
Computers & Industrial Engineering 65 (2013) 39–53
Contents lists available at SciVerse ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie
A hybrid discrete particle swarm optimization for vehicle routing problem
with simultaneous pickup and delivery

Fatma Pinar Goksal a, Ismail Karaoglan b, Fulya Altiparmak c,⇑
a Department of Industrial Engineering, Baskent University, Ankara, Turkey
b Department of Industrial Engineering, Selcuk University, Konya, Turkey
c Department of Industrial Engineering, Gazi University, Ankara, Turkey

a r t i c l e i n f o
Article history:
Available online 20 January 2012

Keywords:
Vehicle routing problem
Simultaneous pickup and delivery
Particle swarm optimization
Variable neighborhood descent algorithm
0360-8352/$ - see front matter � 2012 Elsevier Ltd. A
doi:10.1016/j.cie.2012.01.005

⇑ Corresponding author.
E-mail addresses: pgoksal@baskent.edu.tr (F.P.

edu.tr (I. Karaoglan), fulyaal@gazi.edu.tr (F. Altiparma
a b s t r a c t

Vehicle routing problem (VRP) is an important and well-known combinatorial optimization problem
encountered in many transport logistics and distribution systems. The VRP has several variants depend-
ing on tasks performed and on some restrictions, such as time windows, multiple vehicles, backhauls,
simultaneous delivery and pick-up, etc. In this paper, we consider vehicle routing problem with simulta-
neous pickup and delivery (VRPSPD). The VRPSPD deals with optimally integrating goods distribution and
collection when there are no precedence restrictions on the order in which the operations must be per-
formed. Since the VRPSPD is an NP-hard problem, we present a heuristic solution approach based on par-
ticle swarm optimization (PSO) in which a local search is performed by variable neighborhood descent
algorithm (VND). Moreover, it implements an annealing-like strategy to preserve the swarm diversity.
The effectiveness of the proposed PSO is investigated by an experiment conducted on benchmark prob-
lem instances available in the literature. The computational results indicate that the proposed algorithm
competes with the heuristic approaches in the literature and improves several best known solutions.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In today’s competitive environment, it is obvious that compa-
nies should make strategic and operational decisions in order to
optimize and manage the processes in their logistics system more
efficiently. One of the most important operational decisions con-
cerns to finding optimal vehicle routes since it offers great poten-
tial to reduce costs and to improve service quality. The classical
vehicle routing problem (VRP) can be defined as the determination
of an optimal set of routes for a fleet of vehicles which needs to
serve a set of customers. Since it was introduced by Dantzig and
Ramser (1959), attention has been devoted to more complex vari-
ants of the VRP appearing in real life such as time windows, multi-
ple vehicles and backhauls. The comprehensive review on classical
VRP, its variants, formulations, and solution methods can be found
in Toth and Vigo (2002).

One of the variants of the VRP is the vehicle routing problem
with simultaneous pickup and delivery (VRPSPD). In the VRPSPD,
the vehicles are not only required to deliver goods to customer,
but also pickup goods at customer locations. A general assumption
in the VRPSPD is that all delivered goods must be originated from
the depot and all pickup goods must be transported back to the
ll rights reserved.

Goksal), ikaraoglan@selcuk.
k).
depot. Delivery and pickup goods must be met simultaneously
when each customer is visited only once by a vehicle and unload-
ing is carried out before loading at the customers (Chen & Wu,
2006).

The VRPSPD can be defined formally as follows: Let G = (N,A) be
a complete directed network, where N = N0 [ {0} is the set of verti-
ces in which N0 represents the customers and ‘‘0’’ represents the
depot, respectively. A = {(i, j): i, j 2 N} is the set of arcs, and to each
arc (i, j) is associated a nonnegative cost (distance) cij. In the depot
there are identical vehicles with a capacity Q and there is no
restriction on the number of vehicles. In the VRPSPD, each cus-
tomer i 2 N0 requires a given quantity to be delivered (di) and
picked-up (pci). The VRPSPD consists of finding a set of routes such
that each route starts and ends at the depot, each customer is vis-
ited exactly once by one vehicle, the total vehicle load in any arc
does not exceed the capacity of the vehicle and the total routing
cost is minimized (Montane & Galvão, 2006). The critical feature
of the problem is that both pickup and delivery activities should
be carried out simultaneously by the same vehicle. Therefore,
when a solution approach is developed for the problem, a mecha-
nism that check the fluctuating load on the vehicle at each cus-
tomer should be imposed into it to prevent the vehicle is
overloaded. For mathematical formulations of the VRPSPD, the
interested readers are referred the studies of Ai and Kachitvichyan-
ukul (2009a), Dethloff (2001), Nagy and Salhi (2005), and Tang and
Galvao (2006). The VRPSDP is related to the vehicle routing

http://dx.doi.org/10.1016/j.cie.2012.01.005
mailto:pgoksal@baskent.edu.tr
mailto:ikaraoglan@selcuk. edu.tr
mailto:ikaraoglan@selcuk. edu.tr
mailto:fulyaal@gazi.edu.tr
http://dx.doi.org/10.1016/j.cie.2012.01.005
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


40 F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53
problem with backhauls (VRPBs) in which all deliveries to the line-
haul customers must be made before any pickup from a backhaul
customer. When the delivery or pickup is allowed in any order of
sequence, the problem is called the vehicle routing problem with
mixed pickup and delivery (VRPMPD). The VRPMPD can be consid-
ered as a special case of the VRPSPD because when the delivery or
pickup demand of each customer is set to zero, the problem re-
duces to VRPMPD. Hence, a solution approach developed to solve
the VRPSPD can be directly used to solve the VRPMPD (Wassan,
Wassan, & Nagy 2007; Wassan, Nagy, & Ahmadi 2008).

The application of the VRPSPD is frequently encountered in the
distribution system of grocery store chains. Each grocery store may
have both a delivery (e.g., fresh food or soft drink) and pickup (e.g.,
outdated items or empty bottles) demands and is serviced with a
single stop (Chen & Wu, 2006). Reverse logistics is also another
application area for the VRPSPD as companies become interested
in gaining control over the whole lifecycle of their products. For
example, in some countries legislation forces companies to take
responsibility for their products during lifetime, especially when
environmental issues are involved (Dethloff, 2001; Montane &
Galvão, 2006).

The VRPSPD is an NP-hard problem (Salhi & Nagy, 1999),
because it can be considered as the VRP, which is well-known
NP-hard problem, when only delivery goods or pickup goods are
considered. Thus, after Min (1989) introduced the VRPSPD, the re-
search on this problem has been mainly focused on heuristic and
meta-heuristic approaches which can produce high-quality solu-
tions within limited computational times (Berbeglia, Cordeau,
Gribkovskaia, & Laporte 2007; Parragh, Doerner, & Hartl 2008).

Recently, research attention for combinatorial optimization has
turned to hybridization of meta-heuristics. It is assumed that com-
bining features of different heuristics in complementary fashion
can result in more robust and effective optimization tools (Talbi,
2002). Thus, previous experiments have showed that the effective-
ness and efficiency of hybrid algorithms are often better than those
of more simplistic ones. Some examples for hybrid algorithms ap-
plied to various VRPs can be given as follows: Tan, Lee, and Ou
(2001) apply different hybridizations of TS, simulated annealing
(SA) and genetic algorithms (GAs) to solve the VRP with time win-
dows. Lee, Lee, Lin, and Ying (2010) hybridize ant colony optimiza-
tion (ACO) and SA for the capacitated VRP. Another hybrid
algorithm based on evolutionary strategies and memory-based
guided local search is proposed by Repoussis, Tarantilis, Braysy,
and Ioannou (2010) for the open VRP.

In this paper, our purpose is to present an effective solution ap-
proach to deal with the VRPSPD. The solution approach is a hybrid-
ization of the particle swarm optimization (PSO) and variable
neighborhood descent (VND) which are well known meta-heuris-
tics in the literature. While PSO is implemented to search good
quality solutions in the solution space, VND is used to improve
solutions which are randomly selected from the population in each
iteration of the PSO. Moreover, an annealing-like strategy is em-
ployed to preserve the swarm diversity of the PSO. One of the
key issues when designing an algorithm based on PSO lies in its
solution representation, where particles bear the necessary infor-
mation related to the problem domain on hand. So the most impor-
tant issue in applying PSO-based algorithm to VRPSPD is to develop
an effective problem mapping and solution generation mechanism.
Therefore, in the h_PSO, we utilize permutation encoding that is a
giant tour without trip delimiters to represent a solution of the
problem. Hence, we adapt the splitting procedure proposed by
Prins (2004) for the capacitated VRP in order to obtain a feasible
solution from a giant tour for the VRPSPD. To the best of our
knowledge, this is the first implementation of giant tours to repre-
sent VRPSPD solutions. Further difficulty in solving the VRPSPD lies
in checking load feasibility which is a time consuming process.
Thus, we utilize a constant-time feasibility checking procedure in
the neighborhood structures implemented in VND. The proposed
hybrid algorithm (h_PSO) is compared with the existing solution
approaches for the VRPSPD and its special case, i.e. the VRPMPD,
in the literature. The computational results reveal that the h_PSO
competes with existing approaches in the literature and also
improves some best known solutions of the benchmark problems.

This paper is organized as follows: Section 2 reviews studies
about the VRPSPD and its special case, i.e. VRPMPD. While Section 3
includes brief information about PSO and VND, the proposed heu-
ristic approach for the VRPSPD is given in Section 4. Section 5 gives
computational results and conclusion follows in Section 6.

2. Literature review

Recently the VRP with pickup and delivery has received more
attention from practitioners as well as researchers because of its
great importance in practical applications and reverse logistics.
The variants of the problem are: the VRP with backhauls, the VRP
with mixed pickup and delivery, the VRP with simultaneous pickup
and delivery, the dial-a-ride problem. In this paper, we briefly re-
view the studies related with the VRP with simultaneous pickup
and delivery and its special case, i.e. the VRP with mixed pickup
and delivery. Thus, for more information about the VRP with pickup
and delivery and its variants, we refer the interested readers to the
review papers of Berbeglia et al. (2007) and Parragh et al. (2008).

The VRPSPD is introduced two decades ago by Min (1989) to
solve a real life problem of transporting books between libraries.
The solution approach for the problem consists of the following
stages: (i) clients are first clustered in such a way that the vehicle
capacity is not exceeded in each group; (ii) one vehicle is assigned
to every cluster; and (iii) Traveling Salesman Problem (TSP) is
solved for each group of clients. Dethloff (2001) propose an inser-
tion heuristic in which customers are inserted into emerging
routes according to three criteria: travel distance, residual capacity
and distance from the depot. The heuristic approach does not in-
clude an improvement routine. The author considers also the rela-
tionship between the VRPSPD and other VRP variants. Nagy and
Salhi (2005) develop a composite heuristic approach for single-
and multi-depot VRPSPD and VRPMPD. The heuristic approach
combines the power of different routines in an organized way.
These routines are modified versions of VRP routines such as
2-Opt, 3-Opt, Shift, Exchange, Perturb but also some specially
developed for the VRPSPD such as Reverse which is implemented
to reverse the direction of a route and Neck which allows custom-
ers to be visited twice, once for delivery and then for pickup. Gajpal
and Abad (2010) present the saving and parallel saving heuristics
based on the Clark and Wright algorithm for the VRPSPD. The
authors develop a cumulative net-pickup approach for checking
the feasibility when merging two existing routes. An exact algo-
rithm based on branch-and-price approach is developed in
Dell’Amico et al. (2006) to solve the VRPSPD. This approach applies
two different strategies to solve the sub pricing problem: (i) exact
dynamic programming and (ii) state space relaxation. The pro-
posed exact algorithm finds the optimum solution for instances
up to 40 customers.

