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Summary. Evolutionary Testing is an emerging methodology for automatically
generating high quality test data. The focus of this paper is on presenting an ap-
proach for generating test cases for the unit-testing of object-oriented programs,
with basis on the information provided by the structural analysis and interpretation
of Java bytecode and on the dynamic execution of the instrumented test object.
The rationale for working at the bytecode level is that even when the source code
is unavailable, insight can still be obtained and used to guide the search-based
test case generation process. Test cases are represented using the Strongly Typed
Genetic Programming paradigm, which effectively mimics the polymorphic relation-
ships, inheritance dependences and method argument constraints of object-oriented
programs.

1 Introduction

Test data selection, generation and optimization deals with locating good test
data for a particular test criterion. However, locating quality test data can be
time consuming, difficult and expensive; automating this process is, therefore,
vital to advance the state-of-the-art in software testing. In the particular case
of unit-testing, individual application objects or methods are tested in an
isolated environment; its goal is to warrant the robustness of the smallest
units of the program under test. Distinct test approaches include functional
(black-box) and structural (white-box) testing. Black-box testing is concerned
with showing the conformity between the implementation and its functional
specification; with white-box testing techniques, test case design is performed
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with basis on the program structure. When white-box testing is performed,
the metrics for measuring the thoroughness of a given test set can be extracted
from the structure of the target object’s source code, or even from compiled
code. Traditional white-box criteria include structural (e.g. statement, branch)
coverage and data-flow coverage. The basic idea is to ensure that all of the
control elements in a program are executed by a given test set, providing
evidence of the quality of the testing activity.

The evaluation of test data suitability using structural criteria generally
requires the definition of an underlying model for program representation –
usually a control-flow graph (CFG). The observations needed to assemble
the metrics required for the evaluation can be collected by abstracting and
modeling the behaviours programs exhibit during execution, either by static
or dynamic analysis techniques. Static analysis involves the construction and
analysis of an abstract mathematical model of the system (e.g. symbolic exe-
cution); in contrast, dynamic analysis involves executing the actual test object
and monitoring its behaviour. Dynamic monitoring of structural entities can
be achieved by instrumenting the test object, and tracing the execution of the
structural entities transversed during execution. Instrumentation is performed
by inserting probes in the test object; in Java software, this operation can be
effectively performed at the Java bytecode level.

Java bytecode is an assembly-like language that retains much of the high-
level information about the original source program [1]. Class files (i.e. com-
piled Java programs containing bytecode information) are a portable binary
representation that contains class related data, such as information about
the variables and constants and the bytecode instructions of each method.
Given that the target object’s source code is often unavailable, working at the
bytecode level allows broadening the scope of applicability of software testing
tools; they can be used, for instance, to perform structural testing on third-
party and COTS Java components. In addition, bytecode can be seen as an
intermediate language, so the analysis performed at this level can be mapped
back to the high-level language that generated the bytecode.

The focus of this work is precisely on the generation test data by employing
evolutionary search techniques, with basis on the information provided by the
structural analysis and interpretation of the Java bytecode and on the dynamic
execution of the instrumented test object. The application of evolutionary
algorithms to test data generation is often referred to as evolutionary testing
[2, 3]. In evolutionary testing, meta-heuristic search techniques are employed
to select or generate test data. The search space is the input domain of the test
object, and the problem is to find a (minimal) set of test cases that satisfies
a certain test criterion.

In the particular case of object-oriented programs, a sequence of method
invocations is required to cover the test goal and the participating objects
may have to be put into particular states in order for the test scenario to
be processed in the desired way. The most pressing challenge faced by search-
based test case generation is the state problem [4], which occurs with methods
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that exhibit state-like qualities by storing information in internal variables.
Such variables are hidden from the optimization process, because they are
protected from external manipulation using access modifiers (e.g. getter and
setter methods). The only way to change their values is through execution of
statements that perform assignments to them.

Evolutionary algorithms have been applied successfully to the search for
quality test data in the field object-oriented unit-testing. Approaches have
been proposed that focus on the usage of Genetic Algorithms [5], Ant Colony
Optimization [6], Universal Evolutionary Algorithms [7], Genetic Program-
ming [8], and on testing Container classes [9]. Of particular interest to our
research is the work of Wappler et. al [10, 11], who proposed a methodology
in which potential solutions are encoded using the Strongly Typed Genetic
Programming (STGP) paradigm [12], with method call sequences being rep-
resented by STGP trees; these trees are able to express the call dependences
of the methods that are relevant for a given test object. The STGP mech-
anism assures that only compilable programs are generated; to account for
polymorphic relationships which exist due to inheritance relations, the STGP
types used by the function set are specified in correspondence to the type
hierarchy of the test cluster classes. The fitness function does need, however,
to incorporate a penalty mechanism for test cases which include method call
sequences that throw exceptions during the program execution – i.e. runtime
exceptions.

