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A number of technological advances have led to a renewed interest in dynamic vehicle routing problems.
This survey classifies routing problems from the perspective of information quality and evolution. After
presenting a general description of dynamic routing, we introduce the notion of degree of dynamism, and
present a comprehensive review of applications and solution methods for dynamic vehicle routing
problems.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The Vehicle Routing Problem (VRP) formulation was first intro-
duced by Dantzig and Ramser [35], as a generalization of the Trav-
eling Salesman Problem (TSP) presented by Flood [49]. The VRP is
generally defined on a graph G ¼ ðV; E; CÞ, where V ¼ fv0; . . . ;vng
is the set of vertices; E ¼ fðv i;v jÞjðv i;v jÞ 2 V2; i – jg is the arc
set; and C ¼ ðcijÞðv i ;v jÞ2E is a cost matrix defined over E, representing
distances, travel times, or travel costs. Traditionally, vertex v0 is
called the depot, while the remaining vertices in V represent cus-
tomers (or requests) that need to be served. The VRP consists in
finding a set of routes for K identical vehicles based at the depot,
such that each of the vertices is visited exactly once, while mini-
mizing the overall routing cost.

Beyond this classical formulation, a number of variants have
been studied. Among the most common are the Capacitated VRP
(CVRP), where each customer has a demand for a good and vehicles
have finite capacity; the VRP with Time Windows (VRPTW), where
each customer must be visited during a specific time frame; the
VRP with Pick-up and Delivery (PDP), where goods have to be
picked-up and delivered in specific amounts at the vertices; and
the Heterogeneous fleet VRP (HVRP), where vehicles have different
capacities. Routing problems that involve moving people between
locations are referred to as Dial-A-Ride-Problem (DARP) for land
transport; or Dial-A-Flight-Problem (DAFP), for air transport.
ll rights reserved.
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In contrast to the classical definition of the vehicle routing prob-
lem, real-world applications often include two important dimen-
sions: evolution and quality of information [116]. Evolution of
information relates to the fact that in some problems the informa-
tion available to the planner may change during the execution of
the routes, for example, with the arrival of new customer requests.
Quality of information reflects possible uncertainty on the avail-
able data, for instance, when the demand of a customer is only
known as a range estimate of its real demand. In addition, depend-
ing on the problem and the available technology, vehicle routes
can either be designed statically (a priori) or dynamically. For in-
stance, the VRP with Stochastic Demands (VRPSD), can be seen
from both perspectives. From a static perspective, the problem is
to design a set of robust routes a priori, that will undergo minor
changes during their execution [16,53]. From a dynamic perspec-
tive, the problem consists in designing the vehicle routes in an on-
line fashion, communicating to the vehicle which customer to
serve next as soon as it becomes idle [104,127,128]. Based on these
dimensions, Table 1 identifies four categories of routing problems.

In static and deterministic problems, all input is known before-
hand and vehicle routes do not change once they are in execution.
This classical problem has been extensively studied in the litera-
ture, and we refer the interested reader to the recent reviews of ex-
act and approximate methods by Baldacci et al. [33], Cordeau et al.
[4], Laporte [83,84], and Toth and Vigo [143].

Static and stochastic problems are characterized by input par-
tially known as random variables, which realizations are only re-
vealed during the execution of the routes. Additionally, it is
assumed that routes are designed a priori and only minor changes
are allowed afterwards. For instance, allowable changes include
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Table 1
Taxonomy of vehicle routing problems by information evolution and quality.

Information quality

Deterministic input Stochastic input

Information evolution Input known beforehand Static and deterministic Static and stochastic
Input changes over time Dynamic and deterministic Dynamic and stochastic
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planning a trip back to the depot or skipping a customer. Applica-
tions in this category do not require any technological support.
Uncertainty may affect any of the input data, yet the three most
studied cases are [33]: stochastic customers, where a customer
needs to be serviced with a given probability [15,147]; stochastic
times, in which either service or travel times are modeled by ran-
dom variables [79,85,146]; and lastly, stochastic demands
[31,37,86,97,98,126,128]. Further details on the static stochastic
vehicle routing can be found in the reviews by Bertsimas and Sim-
chi-Levi [33], Cordeau et al. [16], and Gendreau et al. [53].