Meta-heuristic approaches have been also successfully applied
to solve the VRPSPD and VRPMPD. Crispim and Brandao (2005)
are the first authors who present a meta-heuristic approach for
the VRPSPD. The proposed approach is a hybrid algorithm based
on tabu search (TS) and variable neighborhood descent (VND).
The authors use a sweep method to obtain an initial solution. If
any route in the initial solution is infeasible because of the over-
loading of some intermediate arcs, the feasibility is established
by exchanging the order of customers on the route. The improve-
ment phase implements insert and swap as moves. Infeasible



F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53 41
solutions are allowed by penalizing them according to the level of
overload. Ropke and Pisinger (2006) develop a large neighborhood
search (LNS) heuristic to solve several variants of the VRP including
the VRPSPD. Chen and Wu (2006) also suggest a hybrid scheme
incorporating the TS and the record-to-record travel strategies. In
this scheme, initial feasible solutions are obtained by an insertion
method based on distance- and load-based criteria. Moreover,
the authors apply 2-exchange, swap, shift, 2-opt and Or-opt in
the improvement phase of the hybrid algorithm. Montane and Gal-
vão (2006) propose a heuristic approach based on TS in which shift,
swap, cross and 2-opt are used as neighborhood structures. The
authors have also utilized an arc frequency penalization scheme
to provide balance between intensification and diversification of
the search. Bianchessi and Righini (2007) present constructive
and local search heuristics and also a TS algorithm using a variable
neighborhood structure, in which the node-exchange-based and
arc-exchange-based movements are combined. Wassan et al.
(2007) develop a reactive TS with the following neighborhood
structures: relocation of a customer, exchanging two customers
between two different routes and reversing the route direction (re-
verse). In order to achieve an effective balance between the inten-
sification and diversification of the search, the authors propose
dynamic control of the tabu list size. Another hybrid algorithm
based on the TS and guided local search (GLS) is proposed by
Zachariadis, Tarantilis, and Kiranoudis (2009). In the hybrid algo-
rithm, an initial solution is obtained by a construction heuristic
based on cost savings and GLS is implemented for diversifying
the search process. Gajpal and Abad (2009) develop a heuristic ap-
proach based on ant colony optimization (ACO). The developed
heuristic has two steps: (i) the trail intensities and parameters
are initialized using an initial solution obtained by means of a
nearest neighborhood constructive heuristic and (ii) an ant-solu-
tion is generated for each ant using the trail intensities, followed
by a local search in every ant-solution and updating of the elitist
ants and trail intensities.

The most recent heuristic approaches based on meta-heuristics
have been proposed by Catay (2010), Subramanian, Drummond,
Bentes, Ochi, and Farias (2010), and Zachariadis, Tarantilis, and
Kiranoudos (2010); Zachariadis and Kiranoudos (2011). The heu-
ristic approach proposed by Zachariadis et al. (2010) is based on
the Adaptive Memory Programming approaches. The approach
stores the routes in high quality VRPSPD solutions in the Adaptive
Memory, where customer sequences are periodically extracted to
form new initial solutions for guiding the search. Meantime, the
use of an additional memory component drives the algorithm to
exploit diverse routing information stored in the Adaptive Memory
and eliminates the risk of an elitistic behavior. In the approach, ini-
tial solutions are generated by using the weighted savings heuris-
tic. Zachariadis and Kiranoudos (2011) propose a local search
approach which can efficiently examine rich solution neighbor-
hoods by statically encoding tentative moves into special data
structures. This approach explores the solution space by the use
of a diversification component, called promises, which is based
on the aspiration criteria of tabu search. The authors also utilize
the weighted savings heuristic to generate an initial solution. Subr-
amanian et al. (2010) present a parallel algorithm which is embed-
ded with a multi-start heuristic consisting of the VND integrated in
an iterated local search framework. The main features of the pro-
posed approach are the automatic calibration of some parameters
and the ability of exploring the high-level of parallelism inherent
to recent multi-core clusters. This approach implements a greedy
insertion strategy to construct an initial solution for the problem.
Catay (2010) proposes another heuristic approach based on ACO
in which a new saving-based visibility function and pheromone
updating rule are implemented. The proposed approach employs
the nearest-neighbor heuristic to generate a solution which is used
to initialize the pheromone trials and a local search to improve
solutions obtained by ants in each iteration of the algorithm. The
local search implements swap and insert moves applied between
routes and within routes.

As seen from this brief review, a few attempts have been done
to solve the VRPSPD by population-based solution approaches
while TS is extensively used for solving the problem. Meanwhile,
two main properties of the all solution approaches in the literature
can be given as follows: (1) Using a heuristic approach to obtain a
good initial solution or population of initial solutions and (2)
Hybridizing the meta-heuristic approach with another one to
improving the solutions found during search process. In recent
years, particle swarm optimization (PSO), which is one of the re-
cent and promising evolutionary meta-heuristics, has been succes-
fully applied to solve various VRPs. Previous researches on the
application of PSO to the capacitated VRP are due to Ai and Kachit-
vichyanukul (2009a, 2009b), Chen, Yang, and Wu (2006), Marinakis
and Marinaki (2010), and Marinakis, Marinaki, and Dounias (2010).
Ai and Kachitvichyanukul (2009a, 2009b) are the first researchers
who proposed a PSO approach for the VRPSPD. PSO approach of
Ai and Kachitvichyanukul (2009a) implements a real-value encod-
ing structure and improves the solution using cheapest insertion
heuristic and 2-opt method applied during the route construction.
This paper proposes a new solution approach based on PSO and
VND for the VRPSPD. The proposed PSO approach (h_PSO) differs
from Ai and Kachitvichyanukul’s (2009a) PSO in terms of the defi-
nition of a particle position, the velocity model used and imple-
mentation of local search. The h_PSO implements permutation
encoding to represent a solution of the problem and determines
new positions of the particles using genetic operators such as
crossover and mutation. Moreover, it implements an annealing-
like strategy to preserve the swarm diversity of the PSO and a
VND algorithm as a local search to improve the randomly selected
particles in each iteration. It should be noted that these properties,
i.e. representing a solution with permutation encoding and
improving only randomly selected solutions by VND are also the
main differences of our algorithm from the others given in the
VRPSPD literature.

As the VRPMPD is a special case of the VRPSPD, the proposed
h_PSO can be directly applied to solve the VRPMPD. In the litera-
ture, few researchers deal with the VRPMPD. Deif and Bodin
(1984) propose a constructive heuristic based on the classical sav-
ing heuristic of Clarke and Wright. Cosco, Golden, and Wasil (1988)
hybridize the saving method with load based insertion method to
solve the problem. Cosco et al. (1988), Golden, Baker, Alfaro, and
Schaffer (1985), and Salhi and Nagy (1999) combine Clarke and
Wright saving heuristic with an insertion based heuristic. In these
papers, firstly CVRP consisting only of the linehaul customers is
solved and then backhaul customers are inserted in the route. Mos-
heiov (1998) propose a heuristic based on the tour partitioning ap-
proach. Wassan et al. (2008) propose a heuristic approach based on
reactive TS approach for the VRPMPD.
3. Particle swarm optimization and variable neighborhood
descent

In this section, we briefly give information about the particle
swarm optimization and variable neighborhood descent meta-
heuristics which are two counterparts of the proposed hybrid algo-
rithm to solve the VRPSPD.
3.1. Particle swarm optimization

Particle swarm optimization (PSO), proposed by Kennedy and
Eberhart (1995), is one of the recent and promising evolutionary



42 F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53
meta-heuristics. Its development was based on observations of the
social behavior of animals such as bird flocking, fish schooling and
swarm theory. PSO was originally developed to solve continuous
non-linear optimization problems. However, in recent years sev-
eral researchers have developed new variants of PSO to solve com-
binatorial optimization problem such as the traveling salesman
problem (Pang, Wang, Zhou, & Dong, 2004), the vehicle routing
problems (Ai and Kachitvichyanukul (2009a, 2009b); Chen et al.,
2006), and the scheduling problems (Liao, Tseng, & Luarn, 2007;
Liu, Wang, & Jin, 2007; Pan, Tasgetiren, & Liang, 2008; Tang &
Wang, 2010; Tasgetiren, Liang, Sevkli, & Gencyilmaz, 2007) be-
cause of its simple concept, easy implementation and quick
convergence.

PSO is initialized with a population of random solutions. Each
individual in the population is assigned with a randomized velocity
according to its own and its companions’ experiences. The individ-
uals are called particles and flown through the hyperspace. The
position of the ith particle in the d-dimensional search space at
iteration t can be represented as Xt

i ¼ ½xt
i1; x

t
i2; . . . ; xt

id� and its veloc-
ity can be denoted by Vt

i ¼ ½v t
i1;v t

i2; . . . ;v t
id�. Each particle has its

own best position (pbest) Pt
i ¼ ½pt

i1; p
t
i2; . . . ; pt

id� corresponding to the
personal best objective value obtained so far at iteration t. The glo-
bal best particle (gbest) Pt

g ¼ ½pt
g1; p

t
g2; . . . ; pt

gd� represents the best
particle found so far at iteration t in the whole swarm. The new
velocity of each particle based on the current velocity, the best
experience of the particle itself (pbest) and that of the entire popu-
lation (gbest) is calculated as follows:

v tþ1
ij ¼ wv t

ij þ c1r1ðpt
ij � xt

ijÞ þ c2r2ðpt
gj � xt

ijÞ ð1Þ

where w is called the inertia parameter, c1 and c2 are, respectively,
cognitive and social learning parameters, r1 and r2 are independent
random numbers generated uniformly between 0 and 1. The posi-
tion of each particle is updated in each iteration using Eq. (2):

xtþ1
ij ¼ xt

ij þ v tþ1
ij ð2Þ

In order to control excessive roaming of particles outside the
search space, the velocity values are generally restricted in the
range of [�vmax, vmax]. Hence, the particle flies toward a new posi-
tion according to Eq. (2). This process continues until reaching a
predetermined stopping criterion. The PSO velocity model given
by Eqs. (1) and (2) is called global best model in which each parti-
cle flies towards its best previous position and towards the best
particle in the whole swarm. In another model, called local best
model, each particle flies towards its best previous position and to-
wards the best particle in the current population (Eberhart, Shi, &
Kennedy, 2001). In this paper, we apply the global best model in
our hybrid algorithm.