2 Our approach for performing evolutionary structural
unit-testing on third-party object-oriented software

This chapter presents the rationale and introduces our methodology for per-
forming evolutionary structural unit-testing on third-party object-oriented
software. Figure 1 summarizes the main phases of the testing process; the
sub-chapters that follow describe the process in detail.

2.1 Static Analysis

Firstly, the test cluster’s Java bytecode analysis is performed; it is at this
step that the function set is defined, and hence it must precede the test set
evolving and evaluation phases. The function set defines the restrictions that
must be imposed to STGP nodes; specifically, they identify the children and
return types of each node.

The first task is that of extracting the list of public methods from the test
object’s bytecode by means of the Java Reflection API; this list comprises
the set of methods under test (MUTs) that are to be the subject of the
unit-testing process. Secondly, the Extended Method Call Dependence Graph
(EMCDG), which describes the method call dependences involved in the test
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1. Static Analysis
1.1. Test Cluster Analysis
1.2. Test Object Analysis
1.3. CFG Definition
1.4. Test Object Instrumentation

2. foreach Generation
2.1. CFG Nodes’ Dynamic Weight Computation Phase
2.2. Test Case Evolving Phase
2.2.1. foreach Individual
2.2.1.1. Test Case Generation
2.2.1.1.1. Genetic Programming Tree Generation
2.2.1.1.2. Genetic Programming Tree Linearization
2.2.1.1.3. Test Case Generation
2.2.1.1.4. Test Case Compilation

2.2.1.2. Test Case Evaluation
2.2.1.2.1. Test Case Execution
2.2.1.2.2. Event Tracing
2.2.1.2.3. Test Case Fitness Computation

Fig. 1. Methodology Overview.

case construction, is computed. Finally, the EMCDG is evaluated in order to
define the function set.

For the definition of terminal nodes, the Ballista fault injection methodol-
ogy [13] is employed. With the Ballista methodology, testing is performed by
passing combinations of acceptable, boundary and exceptional inputs as pa-
rameters to the test object. The rationale for this inference is the perception
that this constitutes a common programming pattern. This approach allows to
effectively reduce the search space, which has been proved to improve results
in many cases [14].

Control-flow graphs are used as the underlying model for program repre-
sentation, and are built solely with basis on the information extracted from
the Java bytecode of the test object. The CFG building procedure involves
grouping bytecode instructions into a smaller set of Basic Instruction and Call
CFG nodes, with the intention of simplifying the representation of the test
object’s control flow. Additionally, other types of CFG nodes, which represent
virtual operations, are defined: Entry nodes, Exit nodes, and Return nodes.
These virtual nodes encompass no bytecode instructions; they are used to rep-
resent certain control flow hypothesis. Instrumentation of the MUTs’ bytecode
for basic block analysis and structural event dispatch enables the observation
of the CFG nodes transversed during a given program execution. Both the
process of building the CFG and of instrumenting the MUT’s are achieved
with the aid of Sofya [15], a dynamic Java bytecode analysis framework.

2.2 Test Case Generation

For evolving the set of test cases, the ECJ package [16] is used. Test cases
are evolved using the STGP paradigm, which effectively mimics the inheri-
tance and polymorphic properties of object-oriented programs and enables the
maintenance of call dependences when applying tree construction, mutation
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or crossover; the types specify which nodes can be used as a child of a node
and which nodes can be exchanged between individuals.

Test cases are represented as GP trees; each GP individual contains a single
GP tree. The first step involved in the generation of the test cases’ source-code
is the linearization of the GP trees using a depth-first transversal algorithm.
The tree linearization process yields the ordered method call sequence; source-
code generation is performed by translating this sequence into test cases using
the information encoded into each node.

2.3 Test Case Evaluation

The evaluation of the quality of feasible test cases (i.e. those that do not
throw runtime exceptions) is performed by comparing their trace information
with the MUT’s CFG. Event tracing is carried out by automatically executing
the instrumented MUT using each generated test case as an “input”; relevant
trace information includes the Hit List - i.e. the list of structural entities (CFG
nodes) transversed. For unfeasible test cases, the fitness of the individual is
calculated in terms of the distance between the runtime exception index (i.e.
the position of the instruction that threw the exception) and the method call
sequence length. Also, an unfeasible penalty constant is added to the final
fitness value, in order to favour feasibility.

