
European Journal of Operational Research 59 (1992) 345-358 345 
North-Holland 

Invited Review 

The Vehicle Routing Problem: An overview 
of exact and approximate algorithms 

G i l b e r t  L a p o r t e  

Centre de Recherche sur les Transports, 
Canada H3C 3J7 

Universit~ de Montreal, C.P. 6128 Station A, Montreal, 

Received May 1991 

Abstract :  In this paper ,  some of  the main known results relative to the Vehicle Rout ing  Problem are 
surveyed. The  paper  is organized as follows: (1) definition; (2) exact algorithms; (3) heuristic algorithms; 
(4) conclusion. 

Keywords: Vehicle Rout ing  Problem; survey 

The  Vehicle Routing Problem (VRP)  can be described as the problem of  designing optimal delivery or  
collection routes  f rom one or  several depots to a number  of  geographically scat tered cities or customers, 
subject to side constraints.  The  V R P  plays a central  role in the fields of  physical distribution and 
logistics. There  exists a wide variety of  V R P s  and a broad  l i terature on this class of  problems (see, for 
example, the surveys of  Bodin et al., 1983, Christofides, 1985a, Lapor te  and Nobert ,  1987, Laporte ,  1990, 
as well as the recent  classification scheme proposed  by Desrochers ,  Lenstra  and Savelsbergh, 1990). The  
purpose  o f  this paper  is to survey the main exact and approximate  algorithms developed for the VRP,  at 
a level appropr ia te  for a first graduate  course in combinatorial  optimization. 

1. Definition 

Let  G = (V, A)  be a graph where  V = {1 . . . .  , n} is a set of  vertices represent ing cities with the depot 
located at vertex 1, and A is the set of  arcs. With every arc (i, j )  i 4=j is associated a non-negat ive 
distance matrix C = (cii). In some contexts, ci~ can be in terpreted as a travel cost or as a travel time. 
W h e n  C is symmetrical,  it is of ten convenient  to replace A by a set E of  undirec ted  edges. In addition, 
assume there are m available vehicles based at the depot,  where  m L < m < m U. W h e n  m L = mrs, m is 
said to be fixed. W h e n  m L = 1 and m U = n - 1, m is said to be free. W h e n  m is not  fixed, it of ten makes 
sense to associate a fixed cost f on  the use of  a vehicle. For  the sake of  simplicity, we will ignore these 
costs and unless otherwise specified, we assume that  all vehicles are identical and have the same capacity 
D. The  V R P  consists o f  designing a set of  least-cost vehicle routes  in such a way that  

(i) each city in V\{1} is visited exactly once  by exactly one vehicle; 
(ii) all vehicle routes  start and end at the depot;  

(iii) some side constraints  are satisfied. 

0377-2217/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved 



346 G. Laporte / Vehicle Routing Problem: An overview 

The most common side conditions include: 
(i) capacity restrictions: a non-negative weight (or demand) d i is attached to each city i > 1 and the 

sum of weights of any vehicle route may not exceed the vehicle capacity. Capacity-constrained VRPs will 
be referred to as CVRPs; 

(ii) the number  of cities on any route is bounded above by q (this is a special case of (i) with d i = 1 
for a l l i > l a n d  D = q ) ;  

(iii) total time restrictions: the length of any route may not exceed a prescribed bound L; this length is 
made up of intercity travel times cij and of stopping times t~ i at each city i on the route. Time- or 
distance-constrained VRPs will be referred to as DVRPs; 

(iv) time windows: city i must be visited within the time interval [ai, bi] and waiting is allowed at city 
i; 

(v) precedence relations between pairs of cities: city i may have to be visited before city j. 
This list is by no means exhaustive. A number  of other interesting variants are described in the 

Golden and Assad (1988) book, for example. Here,  we will mainly concentrate on CVRPs and on 
DVRPs.  

2. Exact algorithms 

Following the Laporte  and Nobert  (1987) survey, exact algorithms for the VRP can be classified into 
three broad categories: (i) direct tree search methods; (ii) dynamic programming, and (iii) integer linear 
programming. As the number  of proposed algorithms is very large, we will provide six representative 
examples only: two direct tree search methods based on different relaxations, a dynamic programming 
formulation, and three integer linear programming algorithms. For some of the descriptions, we basically 
follow Laporte and Nobert  (1987). 

2.1. The assignment lower bound and a related branch-and-bound algorithm 

The following algorithm due to Laporte,  Mercure and Nobert  (1986) exploits the relationship between 
the VRP and one of its relaxations, the m-TSP. Given the graph G = (V, A)  with a depot at vertex 1 and 
m vehicles based at the depot, the m-TSP consists of establishing m least-cost vehicle routes starting and 
ending at the depot, and in such a way that every remaining vertex is visited exactly once. As shown by 
Lenstra and Rinnooy Kan (1975), given an upper  bound m v on m, the m-TSP can be transformed into a 
1-TSP as follows: 

(i) Increase the number  of vertices by introducing m u - 1 artificial depots; let n '  = n + m u - 1, V '  = 
{1 . . . . .  n'} and A '  = A  u {(i, j ) : i ,  j ~ V' ,  i~: j ,  i or j ~ V ' \ V } .  

(ii) The extended distance matrix C '  = (ci' j) associated with A '  is defined by 

I cij ( i , j  ~ V) ,  

, = ~ c i l  ( i ~ V \ { 1 } , j ~ V ' \ V ) ,  
cij (i  ~ V ' \  V, j E V \ { 1 }  ), (1) 

[ ; l j  ( i , j ~ ( V ' \ V )  U{1}) ,  

where the value of T depends on the variant of the problem considered: 
7 = ~ yields the minimum distance for m o vehicles; 
3' = 0 yields the minimum distance for at most m u vehicles; 
3' = - ~ yields the minimum distance for the minimum number  of vehicles. 

