
Expert Systems with Applications 37 (2010) 1446–1455
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
A hybrid genetic – Particle Swarm Optimization Algorithm for the vehicle
routing problem

Yannis Marinakis *, Magdalene Marinaki
Technical University of Crete, Department of Production Engineering and Management, University Campus, 73100 Chania, Crete, Greece
a r t i c l e i n f o

Keywords:
Vehicle routing problem
Genetic algorithms
Particle Swarm Optimization
0957-4174/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.eswa.2009.06.085

* Corresponding author. Tel.: +30 28210 37282; fax
E-mail addresses: marinakis@ergasya.tuc.gr (Y. M

(M. Marinaki).
a b s t r a c t

Usually in a genetic algorithm, individual solutions do not evolve during their lifetimes: they are created,
evaluated, they may be selected as parents to new solutions and they are destroyed. However, research
into memetic algorithms and genetic local search has shown that performance may be improved if solu-
tions are allowed to evolve during their own lifetimes. We propose that this solution improvement phase
can be assisted by knowledge stored within the parent solutions, effectively allowing parents to teach
their offspring how to improve their fitness. In this paper, the evolution of each individual of the total
population, which consists of the parents and the offspring, is realized with the use of a Particle Swarm
Optimizer where each of them has to improve its physical movement following the basic principles of
Particle Swarm Optimization until it will obtain the requirements to be selected as a parent. Thus, the
knowledge of each of the parents, especially of a very fit parent, has the possibility to be transferred to
its offspring and to the offspring of the whole population, and by this way the proposed algorithm has
the possibility to explore more effectively the solution space. These ideas are applied in a classic combi-
natorial optimization problem, the vehicle routing problem, with very good results when applied to two
classic benchmark sets of instances.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

During the last decade nature inspired intelligence became
increasingly popular through the development and utilisation of
intelligent paradigms in advanced information systems design.
Among the most popular nature inspired approaches, when the
task is optimization within complex domains of data or informa-
tion, are those methods representing successful animal and
micro-organism team behavior, such as swarm or flocking intelli-
gence (birds flocks or fish schools inspired Particle Swarm Optimi-
zation (Kennedy, Eberhart, & Shi, 2001)), artificial immune systems
(that mimic the biological one (Dasgupta, 1998; De Castro & Tim-
mis, 2002)), optimized performance of bees (Baykasoglu, Ozbakor,
& Tapkan, 2007), or ant colonies (ants foraging behaviors gave rise
to ant colony optimization (Dorigo & Stutzle, 2004)), etc. But the
most popular of the nature inspired methods are the genetic algo-
rithms. Since their introduction (Goldberg, 1989; Holland, 1975) a
very large number of applications and new ideas have been
realized in the context of genetic algorithms and more general in
evolutionary computation.
ll rights reserved.

: +30 28210 69410.
arinakis), magda@dssl.tuc.gr
Usually in a genetic algorithm we have a number of discrete
phases, i.e. the initialization of a population, the selection of the
parents, the crossover operator, the mutation operator and the
replacement of each generation. But what happens between two
generations? If we would like to have a complete evolutionary
algorithm we will have to observe how each individual behaves
during its life. The parents try to help their offspring in order to
learn and evolve and, thus, to become more competitive and to
have more possibilities to survive and to become parents for the
next generations. A number of different methods may be used
to complete an evolutionary algorithm. One way is to observe
each of the individuals, separately, without this individual having
any interaction and influence with the other members of the
population. In the context of the genetic algorithms, this will be
realized with the use of a single or a more complex local search
strategy. The other way is to have an interaction between the indi-
viduals. In this paper, this interaction is realized with the use of a
Particle Swarm Optimization Algorithm (Kennedy & Eberhart,
1995). In each generation, all the individuals (parents and
offspring) are considered as a single swarm and they try to
improve their solution (i.e., the offspring to learn from their
parents) by following the physical movement of the best particle
of the whole swarm. Thus, in this paper, we focus on how each
individual can be evolved with the use of the Particle Swarm

http://dx.doi.org/10.1016/j.eswa.2009.06.085
mailto:marinakis@ergasya.tuc.gr
mailto:magda@dssl.tuc.gr
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

Y. Marinakis, M. Marinaki / Expert Systems with Applications 37 (2010) 1446–1455 1447
Optimization (PSO) algorithm. At the end of each phase of the
Particle Swarm Optimization the fittest of the whole swarm
survive and move to the next phase of the genetic algorithm,
i.e. in the selection of the parents phase of the genetic algorithm.
An advantage of the application of a PSO algorithm in the evolu-
tionary part of the algorithm is that, in contrary to other meta-
heuristics, there are only two variables for each individual of
the population that will have to be calculated in each iteration,
the position and the velocity.

The reason that a memetic algorithm (genetic algorithm with a
local search phase (Moscato & Cotta, 2003)) is used instead of a
classic genetic algorithm is that it is very difficult for a pure genetic
algorithm to effectively explore the solution space. A combination
of a global search optimization method with a local search optimi-
zation method usually improves the performance of the algorithm.
In this paper instead of using a local search method to improve
each individual separately, we use a global search method, Particle
Swarm Optimization, and, thus, each individual does not try to im-
prove its solution by itself but it uses knowledge from the solutions
of the whole population. Another goal of our research is to achieve
as good as possible results in a very short computational time. This
goal led us to use two different procedures one as a speeding up
technique (the Expanding Neighborhood Search – ENS) and one
for the production of as good as possible initial solutions (the
MPNS-GRASP). Thus, the combination of a Genetic Algorithm and
a PSO algorithm with a very fast local search strategy, like the
Expanding Neighborhood Search strategy (Marinakis, Migdalas, &
Pardalos, 2005a, 2005b), will lead to a very fast and efficient algo-
rithm and will reduce the computational time of the algorithm
making the algorithm suitable for solving very large scale vehicle
routing, and more difficult combinatorial optimization, problem.
The rest of the paper is organized as follows: In the next section
a description of the vehicle routing problem is presented. In the
third section, the proposed algorithm, the hybrid genetic – PSO –
GRASP – ENS (HybGENPSO) is presented and analyzed in detail.
Computational results are presented and analyzed in the fourth
section while in the last section conclusions and future research
are given.
2. The vehicle routing problem

The vehicle routing problem (VRP) or the capacitated vehicle rout-
ing problem (CVRP) is often described as the problem in which vehi-
cles based on a central depot are required to visit geographically
dispersed customers in order to fulfill known customer demands.
Let G ¼ ðV ; EÞ be a graph where V ¼ fi1; i2; . . . ing is the vertex set
ði1 refers to the depot and the customers are indexed i2; . . . ; inÞ
and E ¼ fðil; imÞ : il; im 2 Vg is the edge set. Each customer must be
assigned to exactly one of the k vehicles and the total size of deliv-
eries for customers assigned to each vehicle must not exceed the
vehicle capacity ðQkÞ. If the vehicles are homogeneous, the capacity
for all vehicles is equal and denoted by Q. A demand ql and a
service time stl are associated with each customer node il. The
demand q1 and the service time st1 which are refered to the de-
mand and service time of the depot are set equal to zero. The travel
cost and the travel time between customers il and im is clm and ttk

lm,
respectively, and Tk is the maximum time allowed for a route of
vehicle k. The problem is to construct a low cost, feasible set of
routes – one for each vehicle. A route is a sequence of locations that
a vehicle must visit along with the indication of the service it
provides, where the variable xk

lm is equal to 1 if the arc ðil; imÞ is
traversed by vehicle k and 0 otherwise. The vehicle must start
and finish its tour at the depot. In the following we present the
mathematical formulation of the VRP (Bodin, Golden, Assad, & Ball,
1983):
J ¼min
Xn

l¼1

Xn

m¼1

XK

k¼1

clmxk
lm ð1Þ

s:t:
Xn

il¼1

XK

k¼1

xk
lm ¼ 1; im ¼ 2; . . . ; n ð2Þ

Xn

im¼1

XK

k¼1

xk
lm ¼ 1; il ¼ 2; . . . ;n ð3Þ

Xn

il¼1

xk
lf �

Xn

im¼1

xk
fm ¼ 0; k ¼ 1; . . . ;K ð4Þ

if ¼ 1; . . . ;n
Xn

il¼1

ql

Xn

im¼1

xk
lm 6 Qk; k ¼ 1; . . . ;K ð5Þ

Xn

il¼1

stk
l

Xn

im¼1

xk
lm þ

Xn

il¼1

Xn

im¼1

ttk
lmxk

lm 6 Tk; k ¼ 1; . . . ;K ð6Þ

Xn

im¼2

xk
1m 6 1; k ¼ 1; . . . ;K ð7Þ

Xn

il¼2

xk
l1 6 1; k ¼ 1; . . . ;K ð8Þ

X 2 S ð9Þ
xk

lm ¼ 0 or 1 for all il; im; k ð10Þ

Objective function (1) states that the total distance is to be mini-
mized. Eqs. (2) and (3) ensure that each demand node is served
by exactly one vehicle. Route continuity is represented by (4), i.e.
if a vehicle enters in a demand node, it must exit from that node.
Eq. (5) are the vehicle capacity constraints and (6) are the total
elapsed route time constraints. Eqs. (7) and (8) guarantee that vehi-
cle availability is not exceeded.

