
Expert Systems with Applications 37 (2010) 1620–1627
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Iterated variable neighborhood descent algorithm for the capacitated vehicle
routing problem

Ping Chen a,b,*, Hou-kuan Huang b, Xing-Ye Dong b

a TEDA College, Nankai University, 30071 Tianjin, China
b School of Computer and Information Technology, Beijing Jiaotong University, 100044 Beijing, China

a r t i c l e i n f o
Keywords:
Capacitated vehicle routing problem
Iterated local search
Variable neighborhood descent
Perturbation
0957-4174/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.eswa.2009.06.047

* Corresponding author. Address: TEDA College, Nan
China. Tel.: +86 010 51683602.

E-mail address: chenpingbjtu@gmail.com (P. Chen
a b s t r a c t

The capacitated vehicle routing problem (CVRP) aims to determine the minimum total cost routes for a
fleet of homogeneous vehicles to serve a set of customers. A wide spectrum of applications outlines the
relevance of this problem. In this paper, a hybrid heuristic method IVND with variable neighborhood des-
cent based on multi-operator optimization is proposed for solving the CVRP. A perturbation strategy has
been designed by cross-exchange operator to help optimization escape from local minima. The perfor-
mance of our algorithm has been tested on 34 CVRP benchmark problems and it shows that the proposed
IVND performs well and is quite competitive with other state-of-the-art heuristics. Additionally, the pro-
posed IVND is flexible and problem dependent, as well as easy to implement.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction (3) The total demand of the customers assigned to any vehicle
Distribution of goods is of paramount importance in logistics
and supply chain management. The vehicle routing problem
(VRP) plays an important role in reducing the transportation cost
in logistics distribution. The standard version of the VRP, called
as capacitated vehicle routing problem (CVRP), consists of deter-
mining several vehicle routes with minimum cost for serving a
set of customers, whose geographical coordinates and demands
are known in advance. Each customer is required to be visited only
once by one vehicle. Typically, vehicles are homogeneous and have
the same capacity restriction. In some cases, a duration upper
bound is assigned which limits the maximum travel time for each
vehicle route.

For clarity, we define the CVRP on a connected graph G. Let
G ¼ ðV ;AÞ, where V ¼ fv0;v1; . . . ;vnþ1g is a vertex set and
A ¼ fðv i;v jÞjv i;v j 2 V ;v i–v jg is an arc set. Vertices v0 and vnþ1 cor-
respond to the depot at which K homogeneous vehicles are based,
and the remaining vertices denote the customers. Each arc ðv i;v jÞ
is associated with a non-negative weight cv iv j

, which represents
the travel distance from v i to v j. The CVRP considered in this paper
is supposed to be symmetric, i.e., cv iv j

¼ cv jv i
ði; j ¼ 0;1; . . . ;nþ 1Þ.

Each customer has a delivery demand qi. The CVRP consists of
determining a set of least cost vehicle routes such that:

(1) Each route starts and ends at the depot;
(2) Each customer is visited exactly once by exactly one vehicle;
ll rights reserved.

kai University, 30071 Tianjin,

).
must not exceed the vehicle capacity Q;
(4) For the CVRP with duration restriction, the duration of each

route must not exceed an upper bound D. In such a case,
each customer v iði > 0Þ requires a specified service time
sti. The duration equals to the total travel time and the total
service time for servicing all the customers on this route.
Here, the travel time from v i to v j equals to the Euclidean
distance cv iv j

between them.

The CVRP can be seen as an extension of the well-known NP-
hard traveling salesman problem (TSP) (Garey & Johnson, 1979),
so the CVRP is also NP-hard. Due to the its practicability in real life
and computational complexity in theory, the CVRP has received
much attention since it was firstly mentioned by Dantzig and Ram-
ser (1959). In the last several decades, researchers mainly focused
on heuristics and metaheuristics which can find quite good solu-
tions within rational time, especially for real life applications. Re-
cently, it has become evident that the use of a sole metaheuristic
is rather restrictive. Therefore, a new class of methods called hy-
brid metaheuristics has attracted more and more concern, which
are more efficient and flexible. Actually, many recently published
algorithms for solving VRP are hybrid metaheuristics. Reimann,
Doerner, and Hartl (2004) proposed a D-ants algorithm for the
CVRP which combined ant colony and local search. Prins (2004)
presented an effective evolutionary algorithm with local search
for the CVRP. Lin, Lee, Ying, and Lee (2009) have just proposed a
hybrid metaheuristic algorithm for the CVRP recently, which takes
advantages of both simulated annealing and tabu search.

The aim of this paper is to propose an iterated variable neigh-
borhood descent heuristic IVND for the CVRP. Since accuracy,

http://dx.doi.org/10.1016/j.eswa.2009.06.047
mailto:chenpingbjtu@gmail.com
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

P. Chen et al. / Expert Systems with Applications 37 (2010) 1620–1627 1621
speed, simplicity, and flexibility are the four critical criteria to ac-
cess heuristics for solving VRPs according to Cordeau, Gendreau,
Laporte, Potvin, and Semet (2002). The proposed method is a mul-
ti-operators based iterated variable neighborhood descent (VND)
(Hansen & Mladenović, 2003) heuristic, which combines with a
perturbation strategy. The strengths of the proposed heuristic lie
on two aspects. Firstly, it is simple since both the VND procedure
and the perturbation are based on several operators that are com-
monly used in methods for VRP. Secondly, it is flexible since it is
problem-independent and can be adapted for other variants of
VRPs. Computational study on 14 classical benchmark problems
as well as 20 large scale problems from literature were taken to
demonstrate the efficiency of the suggested method.

