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Abstract

An intrusion detection system’s main goal is to classify activities of a system into two major categories: normal and suspicious (intru-
sive) activities. Intrusion detection systems usually specify the type of attack or classify activities in some specific groups. The objective of
this paper is to incorporate several soft computing techniques into the classifying system to detect and classify intrusions from normal
behaviors based on the attack type in a computer network. Among the several soft computing paradigms, neuro-fuzzy networks, fuzzy
inference approach and genetic algorithms are investigated in this work. A set of parallel neuro-fuzzy classifiers are used to do an initial
classification. The fuzzy inference system would then be based on the outputs of neuro-fuzzy classifiers, making final decision of whether
the current activity is normal or intrusive. Finally, in order to attain the best result, genetic algorithm optimizes the structure of our fuzzy
decision engine. The experiments and evaluations of the proposed method were performed with the KDD Cup 99 intrusion detection
dataset.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

With the widespread use of computer networks, the
number of attacks has grown extensively, and many new
hacking tools and intrusive methods have appeared. Using
an intrusion detection system (IDS) is one way of dealing
with suspicious activities within a network.

An intrusion detection system monitors the activities of
a given environment and decides whether these activities
are malicious (intrusive) or legitimate (normal) based on
system integrity, confidentiality and the availability of
information resources. The intrusion detection system col-
lects information about the system being observed. This
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collected audit data is processed by the detector. The detec-
tor eliminates unnecessary information from the audit data
and then makes a decision to evaluate the probability that
these activities can be considered as a sign of an intrusion
[1,2].

Soft computing is an innovative approach to construct a
computationally intelligent system which parallels the
extraordinary ability of the human mind to reason and
learn in an environment of uncertainty and imprecision
[3]. Typically, soft computing consists of several computing
paradigms, including neural networks, fuzzy sets, approxi-
mate reasoning, genetic algorithms, simulated annealing,
etc.

Many soft computing approaches have been applied to
the intrusion detection field [4–8]. In this paper, a novel
intrusion detection system based on the integration of a
few soft computing methods including neuro-fuzzy, fuzzy
and genetic algorithms is described. The key contribution
of this work is the utilization of outputs of neuro-fuzzy
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network as linguistic variables which expresses how reliable
current output is.

Fuzzy logic, as a robust soft computing method, has
demonstrated its ability in intrusion detection systems
[5,6,9–11]. Moreover, fuzzy systems have several important
features which make them suitable for intrusion detection
[9]. Most fuzzy systems make use of human expert knowl-
edge to create their fuzzy rule base and hence lack adapta-
tion, though. Therefore, building fuzzy systems with
learning and adaptation capabilities has recently received
much attention [11]. Various methods have been suggested
for automatic generation and adjustment of fuzzy rules
without using the aid of human experts; the neural fuzzy
[12,13] and genetic fuzzy are two most successful
approaches in this regard [14,15].

From the view point of classification, the main work of
building an intrusion detection system is to build a classi-
fier that can categorize normal and intrusive event data
from the original dataset. ANFIS as an Adaptive neuro-
fuzzy inference system [13] has the ability to construct
models solely based on the target system sample data. This
ability among others qualifies ANFIS as a fuzzy classifier
for intrusion detection.

The proposed system has different layers which corre-
spond to the needs in various modules of the proposed
IDS system. First of all, several neuro-fuzzy classifiers
use extracted features of the audit data to classify activities
in the network. In this case fuzzy inference system as a deci-
sion-making engine based on outputs of the classifiers of
previous layer makes the final decision on whether the cur-
rent activity is normal or intrusive. Finally, genetic algo-
rithms are employed to optimize the structure of fuzzy
sets of the fuzzy decision-making engine.

In order to promote the comparison of different works
in IDS area, the Lincoln Laboratory at MIT, under the
Defense Advanced Research Project Agency (DARPA)
and Air Force Research Laboratory (AFRL/SNHS) spon-
sorship, constructed and distributed the first standard data-
set for evaluation of computer network IDS [16].

Afterward the fifth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining with
the purpose of demonstrating the learning contest, col-
lected and generated TCP dump data provided by the
aforementioned DARPA in the form of train-and-test sets
whose features are defined for the connection records (a
connection is a sequence of TCP packets starting and end-
ing at some well-defined times). The main goal of the learn-
ing contest was to select classifiers with the best
qualifications of recognizing normal and intrusive connec-
tions. The above dataset is named as KDD Cup 99 dataset
[17] here, and has been used for the experiments.

The subsequent parts of this paper are organized as fol-
lows: At first, the related works done by the other research-
ers is briefly reviewed in Section 2. Section 3 describes
KDD Cup 99 dataset on which the experiments are con-
ducted. Then, the next section briefly outlines the basics
of fuzzy inference systems and neuro-fuzzy concepts in gen-
eral and ANFIS (Adaptive Neuro-Fuzzy Inference System)
in particular. The last part of this section has been devoted
to describing the subtractive clustering technique employed
by ANFIS for automatic generation of the initial fuzzy
inference system structure. Next, in Sections 5 and 6, the
proposed system is explained and experimental results as
well as evaluation of the proposed approach are discussed,
respectively. Finally, Section 7 makes some concluding
remarks and proposes further areas for future research.