The vehicle routing problem was first introduced by Dantzig and
Ramser (1959). As it is an NP-hard problem, a large number of
approximation techniques were proposed. These techniques are
classified into two main categories: Classical heuristics that were
developed mostly between 1960 and 1990 (Altinkemer & Gavish,
1991; Bodin & Golden, 1981; Bodin et al., 1983; Christofides, Mingo-
zzi, & Toth, 1979; Clarke & Wright, 1964; Desrochers & Verhoog,
1989; Fisher & Jaikumar, 1981; Foster & Ryan, 1976; Gillett & Miller,
1974; Lin, 1965; Lin & Kernighan, 1973; Mole & Jameson, 1976;
Wark & Holt, 1994) and metaheuristics that were developed in
the last fifteen years. Metaheuristic algorithms are classified in cat-
egories based on the used strategy. Tabu Search strategy is the most
widely used technique for this problem and a number of researchers
have proposed very efficient variants of the standard Tabu Search
algorithm (Barbarosoglu & Ozgur, 1999; Cordeau, Gendreau, La-
porte, Potvin, & Semet, 2002; Gendreau, Hertz, & Laporte, 1994; Os-
man, 1993; Rego, 1998; Rego, 2001; Taillard, 1993; Toth & Vigo,
2003; Xu & Kelly, 1996). Very interesting and efficient algorithms
based on the concept of Adaptive Memory, according to which a
set of high quality VRP solutions (elite solutions) is stored and, then,
replaced from better solutions through the solution process, have
been proposed (Rochat & Taillard, 1995; Tarantilis, 2005; Tarantilis
& Kiranoudis, 2002). Simulated annealing (Osman, 1993), record to
record travel (Golden, Wasil, Kelly, & Chao, 1998; Li, Golden, & Wa-
sil, 2005), greedy randomized adaptive search procedure (Prins,
2008) and threshold accepting algorithms (Tarantilis, Kiranoudis,
& Vassiliadis, 2002a, 2002b) are also applied efficiently in the VRP.
In the last ten years a number of nature inspired metaheuristic algo-
rithms have been applied for the solution of the vehicle routing
problem. The most commonly used nature inspired methods for
the solution of this problem are genetic algorithms (Baker &

1448 Y. Marinakis, M. Marinaki / Expert Systems with Applications 37 (2010) 1446–1455
Ayechew, 2003; Berger & Barkaoui, 2003; Marinakis, Migdalas, &
Pardalos, 2007b; Prins, 2004), ant colony optimization (Bullnhei-
mer, Hartl, & Strauss, 1999; Reimann, Stummer, & Doerner, 2002,
2004), honey bees mating optimization (Marinakis, Marinaki, &
Dounias, 2008) and other evolutionary techniques (Cordeau, Gend-
reau, Hertz, Laporte, & Sormany, 2005; Mester & Braysy, 2005,
2007). The reader can find more detailed descriptions of these algo-
rithms in the survey papers (Bodin & Golden, 1981; Bodin et al.,
1983; Fisher, 1995; Gendreau, Laporte, & Potvin, 1997, 2002; La-
porte, Gendreau, Potvin, & Semet, 2000; Laporte & Semet, 2002;
Marinakis & Migdalas, 2002; Tarantilis, 2005) and in the books
(Golden & Assad, 1988; Golden, Raghavan, & Wasil, 2008; Pereira
& Tavares, 2008; Toth & Vigo, 2002).

3. Hybrid genetic – PSO – GRASP – ENS for the vehicle routing
problem

3.1. General description of hybrid genetic – PSO – GRASP – ENS
(HybGENPSO)

The proposed algorithm for the solution of the VRP combines a
genetic algorithm, the MPNS-GRASP algorithm (Marinakis, Migd-
alas, & Pardalos, 2007a), the Expanding Neighborhood Search Strat-
egy (Marinakis et al., 2005a, Marinakis, Migdalas, & Pardalos,
2005b) and a Particle Swarm Optimization Algorithm (Kennedy &
Eberhart, 1995). In the following, the outline of the proposed algo-
rithm is presented.

Initialization

(1) Create the initial population of P individuals using Multiple
Phase Neighborhood Search – GRASP (MPNS-GRASP).

(2) Evaluate the fitness of each individual.
(3) Improve the fitness of each individual with the use of the

Particle Swarm Optimization Strategy.

Main algorithm

(1) Set the number of generations equal to zero.
(2) Do while stopping criteria are not satisfied:
2.1 Do while parents remain to be selected and mating:

2.1.1 Select two parents from the current population

via roulette wheel selection.
2.1.2 Apply the crossover operator between the two

parents, first cloning the common features of
the two parents to the offspring and then com-
pleting the offspring using the ENS algorithm.

2.1.3 Improve each offspring by the mutation opera-
tor (Expanding Neighborhood Search) and insert
the resulting offspring to the new population.
2.2 Enddo
2.3 Improve the fitness of each individual of the new pop-

ulation (parents and offspring) with the use of the Par-
ticle Swarm Optimization Strategy.

2.4 Rank the offspring and the parents via their fitness
function and select for the new population a number
of individuals equal to the initial population.

2.5 Increase the generation number by one.
(3) Enddo
(4) Return the best individual.
3.2. Path representation

The first step in designing a genetic algorithm for a particular
problem is to devise a suitable representation for the candidate
solutions (Potvin, 1996). Each individual (tour) in the case of
VRP, for instance, is recorded via the path representation of the
tour, that is, via the specific sequence of the nodes. With this rep-
resentation, there are 2n ways depending on which node is placed
in position 1 and in which direction the tour is traversed, where n
is the number of nodes, to represent the same tour depending on
which node is placed in position 1. In the proposed algorithm,
the node with number 1 is fixed to be always in the position 1 in
the representation of every individual, overcoming, thus, the
obstacle of multiple encodings of the same tour, overcoming much
of the redundancy in the solution representation.

3.3. Initial population – MPNS – GRASP

Usually in a genetic algorithm there is a randomly generated
initial population which may or may not necessarily contain good
candidate solutions. To avoid the latter case, a modified version of
the well known Greedy Randomized Adaptive Search Algorithm
(GRASP), the Multiple Phase Neighborhood Search – GRASP
(MPNS-GRASP) (Marinakis et al., 2007a) is used to initialize the
population.

GRASP (Feo & Resende, 1995; Marinakis et al., 2005a; Resende &
Ribeiro, 2003) is an iterative two phase search method which has
gained considerable popularity in combinatorial optimization.
Each iteration consists of two phases, a construction phase and a
local search procedure. In the construction phase, a randomized
greedy function is used to build up an initial solution. This random-
ized technique provides a feasible solution within each iteration.
This solution is then exposed for improvement attempts in the lo-
cal search phase. The final result is simply the best solution found
over all iterations.

The construction phase can be described as a process which
stepwise adds one element at a time to a partial (incomplete) solu-
tion. The choice of the next element to be added is determined by
ordering all elements with respect to a greedy function, placing the
best elements in a restricted candidate list (RCL), then selecting
randomly from this list. The RCL may consist of the best D elements
(cardinality based). Finally, the RCL is readjusted in every iteration
by replacing the edge which has been included in the tour by an-
other edge that does not belong to the RCL, namely the ðDþmÞth
edge where m is the number of the current iteration. The greedy
algorithm is a simple, one pass, procedure for solving the vehicle
routing problem. In the second phase, a local search is initialized
from these points, and the final result is simply the best solution
found over all searches.