The remainder of this paper is organized as follows. Section 2
describes the problem and reviews the related work. Section 3 out-
lines the proposed solution methodology and elaborates each of its
components. Computational results together with some discus-
sions are reported in Section 4. Finally, Section 5 concludes this
paper.
2. Literature review

Abundant literature have discussed methodologies for the
CVRP since it was proposed. As the CVRP is NP-hard, many efforts
have focused on the heuristics in recent years, which can be
roughly divided into three categories: constructive heuristics,
improvement heuristics and metaheuristics. As heuristics can find
quite good solutions in acceptable time, they are preferred for
solving the NP-hard problems with large size, especially for the
real life cases.

Constructive heuristics build a feasible solution by adding one
component to the current partial solution until a complete solution
is got. The most well-known are the savings algorithm (Clarke &
Wright, 1964) and the insertion heuristics (Mole & Jameson, 1976,
Christofides, Mingozzi, & Toth, 1979). Such methods can build a
feasible solution quite quickly, while the solution quality can not
be guarantee, so they are usually used to generate initial solutions
for other heuristics.

Improvement heuristics improve the current solution by itera-
tively exploring its neighbors. They can obtain either intra-route
or inter-route improvement. For intra-route improvement, any
heuristic method for the TSP such as 2-opt, 3-opt and Or-opt can
be utilized, as each vehicle route in a CVRP can be viewed as a
TSP; for inter-route improvement, some multi-route structures
are needed, which can be classified as string cross, string exchange,
string relocation and string mix. More details are referred to Laporte
and Semet (2002). The flaw of improvement methods is that they
are dependent on initial solutions and easily trapped into local
optima.

Metaheuristics are some general solution strategies rather than
heuristic rules designed for a specific type of problems. Many
metaheuristics have already successfully applied to the VRP, such
as simulated annealing (SA), tabu search (TS), and ant colony opti-
mization (ACO) (Gendreau, Laporte, & Potvin, 2002). In recent
years, some new metaheuristics have been proposed for the CVRP.
Cordeau, Laporte, and Mercier (2001) extended the unified tabu
search algorithm (UTSA) to the site dependent VRP. Tarantilis
and Kiranoudis (2002) proposed an effective Bone Route adaptive
memory procedure for the VRP. It firstly constructs a solution by
means of an enhancement of the Clarke and Wright saving algo-
rithm, and a tabu search procedure is followed for solution
improvement. The adaptive memory procedure initiates new solu-
tions by combining route segments, called bones, instead of full
routes, which are extracted from good quality routes. Toth and
Vigo (2003) proposed the concept of granular neighborhood and
put forward a granular tabu search algorithm. Prins (2004) put for-
ward a hybrid evolutionary algorithm combined with local search
for improvement. Berger and Barkaoui (2004) also built a hybrid
genetic algorithm. Reimann et al. (2004) proposed a hybrid ant col-
ony algorithm D-ants savings based algorithm. Li, Golden, and Wa-
sil (2005) presented the VRTR algorithm which combined the
record-to-record (RTR) principle with a variable-length neighbor
list. Ergun, Orlin, and Steele-Feldman (2006) applied the vary large
neighborhood search (VLNS) to the VRP. Mester and Bräysy (2005)
applied the active guided evolutionary strategies (AGES) algorithm
to the CVRP and obtained quite good results. Readers are referred
to the survey by Cordeau, Gendreau, Hertz, Laporte, and Sormany
(2005) for more details.

3. Solution methodology

The proposed algorithm IVND combines the strengths of iter-
ated local search (Lourenço, Martin, & Stützle, 2003) and variable
neighborhood descent. Firstly, an initial solution s is built by a con-
structive heuristic method. Then the solution s is attempted to be
improved by a VND procedure. Once a local optimum solution s�

is found, stop the VND procedure and perform the perturbation
on s�, thus a new solution s0 is generated. From the solution s0, a
new VND procedure starts and finally gets a new local optimum
s0�. According to the solution quality and search history, it is deter-
mined by the acceptance criterion that which solution is used to be
perturbed for the next loop. Above steps are repeated until the ter-
minational conditions are met. The framework of the proposed
IVND is illustrated by Algorithm 1, while each of its components
will be described in detail in the following sections.

Algorithm 1. The Framework of the proposed algorithm IVND
1: Initialize parameters
2: s0 (GenerateInitialSolution()
3: s�0 (VNDðs0Þ, s� (s�0

4: Let the best solution found s�� (s�

5: repeat
6: s0 (Perturbationðs�Þ
7: s0� (VNDðs0Þ
8: if f ðs0�Þ < f ðs��Þ then
9: s�� (s0�

10: end if
11: s� (AcceptanceCriterions�; s0� , history
12: until terminational rule is met
13: return s��
3.1. Initial solution generation

The proposed algorithm starts off by generating an initial
feasible solution as the starting point of search by the VND pro-
cedure. We applied the saving algorithm by Clarke and Wright
(1964) to rapidly obtain a solution, which is based on the no-
tion of savings: firstly, dispatch a vehicle to each customer; then
merge two routes into a single one which can generate the
maximum distance savings. This heuristic method terminates
when there are no more two routes can feasibly be merged,
i.e., be merged without violating the route duration or capacity
constraints.