3.2. Variable neighborhood descent algorithm

Variable neighborhood descent (VND) is an enhanced local
improvement strategy which is commonly used as a subordinate
in Variable Neighborhood Search (VNS) and other meta-heuristics
(Hansen, Mladenovic, & Perez, 2010). The idea behind VND is to
systematically change between different neighborhood structures
N1, . . . , Nkmax. Starting with the first structure N1, VND performs
local search until no further improvements are possible. From this
local optimum, it continues local search with neighborhood struc-
ture N2. If an improved solution could be found with this structure,
VND returns to using N1 again; otherwise, it continues with N3, and
so forth. If the last structure Nkmax has been applied and no further
improvements are possible, the solution represents a local
optimum with respect to all neighborhood structures and VND
terminates.
3.3. Hybridization of PSO with VND

PSO is a population-based searching technique which has a
high search efficiency by combining local search (by self experi-
ence) and global one (by neighboring experience). It has some
attractive characteristics: (i) all particles have knowledge of good
solutions since PSO has memory and (ii) PSO has constructive
cooperation between particles, and particles in the swarm share
information between them. Because of the simple concept, easy
implementation, and quick convergence, PSO has received
increasing interest from the optimization community and wide
application in different fields, especially for continuous optimiza-
tion problems (Liu et al., 2007; Tang & Wang, 2010). However,
PSO has following drawbacks: First, its parameter values are
effective on the performance of PSO. Second is that PSO suffers
from the problem of being trapped in local optima. Thus, some
studies have been conducted in the literature to prevent prema-
ture convergence and to balance the exploration (i.e., searching
for promising solutions within the entire region) and exploitation
(i.e., searching for improved solutions in sub-regions) for achiev-
ing better performance. It is known that the performance of PSO
can be greatly improved when it is hybridized with a local search
algorithm. An explanation of the good performance of a combina-
tion of PSO with local search can be found in the fact that these
two search methods are complementary. PSO usually performs a
rather coarse-grained search. Therefore, its solutions can be lo-
cally optimized. On the other hand, a local search algorithm
searches in the surroundings of its initial solution. Finding good
initial solutions, however, is not easy task. Thus, this paper pro-
poses hybridization of PSO with VND, called h_PSO, for the
VRPSPD. In h_PSO, while PSO is used as a global search algorithm,
VND is adopted as a local search algorithm. Since VND has stron-
ger ability of the local search, which can overcome the disadvan-
tages of PSO, it is expected that h_PSO exhibits better
performance than VND and PSO in terms of solution quality and
computation time.

In recent years, different researchers have also used the idea of
hybridizing the PSO with VND to solve different combinatorial
optimization problems. Pan et al. (2008) propose a hybrid algo-
rithm based on PSO and VND to solve the no-wait flowshop
scheduling problem. In this algorithm, VND consisting of two
neighborhood structures called swap and insert is applied to im-
prove the global best solution at each iteration of PSO. Czogalla
and Fink (2008) propose another hybrid algorithm based on PSO
and VND for the continuous flow-shop scheduling problem. The
hybrid algorithm applies VND to improve the best solution of the
swarm at each iteration of PSO. Kang and He (2011) hybridizes
PSO and VND for meta-task assignment in heterogeneous comput-
ing systems. The hybrid algorithm generates initial population ran-
domly and improves the global best particle found during the
search process of PSO by VND based on two neighborhood struc-
tures called transfer and swap. The proposed h_PSO in this paper
is different from all the above mentioned studies in terms of the
application of VND as a local search algorithm. In the proposed
h_PSO, VND is used to improve randomly selected solutions during
the search process of the PSO.
4. Proposed hybrid algorithm

This section introduces the proposed hybrid algorithm based on
PSO and VND to solve VRPSPD. As mentioned previously, the stan-
dard PSO algorithm was developed for solving continuous optimi-
zation problems. When it is applied to solve any combinatorial
optimization problem, some modifications have been made on
the position representation, particle velocity, and particle



F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53 43
movement. Our hybrid algorithm (h_PSO) for the VRPSPD is based
on the discrete PSO. Thus, firstly, we give brief information about
the representation of solutions as particles, generating initial pop-
ulation and updating positions of particles and then introduce local
search algorithm based on VND.

4.1. Representation

Representation is one of the important issues that affect the
performance of meta-heuristics. In general, different problems
have different data structures or representations. In h_PSO, we uti-
lize giant tours, i.e. sequences of customers (called permutation
encoding), without trip delimiters to represent solutions for the
VRPSPD. As known, Prins (2004) is the first researcher who uses
giant tours in his GA developed for the capacitated VRP. After study
of Prins (2004), this representation has been successfully applied to
heterogeneous VRP (Liu, Huang, & Ma, 2009; Prins, 2009). This
study also extends its applicability to the VRPSPD. When this rep-
resentation is used for any VRP, a decoding scheme which opti-
mally partitions a giant tour into feasible routes is necessary. We
adapt Split procedure, as a decoding scheme, developed by Prins
(2004) for the capacitated VRP. In the following, the adapted Split
procedure is briefly explained.

The evaluation of a given solution X = {1, 2, . . . , |N0|} is con-
cerned with partitioning customer orders along X into routes so
that the maximum load of each route does not exceed vehicle
capacity (Q), while the total cost required to pickup and deliver de-
mands of all customers is minimized. An acyclic graph is con-
structed as follows: let G(X) be a directed acyclic graph with
vertex VðGÞ ¼ fij0 6 i 6 jN0jg, and E(G) be the set of directed arcs
on G(X). Each arc (i, j) 2 E(G) represents a feasible route, where
the vehicle for route (i, j) departs from node 0 (depot) and visits
nodes i + 1, i + 2, . . . , j � 1, and j, consecutively, such that maximum
load (max_load) on any arc from customers i + 1 to j does not
exceed vehicle capacity. The max_load on any arc of route (i, j) is
calculated using:

max loadXðiþ1;jÞ ¼ max½ploadXðiþ1;jÞ; sloadXðiþ1;jÞ� ð3Þ
depot

4

(6,2)

2

(2,4)

1(6,3) 5 (5,6)

3

(4,5)

20

10

30 25

35

15
4025

30

depot 1 2(6,3):40 (4,8):50

(8,7):55

(12,12):90

(6,9):

(A
A=Total delivery lo
B=Total pickup loa
C=Total cost of the

(a)

(b)

Fig. 1. Decoding of a chromosome. (a) A chromosome X = (1,
where

ploadXðiþ1;jÞ ¼max loadXðiþ1;j�1Þ þ dXðjÞ ð4Þ
sloadXðiþ1;jÞ ¼
Xj

k¼iþ1

pXðkÞ ð5Þ

The cost of arc/route (i, j) is calculated by

zij ¼ c0;Xðiþ1Þ þ
Xj�1

k¼iþ1

cXðkÞ;Xðkþ1Þ þ cXðjÞ;0 ð6Þ

A minimum cost-path from node 0 to node |N0| in G(X) defines
the optimal partition of the chromosome. An optimal partitioning
can be found in O(|N0|2 log (|N0|)) time. Nevertheless, shortest path
problem can be solved in O(|N0|2) or even O(|N0|) by using faster
algorithms (Prins, 2004).

Fig. 1 depicts an example for a VRPSPD. There are 5 customers
and vehicle capacity is equal to 15. The number on arc (i, j) denotes
the cost of the arc, and the numbers on node j represent the deliv-
ery and pickup demands, respectively. The chromosome to be par-
titioned is X = 1, 2, 3, 4, 5. Each feasible route extractible from X is
modeled by one arc in acyclic graph G(X) (see, Fig. 1b). For exam-
ple, arc (2,4) in Fig. 1b represents the route (0,3,4,0) with a total
cost of 95. Fig. 1c gives the optimal partition into routes, which
is obtained by considering the arcs of the shortest path (boldface)
in G(X).

In this study, we revise the algorithm given in Prins (2004) to
optimally partition the chromosome, i.e. X, to obtain a VRPSPD
solution. The revised algorithm for the VRPSPD is given in Fig. 2.
The first part of this algorithm computes two labels (i.e. Vj and
Pj) for each node j = 1, 2, . . . , |N0| of X instead of generating G(X)
explicitly. While Vj represents the cost of the shortest path from
node 0 to node j in G(X), Pj is the predecessor of node j on this path.
The repeat loop updates Vj and Pj after enumerating all feasible
sub-sequences X(i), . . . , X(j). It should be noted that for a given
node i, j is increased until maximum load (i.e. max_load) of the
vehicle exceeds the vehicle capacity (Q). Hence, V jN0 j gives the cost
depot

42

1 5

3

3 4 5(6,2):80(4,5):60 (5,6):70

85

(10,7):95

(11,12):90

,B):C
ad on the route
d on the route
 route

(c)

2, 3, 4, 5), (b) acyclic graph, and (c) optimal partitioning.



Fig. 2. The algorithm to obtain optimal partition of a giant tour.

44 F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53
of optimal partition of the chromosome. The second part of the
algorithm extracts the VRPSPD solution using the vector of labels
P. Each route consists of a list of customers. In worst case, it builds
n routes, i.e. one route per customer.
4.2. Generating the initial population

Usually, the initial population is generated randomly. How-
ever, selecting a suitable initial population accelerates the con-
vergence of the PSO. To reach optimal/near optimal solution,
therefore, we generate an initial population including heuristic
solutions as well as random solutions to explore the different re-
gions of solution space. In h_PSO, while nearest neighborhood
heuristic (NNH) is employed to generate the first giant tour of
the population, others are randomly generated. The NNH is ap-
plied for the VRPSPD as follows: a vehicle starts from the depot
and visits the nearest customer in terms of cost. If visiting the
nearest customer is feasible, i.e. max_load does not exceed the
vehicle capacity, that customer is added to route, otherwise the
vehicle returns to the depot, and another vehicle starts from
the depot. This procedure continues until all customers are vis-
ited and a heuristic solution is obtained. It is worthy to note that
this solution is converted into a giant tour by connecting the
routes directly. It should be noted that to diversify the initial
population, other giant tours are randomly generated in such a
way that clones are forbidden and also their tour costs differ
from each other at least D value. Based on our preliminary exper-
iments, D is set to 2.

4.3. Position Updating Rule

Since possible solutions for the VRPSPD are represented by
giant tours (i.e. using permutation encoding) in the proposed
algorithm, the velocity model and position updating rule given
for real values in standard PSO are no longer be applicable for
our representation. Different position updating rules for permuta-
tion encoding are proposed in the literature (see for example,
Liao et al., 2007; Pan et al., 2008). In this paper, we implement
a position updating rule proposed by Pan et al. (2008) for the
no-wait flowshop scheduling problem. According to this rule,
the position of a particle at iteration t is updated by considering
possible three choices. These are: (i) following its own position
ðXt

i Þ, (ii) going towards its personal best position ðPt
i Þ, and (iii)

going towards the best position of the particle in the entire
swarm population ðPt

gÞ. Thus, the updating equation is given as
follows:

Xtþ1
i ¼ c2 � F3 c1 � F2 w� F1 Xt

i

� �
; Pt

i

� �
; Pt

g

� �
ð7Þ

This equation consists of three components. The first compo-
nent, ktþ1

i ¼ w� F1ðXt
j Þ, represents the velocity of the particle. In

this component, F1 is the mutation operator applied to Xt
i with

probability of w and ktþ1
i is obtained as follows:



F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53 45
ktþ1
i ¼

F1 Xt
i

� �
if u 6 w

Xt
i o:w:

(
ð8Þ

where u � U(0, 1).The second component, dtþ1
i ¼ c1 � F2 kt

i ; P
t
i

� �
, is

related with the private thinking of the particle, where F2 represents
the crossover operator applied to kt

i with the probability of c1. dtþ1
i is

obtained as follows:

dtþ1
i ¼

F2 kt
i ; P

t
i

� �
if u1 6 c1

kt
i o:w:

(
ð9Þ

where u1 � U(0, 1). Finally, Xtþ1
i ¼ c2 � F3ðdt

i ; P
t
gÞmodels the collabo-

ration of the particles, where F3 represents the crossover operator
applied to dt

i with the probability of c2. Xtþ1
i is obtained as follows:

Xtþ1
i ¼

F3 dt
i ; P

t
g

� �
if u2 6 c2

dt
i o:w:

8<
: ð10Þ

where u2 � U(0, 1). In our implementation, we utilize following
well-known mutation and crossover operators developed for per-
mutation encoding in the literature: swap and partially mapping
crossover (PMX) operators (Gen & Cheng, 1997). These operators
are applied to giant tours.