MPNS-GRASP introduces the flexibility of applying alternative
greedy functions in each iteration instead of only one simple gree-
dy function as in the classical approach. Moreover, a combination
of greedy functions is also possible. The algorithm starts with
one greedy function and if the results are not improving, an alter-
native greedy function is used instead. In these greedy functions,
initially a Traveling Salesman Problem is solved (Marinakis et al.,
2005a), disregarding the side constraints (capacity constraints
and maximum route duration constraints) of the vehicle routing
problem. Subsequently, the solution of the TSP is converted to a
solution of the VRP by adding the side constraints (Bodin et al.,
1983). More precisely, the first vehicle route begins from the node
that corresponds to the depot and moves to the next node (cus-
tomer) based on the solution of the TSP, checking if the capacity
of the vehicle or if the maximum route length of the vehicle are
not violated. If any of these two constraints are violated, then the
vehicle returns to the depot and a new route begins.

The utilization of a simple local search in the second phase of the
classical algorithm limits the chances of obtaining better solutions.
Thus, MPNS-GRASP uses instead the Expanding Neighborhood
Search (see Section 3.7), which is a very flexible local search strategy.

Y. Marinakis, M. Marinaki / Expert Systems with Applications 37 (2010) 1446–1455 1449
3.4. Calculation of fitness function

In VRP, the fitness of each individual is related to the route
length of each tour. For each individual S its fitness is calculated
by the following equation

fitnessS ¼ Jmax � JS þ 1 ð11Þ

where the Jmax is the objective function value of the individual in the
population with the maximum cost and JS is the objective function
value of the current individual. It should be noted that, since the
probability of selecting an individual for mating is related to its fit-
ness and since the individual with the worst cost has fitness equal
to zero, it will never be selected for mating. Thus, the addition of
1 to the difference between Jmax and JS ensures that the worst solu-
tion is not totally excluded.

3.5. Selection probability

The selection mechanism is responsible for selecting the parent
chromosome from the population and forming the mating pool. It
is expected that a fitter chromosome has a higher chance of surviv-
ing on the subsequent evolution. In this work, we are using the
roulette wheel selection which is one of the most common and
easy to implement selection mechanisms.

3.6. Crossover operator

We propose a crossover operator which initially identifies the
common characteristics of the parent individuals and, then, copies
them to the offspring. This crossover operator is a kind of adaptive
memory procedure. Initially, the adaptive memory has been pro-
posed by Rochat and Taillard (1995) as a part of a tabu search
metaheuristic for the solution of the vehicle routing problem. This
procedure stores characteristics (tours in the vehicle routing prob-
lem) of good solutions. Each time a new good solution is found the
adaptive memory is updated. In our case, in the first generation the
adaptive memory is empty. In order to add a solution or a part of a
solution in the adaptive memory there are a number possibilities:

(1) The candidate for the adaptive memory solution is a previ-
ous best solution and its cost function is at most 10% worst
than the value of the current best solution.

(2) The candidate for the adaptive memory solution is a mem-
ber of the population and its cost function is at most 10%
worst than the value of the current best solution.

(3) A path is common for the best solution and for a number of
individuals.

More analytically, in this crossover operator, the points are se-
lected randomly from the adaptive memory, from the individuals
and from the best solution. Thus, initially two crossover operator
numbers are selected ðCr1 and Cr2Þ that control the fraction of
the parameters that are selected for the adaptive memory, the indi-
viduals and the best solution. If there are common parts of the
solutions then these common parts are inherited to the offspring,
else the Cr1 and Cr2 values are compared with the output of a ran-
dom number generator, randið0;1Þ. If the random number is less or
equal to the Cr1 the corresponding value is inherited from the best
solution, if the random number is between the Cr1 and the Cr2 then
the corresponding value is inherited, randomly, from the one of the
elite solutions that are in the adaptive memory, otherwise it is se-
lected, randomly, from the solutions of the other individuals. Thus,
if the solution of the offspring is denoted by oiðtÞ (t is the iteration
number), the solution of the best individual is denoted by biiðtÞ, the
solution in the adaptive memory is denoted by adiðtÞ and one of the
solutions of the other individuals by piðtÞ:
oiðtÞ ¼
biiðtÞ; if randið0;1Þ 6 Cr1

adiðtÞ; if Cr1 < randið0;1Þ 6 Cr2

piðtÞ; otherwise:

8><
>: ð12Þ

In each iteration the adaptive memory is updated based on the best
solution. After the crossover operator, the fitness function of the off-
spring is calculated and if it is better than the fitness function of the
parent, then, the trial vector is selected for the next generation,
otherwise the parent survives for at least one more generation.

3.7. Mutation operator – Expanding Neighborhood Search

The local search method that is used in this paper is the Expand-
ing Neighborhood Search (Marinakis et al., 2005a). Expanding
Neighborhood Search (ENS) is a metaheuristic algorithm (Marina-
kis et al., 2005a, 2005b, 2007a, 2007b, 2008) that can be used for
the solution of a number of combinatorial optimization problems
with remarkable results. The main features of this algorithm are
(a) the use of the Circle Restricted Local Search Moves Strategy,
(b) the ability of the algorithm to change between different local
search strategies and (c) the use of an expanding strategy. These
features are explained in detail in the following.

In the Circle Restricted Local Search Moves – CRLSM strategy,
the computational time is decreased compared to other heuristic
and metaheuristic algorithms because all the edges that are not
going to improve the solution are excluded from the search proce-
dure. This happens by restricting the search space into circles
around the candidate for deletion edges. It has been observed
(Marinakis et al., 2005a, 2005b, 2007a), for example, in the 2-opt
local search algorithm that there is only one possibility for a trial
move to reduce the cost of a solution, i.e. when at least one new
(candidate for inclusion) edge has cost less than the cost of one
of the two old edges (candidate for deletion edges) and the other
edge has cost less than the sum of the costs of the two old edges.
Thus, in the Circle Restricted Local Search Moves strategy, for all
selected local search strategies, circles are created around the
end nodes of the candidate for deletion edges and only the nodes
that are inside these circles are used in the process of finding a bet-
ter solution.

In order to decrease even more the computational time and be-
cause it is more possible to find a better solution near to the end-
nodes of the candidate for deletion edge, we do not use from the
beginning the largest possible circle but the search for a better
solution begins with a circle with a small radius. For example, in
the 2-opt algorithm if the length of the candidate for deletion edge
is equal to A, the initial circle has radius A=2, then, the local search
strategies are applied as they are described in the following and if
the solution can not be improved inside this circle, the circle is
expanding by a percentage hðh is determined empirically) and
the procedure continues until the circle reaches the maximum pos-
sible radius which is set equal to Aþ B, where B is the length of one
of the other candidate for deletion edges.

The ENS algorithm has the ability to change between different
local search strategies. The idea of using a larger neighborhood to
escape from a local minimum to a better one, had been proposed
initially by Garfinkel and Nemhauser (1972) and recently by Han-
sen and Mladenovic (2001). Garfinkel and Nemhauser proposed a
very simple way to use a larger neighborhood. In general, if with
the use of one neighborhood a local optimum was found, then a
larger neighborhood is used in an attempt to escape from the local
optimum. Hansen and Mladenovic proposed a more systematical
method to change between different neighborhoods, called
Variable Neighborhood Search.

In the Expanding Neighborhood Search a number of local search
strategies are applied inside the circle. The procedure works as
follows: initially an edge of the current solution is selected (for

B

A/2
A

A+B

> A+B no possible
improvement in cost

A

Fig. 1. Expanding neighborhood search method.

1450 Y. Marinakis, M. Marinaki / Expert Systems with Applications 37 (2010) 1446–1455
example the edge with the worst length) and the first local search
strategy is applied. If with this local search strategy a better solu-
tion is not achieved, another local search strategy is selected for
the same edge. This procedure is continued until a better solution
is found or all local search strategies have been used. In the first
case the solution is updated, a new edge is selected and the new
iteration of the Expanding Neighborhood Search strategy begins,
while in the second case the circle is expanded and the local search
strategies are applied in the new circle until a better solution is
found or the circle reach the maximum possible radius. If the max-
imum possible radius have been reached, then a new candidate for
deletion edge is selected (Fig. 1).