3.2. Variable neighborhood descent

The VND procedure is to search for better solutions in the
neighborhood defined by different operators, which is described
by Algorithm 2. The operators used in the VND procedure are four

1622 P. Chen et al. / Expert Systems with Applications 37 (2010) 1620–1627
operators commonly used for standard VRP, i.e., insert, swap, 2-opt*
and 2-opt. The aim of using multi-operator is to explore the solu-
tion space more extensively. When no further improvement can
be obtained, the VND procedure stops. The VND procedure is de-
scribed by Algorithm 2, where LocalSearchðs; NkÞ refers to the local
search in the neighborhood of solution s defined by the operator
Nk.

Algorithm 2. The procedure of the VND
1:
 Define the neighborhood Nkmax
={relocation, swap, 2-opt*, 2-opt}
2:
 repeat

3:
 improve tag (false

4:
 k(0

5:
 while k < kmax do

6:
 s� (LocalSearchðs; NkÞ

7:
 if f ðs�Þ < f ðsÞ then

8:
 improve tag (true

9:
 s(s�
10:
 end if

11:
 k(kþ 1

12:
 end while

13:
 until improve tag ¼ false

14:
 return s
3.2.1. Operators

The operators used in VND are commonly used in the local
search based methods for the standard VRP. Considering for com-
pleteness, the use of them in our implementation is briefly ex-
plained in this section.

The relocation consists of removing a customer from its cur-
rent place and reinserting it into another position in the same
route or an alternate one. The steps of local search w.r.t reloca-
tion are illustrated by Algorithm 3. In our implementation, the
local search is terminated after n consecutive trials that no
improvement has been obtained. A swap move consists of
exchanging the places of two customers belonging to different
routes. The procedure of local search w.r.t swap is quite similar
to Algorithm 3 except for step 4. In LocalSearch(s, swap), generate
the best neighbor solution s0 of s by swapping quej with another
customer.

Algorithm 3. The steps of LocalSearch(s, relocation)
1:
 Generate a random permutation que of all the customers

2:
 j(0;Cnt (0

3:
 while Cnt < nc do

4:
 generate the best neighbor solution s0 of s by relocating quej
5:
 if f ðs0Þ < f ðsÞ then

6:
 Cnt (0

7:
 s(s0
8:
 else

9:
 Cnt (Cnt þ 1

10:
 endif

11:
 j(ðjþ 1Þ mod n

12:
 end while

13:
 return s
The 2-opt* operates on two different routes. Firstly, each
route is divided into two parts by removing an arc; then, the
first part of one route and the second part of the other are
combined to generate a new route by introducing a new arc.
The remaining two parts build another new route analogously.
The steps of the local search w.r.t 2-opt* are shown by Algo-
rithm 4.
Algorithm 4. The steps of LocalSearch(s, 2-opt*)
1:
 r1 (1; tag (false, let sub be the number of routes in solution s

2:
 repeat

3:
 r2 (r1 þ 1

4:
 repeat

5:
 try to find a neighborhood solution s0 that improves s by

applying 2-opt* on r1 and r2
6:
 if s0 is found then

7:
 tag (true

8:
 s(s0
9:
 break

10:
 else

11:
 r2 (r2 þ 1

12:
 endif

13:
 until r2 > rsub
14:
 if tag ¼ true then

15:
 r1 (0

16:
 tag (false

17:
 else

18:
 r1 (r1 þ 1

19:
 endif

20:
 until r1 > rsub�1
21:
 return s
The 2-opt operator is used for intra-route improvement. In a 2-
opt move, two non-adjacent arcs are replaced by another two new
ones, and the visited order of the customers between the two arcs
is reversed. In the local search w.r.t 2-opt, apply 2-opt to each route
until no further improvement can be obtained.
3.2.2. Restricted neighborhood
Since the neighborhood based on the above four operators

would be very large, the idea of granular neighborhoods by Toth
and Vigo (2003) is applied in the implementation of the IVND. This
idea is based on the observation that long arcs have low probabil-
ities in the best solution, thus a threshold of arc cost is defined by
d ¼ a � f ðs0Þ=ðnþ kÞ, where a is a proper positive parameter; f ðs0Þ is
the objective value of initial solution, and k is the number of vehi-
cle routes. Some arcs are considered to be ‘‘important”, including
those incident to the depot and those belonging to the best solu-
tion found so far. In the local search procedures, only such moves
are considered that add at least one arc that is either ‘‘important”
or its cost is no more than the arc threshold d.

3.3. Perturbation

Once the VND procedure is stopped, a perturbation is started.
The perturbation should neither be too strong nor too weak. If the
perturbation is too strong, the algorithm may reduce to a random
restart method; otherwise, the possibility of escaping from the cur-
rent local optimum is quite low. In the proposed method, the per-
turbation is realized by applying a randomly cross-exchange
move on the current local optimum. Cross-exchange is firstly pro-
posed by Taillard, Badeau, Gendreau, Guertin, and Potvin (1997)
and mostly used for solution improvement in the past. Here, it is
used to perturb solution while the change of solution quality is ig-
nored. Fig. 1 illustrates a perturbation move, in which a customer
segment of customers on the upper route are exchanged with an-
other on the lower one, while solution feasibility is guaranteed.