2. Related work

There were a total of 24 entries submitted to the KDD
Cup 99 contest. All the top three winners’ approaches use
some variants of decision trees. The KDD’99 contest win-
ner entry made use of an ensemble of 50 · 10 C5 decision
trees, using cost-sensitive bagged boosting [18]. The run-
ner-up entry also used decision trees. A set of decision trees
was constructed. Then a problem-specific global optimiza-
tion criterion was used to select optimal subset of trees to
give the final prediction [19]. The third-placed approach
used two-layer decision trees. The first layer was trained
on the connections which cannot be classified by security
experts, whereas the second layer was built on the connec-
tions which cannot be classified by the first layer [20].

Thereafter, other approaches on the classification prob-
lem of KDD Cup 99 have emerged. One of the successful
approaches based on data-mining framework used RIP-
PER rules which have been presented by Lee et al. [21].
Association rules and Frequent Episodes algorithms have
been used to derive correlations between features and
represent the sequentially of audit records, respectively.
Agarwal and Joshi proposed a framework for learning a
rule-based model (PNrule) to make classifier models on a
dataset that has widely different class distributions in
training data [22].

There are some works in which the performance of
different machine learning algorithms and classification
techniques were compared based on the KDD Cup 99
dataset. Sabhnani and Serpen analyzed the performance
of comprehensive set of pattern recognition and machine
learning algorithms according to the above dataset.
Experiments outcomes show that a specific classification
algorithm performs better for certain attack categories.
The present fact was a motivation for the authors to use
a multi-classifier model which utilizes different classifiers
for each specific attack category of KDD dataset [23].

Recently, soft computing approaches are used for intru-
sion detection systems. Some of these methods have been
evaluated on KDD dataset. Fuzzy rule-based classifiers,
decision trees, support vector machines, linear genetic pro-
gramming have been used in [8] by Abraham and Jain to
illustrate the importance of soft computing paradigm for
modeling intrusion detection systems. Abadeh et al.
describe a fuzzy genetics-based learning algorithm and dis-
cuss its usage for intrusion detection in network [11]. Their
experiments were performed on KDD dataset. Another



Table 1
The sample distributions on the subset of 10% data of KDD Cup 99
dataset

Class Number of samples Samples percent (%)

Normal 97277 19.69
Probe 4107 0.83
DoS 391458 79.24
U2R 52 0.01
R2L 1126 0.23

492021 100

Table 2
The sample distributions on the test data with the corrected labels of KDD
Cup 99 dataset

Class Number of samples Samples percent (%)

Normal 60593 19.48
Probe 4166 1.34
DoS 229853 73.90
U2R 228 0.07
R2L 16189 5.20

311029 100

A.N. Toosi, M. Kahani / Computer Communications 30 (2007) 2201–2212 2203
work which utilizes genetic algorithm for incorporating the
capability of learning to fuzzy rules is the work of Gomez
and Dasgupta [5]. Genetic programming based on RSS-
DSS algorithm for dynamically filtering the dataset is
another technique which exists in this area [4]. It’s impor-
tant to note that this model detects whether or not a record
is intrusive not if attack records belong to a specific attack
category.

Yeung and Chow proposed a novel detection approach
using non-parametric density estimation based on Parzen-
Window estimator with Gaussian kernels to build an anom-
aly intrusion detection system [25]. This model also only
detects whether the current record is an intrusion or not.

It seems necessary to cite the works that criticize many
aspects of the DARPA evaluation dataset [26,27]. McHugh
[26], with respect to the collected traffic data by DARPA,
criticizes the lack of statistical evidence of similarity to
the typical Air Force network traffic, low traffic rates, rel-
ative uniform distribution of the four major attack catego-
ries, skewed distribution of victim hosts, and flat network
topology. More detailed analysis of this dataset which is
made by Mahoney and Chan confirms McHugh’s criticism
that the data is of statistically different characteristics from
the real traffic. They also suggest an approach to mitigate
the problem [27]. However, it is difficult to employ such
solutions for the KDD Cup dataset. Moreover, since this
work should be compared with other works in this area
and certainly should be respectful to the experimental con-
ditions of other compared works, the original KDD data-
set have been used for the experiments.

3. KDD Cup 99 dataset

The KDD Cup 99 dataset includes a set of 41 features
derived from each connection and a label which specifies
the status of connection records as either normal or specific
attack type. The list of these features can be found in
Appendix A. These features had all forms of continuous,
discrete, and symbolic, with significantly varying ranges
falling in four categories [17]:

• The first category consists of the intrinsic features of a
connection, which include the basic features of individ-
ual TCP connections. The duration of the connection,
the type of the protocol (TCP, UDP, etc.), and network
service (http, telnet, etc.) are some of the features.

• The content features within a connection suggested by
domain knowledge are used to assess the payload of
the original TCP packets, such as the number of failed
login attempts.

• The same host features examine established connections
in the past two seconds that have the same destination
host as the current connection, and calculate the statis-
tics related to the protocol behavior, service, etc.

• The similar same service features inspect the connections
in the past two seconds that have the same service as the
current connection.
Likewise, attacks fall into four main categories [17]:

• DoS (Denial of Service): making some computing or
memory resources too busy to accept legitimate users
access these resources.

• R2L (Remote to Local): unauthorized access from a
remote machine in order to exploit machine’s
vulnerabilities.

• U2R (User to Root): unauthorized access to local super-
user (root) privileges using system’s susceptibility.

• Probe: host and port scans as precursors to other
attacks. An attacker scans a network to gather informa-
tion or find known vulnerabilities.