The local search strategies in the Expanding Neighborhood
Search for the Vehicle Routing Problem are distinguished between
local search strategies for a single route and local search strategies
for multiple routes. The local search strategies that are chosen and
belong to the category of the single route interchange are the well
known methods for the TSP, the 2-opt and the 3-opt (Lin, 1965). In
the single route interchange all the routes have been created in the
initial phase of the algorithm. The Local Search Strategies for Single
Route Interchange try to improve the routing decisions. The Local
Search Strategies for Multiple Route Interchange try to improve
the assignment decisions. This, of course, increases the complexity
of the algorithms but gives the possibility to improve the solution
even more. The multiple route interchange strategies permit
downhill and uphill moves, while the single route interchange
local search strategies permit only downhill moves. The multiple
route interchange local search strategies that are used are the
1–0 relocate, 2–0 relocate, 1–1 exchange, 2–2 exchange and cross-
ing (Marinakis et al., 2007b; Marinakis et al., 2008).

3.8. Evolution of the population – Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based
swarm intelligence algorithm. It was originally proposed by Ken-
nedy and Eberhart as a simulation of the social behavior of social
organisms such as bird flocking and fish schooling (Kennedy &
Eberhart, 1995). PSO uses the physical movements of the individu-
als in the swarm and has a flexible and well-balanced mechanism
to enhance and adapt to the global and local exploration abilities.
Because of its easy implementation and inexpensive computation,
its simplicity in coding and consistency in performance, the PSO
has proved to be an effective and competitive algorithm for the
optimization problem in continuous space. Most applications of
PSO have concentrated on the optimization in continuous space
while recently, some work has been done to the discrete optimiza-
tion problem.

Since its introduction, PSO has rapidly gained popularity and
proved to be a competitive and effective optimization algorithm
in comparison with other metaheuristics. The PSO algorithm first
randomly initializes a swarm of particles. The position of each indi-
vidual (called particle) is represented by a d-dimensional vector in
problem space sjd; j ¼ 1;2; . . . ;N ðN is the population size), and its
performance is evaluated on the predefined fitness function. Thus,
each particle is randomly placed in the d-dimensional space as a
candidate solution. The velocity of the j-th particle v jd is defined
as the change of its position. The flying direction of each particle
is the dynamical interaction of individual and social flying experi-
ence. The algorithm completes the optimization through following
the personal best solution of each particle and the global best value
of the whole swarm. Each particle adjusts its trajectory toward its
own previous best position and the previous best position attained
by any particle of the swarm, namely pjd and pgd. In each iteration,
the swarm is updated by the following equations (Kennedy & Eber-
hart, 1995):

v jdðt þ 1Þ ¼ v jdðtÞ þ c1rand1ðpjd � sjdðtÞÞ þ c2rand2ðpgd � sjdðtÞÞ
ð13Þ

sjdðt þ 1Þ ¼ sjdðtÞ þ v jdðt þ 1Þ ð14Þ

where t is iteration counter; c1 and c2 are acceleration coefficients;
rand1 and rand2 are two random numbers in [0,1]. Acceleration
coefficients c1 and c2 control how far a particle will move in a single
iteration. Low values allow particles to roam far from target regions
before being tugged back, while high values result in abrupt move-
ment towards, or past, target regions. Typically, these are both set
to a value of 2.0, although assigning different values to c1 and c2

sometimes leads to improved performance (Banks, Vincent, & Anya-
koha, 2007; Poli, Kennedy, & Blackwell, 2007).

The basic PSO and its variants have successfully operated for
continuous optimization functions. In order to extend the applica-
tion to discrete space, Kennedy and Eberhart proposed a discrete
binary version of PSO (Kennedy & Eberhart, 1997) where a particle
moves in a state space restricted to zero and one on each dimen-
sion where each v jd represents the probability of bit sjd taking
the value 1. Thus, the particles trajectories are defined as the
changes in the probability and v jd is a measure of individuals cur-
rent probability of taking 1. If the velocity is higher it is more likely
to choose 1, and lower values favor choosing 0. A sigmoid function
is applied to transform the velocity from real number space to
probability space:

sigðv jdÞ ¼
1

1þ expð�v jdÞ
ð15Þ

In the binary version of PSO, the velocities and positions of particles
are updated as the following formulas:

v jdðt þ 1Þ ¼ wv jdðtÞ þ c1rand1ðpjd � sjdðtÞÞ þ c2rand2ðpgd � sjdðtÞÞ
ð16Þ

sjdðt þ 1Þ ¼
1; if rand3 < sigðv jdÞ
0; if rand3 >¼ sigðv jdÞ

�
ð17Þ

Table 1
Parameter values.

Parameter Value

Number of generations for PSO 20
Number of generations for genetic algorithm 50
Population size of genetic algorithm 100
Number of swarms 1
Number of particles equal to population size 100
Probability of crossover 0.8
Probability of mutation 0.25
c1 2
c2 2
wmin 0.01
wmax 0.9
Size of RCL 50
h 10%

Y. Marinakis, M. Marinaki / Expert Systems with Applications 37 (2010) 1446–1455 1451
where sjd 2 f0;1g; v jd is the corresponding velocity; sigðv jdÞ is cal-
culated according to the Eq. (15), rand3 is a random number distrib-
uted in [0,1]. As in basic PSO, a parameter Umax is incorporated to
limit the v jd so that sigðv jdÞ does not approach too closely 0 or 1
(Kennedy et al., 2001). Such implementation can ensure that the
bit can transfer between 1 and 0 with a positive probability. In prac-
tice, Umax is often set at �4 (Banks et al., 2007; Poli et al., 2007). The
proposed algorithm is established based on standard PSO, namely
basic PSO with inertia weight developed by Shi and Eberhart in
(Shi & Eberhart, 1998), where w is the inertia weight. The inertia
weight controls the impact of previous histories of velocities on cur-
rent velocity, which is often used as a parameter to control the
trade-off between exploration and exploitation. The particle adjusts
its trajectory based on information about its previous best perfor-
mance and the best performance of its neighbors. The inertia weight
w is also used to control the convergence behavior of the PSO. In or-
der to reduce this weight over the iterations, allowing the algorithm
to exploit some specific areas, the inertia weight w is updated
according to the following equation:

w ¼ wmax �
wmax �wmin

itermax
� t ð18Þ

where wmax; wmin are the maximum and minimum values that the
inertia weight can take, and t is the current iteration (generation)
of the algorithm while the itermax is the maximum number of itera-
tions (generations).

One of the main problems that one has to deal with is how the
particles will move from their current solution to the global opti-
mum (optimal solution of the whole swarm) or to the local opti-
mum (optimal solution of each particle). Usually in a discrete
PSO Eq. (17) is used. The hybrid genetic PSO algorithm, instead of
this formula uses a Path Relinking Strategy. Path Relinking is an
intensification Strategy that is used as a way of exploring trajecto-
ries between elite solutions. Thus, the current solution of each par-
ticle is combined using this strategy either with the global or the
local optimum. This approach generates new solutions by explor-
ing trajectories that connect high-quality solutions – by starting
from one of these solutions, called the starting solution and gener-
ating a path in the neighborhood space that leads towards the
other solution, called the target solution (Glover, Laguna, & Marti,
2003). The roles of starting and target solutions can be inter-
changeable. In the first one, the worst among the two solutions
plays the role of the starting solution and the other plays the role
of the target solution. In the second one, the roles are changing.
There is the possibility the two paths to simultaneously explored.
A particle in Particle Swarm Optimization can either follow its
own way, or go back to its previous optimal solution, or go towards
to the global optimal solution (to the best particle in the swarm).
Thus, in the hybrid genetic PSO when the particle decides to follow
either the path to its previous optimal solution or the path to the
global optimal solution, a path relinking strategy is applied where
the current solution plays the role of the starting solution and the
best particle of the swarm or the current best solution of the par-
ticle plays the role of the target solution. The trajectories between
the two solutions are explored by simple swapping of two nodes of
the starting solution until the starting solution becomes equal to
the target solution. If in some step of the path relinking strategy
a new best solution, either of the particle or of the whole swarm,
is found then the current best (particle or swarm) solution is re-
placed with the new one and the algorithm continues.

3.9. Population replacement and termination process

As it was mentioned in the previous Section (3.8) all the individ-
uals (parents and offspring) after crossover and mutation operators
are evolved using the PSO algorithm. Afterwards the individuals
who are more successful in adapting to their environment will
have a better chance of surviving and reproducing, while individu-
als which are less fit are eliminated. Initially, all the individuals of
the new population are sorted with respect to their fitness values.
Subsequently, the P individuals (P equal to the number of initial
population) with the best fitness functions will replace the old
population. The algorithm stops when either the prespecified max-
imum number of generations is reached or the genetic conver-
gence has been achieved.