More specifically, randomly choose two routes r1 and r2 and
determine the starting point b1 and b2 on them, respectively. The
length of customer segment involved in the perturbation are de-
noted by k1 and k2, which are random integer number in the range
of [2,4]. If the number of customers from b1ðb2Þ to the route end is
less than k1ðk2Þ, the remaining customers are all included.

Fig. 1. Illustration of perturbation.

Table 1
Characteristics of 14 benchmark problems.

Prob. n K Q D sti Best

C1 50 5 160 – – 524.61
C2 75 10 140 – – 835.26
C3 100 8 200 – – 826.14
C4 150 12 200 – – 1028.42
C5 199 17 200 – – 1291.29
C6 50 6 160 200 10 555.43
C7 75 11 140 160 10 909.68
C8 100 9 200 230 10 865.94
C9 150 14 200 200 10 1162.55
C10 199 18 200 200 10 1395.85
C11 120 7 200 – – 1042.11
C12 100 10 200 – – 819.56
C13 120 11 200 720 50 1541.14
C14 100 11 200 1040 90 866.37

Table 2
Characteristics of 20 large scale problems.

Prob. n K Q D sti Best

P1 240 10 550 650 0 5,627.54
P2 320 10 700 900 0 8,447.92
P3 400 10 900 1200 0 11,036.22
P4 480 12 1000 1600 0 13,624.52
P5 200 5 900 1800 0 6,460.98
P6 280 8 900 1500 0 8,412.80
P7 360 9 900 1300 0 10,181.75
P8 440 11 900 1200 0 11,663.55
P9 255 14 1000 – – 580.60
P10 323 16 1000 – – 738.92
P11 399 18 1000 – – 917.17
P12 483 19 1000 – – 1,107.19
P13 252 27 1000 – – 857.19
P14 320 30 1000 – – 1,080.55
P15 396 34 1000 – – 1,340.24

P. Chen et al. / Expert Systems with Applications 37 (2010) 1620–1627 1623
3.4. Acceptance criterion

Acceptance criterion determines which solution is to be per-
turbed. In the proposed MILS, the acceptance criterion considers
both the solution quality and search history information. If it has
been for nb consecutive iterations that no new best solution has
been found, use the best found solution s�� for perturbation, with
the aim to intensify the search around the promising area.
nb ¼ 50 is used in our implementation. Otherwise, accept s� or s0�

by a reminiscent simulated annealing acceptance criterion
SAðs�; s0�Þ, which does not always accept the better solution, but
accepts the worse solution with a certain probability. SAðs�; s0�Þ
is given by Eq. (1), where q0 is randomly generated in the range
of [0,1]. The temperature T is initialized as T0, and updated by
Tnþ1 ¼ b � Tn every nT iterations

SAðs�; s0�Þ ¼
s�; if f ðs0�ÞP f ðs�Þ and q0 > expðf ðs�Þ�f ðs0�Þ

T Þ;
s0�; if f ðs0�Þ < f ðs�Þ or q0 6 expðf ðs�Þ�f ðs0�Þ

T Þ:

(
ð1Þ
P16 480 38 1000 – – 1,622.69
P17 240 22 200 – – 707.76
P18 300 28 200 – – 995.39
P19 360 33 200 – – 1,366.14
P20 420 41 200 – – 1,820.09
4. Computational results

Computational testings were taken with the aim to evaluate the
performance of the proposed IVND. Firstly, the characteristics of
the testing instances used in the experiments are described. Then,
some discussions are taken about the parameter settings and each
component of the proposed heuristic. Finally, the results obtained
are reported and some comparisons are drawn between the pro-
posed heuristic and other state-of-the-art heuristics.

4.1. Testing problems

The test problems include 14 benchmark problems by (Christo-
fides & Eilon, 1969) and 20 large scale problems by (Golden, Wasil,
Kelly, & Chao, 1998). The main characteristics of these problems
are summarized in Tables 1 and 2. For each problem, it is given
in these tables that the number of customers ðnÞ and available
vehicles ðKÞ, the vehicle capacity ðQÞ, the route duration upper
bound ðDÞ and the service time ðstiÞ needed by each customer. Be-
sides, the previous best known solutions are also given in column
Best, which can be obtained from the webpage of Stefan Ropke
(http://www.diku.dk/~sropke/). As for 14 benchmark problems, it
should be mentioned that customers in problems C1–C10 are ran-
domly distributed, whereas in problems C11–C14 customers are
distributed in clusters.
4.2. Parameters setting

The proposed IVND was coded in C++ and run on a Pentium IV
2.93 GHz PC. It is terminated when the best found solution has not
been updated for nt consecutive iterations. In order to determine
appropriate settings for parameters, some preliminary experi-
ments have been carried out. In our implementation, we used
T0 ¼ 2% � f ðs�0Þ; b ¼ 0:9; nT ¼ 30; nt ¼minf4n;600g.