KDD dataset is divided into training and testing record
sets. Total number of connection records in the training
dataset is about 5 million records. This is too large for
our purpose; as such, only concise training dataset of
KDD, known as 10% training dataset, was employed here.
The distribution of normal and attack types of connection
records in this subset have been summarized in Table 1.

As it can be seen in Table 1, sample distributions for dif-
ferent categories of attacks in training data differ signifi-
cantly from each other. One of the main contributions of
this work is to overcome this issue by using different classi-
fier for each class of data.

The test data enjoys a different distribution. Moreover,
the test data includes additional attack types not present
in the training data which makes classifying more compli-
cated. Table 2 summarizes the distribution of normal and
attack types of connection records in the test dataset.
And Table 3, based on major types of attack, shows the
sample distribution of the new attacks in the test dataset.
New attacks refer to those which were not present in the
training dataset, but exist in the test dataset.



Table 3
The new attacks sample distributions on the test data with the corrected
labels of KDD Cup 99 dataset

Class Number of novel
attack samples

Total number
of samples

Samples
percent (%)

Probe 1789 4166 43
DoS 6555 229853 3
U2R 189 228 83
R2L 10196 16189 63

18729 250436 7.5

Fig. 1. The Mamdani fuzzy inference system using min and max for
T-norm and T-conorm operators, respectively [13].

Fig. 2. (a) The Sugeno fuzzy model reasoning; (b) equivalent ANFIS
structure [13].
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4. Fuzzy and neuro-fuzzy

4.1. Fuzzy inference system (FIS)

The past few years have witnessed a rapid growth in the
number and variety of applications of fuzzy logic. Among
various combinations of methodologies in soft computing,
the one that has the highest visibility is that of fuzzy logic
and neurocomputing, leading to so-called neuro-fuzzy sys-
tems. An effective method developed by Jang for this purpose
is called ANFIS (Adaptive neuro-fuzzy inference system)
[13].

The basic structure of most Fuzzy inference systems
(FISs) that we have seen so far is a model that maps the
input characteristics to the input Membership functions
(MF). Three well-known types of FIS are employed in var-
ious systems. The Mamdani Fuzzy Model [24] was proposed
as the very first attempt to map an input to an output space
on top of the experiences of experts.

An example of two-input single-output Mamdani fuzzy
model with two rules can be expressed as

if x is A1 and y is B1 then z is C1;

if x is A2 and y is B2 then z is C2;

where A and B are fuzzy sets of inputs with membership
functions of A1, A2 and B1, B2, respectively, and C is
the fuzzy output set.

Max and min as the choice for T-norm and T-conorm
operator are adopted here, respectively. The resulting fuzzy
reasoning is shown in Fig. 1. For more acquaintance with
T-norm and T-conorm, and inference system of Mamdani
fuzzy models the readers may refer to [13].

Since usual systems take only crisp values, we should use
a defuzzifier to convert a fuzzy set to a crisp value. (Defuzz-
ification refers to the way a crisp value is extracted from a
fuzzy set as a representative value [13].) We use centroid of
area defuzzification strategy to convert the output to a
crisp value. An explanation of centroid of area defuzzifica-
tion strategy is shown below.

Centroid of area ZCOA is:

ZCOA ¼
R

Z lAðzÞzdzR
Z lAðzÞdz

; ð1Þ

where lA(z) is the aggregated output MF.
Before introducing the structure of ANFIS as our main
classifier, it is important to mention that Mamdani fuzzy
inference system (FIS) has been used for the final deci-
sion-making module. More details on structure of the sys-
tem and decision-making engine will be explored at later
sections.

In an effort to develop a systematic approach to generate
fuzzy rules from a given input–output dataset, Takagi,
Sugeno, and Kang proposed TSK Fuzzy Model (known
as the Sugeno Fuzzy Model) [28]. A fuzzy rule in a Sugeno
fuzzy model has the form of,

if x is A and y is B then z ¼ f ðx; yÞ;
where A and B are input fuzzy sets in antecedent and usu-
ally z = f(x,y) is a zero- or first-order polynomial function
in the consequent.

Fuzzy reasoning procedure for the first order Sugeno
fuzzy model is shown in Fig. 2a. Here, defuzzification pro-
cedure in the Mamdani fuzzy model is replaced by the
operation of weighted average in order to avoid the time-
consuming procedure of the former [13].
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4.2. Adaptive neuro-fuzzy inference system (ANFIS)

There are some modeling situations in which one cannot
just look at the data and decides on the shape of member-
ship functions. Rather than choosing the parameters asso-
ciated with a given membership function arbitrarily, these
parameters could be chosen so that they tailor the member-
ship functions to the variation in the input/output data in
order to account for these types of variations in the data
values. This is where the so-called neuro-adaptive learning
technique incorporated into ANFIS can help.

Assume a Fuzzy inference system with two inputs x, y and
one output z with the first order of Sugeno Fuzzy Model.
Fuzzy rule set with two fuzzy if–then rules is as follows:

if x is A1 and y is B1; then f 1 ¼ p1xþ q1yþ r1;

if x is A2 and y is B2; then f 2 ¼ p2xþ q2yþ r2;

Fig. 2a illustrates the reasoning mechanism for this Sugeno
model.

As it is shown in Fig. 2b, the reasoning mechanism can be
implemented into a feed-forward neural network with super-
vised learning capability, which is known as ANFIS
architecture.