4.4. Local search

h_PSO implements variable neighborhood descent (VND) algo-
rithm as a local search. VND improves some randomly selected
solutions which are obtained by the position updating rule. After
that personal and global bests of the swarm are updated. In our
implementation, we utilize six neighborhood structures which
are well-known in the VRP literature. These neighborhood struc-
tures are briefly explained as follows:

Crossover: This structure divides routes r1 and r2 into two,
namely first part and second part. Then the first part of r1 is con-
nected to second part of r2, while the first part of r2 is connected
to second part of r1. Every pair of routes and every division point
are considered to select best improved neighborhood.

Swap(1, 1): In this structure, a customer cs1 from route r1 and a
customer cs2 from route r2 are removed. Then customers cs1 and cs2

are put to their best position in r2 and r1, respectively. Finding best
position for every pair of customers belong to different routes is a
time consuming process. Therefore, we use following two criteria
to save computation time of this operation: Firstly, k nearest cus-
tomers of customers cs1 and cs2 are determined. Then swapping
operation between customers cs1 and cs2 is performed if at least
one of the k nearest customers of customer cs1 is in the route r2

and at least one of the k nearest customers of customer cs2 is in
the route r1 (Gajpal & Abad, 2009). Secondly, we implement a tabu
list and keep customers cs1 and cs2, which are justly swapped, in
this list to forbid cycling phenomena. In our implementation, k is
set to 10 and the length of the tabu list is taken as 7.

Shift(1, 0): This structure removes a customer csi from its cur-
rent route r1 and relocates it at a position in another route r2. Every
possible insertion position for every customer is considered.

2-Opt: This structure reverses the direction of a path lying be-
tween the customers csi�1 and csj by replacing non-adjacent arcs
(csi�1, csi) and (csj�1, csj) belonging to the same route with (csi�1,
csj�1) and (csi, csj) respectively.

Exchange: This neighborhood structure exchanges the position
of two customers in the same route.

Reverse: This structure reverses the route direction if the maxi-
mum load carried through the corresponding route is reduced. In
fact as one can conclude, the distance of the route does not change
when its direction is reversed but the decrease in the maximum
load will give an opportunity of assigning new customers to the
route in proceeding iterations.

As seen in the definitions of the neighborhood structures, while
first three structures are applied between different routes, others
perform search inside the routes. Fig. 3 illustrates the application
of the neighborhood structures. When a VND algorithm is used
as a local search, the order of the neighborhood structures affects
the performance of the algorithm. Based on our preliminary exper-
iments, we implement the neighborhood structures in their expla-
nation order given above. It is important to note that the first three
structures used between routes are perfomed to obtain a new im-
proved solution from the current solution (s). In the case of the
improvement, the last ones implemented within routes are applied
to obtain further improvement on the solution. A variant of this ap-
proach was also implemented in Subramanian et al. (2010). The
proposed VND is applied to a real solution which is obtained by
decoding corresponding giant tour as explained in Section 4.1
and only feasible movements, in which the vehicle capacity con-
straint is not violated, are considered. Therefore, whenever an
improvement exists, the feasibility of the solution is checked. Nev-
ertheless, the feasibility checking process in the VRPSPD has an
additional complexity because of the load fluctuation of vehicles.
In order to speed up the feasibility checking process, we utilize
special metrics proposed by Bianchessi and Righini (2007). These
metrics capture the load fluctuation of vehicles along their routes.
The proposed VND algorithm for the VRPSPD is given in Fig. 4.

As mentioned previously, the personal and global bests are up-
dated after randomly selected solutions are improved by the pro-
posed VND. Our preliminary experiments show that the swarm
diversity decreases gradually if each personal best is updated
whenever an improvement occurs. It is known that the swarm
diversity is affected on the swarm exploration ability. Therefore,
we utilize an annealing-like strategy for updating personal best
of each particle. According to this strategy, Eq. (11) is used to up-
date personal best.

Pt
i ¼

Xt
i eger f Xt

i

� �
6 f Pt�1

i

� �
Xt

i eger f Xt
i

� �
> f Pt�1

i

� �
ve u 6 e½�ðDs=TÞ�

Pt�1
i d:d:

8>>><
>>>:

ð11Þ

where T is the temperature and Ds ¼ ½ðf ðXt
i Þ � f ðPt�1

i ÞÞ=
f ðPt�1

i Þ� � 100. In this approach, a worst solution has a high probabil-
ity to be selected as a personal best in the initial iterations of the
algorithm. Thus, this approach initially increases the search ability
of the algorithm by providing high diversification in the swarm.
Since the temperature decreases gradually in each iteration, the
probability of a worst solution to be selected as a personal best also
decreases. Hence, the search can be intensified around the good
solutions at the last iterations of the algorithm. We utilize
geometric cooling schedule in order to reduce temperature in each
iteration of the algorithm, i.e. Tt aTt�1.

4.5. The steps of the h_PSO

The details of the proposed h_PSO for solving the VRPSPD are
presented in Fig. 5. The algorithm starts with an initial swarm of
PS particles, where PS is the number of particles in the swarm.
Each particle corresponds to a candidate solution to the underly-
ing problem. Then, all of the particles repeatedly move until a
stopping condition is satisfied. At each iteration, the personal
best particles and global best position achieved so far are deter-
mined. The particle adjusts its position based on the individual
experience and the swarm’s intelligence as described in Eq. (7).
To speed up the convergence of h_PSO, VND is applied to solu-
tions which are selected from the current swarm with the



depot

5

8

1 7

4
6

3

2

depot

5

8

1 7

4
6

3

2

depot

5

8

1 7

4
6

32

depot

5

8

1 7

4
6

32

depot

5

8

1 7

4
6

32

depot

5

8

1 7

4
6

32

depot

5

8

1 7

4
6

32

depot

5

8

1 7

4
6

32

depot

5

8

1 7

4
6

32

depot

5

8

1 7

4
6

32

depot

5

8

1 7

4
6

32

depot

5

8

1 7

4
6

32

Crossover

Swap(1,1)

Swap(1,0)

2-opt

Exchange

Reverse

Fig. 3. Neighborhood Structures.

46 F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53
probability of pVND before updating the personal and global bests.
When the algorithm is terminated, the global best particle and
the corresponding fitness value are considered as a solution for
the VRPSPD.

5. Experimental study

We conduct two sets of computational experiments to investi-
gate the effectiveness of h_PSO. The first set compares h_PSO with
the algorithms proposed for the VRPSPD in the literature. As men-
tioned in the literature (see, Wassan, Wassan et al. (2007), Wassan,
Nagy, et al. (2008)), the VRPMPD (i.e. VRP with mixed pickup and
delivery) is a special case of the VRPSPD. Therefore, the proposed
h_PSO can be directly applied to solve the VRPMPD. The second
set evaluates the performance of h_PSO against the existing
algorithms in the literature for the VRPMPD. The h_PSO is coded
in Visual C. All experiments have been performed on Intel Xeon
3.16 GHz equipped (with 1 GB RAM).



Fig. 4. The proposed VND algorithm.

Fig. 5. The proposed h_PSO algorithm.

F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53 47
5.1. Computational Analysis for the VRPSPD

This subsection presents the computational results of the pro-
posed h_PSO for the VRPSPD.

5.1.1. Test problems and parameter setting for h_PSO
We investigate the performance of h_PSO using two sets of

problem instances available in the literature for the VRPSPD. The
first data set is provided by Dethloff (2001). This set consists of
40 problem instances with 50 customers. Instances are classified
into four sets, namely SCA3, SCA8, CON3 and CON8. SCA data sets
are generated with customers scattered uniformly in the service
region of 100 � 100. CON data sets are generated with half of the
customers located uniformly in the service region and the other
half are concentrated in the interval [100/3,100/3]. The delivery
demand of customer i (di) is generated from uniform distribution



48 F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53
in the interval [0,100] and then pickup demand (pi) is calculated
from the eguation of pi = (0.5 + ri)di, where ri is a random number
between [0,1]. The numbers 3 and 8 after SCA or CON indicate
the parameter for determining vehicle capacity. There are 10 prob-
lems in each group of problems.

The second data set is proposed by Salhi and Nagy (1999). This
data set has been adapted from seven problems orginally proposed
by Christofides, Mingozzi, and Toth (1979) for the VRP with capac-
itated VRP, involving from 50 to 199 customers. The cost matrix is
obtained by calculating the Euclidean distances between vertices.
Salhi and Nagy (1999) utilize following scheme to modify capaci-
tated VRP instances for the VRPSPD: xi and yi coordinates for cus-
tomer i are considered as in the original problem and a ratio ri is
calculated as ri = min (xi/yi, yi/xi). Let dmi be the demand of cus-
tomer i. To obatin the first 7 VRPSPD instances, namely X-series,
the delivery and pickup quantities for customer i are calculated
as di = ri � dmi and pi = (1 � ri) � dmi, respectively. The other seven
VRPSPD instances, namely Y-series, are generated by swapping
the di and pi values for every customer (Gajpal & Abad, 2009; Subr-
amanian et al., 2010; Zachariadis et al., 2010).

The parameters of h_PSO are: swarm size (PS), initial tempera-
ture (T0), mutation rate (w), crossover rates (c1 and c2), probability
of VND (pVND). Firstly we investigate the effects of VND and popu-
lation size on the solution quality and computation time of h_PSO.
We consider two levels for PS as 20 and 60, and three levels for
pVND as 0.1, 0.3 and 0.5. In order to determine their best combina-
tion, we solve 5 instances randomly selected from the data sets for
each combination of PS and pVND. Table 1 reports average solution,
which is calculated over 5 instances, and average computation
time (ACT) for each combination. As seen from Table 1, increasing
the population size from 20 to 60 improves solution quality
slightly while causing excessive increases in computation times
(i.e. more than two times higher than those obtained when
PS = 20). Meantime, when pVND is set to 0.30, the h_PSO produce
slightly better solutions than others (i.e. obtained with pVND = 0.10
or 0.50) regardless of population size. Thus, in order to obtain a
competitive algorithm with others in the existing literature, we
set PS = 20 and pVND = 0.3 for h_PSO.