In dynamic and deterministic problems, part or all of the input is
unknown and revealed dynamically during the design or execution
of the routes. For these problems, vehicle routes are redefined in an
ongoing fashion, requiring technological support for real-time
communication between the vehicles and the decision maker
(e.g., mobile phones and global positioning systems). This class of
problems are also referred to as online or real time by some authors
[77].

Similarly, dynamic and stochastic problems have part or all of
their input unknown and revealed dynamically during the execu-
tion of the routes, but in contrast with the latter category, exploit-
able stochastic knowledge is available on the dynamically revealed
information. As before, the vehicle routes can be redefined in an
ongoing fashion with the help of technological support.

Besides dynamic routing problems, where customer visits must
be explicitly sequenced along the routes, there are other related
vehicle dispatching problems, such as managing a fleet of emer-
gency vehicles [23,54,66], or the so-called dynamic allocation prob-
lems in the area of long haul truckload trucking [60,109,134]. In
this paper, we focus solely on dynamic problems with an explicit
routing dimension.

The remainder of this document is organized as follows: Section 2
presents a general description of dynamic routing problems and
introduces the notion of degree of dynamism. Section 3 reviews dif-
ferent applications in which dynamic routing problems arise, while
Section 4 provides a comprehensive survey of solution approaches.
Finally, Section 5 concludes this paper and gives directions for
further research.

2. Dynamic vehicle routing problems

2.1. A general definition

The first reference to a dynamic vehicle routing problem is due
to Wilson and Colvin [148]. They studied a single vehicle DARP, in
which customer requests are trips from an origin to a destination
that appear dynamically. Their approach uses insertion heuristics
able to perform well with low computational effort. Later, Psaraftis
[116] introduced the concept of immediate request: a customer
requesting service always wants to be serviced as early as possible,
requiring immediate replanning of the current vehicle route.

A number of technological advances have led to the multiplica-
tion of real-time routing applications. With the introduction of the
Global Positioning System (GPS) in 1996, the development and
widespread use of mobile and smart phones, combined with accu-
rate Geographic Information Systems (GISs), companies are now
able to track and manage their fleet in real time and cost effec-
tively. While traditionally a two-step process (i.e., plan-execute),
vehicle routing can now be done dynamically, introducing greater
opportunities to reduce operational costs, improve customer ser-
vice, and reduce environmental impact.

The most common source of dynamism in vehicle routing is the
online arrival of customer requests during the operation. More spe-
cifically, requests can be a demand for goods [2,62,70,71,75,
99,101,144] or services [7,11,17,52,89,141]. Travel time, a dynamic
component of most real-world applications, has been recently ta-
ken into account [1,6,28,48,64,65,94,108,136,139,153]; while ser-
vice time has not been explicitly studied (but can be added to
travel time). Finally, some recent work considers dynamically re-
vealed demands for a set of known customers [104,105,126,128]
and vehicle availability [92,93,103], in which case the source of
dynamism is the possible breakdown of vehicles. In the following
we use the prefix ‘‘D-’’ to label problems in which new requests ap-
pear dynamically.

To better understand what we mean by dynamic, Fig. 1 illus-
trates the route execution of a single vehicle D-VRP. Before the
vehicle leaves the depot (time t0), an initial route plans to visit
the currently known requests (A,B,C,D,E). While the vehicle exe-
cutes its route, two new requests (X and Y) appear at time t1 and
the initial route is adjusted to fulfill them. Finally, at time tf the
executed route is (A,B,C,D,Y,E,X).

This example reveals how dynamic routing inherently adjusts
routes in an ongoing fashion, which requires real-time communi-
cation between vehicles and the dispatching center. Fig. 2 illus-
trates this real-time communication scheme, where the
environment refers to the real-world while the dispatcher is the
agent that gives instructions to the vehicle. Once the vehicle is
ready (first dotted arrow), the dispatcher makes a decision and in-
structs the vehicle to fulfill request A (first double-headed arrow).
When the vehicle starts (second dotted arrow) and ends (third dot-
ted arrow) service at request A, it notifies the dispatcher, which in
turn updates the available information and communicates the
vehicle its next request (second double-headed arrow).