The square and circle nodes are for adaptive nodes with
parameters and fixed nodes without parameters, respec-
tively. The first layer consists of square nodes that perform
fuzzification with chosen membership function. The param-
eters in this layer are called premise parameters. In the sec-
ond layer, the T-norm operation is performed to produce
the firing strength of each rule. The ratio of the ith rule firing
strength to the sum of all rules’ firing strength is calculated in
the third layer, generating the normalized firing strengths.
The fourth layer consists of square nodes that perform mul-
tiplication of normalized firing strengths with the corre-
sponding rule. The parameters in this layer are called
consequent parameters. The overall output is calculated by
the sum of all incoming signals in the fifth layer [13].

ANFIS provides a method for the fuzzy modeling proce-
dure to learn information about a dataset in order to com-
pute the membership function parameters that best allow
the associated Fuzzy inference system to track the given
input/output data. This learning method works similarly
to that of neural networks. The parameters associated with
the membership functions will change through the learning
process. ANFIS uses either back propagation or a combina-
tion of least square estimations and back propagation for
membership function parameter estimations. The readers
are referred to [13] for more details on these methods.
4.3. Subtractive clustering

The purpose of clustering is to identify natural group-
ings of data from a large dataset to produce a concise rep-
resentation of a system’s behavior. It is possible to use the
cluster information to generate a Sugeno-type fuzzy infer-
ence system that best models the data behavior using a
minimum number of rules. The rules partition themselves
according to the fuzzy qualities associated with each of
the data clusters.

Assume a 2-D training dataset (including input and
desired output) and cluster center (xi,yi). The ith rule can
be expressed in the form of

if X is close to xi; then Y is close to yi:

After the structure is determined, back propagation or gra-
dient decent and other optimization schemes can be applied
to proceed with parameter identification.

However, before the start of the ANFIS training, the
fuzzy inference system should be generated. FIS generation
can implement in grid partitioning or subtractive cluster-
ing. In grid partitioning, all the possible rules are generated
based on the number of MFs for each input. For example,
in a two dimensional input space with three MFs in the
input sets, the number of rules in grid partitioning results
in 9 rules. This partitioning strategy needs only a small
number of MFs for each input and encounters problems
when we have moderately a large number of each input.
So we use subtractive clustering to determine the number
of rules, and the initial points of the membership functions.

Suppose that there is not a clear idea of how many clusters
there should be for a given set of data. Subtractive clustering
[29] is a fast one-pass algorithm for estimating the number of
clusters and the cluster centers in a set of data. This method is
used here, and it is an extension of the Mountain clustering
method proposed by Yager and Filev [30].

Consider a collection of m data points {x1, . . . ,xm} in an
N-dimensional space. Subtractive clustering assumes each
data point as a potential cluster center and calculates a
measure of the potential for each data point based on the
density of surrounding data points. Density measure at
data point xj is calculated as follows:

Dj ¼
Xm

i¼1

exp � jxj � xij2

ðra=2Þ2

 !
; ð2Þ

where ra is a positive constant value and it defines the
neighborhood radius. The algorithm selects the data point
with the highest density measure as the first cluster center
and then eradicates the potential of data points near the
first cluster center. The algorithm then selects the data
point with the highest remaining potential (next highest
density measure has been remained) as the next cluster cen-
ter and eradicates the potential of data points near this new
cluster center. This process of acquiring a new cluster cen-
ter and eradicating the potential of surrounding data points
repeats until the potential of all data points fall below a
threshold. The range of influence of a cluster center in each
of the data dimensions is called cluster radius. The cluster
radius indicates the range of influence of a cluster when you
consider the data space as a single hypercube. A small clus-
ter radius will lead to find many small clusters in the data
(resulting in many rules) and vice versa.

The clusters’ information obtained by this method is
used for determining the initial number of rules and
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antecedent membership functions, which is used for identi-
fying the FIS. An important advantage of using a cluster-
ing method to find rules is that the resulting rules are
more tailored to the input data than they are in an FIS gen-
erated without clustering. In this study, we use Subtractive
clustering has been used to determine the number of rules
and antecedent membership functions. So one can obtain
a FIS structure that contains a set of fuzzy rules to cover
the feature space.

5. Proposed system

The principle motivation for this work was to provide a
framework for using soft computing approaches to build a
classifier that can act better than single algorithm using a sin-
gle soft computing approach, e.g., neuro-fuzzy. The pro-
posed system is discussed in details in this section. First,
the system architecture is explained. Then, data sources,
selected from KDD for training the system, are introduced.
Afterward, layers of proposed framework are presented in
more details.

5.1. System architecture

The proposed architecture for the Evolutionary Soft
Computing Intrusion Detection System includes two lay-
ers. In the first layer, there are five ANFIS modules which
are trained to explore the intrusive activity from the input
data. Each ANFIS module belongs to one of the classes in
the dataset each providing an output which specifies the
degree of relativity of the data to the specific class 1 shows
total membership while �1 is used otherwise. (It is impor-
tant to mention that the ANFIS structure has only one out-
put.) The most important motivation to using ANFIS in
this way is that ANFIS is usually more appropriate as a
binary classifier rather than a multi-classifier [31].