We also utilize an experimental design approach to investigate
the performance of h_PSO for a set of remaining four parameters.
Three levels are selected for each parameter: T0 = 10, 20 and 30,
w = 0.1, 0.2 and 0.3, and c1 and c2 = 0.6, 0.8 and 1. Hence the exper-
imental design includes 34 design points. Five instances taken from
data set of Dethloff (2001) are solved for each design point, result-
ing 405 observations. At the level of 0.05, statistical analysis per-
formed using ANOVA shows that main effects of the parameters
are not significant, while the interaction between mutation and
crossover rates are significant. Thus, we set following values for
the mutation and crossover rates by considering their interactions:
w = 0.2, and c1 and c2 = 0.6. Meantime, T0 is set to 30.

The proposed h_PSO is run ten times with different random
number seeds for each problem instance on data sets to gauge its
natural variability. We apply two stopping criteria in the algo-
rithm: (1) the number of successive iterations (n_suc) in which
Table 1
The computational results for swarm siz and probability of VND.

Probability of VND
(pVND)

Swarm size

PS = 20 PS = 60

Average
solution

ACT Average
solution

ACT

0.1 844.03 4.8 843.28 9.7
0.3 841.80 21.9 839.83 50.9
0.5 842.60 29.5 840.96 72.3
the global best solution is not updated and (2) upper bound of
the computation time (CUB). In our implementation, n_suc and
CUB are set to 350 iterations and 500 s, respectively.

Before the computational results, it is important to give infor-
mation about the impact of the annealing-like strategy on the per-
formance of the h_PSO, Thus, we run h_PSO with annealing-like
strategy (called h_PSO with SA) and without annealing-like strat-
egy (called h_PSO without SA) on a test instance coded SCA8-9 in
Dethloff’s data test. Fig. 6 shows the convergence of the h_PSO with
SA and h_PSO without SA. As seen from this figure, the h_PSO with
SA slowly convergences better solutions than h_PSO without SA.
This result supports that annealing-like strategy helps the swarm
exploration ability of the algorithm to prevent local optima.
5.1.2. Computational results
In order to investigate performance of the proposed h_PSO for

the VRPSPD, we compare it following algorithms presented in the
literature:

RTS: Reactive tabu search (Wassan et al., 2007).
LNS: Large neighborhood search (Ropke & Pisinger, 2006).
PSO: Particle swarm optimization (Ai & Kachitvichyanukul,
2009a).
ACS: Ant colony system (Gajpal & Abad, 2009).
PILS: Parallel iterative local search (Subramanian et al., 2010).
AMM: Adaptive memory methodology (Zachariadis et al.,
2010).

PSO and ACS are considered in the comparison with the purpose
of drawing a conclusion about performances of population-based
heuristics (i.e. PSO, ACS and h_PSO) on the VRPSPD. It is also impor-
tant to test the performance of h_PSO against the PILS and AAM
since they are the most effective heuristics recently proposed in
the VRPSPD literature.

Since these algorithms have been run on different computers, it
is difficult to compare their CPU times. Thus, we utilize table of
Dongarra (2007) to estimate relative performance of different com-
puters used in those studies. Table 2 presents Mflops (million float-
ing point calculation per second) values for the computers related
with this study. The Mflops values are used to scale running time of
an algorithm relative to our computer.
5.1.2.1. Results of h_PSO for Dethloff’s (2001) data set. Table 3 com-
pares the results of h_PSO and PSO over four data sets, namely
SCA3, SCA8, CON3 and CON8. Ai and Kachitvichyanukul (2009a) re-
port the average of the best solutions over the 10 instances of each
data set in their study. Thus, in order to make a direct comparison,
we present our results considering these four data sets. As seen
Fig. 6. Convergence of h_PSO with SA and without SA.



Table 2
Mflops values for different computers and conversion ratio (r).

Algorithm Computer Equivalent computera Mflops r*

h_PSO Intel Xeon 3.16 GHz Intel Xeon 3.16 GHz 981 1
RTS Sun Fire V440 server–

Ultra SPARC-IIII
1062 MHz

IBM eServer pSeries
630 6C4 1
proc(1000 MHz)

842 0.86

LNS Pentium IV 1.5 GHz Intel Pentium M
1.6 GHz

326 0.33

PSO Intel P4 3.4 GHz Intel Pentium 4 (2.8
Ghz)

1317 1.34

ACS Intel Xeon 2.4 GHz Intel Xeon 2.4 GHz 884 0.90
AMM Intel P4 2.4 Ghz Intel Pentium 4

(2.53 GHz)
1033 1.05

PILS* Intel Xeon 2.66 GHz
(256 P.I.)

** ** **

a An equivalent computer given in the report for the corresponding computer.
* Conversion ratio of the Mflops value of a given computer to the Mflops value of

our computer.
** PILS has been run in a cluster with a multi-core architecture using 256 cores.

Table 3
Comparison of h_PSO with PSO on VRPSPD instances of Dethloff (2001).

Data set PSO h_PSO
Average best solution Average best solution

SCA3 675.80 673.40
SCA8 1041.80 1028.15
CON3 569.60 560.95
CON8 798.30 771.65

F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53 49
from Table 3, h_PSO performs better than PSO and it improves the
best results of PSO around 1.63% on average.

Table 4 presents the computational results of LNS, ACS, AMM,
PILS and h_PSO over 40 instances. It should be noted that reported
best solution (Best sol.) and average computation time (ACT) in
seconds for each algorithm are the best one and average over mul-
tiple runs, respectively. While LNS, ACS, AMM and our h_PSO run
10 times for each instance, PILS run 20 times for each instance.
Bold numbers given for each algorithm in the table indicate that
the algorithm has reached the best solution. Table 4 reports also
average deviation to the best known solution (BKS) in percent
(Avg. deviation), number of BKS found, average computation time
(Avg. time) and scaled average computation time (Avg. scaled
time) over 40 instances in last four rows. From Table 4, it is seen
that AMM, PILS and h_PSO reach same results for 40 instances.
However, LNS and ACS fail to reach best results for 18 and 2 out
of 40 instances, respectively. The average percentage deviations
of the solutions of LNS and ACS from the best solutions are around
0.32% and 0.01%, respectively. These results show that algorithms
considered in the comparison are very effective to produce less
than 1% deviation. It is also important to note that performance
comparison only in terms of computation time is not recom-
mended in the literature because of the other influencing factors
such as hardware (i.e. cache, main memory and compiler), soft-
ware and coding. Nevertheless, we can see from Table 4 that
h_PSO and AMM need less computational burden to reach best
known solution than others. As mentioned previously, the PILS
has been run in a cluster with a multi-core architecture using
256 cores. Thus, we ignore its computational times when compar-
ing the algorithms in terms of computational burden.

5.1.2.2. Results of h_PSO for Salhi and Nagy’s (1999) data set. Table 5
sumarizes the computational results of RTS, LNS, PSO, ACS, AMM,
PILS and h_PSO over 14 instances. As in Table 4, bold numbers
for each algorithm in Table 5 indicate that the algorithm has
reached the best solution. As seen from the table, PILS is the best
to attain 9 out of 14 best solutions compared with other algo-
rithms. While our algorithm h_PSO reaches six best solutions out
of 14 possible solutions, RTS and AMM produce five best solutions.
Others, i.e. LNS, PSO and ACS, generate only two best solutions for
the data set. Regarding the percentage deviation of solution of each
algorithm from the best solution, it is seen that PILS, h_PSO, AMM
and ACS produce less than 1% deviation. Our algorithm h_PSO hav-
ing deviation of 0.71% is the second best after PILS with deviation
of 0.65% while PSO has the largest deviation (i.e. 6.09%) among the
other algorithms. Additionally, h_PSO performs better than RTS
and LNS and also competes with PSO in terms of computational
burden.

Meantime, we perform statistical analysis using a paired-t test
to investigate whether there are statistically significant differences
between h_PSO and other heuristic approaches according to solu-
tion quality or not. Since it is expected that the h_PSO would give
the solutions with lower route length than other heuristics, a one
sided alternative hypothesis, H1, is used as given below:

H1 : lh PSO � lHM < 0 ð12Þ

where lh_PSO and lHM are population mean for h_PSO and HM,
respectively. HM refers to the heuristic approach used in statistical
comparison. For example, if h_PSO is compared with RTS, then HM
will be RTS. Table 6 shows pairs, mean differences for Nagy and Sal-
hi’s test problems and p-values at significance level of a = 0.05. As is
seen from the table, while h_PSO is statistically significant different
from LNS, PSO and ACS with p-value of 0.008, 0.001 and 0.030 and
mean differences of �29.428, �45.928 and �1.500, respectively,
there is no statistically significant difference between h_PSO and
RTS, AMM and PILS. This analysis indicates that the proposed
h_PSO performs as well as RTS, AMM and PILS which are the most
effective heuristics recently proposed in the literature, and also out-
performs existing population-based heuristics, i.e. PSO and ACS, in
the VRPSPD literature.

5.2. Computational analysis for the VRPMPD

As mentioned previously, the proposed h_PSO can be directly
applied to solve the VRPMPD which is a special case of the VRPSPD.
Thus, in this subsection, we compare our algorithm h_PSO with the
existing algorithms in the literature for the VRPMPD.

5.2.1. Test problems and parameter setting for h_PSO
We utilize two sets of problem instances available in the litera-

ture to investigate the performance of h_PSO for the VRPMPD. The
first data set is provided by Salhi and Nagy (1999). They have gen-
erated three problem subsets referred to as T, Q and H from the se-
ven problem instnaces of capacitated VRP. In set T, every 10th
customer is considered as a pickup customer and is assigned pick-
up demend equal to the original delivery demand. In a similar fash-
ion, every 4th and every 2nd customer are considered as pickup
customers in sets Q and H, respectively. While the proportion of
pickup customers is 10% in set T, this value increases to 25% and
50% in sets Q and H, respectively. These three sets, i.e. T, Q and
H, are referred as CMTT, CMTQ and CMTH, respectively. This set in-
cludes totally 21 test instances.

The second data set has been derived by Wassan et al. (2008)
from the VRPSPD data set of Dethloff (2001). Similar to Salhi and
Nagy’s (1999) approach, they create three mixed instances from
each VRPSPD instance by setting every 10th, 4th and 2nd customer
to be a pickup customer. The new instances are distiguished by
adding the letter T, Q or H after the original instance designator.
This set consists of a total of 120 instances in which each subclass
has 40 instances.

It is important to note that the parameter settings of h_PSO
used for the VRPSPD are also implemented for the VRPMPD.



Table 4
Comparison of h_PSO with LNS, ACS, AMM and PILS on the VRPSPD instances of Dethloff (2001).