4. Computational results

The whole algorithmic approach was implemented in Fortran
90 and was compiled using the Lahey f95 compiler on a Centrino
Mobile Intel Pentium M 750 at 1.86 GHz, running Suse Linux 9.1.
The parameters of the proposed algorithm are selected after thor-
ough testing. A number of different alternative values were tested
and the ones selected are those that gave the best computational
results concerning both the quality of the solution and the compu-
tational time needed to achieve this solution. Thus, the selected
parameters are given in Table 1. After the selection of the final
parameters, 50 different runs with the selected parameters were
performed for each of the benchmark instances.

The algorithm was tested on two sets of benchmark problems.
The 14 benchmark problems proposed by Christofides et al.
(1979) and the 20 large scale vehicle routing problems proposed
by Golden et al. (1998). Each instance of the first set contains be-
tween 51 and 200 nodes including the depot. Each problem in-
cludes capacity constraints while the problems 6–10, 13 and 14
have, also, maximum route length restrictions and non zero service
times. The second set of instances contains between 200 and 483
nodes including the depot. Each problem instance includes capac-
ity constraints while the first eight have, also, maximum route
length restrictions but with zero service times. The quality of the
produced solutions is given in terms of the relative deviation from
the best known solution, that is x ¼ ðcHybGENPSO�cBKSÞ

cBKS
%, where

cHybGENPSO denotes the cost of the solution found by HybGENPSO
and cBKS is the cost of the best known solution.

In the first column of Tables 2 and 3 the number of nodes of
each instance is presented, while in the second, third and fourth
columns the most important characteristics, namely the maximum
capacity of the vehicles (column 2), the maximum tour length
(m.t.l. – column 3) of each vehicle and the service time (s.t. – col-
umn 4) of each customer of the instances are presented. In the last
six columns, the average results of the 50 runs of the algorithm
(column 5), the results of the best run of the proposed algorithm
(column 6), the best known solution (BKS – column 7), the average
quality of the 50 runs of the algorithm (xav – column 8) the quality
of the best run of the proposed algorithm (x – column 9) and the

Table 2
Results of hybrid genetic-PSO-GRASP-ENS (HybGENPSO) in the 14 Christofides benchmark instances.

Nod. Cap. m.t.l. s.t. Hyb Hyb BKS xav x CPU (min)
GENPSO average GENPSO best

51 160 1 0 524.61 524.61 524.61Rochat and Taillard (1995) 0.00 0.00 0.02
76 140 1 0 835.26 835.26 835.26 Rochat and Taillard (1995) 0.00 0.00 0.37

101 200 1 0 826.25 826.14 826.14 Rochat and Taillard (1995) 0.01 0.00 0.41
151 200 1 0 1029.17 1028.42 1028.42 Rochat and Taillard (1995) 0.07 0.00 1.04
200 200 1 0 1295.38 1294.21 1291.29 Rochat and Taillard (1995) 0.32 0.23 3.01

51 160 200 10 555.43 555.43 555.43 Rochat and Taillard (1995) 0.00 0.00 0.02
76 140 160 10 909.68 909.68 909.68 Rochat and Taillard (1995) 0.00 0.00 0.34

101 200 230 10 866.76 865.94 865.94 Rochat and Taillard (1995) 0.09 0.00 1.05
151 200 200 10 1164.21 1163.41 1162.55 Rochat and Taillard (1995) 0.14 0.07 1.82
200 200 200 10 1398.27 1397.51 1395.85 Rochat and Taillard (1995) 0.17 0.12 3.65
121 200 1 0 1043.21 1042.11 1042.11 Rochat and Taillard (1995) 0.11 0.00 0.25
101 200 1 0 820.01 819.56 819.56 Rochat and Taillard (1995) 0.05 0.00 0.43
121 200 720 50 1545.17 1544.57 1541.14 Rochat and Taillard (1995) 0.26 0.22 0.51
101 200 1040 90 866.37 866.37 866.37 Rochat and Taillard (1995) 0.00 0.00 0.40

Table 3
Results of Hybrid Genetic-PSO-GRASP-ENS (HybGENPSO) in the 20 benchmark Golden instances.

Nod. Cap. m.t.l. s.t. Hyb Hyb BKS xav x CPU (min)
GENPSO average GENPSO best

240 550 650 0 5673.21 5670.38 5627.54 Mester and Braysy (2007) 0.81 0.76 1.85
320 700 900 0 8466.26 8459.73 8444.50 Prins (2008) 0.26 0.18 2.21
400 900 1200 0 11112.34 11101.12 11036.22 Reimann et al. (2004) 0.69 0.59 6.35
480 1000 1600 0 13698.17 13698.17 13624.52 Prins (2004) 0.54 0.54 7.73
200 900 1800 0 6460.98 6460.98 6460.98 Tarantilis and Kiranoudis (2002) 0.00 0.00 1.28
280 900 1500 0 8473.21 8470.64 8412.8 Prins (2004) 0.72 0.69 1.49
360 900 1300 0 10218.23 10215.14 10181.75 Pisinger and Ropke (2007) 0.36 0.33 2.54
440 900 1200 0 11765.21 11750.38 11643.90 Prins (2008) 1.04 0.91 6.61
255 1000 1 0 586.87 586.87 583.39 Mester and Braysy (2007) 0.60 0.60 1.34
323 1000 1 0 747.18 746.56 741.56 Mester and Braysy (2007) 0.76 0.67 2.88
399 1000 1 0 926.01 925.52 918.45 Mester and Braysy (2007) 0.82 0.77 3.44
483 1000 1 0 1115.78 1114.31 1107.19 Mester and Braysy (2007) 0.78 0.64 8.51
252 1000 1 0 866.38 865.19 859.11 Mester and Braysy (2007) 0.85 0.71 3.43
320 1000 1 0 1090.23 1089.21 1081.31 Mester and Braysy (2007) 0.82 0.73 2.43
396 1000 1 0 1355.28 1355.28 1345.23 Mester and Braysy (2007) 0.75 0.75 7.78
480 1000 1 0 1634.49 1632.21 1622.69 Mester and Braysy (2007) 0.73 0.59 9.98
240 200 1 0 713.72 712.18 707.79 Mester and Braysy (2007) 0.84 0.62 2.68
300 200 1 0 1007.39 1006.31 997.52 Mester and Braysy (2005) 0.99 0.88 2.71
360 200 1 0 1375.29 1373.24 1366.86 Mester and Braysy (2007) 0.62 0.47 3.28
420 200 1 0 1832.29 1831.17 1820.09 Mester and Braysy (2007) 0.67 0.61 5.45

1452 Y. Marinakis, M. Marinaki / Expert Systems with Applications 37 (2010) 1446–1455
CPU time of the best run of the proposed algorithm (column 10) are
presented, respectively. It can be seen from Table 2, that the algo-
rithm, in ten of the 14 instances of the first set has reached the best
known solution. For the other four instances the quality of the
solutions of the best run is between 0.07% and 0.23% and the aver-
age quality for the 14 instances is 0.046%. For the 20 large scale
vehicle routing problems (Table 3) the algorithm has found the
best known solution in one of them, for the rest the quality is be-
tween 0.26% and 1.04% and the average quality of the best run for
the twenty instances is 0.60%. Also, in these Tables the computa-
tional time needed (in minutes) for finding the best solution by
HybGENPSO is presented. The CPU time needed is low for the first
set of instances and only for two instances (instance 5 and 10) is
somehow increased but still is very efficient. In the second set of
instances, the problems are more complicated and, thus, the com-
putational time is increased but is still less than 10 min in all in-
stances. These results denote the efficiency of the proposed
algorithm. The difference in the quality of the results of the best
run of the proposed method from the average quality of the 50
runs is between 0.00% and 0.11% in the Christofides benchmark in-
stances with average difference equal to 0.04% and is between
0.00% to 0.21% in the Golden benchmark instances with average
difference equal to 0.079%. In nine instances of both sets in all 50
runs the algorithm found the best known solution. In a large num-
ber of instances only in one or two runs the algorithm did not find
the optimum. However, even if the best solution was not found in
all runs, the solutions found were very close to the best solutions. It
should be noted that we would like to present a very fast and effec-
tive algorithm and, thus, the choice of the parameters (like the
number of individuals or the number of generations) was per-
formed in such a way in order the algorithm to combine a fast con-
vergence with as good as possible results. This issue sometimes led
the algorithm not to find the optimum. If we increase the number
of individuals and the number of generations the algorithm im-
proves even more the solutions but then the algorithm finds these
solutions in more computational time.