As parameter a which determine the restricted neighborhood is
important for both the accuracy and the convergency of the pro-
posed heuristic. If a is too big, the idea of restricted neighborhood
may do not work at all; otherwise, solution quality may be af-
fected. Therefore, a proper value for parameter a plays an impor-
tant role in the balance of diversification and intensification. In
our implementation, a is determined by experiments. A series of
algorithms for each benchmark problem with only different setting
of a has been carried out, and each of them stops after 1000 itera-
tions. Considering the inherent randomness of the proposed heu-
ristic, each algorithm has run 10 times and the results are given
by Fig. 2. In Fig. 2a, best denotes the ARPD of the best results ob-
tained, while avg. denotes the ARPD of the average results over
10 runs. Here, ARPD is the average RPD over 14 problems. RPD rep-
resents the relative percent deviation from the previous best
known solution, and is calculated by RPD ¼ ðFA � FbestÞ=Fbest�100,
where FA is the result found by heuristic A and Fbest is the best pre-
vious known result. Fig. 2b shows the average accumulated com-
puting time in terms of seconds for one run.

According to the avg., it seems that the proposed heuristic per-
forms quite well when a equals to 2.0, 2.5, 3.0 and 3.5, while little
difference exists among them. As the best has the best results as

http://www.diku.dk/~sropke/

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11C12C13 C14
0

1

2

3

4

5

6

7

14 benchmark problems

R
PD

Perturbation
Randomly Restart

Fig. 4. Performance of the perturbation strategy.

1624 P. Chen et al. / Expert Systems with Applications 37 (2010) 1620–1627
a ¼ 2:5, so it was adopted in our implementation. Obviously, the
bigger a is, the more computing time need as more neighborhood
solutions would be examined, which is also demonstrated by the
experiment results shown by Fig. 2b.

4.3. Effect of multi-operator

Several validation experiments have been carried out with the
aim to examine the effect of multi-operator. Each experiment, de-
noted by A, excludes the operator A from the VND procedure while
other algorithm settings are all kept the same. It is worth mention-
ing that the experiment none means no operator is excluded. The
results of these experiments are shown by Fig. 3.

From Fig. 3a, it can be intuitively seen that the algorithm with
none operator excluded (none) performs best in terms of solution
quality among all five versions, which indicates that each operator
contributes to the algorithm. The operators relocation, swap and 2-
opt* seems effect more than 2-opt according to the ARPP, however,
the algorithm without 2-opt needs more computing time. These
experimental results show that the use of multi-operator does
work to enhance the heuristic.

4.4. Effect of the perturbation strategy

In order to validate the effectiveness of the proposed perturba-
tion strategy, we compare the performance of two experiments of
the proposed heuristic, e.g., one with the restarting points gener-
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

0.5

1

1.5

2

values of α

AR
PD

best
avg.

Fig. 2. Determin

relocation swap 2−opt* 2−opt none
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

AR
PD

Fig. 3. Effect of m
ated with perturbation and the other with those by random initial-
ization methods, which generate a feasible solution by separating a
giant tour into several routes according to the capacity and route
duration restrictions. Fig. 4 shows the average results on each
problem obtained by these two algorithms. From this figure, it
can be intuitively seen that the one with perturbation has always
performed better than the one with randomly starting points,
and the difference is even significant for some problems, from
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
20

22

24

26

28

30

32

values of α

tim
e

(s
)

ation of a.

relocation swap 2−opt* 2−opt none
0

2

4

6

8

10

12

tim
e

(m
)

ulti-operator.

P. Chen et al. / Expert Systems with Applications 37 (2010) 1620–1627 1625
which we can draw the conclusion that the proposed perturbation
strategy indeed works.

4.5. Results for testing problems

Tables 3 and 4 report the results obtained by the proposed heu-
ristic IVND for 14 classical benchmark problems and 20 large scale
problems, respectively. The results are the best ones over 10 inde-
pendent runs. Additionally, results obtained by recent metaheuris-
tics from literature are also listed in these tables, which include the
USTA by Cordeau et al. (2001), the BR by Tarantilis and Kiranoudis
(2002), the GTS by Toth and Vigo (2003), the EA by Prins (2004), the
D-Ants by Reimann et al. (2004), the HGA by Berger and Barkaoui
(2004), the VRTR by Li et al. (2005), the SEPAS with the best param-
eter setting by Tarantilis (2005), the VLNS by Ergun et al. (2006),
the EAC by Nagata (2007), the GH by Pisinger and Ropke (2007),
the ABHC Sav_S and ABHC Sav_P by Derigs and Kaiser (2007), the
VNS and GVNS by Kytöjoki, Nuortio, Bräysy, and Gendreau (2007),
the AGES(best) and AGES(fast) by Mester and Bräysy (2007), and
the HST by Lin et al. (2009). These results are reported in terms
of RPD from the previous best known solution sbest . Tables 3 and
4 have the same table structure, in which column k shows the
number of vehicles used in the solution obtained by the IVND;
row ARPD gives the average RPD over all the 14 instances; row
Table 3
Results for 14 classical benchmark problems.