Instance LNS ACS AMM PILS h_PSO

Best sol. ACT Best sol. ACT Best sol. ACT Best sol. ACT Best sol. ACT

SCA3-0 636.1 232 635.62 6.0 635.62 2.5 635.62 2.3 635.62 4.9
SCA3-1 697.8 218 697.84 6.0 697.84 2.5 697.84 2.3 697.84 0.8
SCA3-2 659.3 203 659.34 6.0 659.34 2.9 659.34 2.1 659.34 0.4
SCA3-3 680.6 241 680.04 6.1 680.04 2.3 680.04 2.5 680.04 1.0
SCA3-4 690.5 208 690.50 5.7 690.50 2.9 690.50 2.2 690.50 0.3
SCA3-5 659.9 226 659.90 5.1 659.90 3.0 659.90 2.2 659.90 2.0
SCA3-6 651.1 233 651.09 6.1 651.09 3.1 651.09 2.5 651.09 0.8
SCA3-7 666.1 206 659.17 6.8 659.17 2.8 659.17 2.4 659.17 1.6
SCA3-8 719.5 190 719.47 5.4 719.47 3.5 719.48 2.3 719.47 0.5
SCA3-9 681.0 220 681.00 6.0 681.00 4.7 681.00 1.9 681.00 0.8
SCA8-0 975.1 98 961.50 11.0 961.50 2.7 961.50 3.4 961.50 4.8
SCA8-1 1052.4 95 1049.65 11.5 1049.65 3.8 1049.65 2.9 1049.65 6.8
SCA8-2 1044.5 94 1042.69 11.9 1039.64 3.9 1039.64 2.4 1039.64 10.2
SCA8-3 999.1 94 983.34 11.3 983.34 2.6 983.34 3.0 983.34 13.0
SCA8-4 1065.5 93 1065.49 11.1 1065.49 2.4 1065.49 2.8 1065.49 3.0
SCA8-5 1027.1 96 1027.08 11.3 1027.08 3.4 1027.08 3.3 1027.08 4.1
SCA8-6 977.0 94 971.82 12.0 971.82 2.7 971.82 3.5 971.82 1.6
SCA8-7 1061.0 92 1052.17 12.5 1051.28 5.1 1051.28 3.1 1051.28 3.4
SCA8-8 1071.2 98 1071.18 11.0 1071.18 3.6 1071.18 2.9 1071.18 0.8
SCA8-9 1060.5 92 1060.50 11.5 1060.50 4.8 1060.50 2.2 1060.50 7.3
CON3-0 616.5 215 616.52 8.3 616.52 4.7 616.52 3.1 616.52 2.1
CON3-1 554.5 245 554.47 7.1 554.47 2.2 554.47 2.8 554.47 1.3
CON3-2 521.4 232 518.00 6.9 518.00 3.1 518.00 2.8 518.00 1.3
CON3-3 591.2 231 591.19 7.2 591.19 3.2 591.19 2.3 591.19 0.5
CON3-4 588.8 221 588.79 6.0 588.79 2.3 588.79 2.6 588.79 3.2
CON3-5 563.7 209 563.70 6.9 563.70 3.7 563.70 2.7 563.70 0.4
CON3-6 500.8 225 499.05 7.3 499.05 3.7 499.05 2.8 499.05 2.3
CON3-7 576.5 227 576.48 7.0 576.48 1.9 576.48 2.8 576.48 2.6
CON3-8 523.1 237 523.05 7.4 523.05 3.8 523.05 2.5 523.05 1.0
CON3-9 586.4 207 578.25 6.8 578.25 2.2 578.25 3.4 578.25 2.9
CON8-0 857.2 94 857.17 12.3 857.17 4.4 857.17 3.7 857.17 5.2
CON8-1 740.9 94 740.85 12.0 740.85 3.3 740.85 3.0 740.85 2.9
CON8-2 716.0 94 712.89 13.0 712.89 2.7 712.89 3.1 712.89 2.1
CON8-3 811.1 98 811.07 13.9 811.07 2.8 811.07 4.0 811.07 2.8
CON8-4 772.3 95 772.25 11.9 772.25 2.8 772.25 3.7 772.25 3.6
CON8-5 755.7 94 754.88 12.4 754.88 5.7 754.88 4.2 754.88 3.4
CON8-6 693.1 96 678.92 12.4 678.92 3.4 678.92 4.1 678.92 7.9
CON8-7 814.8 94 811.96 13.0 811.96 2.5 811.96 4.0 811.96 3.0
CON8-8 774.0 94 767.53 12.5 767.53 3.2 767.53 3.4 767.53 3.2
CON8-9 809.3 92 809.00 12.9 809.00 3.8 809.00 3.5 809.00 2.4

Avg. deviation 0.32 0.01 0.00 0.00 0.00
BKS found 22 38 40 40 40
Avg. time (s.) 157.9 9.3 3.3 2.92 3.1
Scaled time (s) 52.1 8.4 3.5 ⁄ 3.1

Table 5
Comparison of h_PSO with RTS, LNS, PSO, ACS, AMM and PILS on the VRPSPD instances of Salhi and Nagy (1999).

Instance RTS LNS PSO ACS AMM PILS h_PSO

Best Sol. ACT Best Sol. ACT Best Sol. ACT Best Sol. ACT Best Sol. ACT Best Sol. ACT Best Sol. ACT

CMT1X 468.30 48 467 221 467 40 466.77 5.0 469.80 2.1 466.77 2.3 466.77 1.3
CMT1Y – – 467 235 467 40 466.77 5.0 469.80 3.8 466.77 2.3 466.77 1.4
CMT2X 668.77 94 704 294 710 54 684.21 20.8 684.21 5.4 684.21 6.4 684.21 35.6
CMT2Y 663.25 102 685 331 710 54 684.94 22.3 684.21 6.8 684.21 6.4 684.21 36.8
CMT3X 729.63 294 731 863 738 114 721.40 41.3 721.27 11.9 721.27 12.1 721.27 41.7
CMT12X 644.70 242 685 684 691 115 663.01 36.3 662.22 9.3 662.22 10.3 662.94 141.4
CMT3Y 745.46 285 738 708 740 113 721.40 43.8 721.27 11.0 721.27 12.3 721.27 55.5
CMT12Y 659.52 254 675 539 697 114 663.50 39.3 662.22 4.8 662.22 10.8 663.50 105.4
CMT11X 861.97 504 837 1821 895 226 839.66 57.3 833.92 21.2 833.92 18.9 833.92 244.9
CMT11Y 830.39 325 920 1376 900 228 840.19 52.8 833.92 14.4 833.92 19.0 833.92 368.9
CMT4X 876.50 558 879 1676 912 207 854.12 131.8 852.46 29.6 852.46 30.9 852.83 380.2
CMT4Y 870.44 405 876 1788 913 204 855.76 140.3 852.46 27.4 852.46 31.6 852.46 414.6
CMT5X 1044.51 483 1108 2340 1167 285 1034.87 377.5 1030.55 62.8 1029.25 71.5 1033.50 500.0
CMT5Y 1054.46 533 1146 2177 1142 286 1037.34 393.5 1030.55 47.7 1029.25 69.6 1036.00 500.0

Avg. deviation 1.31 4.07 6.09 0.92 0.76 0.65 0.71
BKS found 5 2 2 2 5 9 6
Avg. time (s.) 299.7 1075.2 148.6 97.6 18.4 21.7 201.9
Scaled time (s) 257.7 354.8 199.1 87.8 19.3 ⁄ 201.9

50 F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53



Table 6
Results of paired-t test.

Pairs (h_PSO–HM) Mean Difference p-value

h_PSO–RTS �5.143 0.259
h_PSO–LNS �29.428 0.008*

h_PSO–PSO �45.928 0.001*

h_PSO–ACS �1.500 0.030*

h_PSO–AMM 0.285 0.635
h_PSO–PILS 0.857 0.145

* Statistically significant different at a = 0.05.

F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53 51
5.2.2. Computational results
We utilize following algorithms to evaluate the perfomance of

the proposed h_PSO for the VRPMPD:

RTS: Reactive tabu search (Wassan et al., 2008).
LNS: Large neighborhood search (Ropke & Pisinger, 2006).
PSO: Particle swarm optimization (Ai & Kachitvichyanukul,
2009a).
ACS: Ant colony system (Gajpal & Abad, 2009).

It should be noted that we exclude the AMM and PILS from the
comparison because there is no published results of them for the
VRPMPD.
Table 7
Comparison of h_PSO with RTS on the VRPMPD instances of Dethloff (2001).

Instance RTS h_PSO Instance RTS

Best sol. ACT Best sol. ACT Best sol.

SCA3-0T 627.92 3.0 604.22 0.6 SCA3-0Q 608.70
SCA3-1T 662.68 14.0 657.99 1.0 SCA3-1Q 678.30
SCA3-2T 636.57 3.0 634.70 1.8 SCA3-2Q 635.45
SCA3-3T 684.85 1.0 651.86 1.6 SCA3-3Q 678.36
SCA3-4T 666.18 12.0 648.82 0.5 SCA3-4Q 667.71
SCA3-5T 647.49 18.0 619.31 1.0 SCA3-5Q 618.01
SCA3-6T 634.83 1.0 624.10 1.5 SCA3-6Q 628.20
SCA3-7T 647.23 8.0 631.41 1.1 SCA3-7Q 623.78
SCA3-8T 700.52 6.0 691.13 0.6 SCA3-8Q 690.50
SCA3-9T 650.50 2.0 642.86 0.7 SCA3-9Q 630.10
SCA8-0T 911.61 1.0 889.40 3.0 SCA8-0Q 804.92
SCA8-1T 947.00 6.0 947.01 6.4 SCA8-1Q 924.52
SCA8-2T 897.15 1.0 897.16 1.7 SCA8-2Q 830.43
SCA8-3T 922.95 1.0 922.96 6.7 SCA8-3Q 852.47
SCA8-4T 991.49 4.0 987.25 2.4 SCA8-4Q 909.57
SCA8-5T 957.44 4.0 957.44 1.3 SCA8-5Q 880.58
SCA8-6T 916.02 5.0 916.03 8.6 SCA8-6Q 820.87
SCA8-7T 931.48 1.0 931.48 0.7 SCA8-7Q 857.97
SCA8-8T 1005.01 5.0 1001.19 5.5 SCA8-8Q 927.09
SCA8-9T 951.14 2.0 938.75 4.9 SCA8-9Q 845.21
CON3-0T 617.79 4.0 601.85 1.4 CON3-0Q 622.66
CON3-1T 538.66 3.0 538.66 1.5 CON3-1Q 536.05
CON3-2T 498.98 6.0 498.15 0.8 CON3-2Q 499.40
CON3-3T 629.77 4.0 569.07 1.0 CON3-3Q 567.49
CON3-4T 603.95 1.0 572.52 1.0 CON3-4Q 580.89
CON3-5T 555.71 4.0 549.49 0.8 CON3-5Q 562.89
CON3-6T 494.11 14.0 489.54 1.5 CON3-6Q 486.89
CON3-7T 573.60 8.0 553.95 6.8 CON3-7Q 559.99
CON3-8T 514.78 10.0 509.16 1.9 CON3-8Q 508.61
CON3-9T 573.52 15.0 570.38 3.4 CON3-9Q 563.88
CON8-0T 809.60 1.0 802.83 4.5 CON8-0Q 755.44
CON8-1T 702.04 2.0 682.83 2.1 CON8-1Q 652.47
CON8-2T 655.97 1.0 653.29 10.5 CON8-2Q 596.33
CON8-3T 740.61 5.0 740.62 2.6 CON8-3Q 706.86
CON8-4T 726.06 3.0 720.59 7.8 CON8-4Q 705.37
CON8-5T 717.21 1.0 717.22 1.8 CON8-5Q 671.26
CON8-6T 651.39 1.0 644.75 3.6 CON8-6Q 585.43
CON8-7T 755.97 4.0 755.97 2.0 CON8-7Q 724.57
CON8-8T 733.04 1.0 714.17 3.1 CON8-8Q 652.76
CON8-9T 763.97 2.0 760.96 10.4 CON8-9Q 719.58