Second, a Fuzzy Inference module, based on empirical
knowledge, is employed to make the final decision for rec-
ognition. The fuzzy inference module implements nonlin-
Fig. 3. System architect
ear mappings from the outputs of the neuro-fuzzy
classifiers of the pervious layer to the final output space
which specifies if the input data are normal or intrusive.
Afterward, if the system recognizes that the current pattern
is intrusive by nature, the classifier of the first layer, in
which the output is the nearest value among all classifiers,
specifies the class of the attack.

In order to attain the best results, genetic algorithm
(GA) is used to optimize the structure of the fuzzy deci-
sion-making engine. The GA structure is discussed in more
depth later. Fig. 3 depicts the schematic block diagram of
the proposed system architecture.

5.2. The data sources

All of the above features have been applied to the inputs of
the five neuro-fuzzy classifiers. From the classification point
of view, any system mainly consists of two phases: (1) the
training of the parameters of the classifier according to the
training dataset and (2) using the classifier to categorize a test
dataset. Here, 10% of the training dataset was used as the
source of the training dataset. Since the number of records
in the 10% dataset was still very large for our purposes,
different subsets of the training and checking dataset were
randomly selected from the subset of 10% of data, for the
training phase. The basic idea behind using a checking
dataset for model validation is that after a certain point in
training, the model begins overfitting the training dataset.
If overfitting does occur, we cannot expect the classifier to
respond well to other independent datasets. In fact, if check-
ing data is used for ANFIS training, the final FIS associated
with the minimum checking error will be chosen.

Results of different machine learning algorithms show
that anomaly detectors do better than signature-based
detectors for KDD Cup 99 dataset [33]. This might be
because the testing data has substantial new attacks with
signatures not correlated with similar attacks in the train-
ing data. On the other hand, the number of training sam-
ples for signature-based detectors seems not to be ample
ure block diagram.
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to develop classifiers to function as efficiently as possible.
The attack samples in the testing dataset, though, have
rather enough deviation from normal or regular samples
in the training dataset [4,25].

Since each classifier in first layer of the system acts as a
signature based classifiers and the goal is to select a good
training and checking dataset for the learning phase,
training and checking dataset has been selected, as shown
on the Tables 4 and 5, wherein numbers of samples in
the normal class are approximately equal to the summation
of the samples in the other classes. By this policy, in view of
the fact that each classifier performs as binary classifier
(current activity belongs to this class or not), each classifier
somehow acts as an anomaly detector system.

The distribution of the samples in the two subsets that
were used for the training is listed on Tables 4 and 5. Selected
subsets enjoy different numbers of samples, the smaller one
contains a few number of samples to show the system is still
capable, despite the fact that a small portion of the training
data has been used. The other one in more number of sam-
ples enjoys more number of samples to illustrate efficiency
of proposed system as much as possible.

Due to the reduction of random sampling effects, 10
trails with the same distribution, have been selected for
each subset of trainings (training sets in Tables 4 and 5).
Therefore, all the evaluation results in the latter parts of
the paper have been computed over these ten trials except
those explicitly mentioned.
Table 4
Sample distributions on the First Training and Checking data randomly
selected of 10% data of KDD Cup 99 dataset

Normal Probe DoS U2R R2L Total

ANFIS-N Training 20000 4000 15000 40 1000 40040
Checking 2500 107 2000 12 126 7245

ANFIS-P Training 10000 4000 5000 40 1000 16040
Checking 1000 107 500 12 126 10245

ANFIS-D Training 25000 4000 20000 40 1000 45040
Checking 6000 107 5000 12 126 10254

ANFIS-U Training 200 50 50 46 50 246
Checking 100 25 25 6 25 181

ANFIS-R Training 4000 1000 2000 40 1000 6040
Checking 2000 500 1000 12 126 3138

Table 5
Distribution of samples on the Second Training and Checking data
randomly selected of 10% data of KDD Cup 99 dataset

Normal Probe DoS U2R R2L Total

ANFIS-N Training 1500 500 500 52 500 3052
Checking 1500 500 500 0 500 3000

ANFIS-P Training 1500 500 500 52 500 3052
Checking 1500 500 500 0 500 3000

ANFIS-D Training 1500 500 500 52 500 3052
Checking 1500 500 500 0 500 3000

ANFIS-U Training 1500 500 500 46 500 3046
Checking 1500 500 500 6 500 3006

ANFIS-R Training 1500 500 500 52 500 3052
Checking 1500 500 500 0 500 3000
Before concluding this subsection, it should be
mentioned that to be fair, we did not have any access to
the testing dataset during the training and optimization
phase. Moreover, the standard conditions of the KDD
Cup competition has been deployed.

5.3. The neuro-fuzzy classifiers

The subtractive clustering method with ra = 0.5 (neigh-
borhood radius) has been used to partition the training sets
and generate an FIS structure for each ANFIS. For further
fine-tuning and adaptation of membership functions, train-
ing sets were used for training ANFIS. Each ANFIS trains
at 50 epochs of learning and final FIS that is associated
with the minimum checking error has been chosen. All
the MFs of the input and output fuzzy sets were selected
in the form of Gaussian functions with two parameters.

5.4. The fuzzy decision module

The fuzzy inference module has five inputs, obtained from
the output values of each ANFIS classifiers. The fuzzy infer-
ence module, based on these inputs, determines whether the
current connection record is an attack or not. A five-input,
single-output of Mamdani fuzzy inference system with cen-
troid of area defuzzification strategy was used for this pur-
pose. Each input fuzzy set includes two MFs and all the
MFs are Gaussian functions which are specified by four
parameters. The proposed fuzzy inference module uses the
rules shown in the fuzzy associative memory in Table 6.