Prob. k USTA BR GTS EA

C1 5 0.00 0.00 0.00 0.00
C2 10 0.00 0.00 0.40 0.00
C3 8 0.00 0.00 0.29 0.00
C4 12 0.41 0.24 0.47 0.31
C5 17 1.90 1.77 2.09 0.69
C6 6 0.00 0.00 0.00 0.00
C7 11 0.00 0.00 1.21 0.29
C8 9 0.00 0.00 0.41 0.00
C9 14 0.46 0.06 0.91 0.15
C10 18 1.50 0.93 2.86 1.74
C11 7 3.01 0.00 0.07 0.00
C12 10 0.00 0.00 0.00 0.00
C13 11 0.53 0.19 0.28 0.12
C14 11 0.00 0.00 0.00 0.00

Number 8 9 4 8
ARPD 0.56 0.23 0.64 0.24
CPU min 24.62 5.22 3.84 5.19
Computer Pentium IV 2G Pentium II 400M Pentium 200M GHz PC 75

Prob. k EAC GH ABHC

Sav_S Sav_P

C1 5 0.00 0.00 0.00 0.00
C2 10 0.00 0.00 0.06 0.00
C3 8 0.00 0.00 0.00 0.15
C4 12 0.00 0.11 0.12 0.26
C5 17 0.00 0.45 1.01 2.64
C6 6 – 0.00 0.00 0.00
C7 11 – 0.00 0.00 0.00
C8 9 – 0.00 0.00 0.00
C9 14 – 0.10 0.56 0.14
C10 18 – 0.72 0.87 0.63
C11 7 0.00 0.00 0.00 0.00
C12 10 0.00 0.00 0.00 0.00
C13 11 – 0.11 0.35 0.11
C14 11 – 0.00 0.00 0.00

Number 7 9 8 8
ARPD 0.00 0.11 0.21 0.28
CPU min 23.74 17.43 5.84 4.54
Computer Xeon 3.2G Pentium IV 3G Celeron 2.4G
Computer reports the CPU used to run the corresponding method,
while row CPU min gives the average computing time per problem
in minutes. In Table 3, it should be noted that results in column
EAC, column GH and column IVND are the best solutions over 10
runs and thus the CPU min are the accumulated time for 10 runs.
Results in column SEPAS were obtained by the algorithm with its
best parameter settings.

From Table 3, it can be observed that the proposed IVND found
the best known solutions to most problems except for C5, C9–C10
and C13. The average RPD over all problems is 0.12, which is lower
than those of other approaches except for the EAC by Nagata
(2007), the GH by Pisinger and Ropke (2007) and the AGES by Mes-
ter and Bräysy (2007). However, the IVND can find more best
known solutions than the GH. The average accumulated computing
time per problem for 10 runs is 10.9 min on a Pentium IV 2.93 GHz
PC, which indicates that the proposed IVND is quite fast, at least
not inferior to other heuristics even the computer differences are
considered. For large scale problems, Table 4 shows that the pro-
posed IVND found the best known solutions to 3 problems, i.e.,
P4–P6. The average RPD over 20 problems is 0.67, which indicates
that the proposed IVND outperforms or is quite competitive with
most of other heuristics, except for the AGES (best) by Mester
and Bräysy (2007). The average accumulated computing time per
problem is 284.4 min for 10 runs.
HGA VRTR SEPAS VLNS

0.00 0.00 0.00 0.00
0.00 0.11 0.00 0.02
0.15 0.15 0.00 0.00
0.75 1.65 0.00 0.76
2.54 0.94 1.56 1.24
0.00 – 0.00 0.00
0.00 – 0.00 0.04
0.27 – 0.00 0.00
0.57 – 0.00 0.20
1.64 – 0.81 0.61
0.10 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.78 – 0.19 0.25
0.00 – 0.00 0.00

6 3 11 6
0.49 0.41 0.18 0.23
21.25 – 6.96 28.91

MFlops Pentium II 400M – Pentium II 400M Pentium III 733M

AGES HST IVND

best fast

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.23 1.58 0.47
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.17 0.03 0.41
0.38 0.63 1.08 0.75
0.00 0.00 0.33 0.00
0.00 0.00 0.00 0.00
0.00 0.14 0.89 0.12
0.00 0.00 0.00 0.00

13 10 9 10
0.03 0.08 0.35 0.13
2.71 0.05 8.21 10.9

Pentium IV 2.8G Pentium IV 2.8G Pentium IV 2.93G

Table 4
Results for 20 large scale instances.

Prob. k USTA BR GTS EA D-ants VRTR SEPAS VLNS EAC

P1 9 0.97 0.88 1.93 0.34 0.29 0.69 0.88 2.03 –
P2 10 2.48 0.77 1.24 0.00 0.01 0.25 0.14 5.56 –
P3 10 0.01 1.48 3.32 0.00 0.00 0.99 0.00 9.70 –
P4 10 0.85 0.10 9.44 0.00 0.55 0.98 0.10 12.42 –
P5 5 4.57 0.00 3.66 0.00 0.00 0.26 0.00 1.69 –
P6 7 1.48 0.20 6.54 0.00 0.00 1.51 0.02 5.03 –
P7 9 0.84 0.34 3.59 0.14 0.14 1.06 0.34 9.18 –
P8 11 1.77 2.34 3.20 1.42 1.42 2.20 2.34 8.32 –
P9 14 1.17 – 2.20 1.88 1.08 1.32 0.83 1.26 0.00
P10 16 1.87 – 1.72 1.69 1.60 1.43 1.03 1.48 0.00
P11 18 1.30 – 2.06 1.73 1.10 0.95 0.65 1.70 0.00
P12 19 1.11 – 3.61 2.40 3.04 1.88 2.10 2.48 0.12
P13 26 2.18 – 1.35 2.10 0.92 0.93 0.91 1.60 0.00
P14 30 1.99 – 1.45 0.53 1.22 1.59 0.51 1.53 0.00
P15 33 1.75 – 2.18 2.02 1.34 1.58 1.02 2.01 0.00
P16 37 1.50 – 1.83 1.74 0.77 0.79 0.74 1.25 33.81
P17 22 0.45 – 0.47 0.38 0.14 0.56 0.14 1.23 0.00
P18 28 1.93 – 2.15 1.95 0.35 1.50 1.16 2.81 0.00
P19 33 1.29 – 2.55 0.76 0.08 1.20 0.36 2.83 0.00
P20 38 1.88 – 5.26 1.45 0.16 1.69 0.97 3.47 0.02