Avg. dev. 1.59 0.00 1.44
BKS found 6 31 5
Avg. time 4.7 3.00
Scaled time 4.0 3.00
5.2.2.1. Results of h_PSO for Dethloff’s (2001) data set. Wassan et al.
(2008) are the first researchers who report the computational re-
sults of their algorithm, called RTS, on this data set. Thus, we com-
pare the results of h_PSO with those obtained by RTS. Table 7
presents computational results of both algorithms. As seen from
table, h_PSO improves 101 out of 120 best-known solutions (see,
bold numbers indicating that the algorithm has reached the best
solution), where the number of improvements in the first, second
and third classes are 31, 32 and 38, respectively. The average
improvement on the results of RTS is around 2%. For the 12 in-
stances in which the results of h_PSO are inferior to those of RTS,
the results are still within 0.01% of the best-known solutions.
Meanwhile, h_PSO needs less computational burden to reach best
solutions than RTS.
5.2.2.2. Results of h_PSO for Salhi and Nagy’s (1999) data set. Table 8
reports the computational results of RTS, LNS, PSO, ACS and h_PSO
over 42 instances. As mentioned previously, bold numbers for each
algorithm in the table indicate that the algorithm has reached the
best solution. It is important to note that average computation
times (ACT) are not given for PSO in the table because Ai and
Kachitvichyanukul (2009a) does not report them in their study.
As seen from the table, h_PSO reaches 16 best solutions out of 42
h_PSO Instance RTS h_PSO

ACT Best sol. ACT Best sol. ACT Best sol. ACT

17.0 591.84 0.4 SCA3-0H 598.27 1.0 567.20 0.8
1.0 652.32 0.8 SCA3-1H 624.86 1.0 610.66 1.0
4.0 622.10 0.4 SCA3-2H 611.78 4.0 584.52 0.6
9.0 644.85 1.1 SCA3-3H 650.03 3.0 608.15 2.8
6.0 642.04 0.8 SCA3-4H 624.77 1.0 597.35 1.6

10.0 617.42 0.9 SCA3-5H 602.57 10.0 585.09 1.3
1.0 601.28 1.3 SCA3-6H 605.00 4.0 574.25 1.3
7.0 616.84 0.7 SCA3-7H 579.64 12.0 575.99 0.7
9.0 676.85 0.7 SCA3-8H 676.44 15.0 635.84 1.6

25.0 628.31 0.8 SCA3-9H 645.69 13.0 600.92 1.7
5.0 804.93 4.7 SCA8-0H 724.51 1.0 714.86 2.1
6.0 922.00 3.5 SCA8-1H 787.66 7.0 780.77 1.5
2.0 830.44 4.2 SCA8-2H 739.93 2.0 740.55 1.4
1.0 849.00 1.8 SCA8-3H 764.52 7.0 761.83 6.3
4.0 906.29 1.1 SCA8-4H 819.39 1.0 794.69 2.4
4.0 880.58 1.4 SCA8-5H 788.42 4.0 783.04 4.0
3.0 804.21 4.9 SCA8-6H 731.41 2.0 723.21 2.6
1.0 855.24 5.7 SCA8-7H 735.98 7.0 725.79 1.1
1.0 927.10 2.4 SCA8-8H 856.20 12.0 850.91 5.4
5.0 841.97 5.9 SCA8-9H 803.18 1.0 771.96 3.2

20.0 595.54 3.0 CON3-0H 604.65 8.0 579.67 2.4
9.0 529.05 0.6 CON3-1H 537.88 13.0 513.46 1.0
9.0 493.09 1.3 CON3-2H 502.23 6.0 482.74 1.9

21.0 557.18 0.7 CON3-3H 549.68 9.0 549.68 1.0
2.0 571.57 1.1 CON3-4H 568.28 4.0 551.92 3.2
3.0 545.90 2.2 CON3-5H 534.22 9.0 529.93 1.5
6.0 482.69 4.0 CON3-6H 480.00 11.0 466.61 4.7
7.0 541.61 0.1 CON3-7H 551.45 15.0 527.98 0.5
3.0 492.14 0.3 CON3-8H 500.77 9.0 475.77 0.9
1.0 563.89 3.0 CON3-9H 559.57 6.0 536.89 1.0
1.0 754.50 7.0 CON8-0H 716.41 7.0 697.34 6.3
1.0 648.30 4.2 CON8-1H 611.86 7.0 610.23 4.4
4.0 595.64 5.3 CON8-2H 601.73 5.0 590.43 4.2
2.0 685.99 3.8 CON8-3H 663.75 6.0 653.81 6.9
4.0 705.37 3.3 CON8-4H 659.69 5.0 641.59 3.9
1.0 666.17 3.4 CON8-5H 623.46 1.0 608.59 2.3
3.0 584.72 6.0 CON8-6H 557.52 1.0 546.06 3.6
1.0 724.57 2.5 CON8-7H 682.53 1.0 652.70 5.2
1.0 648.54 2.3 CON8-8H 596.18 6.0 595.60 3.0
1.0 714.64 6.3 CON8-9H 631.23 1.0 624.03 3.0

0.00 2.84 0.00
32 1 38

5.5 2.6 6.0 2.6
4.7 2.6 5.1 2.6



Table 8
Comparison of h_PSO with LNS, PSO, ACS on the VRPMPD instances of Salhi and Nagy (1999).

Instance PSO RTS LNS ACS h_PSO

Best sol. Best sol. ACT Best sol. ACT Best sol. ACT Best sol. ACT

CMT1T 520 520 2.9 520 34 520.06 7.0 520.06 2.6
CMT2T 810 789 0.5 783 57 782.77 26.0 782.77 19.4
CMT3T 827 808 5.1 798 109 798.07 42.6 798.07 94.8
CMT12T 792 801 21.4 788 96 787.52 52.0 787.52 28.2
CMT11T 1026 1101 6.0 1000 164 998.80 70.2 998.86 66.5
CMT4T 1014 1009 51.8 1000 212 990.39 166.8 990.39 516.2
CMT5T 1297 1265 362.3 1227 333 1232.08 460.8 1233.52 500.0
CMT1Q 490 498 1.7 490 41 489.74 6.0 489.74 1.1
CMT2Q 739 739 0.6 733 65 732.76 26.2 726.27 23.5
CMT3Q 768 766 14.5 747 128 747.15 39.8 747.15 62.6
CMT12Q 733 744 23.7 729 108 729.46 42.0 729.25 200.6
CMT11Q 964 1038 6.6 939 196 939.36 66.2 939.36 92.1
CMT4Q 938 944 59.5 918 244 913.93 153.0 913.63 474.6
CMT5Q 1174 1176 8.5 1119 381 1134.72 451.8 1129.37 500.0
CMT1H 464 468 0.7 465 51 465.02 5.6 465.02 2.1
CMT2H 668 667 17.1 663 78 662.63 22.0 661.39 36.5
CMT3H 701 730 23.8 701 186 701.31 35.6 700.94 78.6
CMT12H 635 646 42.6 629 150 629.37 32.8 629.02 178.9
CMT11H 830 880 51.9 818 303 820.35 45.8 818.05 137.2
CMT4H 883 890 376.4 829 345 831.39 125.4 831.04 273.7
CMT5H 1044 1078 19.0 983 514 992.37 351.4 997.90 500.0

Avg. deviation 2.38 3.75 0.14 0.23 0.17
BKS found 4 1 15 9 16
Avg. time (s.) 52.2 180.7 106.1 180.4
Scaled time (s) 44.9 59.6 95.5 180.4

52 F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53
possible solutions. Meantime, h_PSO produces three new best solu-
tions for the test instances referred CMT2Q, CTM4Q and CMT12Q.
The second best algorithm in terms of the number of best solutions
found is LNS which produces 15 best solutions. ACS, PSO and RTS
reach 9, 4 and 1 best solution, respectively. Regarding the percent-
age deviation of solution of each algorithm from the best solution,
we can see that h_PSO, LNS and PSO have less than 0.3% deviation
while PSO and RTS produce 2.38% and 3.75% deviation. The com-
parison of computational burden of the algorithms shows that
h_PSO needs slightly greater computation time than other algo-
rithms but this is in the acceptable level.

To see whether differences in solution quality for the pairs of
h_PSO–RTS, h_PSO–LNS, h_PSO–PSO and h_PSO–ACS are statisti-
cally significant, we implement the paired-t test. As in the VRPSPD,
a one-sided alternative hypothes is constructed for the solution
quality. At the significance level of 0.05, h_PSO performs better
than RTS and PSO with p-values of <0.000, while there is no statis-
tical significant difference between h_PSO and LNS, ACS. These
comparisons also reveal that the proposed h_PSO is capable of find-
ing good quality solutions for the VRPMPD and competes with
existing algorithms in the literature.
6. Conclusion

In this paper, we have proposed a hybrid search algorithm
based on discrete particle swarm optimization (PSO) and variable
neighborhood descent algorithm (VND) to solve vehicle routing
problem with simultaneous pickup and delivery (VRPSPD). This
algorithm, called h_PSO, is a PSO supplemented with VND as a local
search which is employed to improve randomly selected solutions
in each iteration. Moreover, h_PSO implements an annealing-like
strategy to preserve its swarm diversity. In h_PSO, we have pro-
posed permutation encoding that is a giant tour without trip
delimiters to represent a solution of the problem. To the best of
our knowledge, this is the first implementation of giant tours to
represent VRPSPD solutions. In order to demonstrate the effective-
ness of the h_PSO, we have carried out an experimental study into
two-stage. The first stage compares h_PSO with the existing algo-
rithms (i.e. PSO, ACS, PILS, AMM, RTS and LNS) in the VRPSPD liter-
ature. The computational results over 54 test instances show that
while h_PSO improves the results of the population-based heuris-
tic approaches, i.e. PSO and ACS, around 2.49% and 0.05% on aver-
age, respectively, it is competitive with the effective heuristic
approaches, i.e. PILS and AMM, such that the h_PSO and PILS pro-
duce less than 0.2% deviation on average from the best known
solutions. Since the VRP with mixed pickup and delivery (VRPMPD)
is a special case of the VRPSPD, the proposed h_PSO can be directly
applied to solve the VRPMPD. In the second stage, we have
evaluated the performance of h_PSO against the algorithms in
the literature (i.e. PSO, ACS, RTS and LNS) for the VRPMPD. The
computational results over 141 test instances indicate that the pro-
posed h_PSO performs better than the existing algorithms in terms
of solution quality and improves 104 best known solutions of the
VRPMPD (the improvement is around 2% on average). In the fur-
ther research, this kind of hybridization of PSO and VND can be
used to solve multi-depot VRPSPD and multi-objective vehicle
routing problems.
Acknowledgement

The authors are indebted to the anonymous referees for their
helpful comments and suggestions. This research is supported by
The Scientific and Technological Research Council of Turkey as Sci-
entific Research Project (No: 108E069).
References

Ai, T. J., & Kachitvichyanukul, V. (2009a). A particle–sicle swarm optimization for
the vehicle routing problem with simultaneous pickup and delivery. Computers
and Operations Research, 36, 1693–1702.