The algorithm for calculating the fitness of individuals is depicted in Figure
2. The CFG nodes missing list is initialized as being the complete CFG nodes
list; when a particular CFG node is exercised by a test case, it is removed from
the missing list. New test cases are generated as long as there are targets to
be covered or a maximum number of generations is reached.

1. if test case is unfeasible
1.1. compute method call distance (mcd)
1.1.1. rti = get runtime exception index
1.1.2. mcsl = get method call sequence length
1.1.3. mcd = mcsl - rti

1.2. fitness = (mcd * 100) / mcsl + UnfeasiblePenaltyConstant
2. else if test case is feasible
2.1. totalWeight = 0
2.2. foreach node in hitList
2.2.1. totalWeight += weightOf(node)
2.2.2. incrementHitCount(node)

2.3. fitness = totalWeight / sizeOf(hitList)
2.4. cfgNodesMissingList -= hitList
2.5. if isEmpty(cfgNodesMissingList)
2.5.1. found ideal individual

Fig. 2. Pseudo-code for the test case evaluation process.

The transversal of certain problem nodes requires the generation of com-
plex test cases, which define elaborate state scenarios; alas, this often entails
the generation of longer and more intricate method call sequences, which are
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more prone to throw runtime exceptions. Therefore, if unfeasible test cases
are blindly penalised in favour of feasible ones the search landscape will be
narrowed, thus hindering the possibility of transversing problem nodes. This
issue was addressed by assigning weights to the CFG nodes; the higher the
weight of a given node the higher the cost of exercising it, and hence the
higher the cost of transversing the corresponding control-flow path.

The weights of every node are re-evaluated every generation in accordance
to the algorithm depicted in Figure 3. With this approach, at the beginning of
each generation the nodes’ weight is firstly increased (worsened) to the direct
proportion of the number of times that node was exercised by the individuals
of the previous generation – with the intention of rising the cost of transversing
frequently hit nodes; next, the nodes’ weight is decreased in a weight decrease
constant value – and consequently, nodes with a low hit count will be favoured;
the nodes’ final weight is calculated as the average of its own weight and that
of its successors – so as to lower the cost of nodes that lead to less explored
paths.

1. foreach node in cfg
1.1. totalSucessorsWeight = 0
1.2. weightOf(node) *= 1 + (hitCount(node) / sizeOf(population))
1.3. weightOf(node) *= WeightDecreaseConstant
1.4. foreach successorNode in successorNodesListOf(node)
1.4.1. totalSucessorsWeight += weightOf(successorNode)
1.4.2. incrementSucessorCount(node)

1.5. weightOf(node) = (weightOf(node) + totalSucessorsWeight)
/ (sizeOf(successorNodesListOf(node)) + 1)

2. normalizeNodeWeights(cfg)

Fig. 3. Pseudo-code for the CFG nodes weight computation.

The dynamic re-evaluation of the CFG nodes’ weight presents the obvious
advantage of steering the evolutionary search towards the transversal of less
explored (or unexplored) nodes and paths; on the other hand, it worsens the
fitness of test cases that exercise recurrently transversed CFG nodes. In fact
– and depending on the value of the unfeasible penalty constant – unfeasible
test cases may be selected for breeding at certain points of the evolutionary
search, thus favouring diversity. This methodology intends to address a pitfall
observed in preliminary experiments, which indicated that to strong a bias to-
wards the generation of feasible test cases hinders the possibility of exercising
problem CFG nodes, since the search gets stuck at a local maximum.

3 Experimental Study

In order to validate and clarify our approach, experiments were performed on
the custom-made “Controller and Config” test cluster proposed in [11], using
the Controller.reconfigure(Config) public method as the MUT.
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The test cluster analysis phase yielded the function set described in
[11]; the terminal set was defined in accordance to the Ballista methodol-
ogy, and included 13 STGP nodes containing constant integer values: Tn
= {Integer.MAXVALUE, Integer.MINVALUE, 0, 4, 5, 6, 7999, 8000, 8001,
8004, 8005, 8006}. We emulated the Ballista methodology by identifying the
definition of constants in the test object’s bytecode, depicted in Figure 4
(left); namely, instructions at positions 4, 22 and 32 (iconst 5; sipush 8000;
sipush 8005) push the constant integer values 5, 8000 and 8005 onto the top
of the operand stack. These values were considered to be potential bound-
aries for numerical condition evaluation – hence their inclusion and that of
their immediate neighbours (4, 6; 7999, 8001; 8004, 8006). The same heuris-
tic was employed for including Integer.MAXVALUE, Integer.MINVALUE and 0
numerical values into Tn.