2.2. Differences with static routing

In contrast to their static counterparts, dynamic routing prob-
lems involve new elements that increase the complexity of their
decisions (more degrees of freedom) and introduce new challenges
while judging the merit of a given route plan.

In some contexts, such as the pick-up of express courier [52],
the transport company may deny a customer request. As a conse-
quence, it can reject a request either because it is simply impossi-
ble to service it, or because the cost of serving it is too high. This
process of acceptance/denial has been used in many approaches
[2,43,52,73–75,92] and is referred to as service guarantee [145].

In dynamic routing, the ability to redirect a moving vehicle to a
new request nearby allows for additional savings. Nevertheless, it
requires real-time knowledge of the vehicle position and being
able to communicate quickly with drivers to assign them new des-
tinations. Thus, this strategy has received limited interest, with the
main contributions being the early work by Regan et al. [120–122],



Fig. 1. Example of dynamic vehicle routing.

Fig. 2. Timeline of events for the dynamic routing of a single vehicle.
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the study of diversion issues by Ichoua et al. [73], and the work by
Branchini et al. [21].

Dynamic routing also frequently differs in the objective func-
tion [118]. In particular, while a common objective in the static
context is the minimization of the routing cost, dynamic routing
may introduce other notions such as service level, throughput
(number of serviced requests), or revenue maximization. Having
to answer to dynamic customer requests also introduces the notion
of response time: a customer might request to be serviced as soon
as possible, in which case the main objective may become to min-
imize the delay between the arrival of a request and its service.

Dynamic routing problems require making decisions in an on-
line manner, which often compromises reactiveness with decision
quality. In other words, the time invested searching for better deci-
sions, comes at the price of a lower reactiveness to input changes.
This aspect is of particular importance in contexts where custom-
ers call for a service and a good decision must be made as fast as
possible.

2.3. Measuring dynamism

Different problems (or instances of a same problem) can have
different levels of dynamism, which can be characterized according
to two dimensions [76]: the frequency of changes and the urgency
of requests. The former is the rate at which new information be-
comes available, while the latter is the time gap between the dis-
closure of a new request and its expected service time. From this
observation three metrics have been proposed to measure the
dynamism of a problem (or instance).

Lund et al. [95] defined the degree of dynamism d as the ratio be-
tween the number of dynamic requests nd and the total number of
requests ntot as follows:

d ¼ nd

ntot
ð1Þ

Based on the fact that the disclosure time of requests is also
important [117,118], Larsen [87] proposed the effective degree of
dynamism de. This metric can be interpreted as the normalized
average of the disclosure times. Let T be the length of the planning
horizon, R the set of requests, and ti the disclosure time of request
i 2 R. Assuming that requests known beforehand have a disclosure
time equal to 0, de can be expressed as:

de ¼ 1
ntot

X
i2R

ti

T
ð2Þ

Larsen [87] also extended the effective degree of dynamism to
problems with time windows to reflect the level of urgency of re-
quests. He defines the reaction time as the difference between the
disclosure time ti and the end of the corresponding time window
li, highlighting that longer reaction times mean more flexibility
to insert the request into the current routes. Thus, the effective de-
gree of dynamism measure is extended as follows:

de
TW ¼

1
ntot

X
i2R

1� li � ti

T

� �
ð3Þ

It is worth noting that these three metrics only take values in
the interval [0,1] and all increase with the level of dynamism of
a problem. Larsen et al. [88,90] use the effective degree of dyna-
mism to define a framework classifying D-VRPs among weakly,
moderately, and strongly dynamic problems, with values of de

being respectively lower than 0.3, comprised between 0.3 and
0.8, and higher than 0.8.

Although the effective degree of dynamism and its variations
have proven to capture well the time-related aspects of dynamism,
it could be argued that they do not take into account other possible
sources of dynamism. In particular, the geographical distribution of
requests, or the traveling times between requests, are also of great
importance in applications aiming at the minimization of response
time. Although not considered, the frequency of updates in prob-
lem information has a dramatical impact on the time available
for optimization.