Ai, T. J., & Kachitvichyanukul, V. (2009b). Particle swarm optimization and two
solution representations for solving the capacitated vehicle routing problem.
Computers & Industrial Engineering, 56(1), 380–387.

Berbeglia, G., Cordeau, J. F., Gribkovskaia, I., & Laporte, G. (2007). Static pickup and
delivery problems: A classification scheme and survey. TOP, 15, 1–31.

Bianchessi, N., & Righini, G. (2007). Heuristic algorithms for the vehicle routing
problem with simultaneous pick-up and delivery. Computers & Operations
Research, 34, 578–594.



F.P. Goksal et al. / Computers & Industrial Engineering 65 (2013) 39–53 53
Catay, B. (2010). A new saving-based ant algorithm for the vehicle routing problem
with simultaneous pickup and delivery. Expert Systems with Applications, 37(10),
6809–6817.

Chen, J. F., & Wu, T. H. (2006). Vehicle routing problem with simultaneous deliveries
and pickups. Journal of the Operational Research Society, 57, 579–587.

Chen, A., Yang, G., & Wu, Z. (2006). Hybrid discrete particle swarm optimization
algorithm for capacitated vehicle routing problem. Journal of Zhejiang University
Science A, 7, 607–614.

Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem. In N.
Christofides, A. Mingozzi, P. Toth, & L. Sandi (Eds.), Combinatorial optimization.
Chichester, UK: Wiley.

Cosco, D. O., Golden, B. L., & Wasil, E. A. (1988). Vehicle routing with backhauls:
Models, algorithms and case studies. In Vehicle routing: Method and studies
(pp. 127–147). Amsterdam: Elsevier.

Crispim, J., & Brandao, J. (2005). Metaheuristics applied to mixed and simultaneous
extensions of vehicle routing problems with backhauls. Journal of the
Operational Research Society, 56, 1296–1302.

Czogalla, J., & Fink, A. (2008). On the effectiveness of particle swarm optimization
and variable neighborhood descent for the continuous flow-shop scheduling
problem. Studies in Computational Intelligence, 128, 61–89.

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management
Science, 6(1), 80–91.

Deif, I., & Bodin, L. (1984). Extension of the clarke and wright algorithm for solving
the vehicle routing problem with backhauling. In A. Kidder (Ed.), Proceedings of
the Babson conference on software uses in transportation and logistic management
(pp. 75–96). USA: Babson Park.

Dell’Amico, M., Righini, G., & Salani, M. (2006). A branch-and-price approach to the
vehicle routing problem with simultaneous distribution and collection.
Transportation Science, 40, 235–247.

Dethloff, J. (2001). Vehicle routing and reverse logistics: The vehicle routing
problem with simultaneous delivery and pick-up. OR Spektrum, 23, 79–96.

Eberhart, R. C., Shi, Y., & Kennedy, J. (2001). Swarm intelligence. San Francisco:
Morgan Kaufmann Publisher.

Gajpal, Y., & Abad, P. (2009). An ant colony system (ACS) for vehicle routing problem
with simultaneous delivery and pickup. Computers and Operations Research,
36(12), 3215–3223.

Gajpal, Y., & Abad, P. (2010). Saving-based algorithms for vehicle routing problem
with simultaneous pickup and delivery. Journal of the Operational Research
Society, 61(10), 1498–1509.

Gen, M., & Cheng, R. (1997). Genetic algorithms & engineering design. NewYork:
Wiley.

Golden, B., Baker, E., Alfaro, J., Schaffer, J. (1985). The vehicle routing problem with
backhauling: Two approaches. In R. Hammesfahr (Ed.), Proceedings of the XXI
annual meeting of S.E. Times (pp. 90–92).

Hansen, P., Mladenovic, N., & Perez, J. A. M. (2010). Variable neighborhood search:
Methods and applications. Annals of Operations Research, 175, 367–407.

Kang, Q., & He, H. (2011). A novel discrete particle swarm optimization algorithm
for meta-task assignment in heterogeneous computing systems.
Microprocessors and Microsystems, 35, 10–17.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of
IEEE International Conference on Neural Networks (pp. 1942–1948). NJ:
Piscataway.

Lee, C. Y., Lee, Z. J., Lin, S. W., & Ying, K. C. (2010). An enhanced ant colony
optimization (EACO) applied to capacitated vehicle routing problem. Applied
Intelligent, 32, 88–95.

Liao, C. J., Tseng, C. T., & Luarn, P. (2007). A discrete version of particle swarm
optimization for flowshop scheduling problems. Computers & Operations
Research, 34, 3099–3111.

Liu, S., Huang, W., & Ma, H. (2009). An effective genetic algorithm for fleet size and
mix vehicle routing problems. Transportation Research Part E: Logistics and
Transportation Review, 45(3), 434–445.

Liu, B., Wang, L., & Jin, Y. H. (2007). An effective PSO-based memetiv algorithm for
flow shop scheduling. IEEE Transactions on Systems, Man and Cybernetics – Part B:
Cybernetics, 37(1), 18–37.

Marinakis, Y., & Marinaki, M. (2010). A hybrid genetic-particle swarm optimization
algorithm for the vehicle routing problem. Expert Systems with Application,
37(2), 1446–1455.

Marinakis, Y., Marinaki, M., & Dounias, G. (2010). A hybrid particle swarm
optimization algorithm for the vehicle routing problem. Engineering
Applications of Artificial Intelligence, 23(4), 463–472.
Min, H. (1989). The multiple vehicle routing problem with simultaneous delivery
and pickup points. Transportation Research A, 23, 377–386.

Montane, F. A. T., & Galvão, R. D. (2006). A tabu search algorithm for the vehicle
routing problem with simultaneous pick-up and delivery service. Computers &
Operations Research, 33(3), 595–619.

Mosheiov, G. (1998). Vehicle routing with pick-up and delivery: Tour-partitioning
heuristics. Computers & Industrial Engineering, 34(3), 669.

Nagy, G., & Salhi, S. (2005). Heuristic algorithms for single and multiple depot
vehicle routing problems with pickups and deliveries. European Journal of
Operational Research, 162(1), 126–141.

Pan, Q. K., Tasgetiren, M. F., & Liang, Y. C. (2008). A discrete particle swarm
optimization algorithm for the no-wait flowshop scheduling problem.
Computers & Operation Research, 35(9), 2807–2839.

Pang, W., Wang, K. P., Zhou, C. G., & Dong, L. J. (2004). Fuzzy discrete particle swarm
optimization for solving traveling salesman problem. In Proceedings of the 4th
international conference on computer and information technology (pp. 796–800).
IEEE CS Press.

Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008). A survey on pickup and delivery
problems. Part I: Transportation between customers and depot. Journal für
Betriebswirtschaft, 58(1), 21–51.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle
routing problem. Computers & Operations Research, 31, 1985–2002.

Prins, C. (2009). Two memetic algorithms for heterogeneous fleet vehicle routing
problems. Engineering Applications of Artificial Intelligence, 22(6), 916–928.

Repoussis, P. P., Tarantilis, C. D., Braysy, O., & Ioannou, G. (2010). A hybrid evolution
strategy for the open vehicle routing problem. Computers & Operations Research,
37, 443–455.

Ropke, S., & Pisinger, D. (2006). A unified heuristic for a large class of vehicle routing
problems with bakhauls. European Journal of Operational Research, 171(3),
750–775.

Salhi, S., & Nagy, G. (1999). A cluster insertion heuristic for single and multiple
depot vehicle routing problems with backhauling. Journal of the Operational
Research Society, 50, 1034–1042.

Subramanian, A., Drummond, L. M. A., Bentes, C., Ochi, L. S., & Farias, R. (2010). A
parallel heuristic for the vehicle routing problem with simultaneous pick-up
and delivery. Computers and Operations Research, 37(11), 1899–1911.

Talbi, E. G. (2002). A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8,
541–564.

Tan, K. C., Lee, L. H., & Ou, K. (2001). Artificial intelligence heuristics in solving
vehicle routing problems with time window constraints. Engineering
Applications of Artificial Intelligence, 14(6), 825–837.

Tang, F. A., & Galvao, R. D. (2006). Vehicle routing problems with simultaneous pick-
up and delivery service. Journal of the Operational Research Society of India, 39,
19–33.

Tang, L., & Wang, X. (2010). An improved particle swarm optimization algorithm for
the hybrid flowshop scheduling to minimize total weighted completion time in
process industry. IEEE Transactions on Control Systems Technology. doi:10.1109/
TCST.2009.2036718.

Toth, P., & Vigo, D. (Eds.). (2002). The vehicle routing problem. Philadelphia: SIAM
Monographs on Discrete Mathematics and Applications.

Tasgetiren, M. F., Liang, Y. C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm
optimization algorithm for makespan and total flowtime minimization in the
permutation flowshop sequencing problem. European Journal of Operational
Research, 177, 1930–1947.

Wassan, N. A., Nagy, G., & Ahmadi, S. (2008). A heuristic method for the vehicle
routing problem with mixed deliveries and pickups. Journal of Scheduling, 11,
149–161.

Wassan, N. A., Wassan, A. H., & Nagy, G. (2007). A reactive tabu search algorithm for
the vehicle routing problem with simultaneous pickups and deliveries. Journal
of Combinatorial Optimization, 15, 368–386.

Zachariadis, E. E., & Kiranoudos, T. (2011). A local search metaheuristic algorithm
for the vehicle routing problem with simultaneous pick-ups and deliveries.
Expert Systems with Applications, 38, 2717–2726.

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2009). A hybrid metaheuristic
algorithm for the vehicle routing problem with simultaneous delivery and pick-
up service. Expert Systems with Applications, 36(2), 1070–1080.

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudos, T. (2010). An adaptive methodlogy
for the vehicle routing problem with simultaneous pick-ups and deliveries.
European Journal of Operational Research, 202(2), 401–411.

http://dx.doi.org/10.1109/TCST.2009.2036718
http://dx.doi.org/10.1109/TCST.2009.2036718

	A hybrid discrete particle swarm optimization for vehicle routing problem  with simultaneous pickup and delivery
	1 Introduction
	2 Literature review
	3 Particle swarm optimization and variable neighborhood descent
	3.1 Particle swarm optimization
	3.2 Variable neighborhood descent algorithm
	3.3 Hybridization of PSO with VND

	4 Proposed hybrid algorithm
	4.1 Representation
	4.2 Generating the initial population
	4.3 Position Updating Rule
	4.4 Local search
	4.5 The steps of the h_PSO

	5 Experimental study
	5.1 Computational Analysis for the VRPSPD
	5.1.1 Test problems and parameter setting for h_PSO
	5.1.2 Computational results
	5.1.2.1 Results of h_PSO for Dethloff’s (2001) data set
	5.1.2.2 Results of h_PSO for Salhi and Nagy’s (1999) data set


	5.2 Computational analysis for the VRPMPD
	5.2.1 Test problems and parameter setting for h_PSO
	5.2.2 Computational results
	5.2.2.1 Results of h_PSO for Dethloff’s (2001) data set
	5.2.2.2 Results of h_PSO for Salhi and Nagy’s (1999) data set



	6 Conclusion
	Acknowledgement
	References