The VRP (CVRP, DVRP or both) can then be formulated as follows. Let xij (i ~ j )  be a binary 
variable equal to 1 if and only if arc (i, j )  of A '  appears  in the optimal solution. If  d i + dj > D, i and j 



G. Laporte / Vehicle Routing Problem: An overview 347 

cannot belong to the same route and x~j need not be defined. 

(VRP1) minimize 

subject to 

E CijXi j (2)  
i :/=j 

n t 

E Xij = 1 (i = 1 . . . . .  n') (3) 
j=l  
n' 
E X i j  = 1 ( j =  1 . . . . .  n ' ) ,  (4) 

i=1 

Z Xij<-~ ISI-v(S) (SEN'\{1}; ISI >2), (5) 
i,j~S 

X i j ~ { O  , 1} ( i , j = l , . . . , n ' ;  i ~ j ) .  (6) 

In this formulation, (2), (3), (4) and (6) define a modified assignment problem (i.e. assignments on the 
main diagonal are prohibited). Constraints (5) are subtour elimination constraints: v(S) is an appropriate 
lower bound on the number of vehicles required to visit all vertices of S in the optimal solution. These 
constraints are obtained by observing that for any S c V'\{1}, I SI >__ 2, S = V ' \ V ,  we must have: 

E Ex~j>_v(s), 
i~S jE~ 

and that the following identity holds: 

ISl= E xij+ E Exij. 
i,j~S i~S j ~  

The value of v(S) depends on the type of VRP under consideration. In the CVRP, it is valid to take 

s) = [ < 
---D-- 

In the DVRP, v(S) is not as easy to determine a priori. Usually, however, a lower bound on its value 
can easily be determined during the course of a branch-and-bound process. Failing this, it is always valid 
to take v(S)= 1. It is worth observing that constraints (5) play a dual role: they ensure that all vehicle 
routes satisfy the capacity- or maximum-length restrictions; they also guarantee that the solution contains 
no subtour disconnected from the depot, since every subset S of V \  {1} will be linked to its complement. 

A natural algorithm now presents itself. Like the assignment-based algorithm for the TSP (see 
Laporte, 1992), the problem is solved through a branch-and-bound process in which subproblems are 
assignment problems. The only difference lies in the definition of illegal subtours. These now include 

(i) subtours over a set S of vertices of V\{1}; 
(ii) vehicle routes violating capacity- or maximum-length restrictions: these consist of paths of vertices 

(il ,  i2 . . . . .  i r) where il ,  /r E{1 ,  n + l  . . . .  , n + m u - 1 } ,  i 2 , . . . , i r _ l E V \ { 1 }  and Y',rt-ldi,>D or 
grt--~Ci,,i,+, > L. 

These can be eliminated by partitioning the current infeasible subproblem, as in Step 3 of the TSP 
algorithm, taking v(S) = 1. More sophisticated partitioning schemes for v(S) _> 1 are detailed in Laporte, 
Mercure and Nobert (1986). 

In order to interpret the output as a CVRP solution, we apply the following rules. Consider an arc 
(i, j)  belonging to the solution: 

(i) if i ~ V\{1} and j ~ V 'NV,  replace (i, j )  by (i, 1); 
(ii) if i ~  V ' \ V  and j ~  V\{1}, replace (i, j )  by (1, j); 

(iii) if i, j ~  V ' \ V ,  delete  (i, j). 



348 G. Laporte / Vehicle Routing Problem: A n  overview 

Using this methodology, Laporte, Mercure and Nobert (1986) have solved to optimality randomly 
generated asymmetrical CVRPs involving up to 260 vertices. Extensions to problems involving several 
types of side constraints are reported in Laporte, Mercure and Nobert (1991). 

2.2. The k-degree center tree and a related algorithm 

Christofides, Mingozzi and Toth (1981a) have developed an algorithm for symmetrical VRPs defined 
on a graph G = (V, E). It is based on the following 'k-degree center tree relaxation' of the m-TSP where 
m is fixed. In any feasible solution, the set E of edges can be partitioned into four subsets: 

E0: edges not belonging to the solution; 
E~: edges forming a k-degree center tree, i.e. a spanning tree over G where the degree of vertex 1 is 

equal to k (with k = 2m - y ) ;  
E2: y edges incident to vertex 1 (0 < y < m); 
E3: m - y  edges not incident to vertex 1. 
In this representation, it is implicitly assumed that vehicle routes including vertex 1 and only one other 

vertex j are represented by 2 edges between 1 and j. The partition of E into four subsets is illustrated in 
Figure 1 for a 14-vertex problem, with m = 4. In this figure, y = 3 and k = 2m - y  = 5. 

Now, denote by l any edge of E and by c t, its cost (length). Further define 
El: the set of all edges incident to vertex i; 
(S, S): the set of all edges with one vertex in S and one vertex in S, 
~[(t = 1, 2, 3; l ~ E): binary variables equal to 1 if and only if in the optimal solution, edge l belongs to 
E t • 

The problem is then 

(VRP2) minimize 

subject to 

cl(~: ] + ~2 + ~3) (7) 
I ~ E  

E ~]>1 ( S c V ; [ S l > l ) ,  (8) 
l ~ ( S ,  ,2) 

E ~] = 2 m - y ,  (9) 

E ~] = n -  1, (10) 
I ~ E  

E so2 = Y, (11) 

}~ ~ 3 = m - y ,  (12) 
I ~ E \ E  j 

E (~:] + ~:2 + ~3)=  2 ( i =  2 . . . . .  n) ,  (13) 
l E E  i 

~:]~{0,1} ( I ~ E ) ,  ( laa)  

~t2e{O, 1} ( I ~ E ) ,  (14b) 

¢3~{0 ,1}  ( I ~ E ) ,  (14c) 

0 < y < m and integer. (15) 

In this formulation, constraints (8)-(10) define a k-degree center tree; constraints (11) stipulate that 
there must be y additional edges (with respect to k) incident to the depot, and constraints (12) state 
there must be an additional m - y  edges not incident to the depot. Constraints (13) specify that the 
degree of every vertex, except the depot's, is equal to 2. The objective is the sum of all edge costs in the 
solution. 