3. A review of applications

Recent advances in technology have allowed the emergence of a
wide new range of applications for vehicle routing. In particular,
the last decade has seen the development of Intelligent Transport
Systems (ITSs), which are based on a combination of geolocation
technologies, with precise geographic information systems, and
increasingly efficient hardware and software for data processing
and operations planning. We refer the interested reader to the
study by Crainic et al. [34] for more details on ITS and the contri-
butions of operations research to this relatively new domain.

Among ITSs, the Advanced Fleet Management Systems (AFMSs)
are specifically designed for managing a corporate vehicle fleet.
The core problem is generally to deliver (pick-up) goods or persons
to (from) locations distributed in a given area. While customer re-
quests can either be known in advance or appear dynamically dur-
ing the day, vehicles are dispatched and routed in real time,
potentially by taking into account changing traffic conditions,
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uncertain demands, or varying service times. A key technological
feature of AFMSs is the optimization component. Traditionally,
vehicle routing relies on teams of human dispatchers, meaning a
critical operational process is bound to the competence and expe-
rience of dispatchers, as well as the management costs that are di-
rectly linked to the size of the fleet [1]. Advances in computer
science have allowed a technological transfer from operational re-
search to AFMSs, as presented in the studies by Attanasio et al. [1],
Du et al. [38], Godfrey and Powell [60], Powell and Topaloglu [115],
Roy [125], Simao et al. [129], and Slater [130].

The remainder of this section presents applications where dy-
namic routing has been or can be implemented. The interested
reader is also referred to the work by Gendreau and Potvin [55]
and Ichoua et al. [76] for complementary reviews.

3.1. Services

In this category of applications, a service request is defined by a
customer location and a possible time window; while vehicle
routes just fulfill service requests without considering side con-
straints such as capacity. Perhaps the simplest, yet most illustra-
tive case in this category is the dynamic traveling salesman
problem [89].

A common application of dynamic routing can be found in the
area of maintenance operations. Maintenance companies are often
committed to their customers by means of a contract which spec-
ifies periodical or planned visits to perform preventive mainte-
nance, and may also request corrective maintenance on short
notice. Therefore, each technician is first given a route with known
requests at the beginning of the day, while new urgent requests are
inserted dynamically throughout the day. An interesting feature of
this problem is the possible mix of skills, tools, and spare part
requirements, which have to be matched in order to service the re-
quest. This problem has been studied by Borenstein et al. [19] with
an application to British Telecom.

Another application of dynamic routing arises in the context of
the French non-profit organization SOS Médecins. This organization
operates with a crew of physicians, who are called on duty via a
call center coordinated with other emergency services. When a pa-
tient calls, the severity of the case is evaluated, and a visit by a
practitioner is planned accordingly. As in other emergency ser-
vices, having an efficient dispatching system reduces the response
time, thus improving service level for the society. On the other
hand, it is important to decide in real-time whether or not to send
a physician, so that it is possible to ensure a proper service level in
areas where emergencies are likely to appear.

Dynamic aspects can also appear on arc routing problems.
This is for instance the case in the study by Tagmouti et al.
[136] on the operation of a fleet of vehicles for winter gritting
applications. Their work consider a network of streets or road
segments that need to be gritted when affected by a moving
storm. Depending on the movements of the storm, new segments
may have to be gritted, and the routing of vehicles has to be up-
dated accordingly.

3.2. Transport of goods

Due to the fact that urban areas are often characterized by
highly variable traveling times, transport of goods in such areas
has led to the definition of a specific category of applications
known as city logistics. City logistics can be defined as an integrated
vision of transport activities in urban areas, taking into account
factors such as traffic and competition or cooperation between
transport companies [140]. Barcelo et al. [6] developed a general
framework for city logistics applications. They describe the differ-
ent modules ranging from modeling the city road network and
acquiring real-time traffic data to the dynamic routing of a fleet
of vehicles. Zeimpekis et al. [153] proposed a Decision Support Sys-
tem (DSS) for city logistics which takes into account dynamic tra-
vel and service times.