The output of the fuzzy inference engine, which varies
between �1 and 1, specifies how intrusive the current
record is, 1 to show completely intrusive and �1 for com-
pletely normal. Records with positive intrusive values are
selected as intrusive patterns. After an attack is detected,
its class is selected based on the ANFIS module class which
returns the highest value.

5.5. The Genetic algorithm module

Genetic algorithm is a method for solving optimization
problems that are based on natural selection – a process
that derives from biological evolution [32]. The genetic
algorithm repeatedly modifies a population (a set of indi-
viduals) by a set of genetic operators including mutation,
crossover, and selection. It selects individuals evolving
Table 6
Fuzzy associative memory for the proposed fuzzy inference rules

Normal PROBE DoS U2R R2L Output

High – – – – Normal
– �High �High �High �High Normal
– High – – – Attack
– – High – – Attack
– – – High – Attack
– – – – High Attack
Low – – – – Attack
– Low Low Low Low Normal
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toward an optimal solution from the current population
and uses them to produce children of the next generation.
The algorithm stops when the stopping criterion is met.
In the proposed system, each individual (chromosome)
has genes codifying parameters of the MFs of the input
fuzzy set of the fuzzy decision engine. A chromosome con-
sists of 320 bits of binary data. Each 8 bits of a chromo-
some determines one parameter out of the four
parameters of an MF. Fig. 4 illustrates the decoding pro-
cess of each individual chromosome.

The genetic algorithm, which is used here to optimize
the input MFs of the fuzzy decision-making module, uses
a subset selected from 10% of KDD dataset for the optimi-
zation process. The distribution of samples for this subset
is shown in Table 7.

In view of the fact that GA optimization process does
not always provide an identical, the optimization phase
was performed three times and the average of the experi-
ments results was computed for each attained structures.
Also, due to the reduction of the effects of randomly sam-
pling, five different trails of subsets – not overlapping with
each other – have been used for this phase.

The fitness function evaluates the fitness value for each
individual. Fundamentally, the fitness function is the func-
tion that should be optimized. This works considers two
different fitness functions.

Before discussing more about the fitness functions, it
seems necessary to talk about standard metrics that has
been developed for evaluating network intrusion detec-
tions. Detection rate and false alarm rate are the two most
famous metrics that have already been used. Detection rate
is computed as the ratio between the number of correctly
detected attacks and the total number of attacks, while
false alarm (false positive) rate is computed as the ratio
between the number of normal connections that is incor-
Fig. 4. Schematic decoding process
rectly misclassified as attacks and the total number of nor-
mal connections. Another metric used here is the
classification rate. Classification rate for each class of data
is defined as the ratio between the number of test instances
correctly classified and the total number of test instances of
this class.

For the purpose of classifier algorithm evaluation,
another comparative measure is defined which is Cost Per

Example (CPE) [23].
CPE is calculated using the following formula:

CPE ¼ 1

N

Xm

i¼1

Xm

j¼1

CMði; jÞ � Cði; jÞ; ð3Þ

where CM and C are confusion matrix and Cost Matrix,
respectively, and N represents the total number of test in-
stances, m is the number of the classes in classification. A
confusion matrix is a square matrix in which each column
corresponds to the predicted class, while rows correspond
to the actual classes. An entry at row i and column j,
CM(i, j), represents the number of misclassified instances
that originally belong to class i, although incorrectly iden-
tified as a member of class j. The entries of the primary
diagonal, CM(i, i), stand for the number of properly de-
tected instances. Cost Matrix is similarly defined, as well,
and entry C(i, j) represents the cost penalty for misclassify-
ing an instance belonging to class i into class j.

Cost Matrix values employed for the KDD’99 classifier
learning contest are shown in Table 8a [17]. Lower values
for cost per example measure show better classification
for the intrusion detection system.
5.5.1. Fitness functions

This work considers two different fitness functions. The
First fitness function considered here, represents the base-
of the individual chromosome.



Table 9
Abbreviations used for our approaches

Abbreviation Approach

ESC-KDD-1 First Training set with fitness function of KDD
ESC-EQU-1 First Training set with fitness function of equal

misclassification cost
ESC-KDD-2 Second Training set with fitness function of KDD
ESC-EQU-2 Second Training set with fitness function of equal

misclassification cost

Table 8
Characteristics of Cost Matrix; the columns correspond to predicted
classes, rows correspond to actual classes

Predicted

Normal PROBE DoS U2R R2L

Normal 0 1 2 2 2
PROBE 1 0 2 2 2

(a) Actual DoS 2 1 0 2 2
U2R 3 2 2 0 2
R2L 4 2 2 2 0

Normal 0 1 1 1 1
PROBE 1 0 1 1 1

(b) Actual DoS 1 1 0 1 1
U2R 1 1 1 0 1
R2L 1 1 1 1 0

(a) Cost Matrix values for the KDD’99 classifiers learning contest. (b)
Cost Matrix values with equal misclassification costs.

