the

DCA. The results were similar when comparing best-case

utilisation with responsiveness.

6.5 With respect to overrun time

The results shown above suggest that the overall system

utilisation is not an adequately sophisticated measure of

system complexity and thus of ‘‘problem difficulty’’.

As outlined in Sect. 3.2, an alternative to using utilisa-

tion-based measures is the use of response times. These are

measured from the time a task is released, however a task’s

overrun time can be considered as an analogous measure,

taken instead from the task’s deadline. For any given task

execution instance, its overrun time is an effective measure

of whether it has overrun, and if so by how much. It

therefore appears that the smaller the overrun time in any

given instance, the more difficult it is to detect that

overrun.

A measure of overrun time is therefore recorded for each

instance of a task’s execution where a potential or actual

overrun is reported. In the case of actual overruns, the

recorded overrun value is positive; for potential overruns,

where the task completes before its deadline, the value is

negative. Zero overrun of course indicates that the time at

which the task completed was exactly the same as its

deadline.

The overrun value can then be used for comparison with

accuracy or responsiveness, either on a per execution

instance basis for a single task set, or aggregated to allow

comparisons to be made between multiple task sets.

There are at least three different measures of overrun

time which could be used. Firstly, there is the actual overrun

time, recorded when the task in question actually completes

its execution. Given that tasks can complete on time even

where potential overruns are reported, this value can be
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positive or negative. Secondly, there is the predicted over-

run at the time the static analysis first reports the presence of

a potential or actual overrun in the system. Because the

worst-case response time must be greater than the time

remaining before the deadline for an overrun to be reported,

this value must always be strictly greater than zero. Finally,

there is the worst-case overrun; this is the maximum over-

run time reported by the static analysis between its initial

report and the time at which the task completes. This is

likely to be different from the other measures, as the release

and execution of other tasks in the system affects the worst-

case response time of a task between the time it is released

and the time it completes execution.

For the purposes of this work, two of the above overrun

measures are considered; the actual recorded overrun time,

and the predicted overrun time. The actual overrun time is

chosen because it gives a good indication of the system’s

actual operation; the predicted overrun time gives a view of

the system comparable with that taken in traditional static

analysis method.

6.5.1 Accuracy

To establish the accuracy of the DCA solution with respect

to overrun time, an average overrun value is computed for

each task set used. This value is shown plotted against the

DCA accuracy in Fig. 11 (actual overrun time) and Fig. 12

(predicted overrun time). Each point on the graph repre-

sents the results of the simulation for a whole task set. As

with the earlier accuracy graphs against utilisation, the

accuracy of potential overruns and actual overruns is

considered separately.

As with graphs of system utilisation against accuracy,

there is an imperfect correlation between either measure of

overrun time and DCA accuracy. However, particularly on

the graph showing actual overrun time, it can be seen that

in situations where there is low average overrun, the

accuracy is spread across the whole range, whereas for

higher values of overrun the accuracy tends to be higher.

This supports the view that situations with lower overrun

values are more difficult to detect. The reasons for the

imperfect correlation were considered, and judged to be

due to a combination of factors, the main ones being the

selection of DC parameters and the fact the learning of the

characteristics may cause inconsistent results in the initial

stages of the simulation.

Again, the detection of actual overruns does not seem to

be affected by the average overrun value of the task sets:

this suggests that the DCA in this configuration is well

suited to the detection of anomalies. However, it is clearly

less suited to the prediction of potential overruns, and there

is no apparent correlation between the average overrun

value and the accuracy of prediction.

6.5.2 Responsiveness

The responsiveness of the DCA solution, plotted against

overrun time, shows more interesting characteristics when

plotted on an individual task set basis. Graphs for four

different task sets are shown in Figs. 13, 14, 15, 16.