A typical application in city logistics is the courier service pres-
ent in most urban areas. Couriers are dispatched to customer loca-
tions to collect packages, and either deliver them to their
destination (short haul) or to a unique depot (long haul). Depend-
ing on the level of service paid by the customer, couriers may con-
solidate pick-ups from various customers, or provide an expedited
service. Companies offering courier services often have an hetero-
geneous fleet composed of bicycles, motorbikes, cars, and small
vans. The problem is then to dynamically route couriers, taking
into account not only the known requests, their type, pick-up
and delivery locations, and time windows, but also considering
traffic conditions and varying travel times. A case study by Attana-
sio et al. [1] outlines the benefits of using an optimization-enabled
AFMS at eCourier Ltd, a London based company offering courier
services. The authors illustrate that aside from the improvements
in service quality, response time, and courier efficiency, the use
of an automated system allows decoupling the fleet size from the
need for more dispatchers. Further results motivated by a similar
application can be found in Gendreau et al. [51] and Ghiani et al.
[59].

The delivery of newspapers and magazines is a domain in which
customer satisfaction is of first importance. When a magazine or
newspaper is not delivered, a subscriber contacts a call center
and is offered to choose between a voucher or a future delivery.
In the latter case, the request is then forwarded to the delivery
company, which assigns it to a driver that will do a priority deliv-
ery. Traditionally, this process relies on an exchange of phone calls,
faxes, and printed documents, that ultimately communicates the
pending delivery to the driver once he/she comes back to the de-
pot. As an alternative, Bieding et al. [18] propose a centralized
application that makes use of mobile phones to communicate with
drivers and intelligently perform the routing in real time, reducing
costs and improving customer satisfaction. More recently, Ferrucci
et al. [44] developed an approach that makes use historical data to
anticipate future requests.

Another application in which customer requests need to be an-
swered with short delays can be found in companies with a direct
service model, such as grocery delivery services. In general, the
customer selects products on a website, and then chooses a time
frame for the delivery at his home. Traditionally, the vendor de-
fines an arbitrary number of customers that can be serviced within
a time window, and the time window is made unavailable to cus-
tomers as soon as the capacity is reached. Campbell and Savels-
bergh [24] defined the Home Delivery Problem, in which the goal
is to maximize the total expected revenue by dynamically deciding
whether or not to accept a customer request within a specific time
window. In comparison with the traditional approach, this means
that the time windows available for a customer are dynamically
defined taking into consideration the possible future requests.
The authors propose a Greedy Randomized Adaptive Search Proce-
dure (GRASP) and compare different cost functions to capture the
problem uncertainty. Later, Azi et al. [3] proposed an Adaptive
Large Neighborhood Search (ALNS) that takes into account uncer-
tainty by generating scenarios containing possible demand
realizations.

Apart from classical routing problems, related operational prob-
lems also arise in many organizations. The review by Stahlbock and
Voss [135] on operations research applications in container termi-
nals describes the dynamic stacker crane problem [5,14], which
considers the routing of container carriers loading and unloading
ships in a terminal. Other applications include transport of
goods inside warehouses [132], factories, and hospitals, where
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documents or expensive medical instruments must be transferred
efficiently between services [45].

3.3. Transport of persons

The transport of persons is in general – and by many aspects –
similar to the transport of goods, yet it is characterized by addi-
tional constraints such as regulation on waiting, travel, and service
times.

Taxis are arguably the most common on-demand individual
transport systems. Requests are composed of a pick-up location
and time, possibly coupled with a destination. They can be either
known in advance, for instance when a customer books a cab for
the next day, or they can arrive dynamically, in which case a taxi
must be dispatched in the shortest time. When customers cannot
share a vehicle, the closest free taxi is generally the one which
takes the ride, leaving limited space for optimization. The study
by Caramia et al. [25], generalized by Fabri and Recht [42], focuses
on a multi-cab metropolitan transportation system, where a taxi
can transport more than one passenger at the same time. In this
case the online algorithms minimize the total traveled distance,
while assigning requests to vehicles and computing the taxi routes.
This multi-cab transportation system can be generalized as an on-
demand or door-to-door transport service.