In order to prove the contribution of each of the characteristics
(metaheuristics used) in the HybGENPSO, we implement each of
the main phases separately and we compare their results with
the results of HybGENPSO. There are two non evolutionary algo-
rithms, the Expanding Neighborhood Search (ENS) (columns 1
and 2 in Tables 4 and 5) and the Multiple Phase Neighborhood
Search-GRASP (MPNS-GRASP) (columns 3 and 4 in Tables 4 and
5) and three evolutionary algorithm, the hybrid genetic GRASP-
ENS (HybGEN) (columns 5 and 6 in Tables 4 and 5), a Genetic-
PSO (GEN-PSO) algorithm (columns 7 and 8 in Tables 4 and 5)
and a Genetic - PSO - ENS (GEN-PSO-ENS) algorithm (columns 9
and 10 in Tables 4 and 5). The only difference between the HybGEN

Table 4
Comparison of the proposed algorithm with ENS, MPNS-GRASP, HybGEN, GEN-PSO and GEN-PSO-ENS in the 14 Christofides benchmark instances.

ENS x MPNS x Hyb x GEN x GEN x Hyb x
GRASP GEN PSO PSO GEN

ENS PSO

524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00 524.61 0.00
837.56 0.27 836.39 0.13 835.26 0.00 835.26 0.00 835.26 0.00 835.26 0.00
826.14 0.00 826.14 0.00 826.14 0.00 827.28 0.14 827.10 0.12 826.14 0.00

1034.48 0.58 1032.24 0.37 1028.42 0.00 1033.37 0.48 1029.37 0.09 1028.42 0.00
1316.18 1.91 1314.25 1.78 1299.21 0.61 1321.28 2.32 1297.38 0.47 1294.21 0.23

555.43 0.00 555.43 0.00 555.43 0.00 555.43 0.00 555.43 0.00 555.43 0.00
909.68 0.00 909.68 0.00 909.68 0.00 909.68 0.00 909.68 0.00 909.68 0.00
868.27 0.26 865.94 0.00 865.94 0.00 865.94 0.00 865.94 0.00 865.94 0.00

1178.86 1.40 1175.86 1.14 1165.13 0.22 1174.12 1.00 1165.01 0.21 1163.41 0.07
1416.14 1.45 1412.11 1.16 1402.27 0.46 1399.21 0.24 1398.21 0.17 1397.51 0.12
1043.53 0.13 1042.11 0.00 1042.11 0.00 1042.11 0.00 1042.11 0.00 1042.11 0.00

824.57 0.61 821.12 0.19 819.56 0.00 822.21 0.32 820.56 0.12 819.56 0.00
1551.24 0.65 1548.53 0.47 1545.02 0.25 1545.26 0.27 1544.68 0.23 1544.57 0.22

872.14 0.66 868.62 0.25 866.37 0.00 867.21 0.10 866.58 0.02 866.37 0.00

Table 5
Comparison of the proposed algorithm with ENS, MPNS-GRASP, HybGEN, GEN-PSO and GEN-PSO-ENS in the 20 Golden instances.

ENS x MPNS x Hyb x GEN x GEN x Hyb x
GRASP GEN PSO PSO GEN

ENS PSO

5740.45 2.01 5715.19 1.56 5689.58 1.10 5721.17 1.66 5699.21 1.27 5670.38 0.76
8518.21 0.87 8490.15 0.54 8459.73 0.18 8489.21 0.53 8467.23 0.27 8459.73 0.18

11185.24 1.35 11144.39 0.98 11101.12 0.59 11221.12 1.68 11123.41 0.79 11101.12 0.59
13785.28 1.18 13752.24 0.94 13698.17 0.54 13701.28 0.56 13700.23 0.56 13698.17 0.54

6485.98 0.39 6475.19 0.22 6460.98 0.00 6474.21 0.20 6471.18 0.16 6460.98 0.00
8503.35 1.08 8492.28 0.94 8470.64 0.69 8489.32 0.91 8475.21 0.74 8470.64 0.69

10296.18 1.12 10275.17 0.92 10215.14 0.33 10277.21 0.94 10235.24 0.53 10215.14 0.33
12021.18 3.24 11918.15 2.36 11878.21 2.01 11909.25 2.28 11778.21 1.15 11750.38 0.91

595.27 2.04 589.94 1.12 586.87 0.60 587.21 0.65 586.87 0.60 586.87 0.60
759.38 2.40 749.15 1.02 746.56 0.67 748.21 0.90 748.01 0.87 746.56 0.67
937.18 2.04 935.23 1.83 925.52 0.77 934.45 1.74 925.52 0.77 925.52 0.77

1151.13 3.97 1137.17 2.71 1133.28 2.36 1136.21 2.62 1118.43 1.02 1114.31 0.64
882.17 2.68 875.14 1.87 868.17 1.05 871.28 1.42 866.32 0.84 865.19 0.71

1101.12 1.83 1098.95 1.63 1094.87 1.25 1095.21 1.29 1090.34 0.84 1089.21 0.73
1382.34 2.76 1369.16 1.78 1364.28 1.42 1366.13 1.55 1358.43 0.98 1355.28 0.75
1658.21 2.19 1651.14 1.75 1644.17 1.32 1645.24 1.39 1640.23 1.08 1632.21 0.59

719.26 1.62 715.16 1.04 712.18 0.62 721.28 1.91 717.21 1.33 712.18 0.62
1025.18 2.77 1013.17 1.57 1008.19 1.07 1010.21 1.27 1007.43 0.99 1006.31 0.88
1395.16 2.07 1384.18 1.27 1378.21 0.83 1380.01 0.96 1374.25 0.54 1373.24 0.47
1848.25 1.55 1835.18 0.83 1835.17 0.83 1835.17 0.83 1832.21 0.67 1831.17 0.61

Y. Marinakis, M. Marinaki / Expert Systems with Applications 37 (2010) 1446–1455 1453
and the HybGENPSO is the use of another phase, the evolution of
the population phase that is realized with the Particle Swarm Opti-
mization Algorithm, while the difference between the GEN-PSO
and the HybGENPSO is that in GEN-PSO, the MPNS-GRASP and
the ENS are not used at all. Finally, the difference between the
GEN-PSO-ENS and the HybGENPSO is that in GEN-PSO-ENS the
MPNS-GRASP in the initialization phase is not used at all. In all
implementations, the parameters were chosen in such a way that
in all algorithms the same number of function evaluations to be
made. The parameter that do not affect the number of the function
evaluations, e.g. RCL, c1; c2, etc., were set equal to the parameters
of HybGENPSO and the local search strategies were the same as in
HybGENPSO. In order to have the same number of function evalu-
ations in HybGEN and HybGENPSO we increase the number of indi-
viduals and the number of generations in the HybGEN.

In Tables 4 and 5, the cost and the quality of the solutions given
by the algorithms are presented. As it can be observed from Tables
4 and 5 the results are improved with the use of the proposed algo-
rithm. More precisely, the improvement in the quality of the re-
sults of the proposed method from the ENS algorithm is between
0.00% and 1.68% in the Christofides benchmark instances with
average improvement equal to 0.524% and is between 0.38% to
3.32% in the Golden benchmark instances with average improve-
ment equal to 1.35%. The improvement in the quality of the results
of the proposed method from the MPNS-GRASP algorithm is be-
tween 0.00% and 1.55% in the Christofides benchmark instances
with average improvement equal to 0.347% and is between 0.22%
and 2.06% in the Golden benchmark instances with average
improvement equal to 0.74%. The improvement in the quality of
the solutions was achieved with the addition of the Particle Swarm
Optimization Algorithm. The reason is that, now, the particles
moved in a more fast and efficient way to their local optimum or
to the global optimum solution (to the best particle in the swarm).
The improvement, now, in the quality of the results of the pro-
posed method from the HybGEN algorithm is between 0.00% and
0.39% in the Christofides benchmark instances with average
improvement equal to 0.06% and is between 0.00% and 1.71% in
the Golden benchmark instances with average improvement equal
to 0.31%. This last issue is very important because it is proved that
the addition of the evolution of the population phase before the
individuals used in the next generation improves the results of
the algorithm, especially in the large scale vehicle routing in-
stances (second set of benchmark instances) which are more diffi-
cult and time consuming. The improvement, now, in the quality of
the results of the proposed method from the GEN-PSO algorithm is
between 0.00% and 2.10% in the Christofides benchmark instances
with average improvement equal to 0.30% and is between 0.02%
and 1.97% in the Golden benchmark instances with average