G. Laporte / Vehicle Routing Problem: An overview 349 

\ 

....:/ ' " ' " ' " " ~  

Figure 1. Partition of all edges of a feasible solution into subsets. - -  k-degree center tree (k = 5), • . . . . .  y edges adjacent to 
the depot (y = 3), - . . . . .  m - y = 1 edges not adjacent to the depot 

Constraints (13) can be relaxed in a Lagrangean fashion. Associate with each of these a multiplier /~i 
and rewrite the objective as 

E ct(~ :l + ~:l z + ~:3) + E (h,~(t, + ht3,t))(~ :1 + ~2 + ~:3)_ 2 ~ hi, (16) 
l ~ E  l ~ E  i=2 

where h t = 0 and a(l) ~8(I) are the two terminal vertices of edge /. For a fixed y, (VRP2) can be 
rewritten as: 

3 
minimize ~ ]~  (C t + Aa(t) + hfl( l))~ [ -- 2 ~ A i 

t=l  I~E  i=2 (17) 
subject to (8) - (14) .  

The optimal value of (17) is not less than Ea=1zt(A, y) - 2y'.n=2A/, where 

ZI(A, y) = min E (ct + A~<t) + A0(t))~:] 
I~E 

subject to (8)- (10)  and (14a); 

zZ(A, y)  = man ~ (c t + A=tt)+ At3(t))K 2 
l ~ E  

subject to (11) and (14b), and 

Z3(A; y)  = min ~ (c t + Aa(i) + AO(I))~3 
lEE  

subject to (12) and (14c). 

For given A and y, the problems of determining zt(A, y)  for t = 1, 2, 3 are easy and can be solved in 
polynomial time. 

A lower bound on the optimal VRP solution is then given by 

max max z '(~,  y ) -  h i , (18) 
m l < Y < m  A t 

where m 1 is a lower bound on the number of routes made up of the depot and only one vertex in V\{1}. 
Taking into account capacity- and maximum-length constraints, m I can be determined so as to satisfy the 
following conditions: 



350 G. Laporte / Vehicle Routing Problem: An overview 

(i) suppose the vertices are ordered in decreasing order of their weight d i. Then m I is the largest 
value satisfying 

n 
( m - m l ) O >  ~ di; 

i = m l + l  

(ii) similarly, every vertex contributes an amount of at least u i = 8i + (c,, + Cig ~) to the length of a 
route, where ~i is the service time of vertex i and il,i 2 are the two vertices nearest to i. Then, if the 
vertices are ordered in decreasing order of the u;'s, m I must satisfy 

( m - m l ) L >  ~ Ui" 
i~ml + l 

Christofides, Mingozzi and Toth (1981a) have embedded the lower bound defined by (18) in a 
branch-and-bound scheme and have successfully solved VRPs ranging in size from 10 to 25 vertices. 

2.3. Dynamic programming 

Dynamic programming was first proposed for VRPs by Eilon, Watson-Gandy and Christofides (1971). 
Consider a VRP with a fixed number m of vehicles. Let c(S) denote the cost (length) of a vehicle route 
through vertex 1 and all vertices of a subset S of V\{1}. Let fk(U)be the minimum cost achievable using 
k vehicles and delivering to a subset U of V\{1}. Then the minimum cost can be determined through 
the following recursion: 

Ic(U) (k=l), 
f k ( U ) = l  min [ f k_ l (U\U*)+c(U*)]  (k  > 1). (19) 

u*cu_cv~{1} 

The solution cost is equal to fro(V\{1}) and the optimal solution corresponds to the optimizing subsets 
U* in (19). 

It is apparent that if f~(U) has to be computed for all values of k and for all subsets U of V\{1}, the 
number of computations required is likely to be excessive in most problems. Efficient use of dynamic 
programming requires a substantial reduction of the number of states by means of a relaxation 
procedure, or by using feasibility or dominance criteria. For example, in the CVRP the sets U and U* 
must satisfy 

E d i - ( m - k ) D <  ~-~di<kD ( k = l , . . . , m )  (20) 
g~V~{1} i~U 

and 

~ _ ~ d i - ( k - 1 ) D <  ~_, di<_D ( k = l  . . . . .  m) .  (21) 
i~U i~U* 

State-space relaxation provides another efficient way of reducing the number of states. The method 
was introduced by Christofides, Mingozzi and Toth (1981b). It provides a longer bound on the cost of the 
optimal solution. The optimum can then be reached by embedding the bounding procedure in an 
enumerative scheme. The method can be summarized as follows. Consider the general DP recursion 

fo,i(O, j) = man [f0,i_l(0, k) + ci( k, j ) ]  (22) 
kEA- I ( j )  

where 
f0,i(0, j )  is the least cost of going from state 0 at stage 0 to state j at stage i, 
A - l ( j )  is the set of all possible states from which state j can be reached directly, and ci(k, j) is the cost 
of going from state k at stage i - 1 to state j at stage i. 
Let g ( . )  be a mapping from the state space S associated with (22) to a state space T of smaller 
cardinality, and let F-l(g(j)) be a set satisfying 

k ~ A- l (  j) ~ g( k ) ~ F- l (  g( j) ). (23) 



G. Laporte / Vehicle Routing Problem: An overview 351 

Recursion (22) then becomes 

fo,i(g(O), g ( j ) )  = min 
t~F-t (g( j ) )  

where 

[ fo,i_l( g(O), t) + ~i( t, g ( j ) ) ]  (24) 

ci( t, g( j ) ) = min[c;(k, 1): g( k ) = t, g( j ) = g ( l ) ] .  (25) 

It results that 

fo , i (  g ( O ) ,  g( i) ) < fo.i(O, i). 