Many applications involve the transport of children, the elderly,
disabled people, or patients, from their home to schools, place of
work, or medical centers. Xiang et al. [149] studied a DARP with
changing travel speeds, vehicle breakdowns, and traffic conges-
tion; while Dial [36], followed by Horn [67–69], studied demand-
responsive transport systems. An extensive review of this class of
problems can be found in the studies by Cordeau et al. [32] and
Berbeglia et al. [14].

A singular application of on-demand transportation systems
can be found in major hospitals, with services possibly spread
across various buildings on several branches. Depending on the
medical procedure or facility capacity, a patient may need to be
transferred on short notice from one service to another, possibly
requiring trained staff or specific equipment for his/her care. This
application has been studied by Beaudry et al. [7], Kergosien
et al. [80], and Melachrinoudis et al. [96].

Air taxis developed as a flexible response to the limitations of
traditional airlines. Air taxis offer passengers the opportunity to
travel through smaller airports, avoiding waiting lines at check-in
and security checks. Air taxi companies offer an on-demand ser-
vice: customers book a flight a few days in advance, specifying
whether they are willing to share the aircraft, stop at an interme-
diate airport, or have flexible traveling hours. Then, the company
accommodates these requests, trying to consolidate flights when-
ever possible. The underlying optimization problems have not
been subject to much attention, except in the studies by Cordeau
et al. [32], Espinoza et al. [40,41], Fagerholt et al. [43], and Yao
et al. [152]. Similar problems arises in helicopter transportation
systems, typically used by oil and gas companies to transport per-
sonnel between offshore petroleum platforms [63,124].
4. Solution methods

Few research was conducted on dynamic routing between the
work of Psaraftis [116] in 1980 and the late 1990s. However, the
last decade has seen a renewed interest for this class of problems
[39], with solution techniques ranging from linear programming
to metaheuristics. This section presents the major contributions
in this field, and the reader is referred to the reviews, books, and
special issues by Gendreau and Potvin [55,56], Ghiani et al. [57],
Goel [61], Ichoua [72], Ichoua et al. [75,76], Jaillet and Wagner
[78], Larsen et al. [91], and Zeimpekis et al. [154], to complement
our review.

4.1. Dynamic and deterministic routing problems

This section presents approaches that have been successfully
applied to dynamic routing, in the absence of stochastic informa-
tion. In this context, critical information is revealed over time,
meaning that the complete instance is only known at the end of
the planning horizon. As a consequence, exact methods only pro-
vide an optimal solution for the current state, but do not guarantee
that the solution will remain optimal once new data becomes
available. Therefore, most dynamic approaches rely on heuristics
that quickly compute a solution to the current state of the problem.
Approaches for dynamic and deterministic vehicle routing prob-
lems can be divided into two categories: those based on periodic
reoptimization, and those based on continuous reoptimization.

4.1.1. Periodic reoptimization
To the best of our knowledge, the first periodic reoptimization

approach is due to Psaraftis [116], with the development of a dy-
namic programming approach. His research focuses on the DARP
and consists in finding the optimal route each time a new request
is known. The main drawback of dynamic programming is the
well-known curse of dimensionality [Chap. 1][110], which prevents
its application to large instances.

More generally, periodic reoptimization approaches start at the
beginning of the day with a first optimization that produces an ini-
tial set of routes. Then, an optimization procedure periodically
solves a static problem corresponding to the current state, either
whenever the available data changes, or at fixed intervals of
time – referred to as decision epochs [29] or time slices [81]. The
advantage of periodic reoptimization is that it can be based on
algorithms developed for static routing, for which extensive
research has been carried out. The main drawback is that all the
optimization needs to be performed before updating the routing
plan, thus increasing delays for the dispatcher.