1454 Y. Marinakis, M. Marinaki / Expert Systems with Applications 37 (2010) 1446–1455
improvement equal to 0.66%. The improvement, now, in the quality
of the results of the proposed method from the GEN-PSO-ENS algo-
rithm is between 0.00% and 0.25% in the Christofides benchmark
instances with average improvement equal to 0.057% and is be-
tween 0% and 0.71% in the Golden benchmark instances with aver-
age improvement equal to 0.20%. This last issue is very important
because it is proved that each phase of the algorithm is needed in
order to have as good results as possible. Also, it should be noted
that the use of the algorithm without MPNS-GRASP and ENS led
to an important increase of the time that the algorithm needed
to perform the same function evaluations with the HybGENPSO.
Thus, each phase of the proposed algorithm is very important in
the overall performance of the algorithm.

It should be, also, noted that the results of the GEN-PSO and of
the GEN-PSO-ENS are very different from the results of the other
four algorithms. Compared to GEN-PSO, there is a continuous
improvement either to computational time needed or to the qual-
ity of the solutions obtained when the five other algorithms (ENS,
MPNS-GRASP, HybGEN, GEN-PSO-ENS, HybGENPSO) are used. In
GEN-PSO, in some benchmark instances the quality of the solutions
is close to the quality of the solutions of the proposed algorithm.
However, in many other instances the solutions are inferior even
from the simple MPNS-GRASP. This is, mainly, due to the fact that
the initial solutions of the GEN-PSO are created randomly. This lead
us to the conclusion that if we use better initial solutions, we have
a faster convergence to better results and this is the reason why we
used the MPNS-GRASP and ENS in the proposed algorithm. The
quality of the solutions of the GEN-PSO-ENS is much improved
compared to the quality of the solutions of the GEN-PSO algorithm.
This is due to the fact that now the ENS algorithm is used. The re-
sults are, only, slightly inferior from the results of the proposed
algorithm (HybGENPSO) as the initial solutions in GEN-PSO-ENS
are created randomly.

5. Conclusion

In this paper, a hybrid algorithmic nature inspired methodology
was proposed, namely the HybGENPSO algorithm, for the effective
handling of the vehicle routing problem. One of the main contribu-
tions of this paper is to show that the use of an intermediate phase
between the two generations, the phase of evolution of the popu-
lation, will give more efficient individuals and, thus, will improve
the effectiveness of the algorithm. This is achieved by the use of
a nature inspired approach, the Particle Swarm Optimization. The
algorithm was applied in two set of benchmark instances and gave
very satisfactory results. More specifically, in the set with the clas-
sic benchmark instances proposed by Christofides, the average
quality is 0.046% while in the second set of benchmark instances
proposed by Golden, the average quality is 0.60%.

References

Altinkemer, K., & Gavish, B. (1991). Parallel savings based heuristics for the delivery
problem. Operations Research, 39(3), 456–469.

Baker, B. M., & Ayechew, M. A. (2003). A genetic algorithm for the vehicle routing
problem. Computers and Operations Research, 30(5), 787–800.

Banks, A., Vincent, J., & Anyakoha, C. (2007). A review of particle swarm
optimization. Part I: Background and development. Natural Computing, 6(4),
467–484.

Barbarosoglu, G., & Ozgur, D. (1999). A tabu search algorithm for the vehicle routing
problem. Computers and Operations Research, 26, 255–270.

Baykasoglu, A., Ozbakor, L., & Tapkan, P. (2007). Artificial bee colony algorithm and
its application to generalized assignment problem. In F. T. S. Chan & M. K. Tiwari
(Eds.), Swarm intelligence, focus on ant and particle swarm optimization
(pp. 113–144). I-Tech Education and Publishing.

Berger, J., & Barkaoui, M. (2003). A hybrid genetic algorithm for the capacitated
vehicle routing problem. In Proceedings of the genetic and evolutionary
computation conference (pp. 646–656). Chicago.

Bodin, L., & Golden, B. (1981). Classification in vehicle routing and scheduling.
Networks, 11, 97–108.
Bodin, L., Golden, B., Assad, A., & Ball, M. (1983). The state of the art in the routing
and scheduling of vehicles and crews. Computers and Operations Research, 10,
63–212.

Bullnheimer, B., Hartl, P. F., & Strauss, C. (1999). An improved ant system algorithm
for the vehicle routing problem. Annals of Operations Research, 89,
319–328.

Christofides, N., Mingozzi, A., & Toth, P. (1979). The vehicle routing problem. In N.
Christofides, A. Mingozzi, P. Toth, & C. Sandi (Eds.), Combinatorial optimization.
Chichester: Wiley.

Clarke, G., & Wright, J. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12, 568–581.

Cordeau, J. F., Gendreau, M., Laporte, G., Potvin, J. Y., & Semet, F. (2002). A guide to
vehicle routing heuristics. Journal of the Operational Research Society, 53,
512–522.

Cordeau, J. F., Gendreau, M., Hertz, A., Laporte, G., & Sormany, J. S. (2005). New
heuristics for the vehicle routing problem. In A. Langevine & D. Riopel (Eds.),
Logistics systems: Design and optimization (pp. 279–298). Wiley and Sons.

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management
Science, 6(1), 80–91.

Dasgupta, D. (Ed.). (1998). Artificial immune systems and their application.
Heidelberg: Springer.

De Castro, L. D., & Timmis, J. (2002). Artificial immune systems: A new computational
intelligence approach. Heidelberg: Springer.

Desrochers, M., & Verhoog, T. W. (1989). A matching based savings algorithm for the
vehicle routing problem. Les Cahiers du GERAD G-89-04. Ecole des Hautes Etudes
Commerciales de Montreal.

Dorigo, M., & Stutzle, T. (2004). Ant colony optimization. Massachusetts, London,
England: A Bradford Book, The MIT Press Cambridge.

Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search
procedure. Journal of Global Optimization, 6, 109–133.

Fisher, M. L. (1995). In M. O. Ball, T. L. Magnanti, C. L. Momma, & G. L. Nemhauser
(Eds.), Network routing. Handbooks in operations research and management
science (Vol. 8, pp. 1–33). Amsterdam: North Holland.

Fisher, M. L., & Jaikumar, R. (1981). A generalized assignment heuristic for vehicle
routing. Networks, 11, 109–124.

Foster, B. A., & Ryan, D. M. (1976). An integer programming approach to the vehicle
scheduling problem. Operations Research, 27, 367–384.

Garfinkel, R., & Nemhauser, G. (1972). Integer programming. New York: John Wiley
and Sons.

Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle
routing problem. Management Science, 40, 1276–1290.

Gendreau, M., Laporte, G., & Potvin, J. Y. (1997). Vehicle routing: Modern heuristics.
In E. H. L. Aarts & J. K. Lenstra (Eds.), Local search in combinatorial optimization
(pp. 311–336). Chichester: Wiley.

Gendreau, M., Laporte, G., & Potvin, J. Y. (2002). Metaheuristics for the capacitated
VRP. In P. Toth & D. Vigo (Eds.), The vehicle routing problem. Monographs on
discrete mathematics and applications (pp. 129–154). Siam.

Gillett, B. E., & Miller, L. R. (1974). A heuristic algorithm for the vehicle dispatch
problem. Operations Research, 22, 240–349.

Glover, F., Laguna, M., & Marti, R. (2003). Scatter search and path relinking:
Advances and applications. In F. Glover & G. A. Kochenberger (Eds.), Handbook of
metaheuristics (pp. 1–36). Boston: Kluwer Academic Publishers.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine
learning. INC, Massachussets: Addison-Wesley Publishing Company.

Golden, B. L., & Assad, A. A. (1988). Vehicle routing: Methods and studies. Amsterdam:
North Holland.

Golden, B. L., Wasil, E. A., Kelly, J. P., & Chao, I. M. (1998). The impact of
metaheuristics on solving the vehicle routing problem: Algorithms, problem
sets, and computational results. In T. G. Crainic & G. Laporte (Eds.), Fleet
management and logistics (pp. 33–56). Boston: Kluwer Academic Publishers.