This relaxation is useful only if 
(i) F - l ( - )  can easily be determined: this will be so if g(.)  is separable, so that given g(U) and 

r, g(U\{r})  can be computed; 
(ii) g(-) is such that the optimization of (25) is over a small domain or that a good lower bound on 

~i(t, g(j)) can be computed. 
Christofides, Mingozzi and Toth (1981b) have used the following relaxation for CVRPs. Let fk(U, r) 

be the least cost of supplying a set U of vertices, using k vehicles, where the last vertices of the k 
corresponding routes belong to {2 . . . . .  r} (k < r < n). Let c(U, r) be the cost of the TSP solution through 
U u [1}, where the last vertex before the depot is r. The recursion is then 

[min[ fk(U,  r - 1 ) ,  min {fk I ( U \  U*,  r - 1 ) + c ( U * ,  r)} l (k,  r >  1), 
fk(U, r) = • u*~U - (26) 

~c(U, r) (k  = 1), 

subject to (20). For this problem, the mapping function is given by 

g(O)  = E di. 
i~U 

Recursion (24) then becomes 

f k ( g ( U ) ,  r ) = m i n [ f k ( g ( U ) , r - 1 ) , m i n { f k _ l ( g ( U  ) - p , r - 1 )  + ? ( p ,  r)}], (27) 
t P ] 

subject to g ( V )  - (m  - 1)O < p  < min(g(U) ,  D) .  (28) 

Using this and other relaxations, lower bounds on optimal VRP solutions were obtained for 10 
problems containing 10 to 25 vertices. The ratio 'lower bound/optimum' varied between 93.1% and 
100%. More recently, Christofides (1985b) reported that CVRPs with up to 50 vertices could be solved 
systematically with this approach. 

2.4. Set partitioning and column generation 

Balinski and Quandt (1964) were among the first to propose a set partitioning formulation for VRPs. 
Consider J, the set of all feasible routes j and aij be a binary coefficient equal to 1 if and only if vertex 
i > 1 appears on route j. Let c* be the optimal cost of route j and x j, a binary variable equal to 1 if and 
only if route j is used in the optimal solution. 

The problem can then be formulated as follows: 

(VRP3) minimize Y'~ c*xj (29) 
j ~ J  

subject to Y'. aijx j = 1 (i ~ V\{1}) ,  (30) 
j ~ J  

x: ~ {0, 1} ( j  ~ J ) .  (31) 



352 G. Laporte / Vehicle Routing Problem: An overview 

There are two main difficulties associated with this formulation: 
(i) the large number of binary variables xj which can run into the millions in most real-life cases. 

Only in extremely constrained problems (i.e. in problems with very few feasible solutions) will the 
number of variables be small enough to enable the problem to be solved directly; 

(ii) the difficulty of computing the c* values. For example, in the CVRP, every route j corresponds to 
a set of vertices Sj satisfying 

Y'. d j < D .  
i~Sj  

The value of c* is then obtained by solving a TSP on Sj. 
However, if the number of variables is relatively small and the objective is to minimize the number of 

vehicles, i.e. c* = 1 for all j ~ J, the linear relaxation of (VRP3) often provides an integer solution 
(Toregas and ReVelle, 1972). If the solution (x*)  is non-integer and gives a fractional objective value, 
then the cutting plane 

j E J  I j ~ J  | 

can be introduced. Very few cuts are generally required to reach integrality (Orloff, 1976). 
A natural way around the difficulties just mentioned is to use a column generation algorithm. This 

technique has been applied to the field of vehicle routing by Rao and Zionts (1968), Foster and Ryan 
(1976), Orloff (1976), Desrosiers, Soumis and Desrochers (1984), Agarwal, Mathur and Salkin (1989), and 
Desrochers, Desrosiers and Solomon (1990). A recent introduction to the field can be found in Haouari, 
Dejax and Desrochers (1990). 

In column generation, a reduced problem containing only a restricted subset of all possible columns 
(variables) is repeatedly solved. The linear relaxation of the reduced problem provides an optimal dual 
variable vector A. Checking for optimality implies computing the column s of least marginal cost, i.e., 
determining the column s satisfying 

c* - Ay s = min [c* - Ayj} (32) 
j E J  t J 

where yj is the column-vector of constraint coefficients of variable xj. If the marginal cost of x s is 
non-negative, the current solution is optimal and the procedure terminates. Otherwise, xs enters the 
basis and the problem is re-optimized. Since VRP solutions must be integer, this procedure must be used 
in conjunction with a branch-and-bound algorithm. Solving (32) is done using an algorithm for a 
shortest-path problem constrained in the same manner as the original VRP. This procedure has been 
applied with success by Desrosiers, Soumis and Desrochers (1984) and more recently, by Desrochers, 
Desrosiers and Solomon (1991) to the solution of VRPs with time windows containing up to 100 vertices. 
As expected, the method performs better on tightly constrained problems, as the number of feasible 
columns is then smaller. 