Table 7
The sample distributions on the selected subset of 10% data of KDD Cup
99 dataset for the optimization process which used by GA

Normal Probe DoS U2R R2L

Number of samples 200 104 200 52 104
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line case in which a Cost Per Example with equal misclassi-
fication costs (Table 8b) is employed. The genetic algo-
rithm used to minimize the cost per examples is
calculated in this way. Using the mentioned fitness function
resolves the trade-off between detection rate and false
alarm rate and leads to maximizing the overall detection
rate and classification rate with low false alarm rate.

Another fitness function is employed based on the cost
per examples used for evaluating results of the KDD’99
competition [17]. Using the Cost Matrix values employed
for the KDD’99 classifier learning contest attained the best
classification rate with respect to weighed misclassification
cost.
Table 10
Classification rate, Detection rate (DTR), False Alarm rate (FA) and Cost Per E
dataset with corrected labels of KDD Cup 99 dataset

Model Normal Probe DoS

ESC-KDD-1 98.2 84.1 99.5
ESC-EQU-1 98.4 89.2 99.5
ESC-KDD-2 96.5 79.2 96.8
ESC-EQU-2 96.9 79.1 96.3
6. Results

All samples of correctly labeled test dataset of KDD
Cup 99 dataset (Table 2) as the testing data to evaluate
the classifiers.

Before discussing the result, it should be mentioned that
to perform the experiments, the structures obtained from
10 subsets of training data for both series were used for
the classifiers. The genetic algorithm was performed three
times, each time for one of the five series of selected sub-
sets. Totatally, 150 different structures were used and the
result is the average of the results of this 150 structures.

In the rest of this section, the performance of the pro-
posed Evolutionary Soft Computing Intrusion Detection
System (ESC-IDS) using two different training datasets
(Tables 4 and 5) and two different fitness functions is com-
pared. Two different training datasets for training the clas-
sifiers and two different fitness functions to optimize the
fuzzy decision-making module were used. Table 9 shows
the notation used for the special versions of ESC-IDS.

Table 10 shows results for the different versions of ESC-
IDS on the test dataset with corrected labels of KDD Cup 99
dataset. Considerable outcomes can be seen on the third and
fourth rows of the table. These statistics obtained from the
structures which have been built on the second training
set. This training set contains about 30,000 patterns, some
of them are repeated and the whole is far less than total num-
ber of samples in the original training dataset. however, the
results still demonstrate reasonable values. The variances of
each averaged value in Table 10 has been shown on Table
11. Also, as an example, the confusion matrix of one out
of the 150 obtained structures is shown in Table 12, which
can be helpful in understanding the bias of the proposed
classifier towards a particular class of attacks.

The performance of the ESC-IDS has been compared
with some other machine learning methods tested on the
KDD dataset and is shown in Table 13. The proposed
method demonstrates better performances in a number of
attacks categories and an unprecedented cost per examples
of 0.1579. Based on the results shown in the Table 13, it can
be easily seen that the proposed approach has a good per-
formance for detecting intrusion in computer networks.
Also, this method is flexible and can be adjusted for special
situations using different fitness functions.

It should be noted that some values of Table 13 can be
misleading. For example, Parzen-Window [25] algorithm
detects only whether a record is intrusive or not and does
not specify the attack category. Also, the authors did not
xample of KDD(CPE) for the different approaches of ESC-IDS on the test

U2R R2L DTR FA CPE

14.1 31.5 95.3 1.9 0.1579
12.8 27.3 95.3 1.6 0.1687
8.3 13.4 91.6 3.4 0.2423
8.2 13.1 88.1 3.2 0.2493



Table 11
Variance classification rate, detection rate (DTR), False alarm rate (FA) and Cost Per Example of KDD (CPE) for the different approaches of ESC-IDS
on the test dataset with corrected labels of KDD Cup 99 dataset

Model Normal Probe DoS U2R R2L DTR FA CPE

ESC-KDD-1 1.23E-4 11.74E-4 0.08E-4 5.61E-4 11.29E-4 0.10E-5 1.23E-4 1.29E-4
ESC-EQU-1 1.04E-4 26.15E-4 0.09E-4 8.19E-4 31.74E-4 0.16E-4 1.04E-4 2.84E-4
ESC-KDD-2 1.1850 15.7244 0.0578 2.6384 0.1309 0.7142 1.1850 2.01E-5
ESC-EQU-2 2.1679 25.9518 4.6407 2.8281 1.0419 4.4325 2.1679 1.04E-3

Table 12
Confusion Matrix for example obtained structure

Predicted Accuracy

Normal PROBE DoS U2R R2L

Actual Normal 58809 478 251 774 281 98.47%
PROBE 196 3541 276 49 104 84.97%
DoS 534 49 228524 641 105 99.76%
U2R 85 64 24 29 26 16.67%
R2L 10698 22 17 56 5396 31.68%

False positive 16.37% 14.76% 0.25% 98.13% 8.73% CPE = 0.1549

Table 13
Classification rate, Detection rate (DTR), False alarm rate (FA) and Cost Per Example of KDD (CPE) for the different algorithms performances on the
test dataset with corrected labels of KDD Cup 99 dataset (n/r stands for not reported)

Model Normal Probe DoS U2R R2L DTR FA CPE

ESC-IDS 98.2 84.1 99.5 14.1 31.5 95.3 1.9 0.1579
RSS-DSS [4] 96.5 86.8 99.7 76.3 12.4 94.4 3.5 n/r
Parzen-Window [25] 97.4 99.2 96.7 93.6 31.2 n/r n/r 0.2024
Multi-classifier [23] n/r 88.7 97.3 29.8 9.6 n/r n/r 0.2285
Winner of KDD [18] 99.5 83.3 97.1 13.2 8.4 91.8 0.6 0.2331
Runner Up of KDD [19] 99.4 84.5 97.5 11.8 7.3 91.5 0.6 0.2356
PNrule [22] 99.5 73.2 96.9 6.6 10.7 91.1 0.4 0.2371
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report any information regarding the false alarm rates.
Also, Parzen-Window and RSS-DSS are anomaly detec-
tion methods that only detect if a connection record is
intrusive or not, and do not have any information regard-
ing the attack type.