Number 0 1 0 5 2 0 1 0 9
ARPD 1.57 0.76 2.99 1.03 0.71 1.05 0.71 3.88 2.83
CPU min 56.11 – 17.55 66.9 49.33 – – 137.05 413.68
Computer Pentium IV 2G Pentium II 400M Pentium 200M Pentium III 1G Pentium 900M – – Pentium III 733M Xeon 3.2G

Prob. k GH ABHC VNS GVNS AGES HST IVND

Sav_S Sav_P best fast

P1 9 0.42 0.30 0.24 4.27 4.27 0.00 0.29 2.99 0.57
P2 10 0.25 0.03 0.18 0.34 0.34 0.00 0.24 0.64 0.20
P3 10 0.10 0.51 0.04 0.07 0.07 0.00 0.99 2.98 0.21
P4 10 0.08 0.80 0.83 0.10 0.05 0.00 0.59 3.76 0.00
P5 5 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.00
P6 7 0.04 0.00 0.01 0.03 0.03 0.00 1.51 1.67 0.00
P7 9 0.00 0.14 0.84 1.14 1.14 0.14 0.58 2.37 0.84
P8 11 0.43 1.80 1.77 1.82 1.79 0.00 2.19 2.77 0.97
P9 14 0.78 1.42 0.78 6.90 6.90 0.48 1.35 1.05 0.80
P10 16 1.35 1.17 0.94 8.39 6.21 0.36 1.89 1.35 0.90
P11 18 0.60 1.38 0.62 9.15 7.59 0.14 0.96 0.82 0.65
P12 19 1.07 1.00 1.04 10.25 9.20 0.00 1.22 1.67 0.97
P13 26 0.87 0.92 0.97 10.28 8.01 0.22 0.93 1.18 0.52
P14 30 1.37 1.41 1.43 9.52 6.91 0.07 1.59 1.69 0.77
P15 33 1.47 1.22 1.11 10.17 9.05 0.37 1.08 1.22 1.20
P16 37 1.01 1.50 1.16 8.19 7.41 0.00 0.76 1.25 0.89
P17 22 0.16 0.27 0.25 5.09 2.58 0.00 0.35 0.64 0.16
P18 28 0.71 0.95 0.73 11.05 8.25 0.34 1.42 2.26 1.52
P19 33 0.59 1.12 1.26 6.53 5.74 0.05 1.15 1.38 1.21
P20 38 0.59 1.45 1.64 9.32 6.48 0.00 1.13 1.97 1.09

Number 1 3 1 1 1 11 1 0 3
ARPD 0.60 0.87 0.79 5.63 4.60 0.11 1.01 1.72 0.67
CPU min 107.61 109.63 111.10 0.18 1.01 24.35 0.22 118.98 284.4
Computer Pentium IV 3G Celeron 2.4G AMD Athlon64 3000+ Pentium IV 2.8G Pentium IV 2.8G Pentium IV 2.93G

1626 P. Chen et al. / Expert Systems with Applications 37 (2010) 1620–1627
5. Conclusion

In this paper, a hybrid metaheuristic method IVND is pro-
posed, which is based on five conventional neighborhood opera-
tors used for the CVRP, e.g., relocation, swap, 2-opt*, 2-opt and
cross-exchange. The former four are used in a VND scheme for
solution improvement, while the fifth is for solution perturbation
to generate new starting points. The IVND has a such rather sim-
ple algorithm structure that is easy to implement. Computational
results on 34 CVRP benchmark problems demonstrate that the
proposed IVND is efficient and quite competitive with other
state-of-the-art heuristics for the CVRP. Since the heuristic
strategies of the proposed IVND are problem independent, it is
flexible that can be applied to solving other combinatorial opti-
mization problems in future.
Acknowledgement

This work is supported by the National Basic Research Program
(973 program) of China (Project Ref. 2006CB7055000).
References

Berger, J., & Barkaoui, M. (2004). A new hybrid genetic algorithm for the capacitated
vehicle routing problem. Journal of the Operational Research Society, 54,
1254–1262.

Christofides, N., & Eilon, S. (1969). An algorithm for the vehicle dispatching
problem. Operational Research Quarterly, 20, 309–318.

Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem. In N.
Christofides, A. Mingozzi, P. Toth, & C. Sandi (Eds.), Combinatorial optimization
(pp. 315–338). Chichester, UK: Wiley.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12, 568–581.