2.5. A three-index vehicle flow formulation 

Fisher and Jaikumar (1978, 1981) have developed a three-index vehicle flow formulation for VRPs 
with capacity restrictions, time windows and no stopping times ~i. Such formulations use variables to 
represent the passing of a vehicle on an arc or edge (i, j). In three-index formulations, variables xij k 
indicate whether (i, j)  is traversed by vehicle k or not. In two-index formulations, variables xij do not 
specify which vehicle is used on (i, j). Fisher and Jaikumar have also developed an algorithm based on 
this formulation. Although this algorithm seems to have been used only to provide a heuristic solution to 
the problem, it guarantees an optimal solution in a finite number of steps, if run to completion. The 
formulation does not require vehicles to be identical. Let D k be the capacity of vehicle k, [ai, b i] the 
time window for vertex i, and tij, the travel time on arc (i, j). Define binary variables xij k (i ~ j ) ,  equal 



G. Laporte / Vehicle Routing Problem: An overview 353 

to 1 if and only if in the optimal solution, arc (i, j )  is traversed by vehicle k. Also define binary variables 
Y~k, equal to 1 if and only if vertex i is served by vehicle k. Finally, let t i denote the arrival time at vertex 
i and let T be a very large number. 

The formulation is then 

(VRP4)  minimize ~ Y'~ cuxiy k (33) 
k = l  i4=j 

subject to ~diYik<_Dk ( k = l  . . . . .  m) ,  (34) 
i = 1  

( m  ( / = 1 1 ,  (35/ 
Yik= 1 ( i = 2 ,  . , n ) ,  

k = l  "" 

~Xijk=Yyk ( J = l , . - . , n ; k = l  . . . . .  m) ,  (36) 
i = 1  

~Xijk=Yjk ( j =  1 . . . . .  n; k =  1 . . . . .  m) ,  (37) 
j=l  

Xijk<lSl - -1  ( S c V ;  I S l > 2 ; k = l  . . . . .  m) ,  (38) 
i , j~S 

>_ti+tij-- (1 - - X i j k ) T  (i ,  J= 1 . . . . .  n; k=  1 . . . .  , m ) ,  (39) 
tj < ti d- tit + (1 - - X i j k ) T  

ai<_ti<_bi ( i = 2  . . . . .  n) ,  (40) 

xij k~{O,1}  ( i , j = l  . . . . .  n ; k = l  . . . . .  m) ,  (41) 

Yik~{O, 1} ( i = 1  . . . . .  n; k = l  . . . . .  m) .  (42) 

Most constraints of this formulation are either self-explanatory or have been previously discussed. 
Note that if arc (i, j )  does not appear in the solution, xij k is equal to 0 for all k and constraints (39) are 
ineffective then; otherwise, xuk is equal to 1 for some k and then tj = t~ + t~j. 

Essentially, two well known problems are contained in (VRP4): 
(i) the generalized assignment problem (GAP) obtained by relaxing constraints (38), (39) and (41); 

(ii) the TSP with time windows (TSPTW): for given ysk'S satisfying the GAP constraints and for a given 
k, constraints (36)-(40) are those of a TSPTW for vehicle k. 

Fisher and Jaikumar propose an algorithm based on Benders'  decomposition (Benders, 1962). The 
procedure iterates between solving a GAP master problem that assigns vertices to vehicles, and solving a 
TSPTW to determine the best vehicle route for each vehicle. The method has the advantage of 
producing a feasible solution, even if not run to completion (its authors did not, in fact, run it to 
optimality). Also, since it repeatedly solves a GAP and a TSPTW, it can benefit directly from any 
improvement in algorithms for these two problems. Such improvements have been proposed recently by 
Martello and Toth (1990) and by Desrochers, Desrosiers and Solomon (1991). Fisher and Jaikumar 
(1981) report computational results for VRPs ranging from 50 to 199 vertices. 

2.6. A two-index vehicle flow formulation 

In symmetrical CVRPs and DVRPs,  a more compact formulation can be obtained by dropping the 
index k from the variables. Here xiy (i < j )  indicates how many timed edge (i, j )  is traversed by a 
vehicle: if i, j ~ V\{1}, then x u ~ {0, 1}; if i = 1 and j E V\{1}, then x u ~ {0, 1, 2}. The case x u= 2 
corresponds to the single vertex trip (1, j, 1). In addition, 

(i) in CVRPs, x u is not defined if d i +  d r > D; 



354 G. Laporte / Vehicle Routing Problem: An overview 

(ii) in DVRPs, let s i be the length of a shortest path from vertex 1 to vertex i and ti, the length of a 
shortest path from vertex j to vertex 1. Then xii is not defined whenever Sg + cii + tj > L. 

The following formulation was proposed by Laporte, Nobert and Desrochers (1985). 
n 

(VRP5) minimize ~. cijxij (43) 
i<j 

subject to ~ xli  = 2m, (44) 
j = 2  

E x i t +  E x k j = 2  ( k = 2  . . . .  , n ) ,  (45) 
i<k j>k  

F_, xij<_ IS I - v (S )  ( S c V \ { 1 } ; 2 <  ISI <n -2 ) ,  (46) 
i , j~S  

i <j 

X l j ~ { 0 , 1 , 2 }  ( j = 2 , . . . , n ) ,  (47) 

X i j E { O  , 1} ( i , j = 2  . . . . .  n) .  (48) 

This formulation is a direct extension of the corresponding (SYM) formulation for the TSP (Laporte, 
1991). It is worth noting that m can be taken as a fixed constant or as a variable. In the latter case, it is 
often convenient to impose a lower or an upper bound on m. In subtour elimination constraints (46), 
v(S) is a lower bound on the number of vehicles required to visit S. As in the TSP, the validity of these 
constraints can easily be established from the identity 

k~S  i<k j>k  i i , j~S  i ~ S , j ~ S  
i<j or i~S , jES  

and the connectivity constraints 

E xi j>2v(S ) ( S c V \ { 1 } ; 3 < _ I S I < n - 3 ) .  (46a) 
i E S , j ~ S  

or  i ~ S , j ~ S  

These constraints force at least 2v(S) edges to exist between S and its complement if v(S) vehicles 
are used for S. As in the asymmetrical case (VRP1), the value of v(S) can be taken as [(~i ~ sdi)/D] for 
CVRPs, but is not so easily computed for DVRPs (see Laporte, Nobert and Desrochers, 1985). 