Yang et al. [150] addressed the real-time truckload PDP, in
which a fleet of trucks has to service point-to-point transport re-
quests arriving dynamically. Important assumptions are that all
trucks can only handle one request at a time, with no possible pre-
emption, and they travel at the same constant speed. The authors
propose MYOPT, a rolling horizon approach based on a linear pro-
gram (LP) that is solved whenever a new request arrives. Along the
same line of linear programming, Chen and Xu [29] designed a dy-
namic column generation algorithm (DYCOL) for the D-VRPTW.
The authors propose the concept of decision epochs over the plan-
ning horizon, which are the dates when the optimization process
runs. The novelty of their approach relies on dynamically generat-
ing columns for a set-partitioning model, using columns from the
previous decision epoch. The authors compared DYCOL to a tradi-
tional column generation with no time limit (COL). Computational
results based on the Solomon benchmark [133] demonstrate that
DYCOL yields comparable results in terms of objective function,
but with running times limited to 10 seconds, opposed to the
various hours consumed by COL.

Montemanni et al. [102] developed an Ant Colony System (ACS)
to solve the D-VRP. Similar to Kilby et al. [81], their approach uses
time slices, that is, they divide the day in periods of equal duration.
A request arriving during a time slice is not handled until the end
of the time bucket, thus the problem solved during a time slice
only considers the requests known at its beginning. Hence, the
optimization is run statically and independently during each time
slice. The main advantage of this time partition is that similar com-
putational effort is allowed for each time slice. This discretization
is also possible by the nature of the requests, which are never
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urgent, and can be postponed. An interesting feature of their ap-
proach is the use of the pheromone trace to transfer characteristics
of a good solution to the next time slice. A similar approach was
also used by Gambardella et al. [50] and Rizzoli et al. [123].

4.1.2. Continuous reoptimization
Continuous reoptimization approaches perform the optimiza-

tion throughout the day and maintain information on good solu-
tions in an adaptive memory [138]. Whenever the available data
changes, a decision procedure aggregates the information from
the memory to update the current routing. The advantage is that
the computational capacity is maximized, possibly at the expense
of a more complex implementation. It is worth noting that because
the current routing is subject to change at any time, vehicles do not
know their next destination until they finish the service of a
request.

To the best of our knowledge, the first continuous reoptimiza-
tion approach is due to Gendreau et al. [52] with the adaptation
of the parallel Tabu Search (TS) framework introduced by Taillard
et al. [137] to a D-VRPTW problem arising in the local operation
of long distance express courier services. Their approach maintains
a pool of good routes – the adaptive memory – which is used to
generate initial solutions for a parallel TS. The parallelized search
is done by partitioning the routes of the current solution, and opti-
mizing them in independent threads. Whenever a new customer
request arrives, it is checked against all the solutions from the
adaptive memory to decide whether it should be accepted or re-
jected. This framework was also implemented for the D-VRP
[73,74], while other variations of TS have been applied to the D-
PDP [6,27] and the DARP [2,7].

Bent and Van Hentenryck [9] introduced the Multiple Plan Ap-
proach (MPA) as a generalization of the TS with adaptive memory
[52]. The general idea is to populate and maintain a solution pool
(the routing plans) that are used to generate a distinguished solu-
tion. Whenever a new request arrives, a procedure is called to
check whether it can be serviced or not; if it can be serviced, then
the request is inserted in the solution pool and incompatible solu-
tions are discarded. Pool updates are performed periodically or
whenever a vehicle finishes servicing a customer. This pool-update
phase is crucial and ensures that all solutions are coherent with the
current state of vehicles and customers. The pool can be seen as an
adaptive memory that maintains a set of alternative solutions.

In an early work, Benyahia and Potvin [13] studied the D-PDP
and proposed a Genetic Algorithm (GA) that models the decision
process of a human dispatcher. More recently, GAs were also used
for the same problem [30,65] and for the D-VRP [144]. Genetic
algorithms in dynamic contexts are very similar to those designed
for static problems, although they generally run throughout the
planning horizon and solutions are constantly adapting to the
changes made to the input.