These graphs show distinct and obvious patterns

between the overrun time and responsiveness. A reason for

the distinctiveness of the results presented here is that the

results are at a finer grained level, i.e. they represent the

behaviour of one task set rather than the aggregated

behaviour across many task sets; each data point on the

graph represents one execution instance of a task. The data

points on the graph are clustered together in a number of

distinct regions, which are caused both by different tasks

overrunning, and also by different overrun conditions (for

example, the status of the run queue when the overrun is

detected). The modal nature of this data can be seen
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particularly for the predicted slack graph in Fig. 13;

clearly, the pattern produced is the result of overruns being

detected in four different system states, each state being

responsible for one region on the graph. However, the

graph of actual overrun shows that these distinct regions

have combined, suggesting either that all the four predicted

overrun conditions merge into one, or simply their effects

overlap such that the pattern can no longer be easily

observed. The reason for this is that predicted overruns

tend to be smaller in size, and more transient in their nature

than actual overruns. It may be the case that the potential

for an overrun may no longer exist due to the system state

(e.g. contents of the run queue and the task that is exe-

cuting) changing before the DCA is able to detect the

problem.

It can also be seen in all the graphs that the general trend

is for responsiveness to increase as the amount of overrun

increases; again, this supports the notion that lower

amounts of overrun are more difficult to detect than higher

values. In all the task sets, the differences between the
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predicted and actual overrun patterns can be attributed to

either the tasks overrunning in a different way to that

predicted, or simply the overlapping of the effects altering

the patterns observed.

To make comparisons between different task sets, it is

necessary to combine the responsiveness and overrun val-

ues to produce a single measurements for each task set.

These combined measurements are shown in Fig. 17

(actual overrun) and Fig. 18 (predicted overrun).

As with the accuracy graphs, the data points are widely

scattered, however particularly with the graph comparing

actual overrun and responsiveness there appears to be a

pattern to the data. The lowest responsiveness values occur

only when the average overrun values are very low or

negative, and appears to increase steeply to a peak some-

where shortly before an overrun time of 1,000 cycles. From

this peak there appears to be a tailing off as the overrun

value increases, although this is not as clear as there are

considerably fewer data points in the graph for higher

overrun values (the median average slack value is 1,224

cycles).

Overrun values appear to show potential as a measure of

problem difficulty, particularly when examining the results

obtained for a single task set. However, it is clear that a

more sophisticated method of using this information, both

for comparison between task sets and for the tuning of DC

parameters, is needed. The derivation of a better data

aggregation method is left as future work.

6.6 Summary of analysis

From these results, we can see that, even when applied

across multiple different task sets, the DCA is successful at

detecting the presence of actual overruns in the system.

This suggests that our choice of PAMP signal is an

effective one, and its high weighting causes DCs to be

triggered correctly when overruns do occur. However, the

DCA is not as effective at the prediction of potential

overruns as the static analysis methods used for compari-

son—this is to be anticipated as the static analysis method

is defined as being a perfect predictor.

From the results, it can be seen that overall system

utilisation is not a sufficiently sophisticated measure of

problem difficulty, as there is little correlation between the

accuracy and responsiveness of the DCA results when

compared with utilisation. However, the alternative
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measure based around overrun time appears to give a better

correlation, especially when examined in the context of a

single task set. This measure should be effective, providing

that a better method can be devised which allows com-

parison of results across multiple task sets.

An important consideration here is that the analysis does

not consider the presence of false positives; this is an area

which will need to be examined as a part of any further

work.

7 Conclusions and future work

This paper has investigated some of the challenges brought

about by the application of immune-inspired techniques to

a problem associated with the development of RTES. The

applicability of the DCA has been examined across a wide

variety of task sets, and found to be generally good at

detecting deadline overruns but less successful at predict-

ing potential overruns especially when the predicted slack

is small. This is as expected as most classification style

problems are considered harder when the difference

between the object of interest and everything else is small.

To help guide further work, the task scheduling problem

has been examined in detail, and a potential measure of

problem difficulty has been formulated based on task slack

time, against which the performance of the DCA can

be evaluated. Future work is to examine how different

properties of the DCA can influence the efficiency, effec-

tiveness and robustness.
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