This model can be solved by means of the following constraint relaxation algorithm: 

Step 1. (Initialization) Define a first subproblem containing (43), the degree constraints (44) and (45), 
as well as the bounds on the variables. Insert this subproblem in a queue. Let z * be the value of the best 
known VRP solution (If no such solution is known, set z * -= ~.) 

Step 2. (Termination check) If the queue is empty, stop. Otherwise, extract from it the next 
subproblem to be solved. 

Step 3. (Subproblem solution) Solve the subproblem (a linear program). Let ~, be its solution value. 
Step 4. (Feasibility check) If ~, > z * ,  fathom the current subproblem and go to Step 2. Otherwise, 

check whether any violated subtour elimination constraint can be identified. If so, generate one or 
several such constraints and go to Step 3. If no violation of constraints (46) can be detected, check 
whether the solution is integer. If it is, set z* := £" and go to Step 2. If the solution is non-integer, create 
subproblems by branching on a fractional variables; insert these subproblems in the queue and go to Step 
2. 

This algorithm has been used by Laporte, Nobert and Desrochers (1985) on problems containing up to 
60 vertices. Loosely constrained problems are easier than tight problems since they require fewer subtour 
elimination constraints. By contrast, the k-degree centre-tree algorithm, dynamic programming and set 
partitioning work better on tightly constrained problems. 



G. Laporte / Vehicle Routing Problem: An overview 355 

3. Heuristic algorithms 

Heuristic algorithms for the VRP can often be derived from procedures derived from the TSP (see 
Laporte, 1992, Section 5.2). The nearest neighbour algorithm, insertion algorithms and tour improvement 
procedures can be applied to CVRPs and DVRPs almost without modifications. However, when applying 
these methods to VRPs care must be taken to ensure that only feasible vehicle routes are created. The 
Fisher and Jaikumar (1978) algorithm described in Section 2.5 may also be viewed as a heuristic since it 
provides at every step a feasible VRP solution and is often interrupted before optimality can be 
achieved. 

In this section, we will describe four heuristics specifically developed for the VRP. 

3.1. The Clarke and Wright algorithm (1964) 

This classical algorithm was first proposed in 1964 by Clarke and Wright to solve CVRPs in which the 
number of vehicles is free. The method starts with vehicle routes containing the depot and one other 
vertex. At each step, two routes are merged according to the largest saving that can be generated. 

Step 1. Compute the savings sij-~-Cil-~ Clj-  Cij for i, j = 2 . . . . .  n, and i :~j. Create n -  1 vehicle 
routes (1, i, 1) (i = 2 , . . . ,  n). 

Step 2. Order the savings in a non-increasing fashion. 
Step 3. Consider two vehicle routes containing arcs (i, 1) and (1, j), respectively. If sij > 0, tentatively 

merge these routes by introducing arc (i, j )  and by deleting arcs (i, 1) and (1, j). Implement the merge if 
the resulting route is feasible. Repeat this step until no further improvement is possible. Stop. 

This procedure can be executed in O(n 2 log n) time, but this complexity can be reduced by using 
appropriate data structures (Golden et al., 1977; Nelson et al., 1985; Paessens, 1988). Gaskell (1967), 
Yellow (1970) and Paessens (1988) have also proposed a number of variants of this method. The Clarke 
and Wright algorithm implicitly ignores vehicle fixed costs and fleet size. Vehicle costs f can easily be 
taken into account by adding this constant to every c~j ( j  = 2 , . . . ,  n). Solutions with a fixed number of 
vehicles can be obtained by repeating Step 3 until the required number of routes has been reached, even 
if the savings become negative. 

3.2. The sweep algorithm (Wren, 1971; Wren and Holliday, 1972; Gillett and Miller, 1974) 

It seems that the origins of the sweep algorithm can be traced back to the work of Wren (1971) and 
Wren and Holliday (1972) for CVRPs with one or several depots, and  vertices located in the Euclidean 
plane. The method is commonly attributed to Gillett and Miller (1974) who gave it its name. In order to 
ease the implementation of this method, it is preferable to represent vertices by their polar coordinates 
(0i, pi ), where 0 i is the angle and Pi is the ray length. Assign a value 0i* = 0 to an arbitrary vertex i* and 
compute the remaining angles from (1, i*). Rank the vertices in increasing order of their 0 r A possible 
implementation of the method is the following. 

Step 1. Choose an unused vehicle k. 
Step 2. Starting from the unrouted vertex having the smallest angle, assign vertices to the vehicle as 

long as its capacity is not exceeded. If unrouted vertices remain, go to Step 1. 
Step 3. Optimize each vehicle route separately by solving the corresponding TSP (exactly or approxi- 

mately). Perform vertex exchanges between adjacent routes if this saves distance. Re-optimize and stop. 

3.3. The Christofides-Mingozzi-Toth two-phase algorithm (1979) 

This algorithm was basically designed for CVRPs and DVRPs. It produces two alternative solutions 
for given parameters A _ 1 and /~ >_ 1 set by the user. The better of the two solutions can then be 
selected. This procedure can be repeated for several values of A and/x.  