The CFG definition phase yielded the graph depicted in Figure 4 (rigth).
Attaining full structural coverage of the MUT required transversing all the
Basic Instruction (4, 5, 8, 11, 12, 15) and Call (2, 6, 9, 13) CFG nodes.

The evolutionary parameters for this experiment were defined as follows.
The CFG nodes were initialized with a weight of 200; the weight decrease
constant was set to 0.9, and the unfeasible penalty constant was defined as
100. ECJ was configured using a single population of 10 GP individuals. The
breeding pipeline included strongly-typed versions of “Subtree Crossover” and
“Point Mutation”, and a simple reproduction operator; they were chosen with
a probability of 0.6, 0.2 and 0.2 respectively. Tournament selection, with a size
of 2.0, was employed as the selection method. The remaining configurations
used were the Koza-style [17] parameters defined in ECJ by default. The
search stopped if an ideal individual was found or after 200 generations.

Full structural coverage was achieved in all of the runs in an average of
27.6 generations (Table 1). The worst run found the ideal individual in 91
generations (seed 0), whilst in the best one all of the CFG nodes of the MUT
were exercised in 4 generations (seeds 4 and 9).

Table 1. Number of generations required to find an ideal individual.

Seed 0 1 2 3 4 5 6 7 8 9 Average

normal 91 29 5 29 49 13 36 4 16 4 27.6
random 32 42 96 86 198 76 46 n/a n/a 92 83.5

It could, however, be observed that 90% code coverage was achieved in
an average of 2.3 generations; the remaining search process was spent trying
to transverse problem CFG node 5. In fact, the CFG node 5 is paradigmatic
of a problem node: its transversal accounts for only 10% of the fitness, and
the branch that leads to it must be taken at Basic Instruction node 4 (sub-
type if); however, a test case requires 5 calls to the Config.addSignal(int
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Fig. 4. Bytecode instructions (left) and CFG (right) for the
Controller.reconfigure(Config) method of the “Controller and Config”
test cluster.

signal) method of the Config object that will be used as a parameter in the
MUT for this condition to be evaluated favourably.

Our methodology does, nevertheless, provide guidance towards the transver-
sal of less explored paths and allows for unfeasible test cases to be produced
at certain points of the evolutionary search, thus increasing diversity and
promoting the definition of more complex scenarios. This phenomenon was
particularly visible in the longest run, with seed 0 (Figure 5). In the ini-
tial generations, a high percentage of unfeasible test cases was produced; the
search was then steered towards the generation of feasible test cases. 90%
structural coverage was achieved in the 5th generation, with only CFG node
5 missing. Around generations 45-50, the weight of feasible test cases crossed
the threshold defined by the unfeasible constant, thus allowing for unfeasible
test cases to be selected for breeding.

The usefulness of the our methodology is particularly visible if the results
are compared to those obtained using random search (Table 1). In order to
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Fig. 5. Percentage of unfeasible test cases per generation for the longest running
evolutionary search.

perform random search, the fitness was set to a constant value (in order to
deprive the evolutionary search from guidance) with the remaining config-
urations and parameters being left unchanged. 10 runs were executed. Full
structural coverage wasn’t achieved in 20% of them; in the remaining, the
average number of generations required to find an ideal individual was 83.5.

Finally, a battery of 10 runs was performed to validate the adequateness
of using the Ballista methodology. In order to do so, the Tn terminal set was
replaced a random integer value generator; the remaining configurations were
left unaltered. In 6 of the 10 runs, 80% code coverage was achieved – CFG
nodes 13 and 15 were never transversed; in the remaining 4 runs, the results
yielded 70% code coverage – CFG nodes 5, 13 and 15 weren’t exercised.

4 Conclusions and Future Work

This paper presents an evolutionary approach for the structural unit-testing
of third-party object-oriented software. Relevant contributions include: the
presentation of our methodology and underlying framework; the definition of
a fitness function that effectively uses the insight obtained from the analysis of
the test object’s Java bytecode for search guidance; the proposal of method-
ologies for the dynamic re-evaluation the CFG nodes’ weight; approaches for
reducing the input domain of integer function parameter values. Experiments
have been carried and quality solutions have been found, proving the perti-
nence of the approach and encouraging further studies.

Future work involves further research on the fitness function and domain
reduction strategies, as well as on the minimization of the length of method call
sequences so as to ease the user’s task of defining assertions for the generated
test cases, and on the identification and elimination of methods that do not
alter the parameters’ state from test cases’ method call sequences.
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