P. Chen et al. / Expert Systems with Applications 37 (2010) 1620–1627 1627
Cordeau, J. F., Gendreau, M., Hertz, A., Laporte, G., & Sormany, J. S. (2005). New
heuristics for the vehicle routing problem. In A. Langevin & D. Riopel (Eds.),
Logistics systems: Design and optimization (pp. 279–297). New York: Springer.

Cordeau, J. F., Gendreau, M., Laporte, G., Potvin, J. Y., & Semet, F. (2002). A guide to
vehicle routing heuristics. Journal of the Operational Research Society, 53,
512–522.

Cordeau, J. F., Laporte, G., & Mercier, A. (2001). A unified tabu search heuristic for
vehicle routing problems with time windows. Journal of the Operational Research
Society, 52, 928–936.

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management
Science, 6, 80–91.

Derigs, U., & Kaiser, R. (2007). Applying the attribute based hill climber heuristic to
the vehicle routing problem. European Journal of Operational Research, 177,
719–732.

Ergun, Ö., Orlin, J. B., & Steele-Feldman, A. (2006). Creating very large scale
neighborhoods out of smaller ones by compounding moves. Journal of Heuristics,
12, 115–140.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the
theory of NP-completeness. New York: W.H. Freeman and Company.

Gendreau, M., Laporte, G., & Potvin, J. Y. (2002). Metaheuristics for the capacitated
VRP. In P. Toth & D. Vigo (Eds.), The vehicle routing problem (pp. 129–154).
Philadelphia: SIAM Publishing.

Golden, B. L., Wasil, E. A., Kelly, J. P., & Chao, I. (1998). The impact of metaheuristics
on solving the vehicle routing problem: Algorithms, problem sets and
computational results. In T. G. Grainic & G. Laporte (Eds.), Fleet management
and logistics (pp. 33–56). Boston: Kluwer.

Hansen, P., & Mladenović, N. (2003). Variable neighborhood search. In F. W. Glover
& G. A. Kochenberger (Eds.), Handbook of metaheuristics (pp. 145–184). Springer.

Kytöjoki, J., Nuortio, T., Bräysy, O., & Gendreau, M. (2007). An efficient variable
neighborhood search heuristic for very large scale vehicle routing problems.
Computers & Operations Research, 34, 2743–2757.

Laporte, G., & Semet, F. (2002). Classical heuristics for the capacitated VRP. In P. Toth
& D. Vigo (Eds.), The vehicle routing problem (pp. 110–111). Philadelphia: SIAM
Publishing.

Li, F., Golden, B., & Wasil, E. (2005). Very large-scale vehicle routing: New test
problems, algorithms, and results. Computers & Operations Research, 32,
1165–1179.
Lin, S. W., Lee, Z. J., Ying, K. C., & Lee, C. Y. (2009). Applying hybrid meta-heuristics
for capacitated vehicle routing problem. Expert Systems with Applications,
36(2P1), 1505–1512.

Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated local search. In F. W.
Glover & G. A. Kochenberger (Eds.), Handbook of metaheuristics (pp. 321–368).
Springer.

Mester, D., & Bräysy, O. (2005). Active guided evolution strategies for the large scale
capacitated vehicle routing problems with time windows. Computers &
Operations Research, 32, 1593–1614.

Mester, D., & Bräysy, O. (2007). Active guided evolution strategies for the large scale
capacitated vehicle routing problems. Computers & Operations Research, 34,
2964–2975.

Mole, R. H., & Jameson, S. R. (1976). A sequential route-building algorithm
employing a generalized savings criterion. Operational Research Quarterly, 27,
503–511.

Nagata, Y. (2007). Edge assembly crossover for the capacitated vehicle routing
problem. Evolutionary Computation in Combinatorial Optimization, LNCS, 4446,
142–153.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems.
Computers & Operations Research, 34, 2403–2435.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle
routing problem. Computers & Operations Research, 31, 1985–2002.

Reimann, M., Doerner, K., & Hartl, R. F. (2004). D-ants: savings based ants divide and
conquer the vehicle routing problem. Computers & Operations Research, 31,
563–591.

Taillard, E., Badeau, P., Gendreau, M., Guertin, F., & Potvin, J. Y. (1997). A tabu search
heuristic for the vehicle routing problem with soft time windows.
Transportation Science, 31, 170–186.

Tarantilis, C. D. (2005). Solving the vehicle routing problem with adaptive memory
programming methodology. Computers & Operations Research, 32, 2309–2327.

Tarantilis, C. D., & Kiranoudis, C. T. (2002). Bone route: An adaptive memory-based
method for effective fleet management. Annals of Operations Research, 115,
227–241.

Toth, P., & Vigo, D. (2003). The granular tabu search and its application to the
vehicle routing problem. INFORMS Journal of Computing, 15, 333–348.

	Iterated variable neighborhood descent algorithm for the capacitated vehicle routing problem
	Introduction
	Literature review
	Solution methodology
	Initial solution generation
	Variable neighborhood descent
	Operators
	Restricted neighborhood

	Perturbation
	Acceptance criterion

	Computational results
	Testing problems
	Parameters setting
	Effect of multi-operator
	Effect of the perturbation strategy
	Results for testing problems

	Conclusion
	Acknowledgement
	References