356 G. L a p o r t e  / Vehicle  R o u t i n g  Prob lem:  A n  o v e r v i e w  

Phase 1 Sequential route construction. 
Step 1. Set a first route index k equal to 1. 
Step 2. Select any unrouted vertex i k to initialize route k. For every unrouted vertex i, compute 

~i  = C l i  -~- ~Ci ik"  

Step 3. Let  6i. = min i E sk{tS~}, where S k is the set of unrouted vertices that can be feasibly inserted into 
route k. Insert vertex i* into route k. Optimize route k using an r-opt algorithm (Lin, 1965). Repeat  
Step 3 until no more vertices can be assigned to route k. 

Step 4. If all vertices have been inserted into routes, stop. Otherwise, set k := k + 1 and go to Step 2. 

Phase 2 Parallel route construction. 
Step 5. Initialize k routes R t = (1, i t, 1) (t = 1 . . . .  , k), where k is the number of routes obtained at 

the end of Phase 1. Let K = {R~ . . . . .  Rk}. 
Step 6. For each route R t ~ K and for each vertex i not yet associated with a route, compute 

i~ti = Cl i  "]- I&Clk  t - -  C l i  t and Et. i = mint{e,}.  Associate vertex i with r o u t e  R t .  and repeat Step 6 until all 
vertices have been associated with a route. 

Step 7. Take any r o u t e  R t ~ K  and set K : = K \ { R t } .  For every vertex i associated with r o u t e  R t ,  

compute e,, i = minn, ~ K{eti } and "1" i = e t ,  i - -  eti. 
Step 8. Insert into route R t vertex i* satisfying %. = maxi~st{,ri} , where S t is the set of unrouted 

vertices associated with route R, that can feasibly be inserted into r o u t e  R t. Optimize route R t using an 
r-opt algorithm. Repeat  Step 8 until no more vertices can be inserted into r o u t e  R t. 

Step 9. If K ~ ¢, go to Step 6. Otherwise, if all vertices are routed, stop. If unrouted vertices remain, 
create new routes starting with Step 1 of Phase 1. 

3.4. A tabu search algorithm (Gendreau, Hertz and Laporte, 1991) 

This tabu search heuristic (see Laporte, 1992, Section 5.2.2) constructs a sequence of solutions, and 
then executes an improvement step. The successive vehicle routes produced by the algorithm may not be 
feasible; their degree of departure from feasibility is measured by means of a penalty in the objective 
function. 

Step 1. Constitute back and forth routes between the depot and customers. Let x be this solution and 
let its cost be F(x) .  Set the tabu list T := 0 .  

Step 2. Define N ( x ) ,  the neighbourhood of x, as the set of all solutions that can be reached by 
inserting an arbitrary vertex in its p-neighbourhood by using the GENI procedure (Gendreau, Hertz and 
Laporte, 1992). If N ( x ) \ T =  ¢, go to Step 3. Otherwise, identify the least cost solution y in N ( x ) \ T  
and set x := y. Update the best known solution. 

Step 3. If the maximum number of iterations since the beginning of the process or since the last 
update has been reached, go to Step 4. Otherwise, update T and go to Step 2. 

Step 4. Attempt to improve each of the vehicle routes by means of the US post-optimization procedure 
(Gendreau, Hertz and Laporte, 1992). 

This algorithm was successfully applied to a number of classical VRPs described in the OR literature. 
Computational results indicate that the proposed heuristic may be one of the best ever developed for the 
VRP 

4. Conclusion 

The Vehicle Routing Problem lies at the heart of distribution management. There exist several 
versions of the problem, and a wide variety of exhct and approximate algorithms have been proposed for 



G. Laporte / Vehicle Routing Problem: An overview 357 

its solution. Exact algorithms can only solve relatively small problems, but a number of approximate 
algorithms have proved very satisfactory. However, several promising avenues of research deserve more 
attention, such as tabu search methods. 

Acknowledgements 

This research was in par t  suppor ted  by the Canad i an  Natura l  Sciences and  Eng inee r ing  Research  
Counci l  (grant  OGP0039682),  and  by a Quebec-New-Brunswick  interprovincial  research grant.  A n  

extended version of this paper  will appear  in Discrete Optimization Models, H.A. Eiselt  and  C.L. 
Sandblom (eds.), De  Gruyter ,  Berlin,  1993. Permiss ion to publ ish this paper  in E J O R  is gratefully 
acknowledged.  Finally,  thanks  are also due to Paolo Toth  for his valuable  comments  on a pre l iminary  

version of this paper.  

References 

Agarwal, Y., Mathur, K., and Salkin, H.M. (1989), "A set-partitioning-based algorithm for the vehicle routing problem", Networks 
19, 731-750. 

Balinski, M., and Quandt, R. (1964), "On an integer program for a delivery problem", Operations Research 12, 300-304. 
Benders, J.F. (1962), "Partitioning procedures for solving mixed-variables programming problems", Numerische Mathematik 4, 

238-252. 
Bodin, L.D., Golden, B.L., Assad, A.A., and Ball, M.O. (1983), "Routing and scheduling of vehicles and crews. The state of the 

art", Computers and Operations Research 10, 69-211. 
Christofides, N. (1985a), "Vehicle routing", in: E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, (eds.), The 

Traveling Salesman Problem. A Guided Tour of Combinatorial Optimization, Wiley, Chichester, 431-448. 
Christofides, N. (1985b), "Vehicle scheduling and routing", Presented at the 12th International Symposium on Mathematical 

Programming, Cambridge, MA. 
Christofides, N., Mingozzi, A., and Toth, P. (1979), "The vehicle routing problem", in: N. Christofides, A. Mingozzi, P. Toth and C. 