Golden, B., Raghavan, S., & Wasil, E. (2008). The vehicle routing problem: Latest
advances and new challenges. Springer LLC.

Hansen, P., & Mladenovic, N. (2001). Variable neighborhood search: Principles and
applications. European Journal of Operational Research, 130, 449–467.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI:
University of Michigan Press.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of
1995 IEEE international conference on neural networks (Vol. 4, pp. 1942–1948).

Kennedy, J., & Eberhart, R. (1997). A discrete binary version of the particle swarm
algorithm. In Proceedings of 1997 IEEE international conference on systems, man,
and cybernetics (Vol. 5, pp. 4104–4108).

Kennedy, J., Eberhart, R., & Shi, Y. (2001). Swarm intelligence. San Francisco: Morgan
Kaufmann Publisher.

Laporte, G., Gendreau, M., Potvin, J. Y., & Semet, F. (2000). Classical and modern
heuristics for the vehicle routing problem. International Transactions in
Operational Research, 7, 285–300.

Laporte, G., & Semet, F. (2002). Classical heuristics for the capacitated VRP. In P. Toth
& D. Vigo (Eds.), The vehicle routing problem, monographs on discrete mathematics
and applications (pp. 109–128). Siam.

Li, F., Golden, B., & Wasil, E. (2005). Very large-scale vehicle routing: New test
problems, algorithms and results. Computers and Operations Research, 32(5),
1165–1179.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell Systems
Technical Journal, 44, 2245–2269.

Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling
salesman problem. Operation Research, 21, 498–516.

Y. Marinakis, M. Marinaki / Expert Systems with Applications 37 (2010) 1446–1455 1455
Marinakis, Y., & Migdalas, A. (2002). Heuristic solutions of vehicle routing problems
in supply chain management. In P. M. Pardalos, A. Migdalas, & R. Burkard (Eds.),
Combinatorial and global optimization (pp. 205–236). World Scientific Publishing
Co.

Marinakis, Y., Migdalas, A., & Pardalos, P. M. (2005a). Expanding neighborhood
GRASP for the traveling salesman problem. Computational Optimization and
Applications, 32, 231–257.

Marinakis, Y., Migdalas, A., & Pardalos, P. M. (2005b). A hybrid genetic-GRASP
algorithm using Langrangean relaxation for the traveling salesman problem.
Journal of Combinatorial Optimization, 10, 311–326.

Marinakis, Y., Migdalas, A., & Pardalos, P. M. (2007a). Multiple phase neighborhood
search GRASP based on Lagrangean relaxation and random backtracking Lin
Kernighan for the traveling salesman problem. Journal of Combinatorial
Optimization. (Available on line doi: 10.1007/s10878-007-9104-2).

Marinakis, Y., Migdalas, A., & Pardalos, P. M. (2007b). A new bilevel formulation for
the vehicle routing problem and a solution method using a genetic algorithm.
Journal of Global Optimization, 38, 555–580.

Marinakis, Y., Marinaki, M., & Dounias, G. (2008). Honey bees mating optimization
algorithm for the vehicle routing problem. In N. Krasnogor, G. Nicosia, M.
Pavone, & D. Pelta (Eds.), Nature inspired cooperative strategies for optimization –
NICSO 2007. Studies in computational intelligence (Vol. 129, pp. 139–148). Berlin:
Springer-Verlag.

Mester, D., & Braysy, O. (2005). Active guided evolution strategies for the large scale
vehicle routing problems with time windows. Computers and Operations
Research, 32, 1593–1614.

Mester, D., & Braysy, O. (2007). Active guided evolution strategies for large scale
capacitated vehicle routing problems. Computers and Operations Research, 34,
2964–2975.

Mole, R. H., & Jameson, S. R. (1976). A sequential route-building algorithm
employing a generalized savings criterion. Operational Research Quarterly, 27,
503–511.

Moscato, P., & Cotta, C. (2003). A gentle introduction to memetic algorithms. In F.
Glover & G. A. Kochenberger (Eds.), Handbooks of metaheuristics (pp. 105–144).
Dordrecht: Kluwer Academic Publishers.

Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms
for combinatorial optimization problems. Annals of Operations Research, 41,
421–451.

Pereira, F. B., & Tavares, J. (2008). Bio-inspired algorithms for the vehicle routing
problem. Studies in computational intelligence (Vol. 161). Berlin, Heideberg:
Springer.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems.
Computers and Operations Research, 34, 2403–2435.

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. An
overview. Swarm Intelligence, 1, 33–57.

Potvin, J. Y. (1996). Genetic algorithms for the traveling salesman problem. Annals of
Operations Research, 63, 339–370.
Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle
routing problem. Computers and Operations Research, 31, 1985–2002.

Prins, C. (2008). A GRASP � evolutionary local search hybrid for the vehicle routing
problem. In F. B. Pereira & J. Tavares (Eds.), Bio-inspired algorithms for the vehicle
routing problem, SCI 161 (pp. 35–53). Berlin, Heideberg: Springer.

Reimann, M., Stummer, M., & Doerner, K. (2002). A savings based ant system for the
vehicle routing problem. In Proceedings of the genetic and evolutionary
computation conference (pp. 1317–1326). New York.

Reimann, M., Doerner, K., & Hartl, R. F. (2004). D-Ants: Savings based ants divide
and conquer the vehicle routing problem. Computers and Operations Research,
31(4), 563–591.

Rego, C. (1998). A subpath ejection method for the vehicle routing problem.
Management Science, 44, 1447–1459.

Rego, C. (2001). Node-ejection chains for the vehicle routing problem: Sequential
and parallel algorithms. Parallel Computing, 27(3), 201–222.

Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy randomized adaptive search
procedures. In F. Glover & G. A. Kochenberger (Eds.), Handbook of metaheuristics
(pp. 219–249). Boston: Kluwer Academic Publishers.

Rochat, Y., & Taillard, E. D. (1995). Probabilistic diversification and intensification in
local search for vehicle routing. Journal of Heuristics, 1, 147–167.

Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In Proceedings of
1998 IEEE world congress on computational intelligence (pp. 69–73).

Taillard, E. D. (1993). Parallel iterative search methods for vehicle routing problems.
Networks, 23, 661–672.

Tarantilis, C. D. (2005). Solving the vehicle routing problem with adaptive memory
programming methodology. Computers and Operations Research, 32(9),
2309–2327.

Tarantilis, C. D., Kiranoudis, C. T., & Vassiliadis, V. S. (2002a). A backtracking
adaptive threshold accepting metaheuristic method for the Vehicle Routing
Problem. System Analysis Modeling Simulation (SAMS), 42(5), 631–644.

Tarantilis, C. D., Kiranoudis, C. T., & Vassiliadis, V. S. (2002b). A list based threshold
accepting algorithm for the capacitated vehicle routing problem. International
Journal of Computer Mathematics, 79(5), 537–553.

Tarantilis, C. D., & Kiranoudis, C. T. (2002). BoneRoute: An adaptive memory-based
method for effective fleet management. Annals of Operations Research, 115(1),
227–241.

Toth, P., & Vigo, D. (2002). The vehicle routing problem. Monographs on discrete
mathematics and applications. Siam.

Toth, P., & Vigo, D. (2003). The granular tabu search (and its application to the
vehicle routing problem). INFORMS Journal on Computing, 15(4), 333–348.

Wark, P., & Holt, J. (1994). A repeated matching heuristic for the vehicle routing
problem. Journal of the Operational Research Society, 45, 1156–1167.

Xu, J., & Kelly, J. P. (1996). A new network flow-based tabu search heuristic for the
vehicle routing problem. Transportation Science, 30, 379–393.

	A hybrid genetic – Particle Swarm Optimization Algorithm for the vehicle routing problem
	Introduction
	The vehicle routing problem
	Hybrid genetic – PSO – GRASP – ENS for the vehicle routing problem
	General description of hybrid genetic – PSO – GRASP – ENS (HybGENPSO)
	Path representation
	Initial population – MPNS – GRASP
	Calculation of fitness function
	Selection probability
	Crossover operator
	Mutation operator – Expanding Neighborhood Search
	Evolution of the population – Particle Swarm Optimization
	Population replacement and termination process

	Computational results
	Conclusion
	References