For systems that do not classify intrusions, correct clas-
sification concept is different from others. In classifying
system, while a record has been corrected recognized as
an intrusion, misclassification is considered as an error.
Looking at Table 13 shows that the proposed system has
correctly identified an intrusive record, while might has
had problem classifying it.

It can be stated that all the machine learning algorithms
tested on the KDD’99 dataset offered an acceptable level of
detection performance only for DoS and PROBE attack
categories and demonstrated poor performance on the
U2R and R2L categories [33]. The proposed method shows
improvement in these two classes (U2R and R2L).

7. Conclusions

In this paper, an evolutionary soft computing approach
for intrusion detection was introduced and was successfully
demonstrated its usefulness on the training and testing sub-
set of KDD Cup 99 dataset. The ANFIS network was used
as a neuro-fuzzy classifier for intrusion detection. ANFIS is
capable of producing fuzzy rules without the aid of human
experts. Also, subtractive clustering has been utilized to
determine the number of rules and membership functions
with their initial locations for better classification.

A fuzzy decision-making engine was developed to make
the system more powerful for attack detection, using the
fuzzy inference approach. At last, this paper proposed a
method to use genetic algorithms to optimize the fuzzy
decision-making engine. Experimentation results showed
that the proposed method is effective in detecting various
intrusions in computer networks.

Our future work will focus on reducing features for the
classifiers by methods of feature selection. Also, the work
will be continued to study the fitness function of the genetic
algorithm to manipulate more parameters of the fuzzy infer-
ence module, even concentrating on fuzzy rules themselves.
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Appendix A. Lists of features in KDD Cup 99 dataset
Feature name
 Type
 Description
1. duration
 continuous
 length (number of seconds) of the connection

2. protocol_type
 discrete
 type of the protocol, e.g., tcp, udp, etc.

3. service
 discrete
 network service on the destination, e.g., http, telnet, etc.

4. src_bytes
 continuous
 number of data bytes from source to destination

5. dst_bytes
 continuous
 number of data bytes from destination to source

6. flag
 discrete
 normal or error status of the connection

7. land
 discrete
 1 if connection is from/to the same host/port; 0 otherwise

8. wrong_fragment
 continuous
 number of ‘‘wrong’’ fragments

9. urgent
 continuous
 number of urgent packets

10. hot
 continuous
 number of ‘‘hot’’ indicators

11. num_failed_logins
 continuous
 number of failed login attempts

12. logged_in
 discrete
 1 if successfully logged in; 0 otherwise

13. num_compromised
 continuous
 number of ‘‘compromised’’ conditions

14. root_shell
 discrete
 1 if root shell is obtained; 0 otherwise

15. su_attempted
 discrete
 1 if ‘‘su root’’ command attempted; 0 otherwise

16. num_root
 continuous
 number of ‘‘root’’ accesses

17. num_file_creations
 continuous
 number of file creation operations

18. num_shells
 continuous
 number of shell prompts

19. num_access_files
 continuous
 number of operations on access control files

20. num_outbound_cmds
 continuous
 number of outbound commands in an ftp session

21. is_hot_login
 discrete
 1 if the login belongs to the ‘‘hot’’ list; 0 otherwise

22. is_guest_login
 1 if the login is a ‘‘guest’’login; 0 otherwise

23. Count
 continuous
 number of connections to the same host as the current

connection in the past two seconds

24. serror_rate
 continuous
 % of connections that have ‘‘SYN’’ errors

25. rerror_rate
 continuous
 % of connections that have ‘‘REJ’’ errors

26. same_srv_rate
 continuous
 % of connections to the same service

27. diff_srv_rate
 continuous
 % of connections to different services

28. srv_count
 continuous
 number of connections to the same service as the current

connection in the past two seconds

29. srv_serror_rate
 continuous
 % of connections that have ‘‘SYN’’ errors

30. srv_rerror_rate
 continuous
 % of connections that have ‘‘REJ’’ errors

31. srv_diff_host_rate
 continuous
 % of connections to different hosts

32. dst_host_count
 continuous
 count for destination host

33. dst_host_srv_count
 continuous
 srv_count for destination host

34. dst_host_same_srv_rate
 continuous
 same_srv_rate for destination host

35. dst_host_diff_srv_rate
 continuous
 diff_srv_rate for destination host

36. dst_host_same_src_port_rate
 continuous
 same_src_port_rate for destination host

37. dst_host_diff_host_rate
 continuous
 diff_host_rate for destination host

38. dst_host_serror_rate
 continuous
 serror_rate for destination host

39. dst_host_srv_serror_rate
 continuous
 srv_serror_rate for destination host

40. dst_host_rerror_rate
 continuous
 rerror_rate for destination host

41. dst_host_srv_rerror_rate
 continuous
 srv_serror_rate for destination host
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