Sandi (eds.), Combinatorial Optimization, Wiley, Chichester, 315-338. 
Christofides, N., Mingozzi, A., and Toth, P. (1981a), "Exact algorithms for the vehicle routing problem, based on spanning tree and 

shortest path relaxations", Mathematical Programming 20, 255-282. 
Christofides, N., Mingozzi, A., and Toth, P. (1981b), "State space relaxation procedures for the computation of bounds to routing 

problems", Networks 11, 145-164. 
Clarke, G., and Wright, J.W. (1964), "Scheduling of vehicles from a central depot to a number of delivery points", Operations 

Research 12, 568-581. 
Desrochers, M., Desrosiers, J., and Solomon, M.M. (1991), "A new optimization algorithm for the vehicle routing problem with 

time windows", Operations Research, forthcoming. 
Desrochers, M., Lenstra, J.K., and Savelsbergh, M.W.P. (1990), "A classification scheme for vehicle routing and scheduling 

problems", European Journal of Operational Research 46, 322-332. 
Desrosiers, J., Soumis, F., and Desrochers, M. (1984), "Routing with time windows by column generation", Networks 14, 545-565. 
Eilon, S., Watson-Gandy, C.D.T., and Christofides, N. (1971), Distribution Management: Mathematical Modelling and Practical 

Analysis. Griffin, London. 
Fisher, M.L., and Jaikumar, R. (1978), "A decomposition algorithm for large-scale vehicle routing", Working Paper 78-11-05, 

Department of Decision Sciences, University of Pennsylvania. 
Fisher, M.L., and Jaikumar, R. (1981), "A generalized assignment heuristic for vehicle routing", Networks 11, 109-124. 
Foster, B., and Ryan, D. (1976), "An integer programming approach to the vehicle scheduling problem", Operational Research 

Quarterly 27, 367-384. 
Gaskell, T. (1967), "Bases for vehicle fleet scheduling", Operational Research Quarterly 18, 281-295. 
Gendreau, M., Hertz, A., and Laporte, G. (1991), "A tabu search heuristic for the vehicle routing problem", Publication #777, 

Centre de recherche sur les transports, Montr6al. 
Gendreau, M., Hertz, A., and Laporte, G. (1992), "New insertion and post-optimization procedures for the traveling salesman 

problem", Operations Research forthcoming. 
Gillett, B., and Miller, L. (1974), "A heuristic algorithm for the vehicle dispatch problem", Operations Research 22, 340-349. 
Golden, B.L., and Assad, A.A. (1988), Vehicle Routing: Methods and Studies, North-Holland, Amsterdam. 
Golden, B.L., Magnanti, T.L., and Nguyen, H.Q. (1977), "Implementing vehicle routing algorithms", Networks 7, 113-148. 
Haouari, M., Dejax, P.J., and Desrochers, M. (1990), "Modelling and solving complex vehicle routing problems using column 

generation", Working Paper, LEIS, I~cole Centrale de Paris. 
Laporte, G. (1990), "D6veloppements algorithmiques r6cents et perspectives de recherche en distributique", Les Cahiers 

Scientifiques du Transport 21, 61-84. 



358 G. Laporte / Vehicle Routing Problem: An overview 

Laporte, G. (1992), "The traveling salesman problem: An overview of exact and approximate algorithms", European Jouranl of 
Operational Research 59/2, 231-248. 

Laporte, G., Mercure, H., and Nobert, Y. (1986), "An exact algorithm for the asymmetrical capacitated vehicle routing problem", 
Networks 16, 33-46. 

Laporte, G., Mercure, H., and Nobert, Y. (1991), "A branch-and-bound algorithm for a class of asymmetrical vehicle routing 
problems", Journal of the Operational Research Society, forthcoming. 

Laporte, G., and Nobert, Y. (1987), "Exact algorithms for the vehicle routing problem", in: S. Martello, G. Laporte, M. Minoux 
and C. Ribeiro (eds.), Surveys in Combinatorial Optimization, North-Holland, Amsterdam, 147-184. 

Laporte, G., Nobert, Y., and Desrochers, M. (1985), "Optimal routing under capacity and distance restrictions", Operations 
Research 33, 1050-1073. 

Lenstra, J.K., and Rinnooy Kan, A.H.G. (1975), "Some simple applications of the travelling salesman problem", Operational 
Research Quarterly 26, 717-734. 

Lin, S. (1965), "Computer solutions of the traveling salesman problem", Bell System Technical Journal 44, 2245-2269. 
Martello, S., and Toth, P. (1990), "Generalized assignment problem", in: S. Martello and P. Toth (eds.), Knapsack Problems. 

Algorithms and Computer Implementations, Wiley, Chichester, 189-220. 
Nelson, M.D., Nygard, K.E., Griffin, J.H., and Shreve, W.E. (1985), "Implementation techniques for the vehicle routing problem", 

Computers & Operations Research 12, 273-283. 
Orloff, C. (1976), "Route-constrained fleet scheduling", Transportation Science 10, 149-168. 
Paessens, H. (1988), "The savings algorithm for the vehicle routing problem", European Journal of Operational Research 34, 

336-344. 
Rao, M.R., and Zionts, S. (1968), "Allocation of transportation units to alternative trips- A column generation scheme with 

out-of-kilter subproblems", Operations Research 16, 52-63. 
Toregas, C., and ReVelle, C. (1972), "Location under time or distance constraints", Papers of the Regional Science Association 28, 

133-143. 
Wren, A. (1971), Computers in Transport Planning and Operation, Ian Allan, London. 
Wren, A., and Holliday, A. (1972), "Computer scheduling of vehicles from one or more depots to a number of delivery points", 

Operations Research Quarterly 23, 333-344. 
Yellow, P. (1970), "A computational modification to the savings method of vehicle scheduling", Operational Research Quarterly 21, 

281-283. 