4.2. Dynamic and stochastic routing problems

Dynamic and stochastic routing problems can be seen as an
extension of their deterministic counterparts, where additional
(stochastic) knowledge is available in the dynamically revealed in-
put. Approaches for this class of problems can be divided in two
categories: those based on sampling and those based on stochastic
modeling. As their name suggests, sampling strategies incorporate
stochastic knowledge by generating scenarios based on realizations
drawn from the random variable distributions. Each scenario is
then optimized by solving the static and deterministic problem
they define. On the other hand, approaches based on stochastic
modeling integrate stochastic knowledge analytically. The advan-
tage of sampling is its relative simplicity and flexibility on distribu-
tional assumptions, while its drawback is the massive generation
of scenarios to accurately reflect reality. Alternatively, stochastic
modeling strategies formally capture the stochastic nature of the
problem, but they are highly technical in their formulation and re-
quire to efficiently compute possibly complex expected values.
Examples of these two strategies follow.

4.2.1. Stochastic modeling
Powell et al. [113] formulated a truckload PDP as a Markov

Decision Process (MDP). Later, MDPs were used by Thomas and
White [142] and Thomas [141] to solve a VRP in which known cus-
tomers may ask for service with a known probability. Kim et al.
[82] also used MDPs to tackle the VRP with dynamic travel times.
Unfortunately, the curse of dimensionality and the simplifying
assumptions make this approach unsuitable in most real-world
applications. Nonetheless, it allowed new insights in the field of
dynamic programming.

To cope with the scalability problems of traditional dynamic
programming, Approximate Dynamic Programming (ADP) steps
forward in time, approximates the value function, and ultimately
avoids the evaluation of all possible states. We refer the interested
reader to Powell [110,111] for a more detailed description of the
ADP framework. ADP has been successfully applied to freight
transport [112,114] and fleet management problems
[60,115,129]. In particular, Novoa and Storer [104] propose an
ADP algorithm to dynamically solve the VRPSD.

Linear programming has also been adapted to the dynamic and
stochastic context. The OPTUN approach, proposed by Yang et al.
[150] as an extension of MYOPT (see Section 4.1.1), considers
opportunity costs on each arc to reflect the expected cost of travel-
ing to isolated areas. Consequently, the optimization tends to reject
isolated requests, and avoids traversing arcs that are far away from
potential requests. Later, Yang et al. [151] studied the emergency
vehicle dispatching and routing and proposed a mathematical for-
mulation that was later used by Haghani and Yang [66] on a similar
problem.

4.2.2. Sampling
Sampling approaches rely on the generation of scenarios con-

taining possible realizations of the random variables. Fig. 3 illus-
trates how scenarios are generated for the D-VRP. Solely based
on the current customers (Fig. 3a), the optimal tour would be
(A,B,E,D,C), which ignores two zones (gray areas) where customers
are likely to appear. By sampling the customer spatial distributions
(Fig. 3b), customers X, Y, and Z are generated, and the new optimal
tour is (C,X,Y,B,A,Z,E,D). Removing the sampled (potential) cus-
tomers (Fig. 3c) leads to the tour (C,B,A,E,D) which is suboptimal
regarding a myopic cost evaluation, but leaves room to accommo-
date new customers at a lower cost.

The Multiple Scenario Approach (MSA) is a predictive adapta-
tion of the MPA framework discussed in Section 4.1.2. The idea be-
hind MSA is to take advantage of the time between decisions to
continuously improve the current scenario pool. During the initial-
ization, the algorithm, generates a first set of scenarios based on
the requests known beforehand. Throughout the day, scenarios
are then reoptimized and new ones are generated and added to
the pool. When a decision is required, the scenario optimization
procedure is suspended, and MSA uses the scenario pool to select
the request to service next. MSA then discards the scenarios that
are incompatible with the current routing, and resumes the opti-
mization. Computational experiments on instances adapted from
the Solomon benchmark [133] showed that MSA outperforms
MPA both in terms of serviced customers and traveled distances,
especially for instances with high degrees of dynamism [9]. Flat-
berg et al. [47] adapted the SPIDER commercial solver to use multi-
ple scenarios and a consensus algorithm to tackle the D-VRP, while
Pillac et al. [107] implemented an event-driven optimization
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framework based on MSA and showed significant improvements
over state-of-the-art algorithms for the D-VRPSD.

An important component of scenario based-approaches such as
MSA is the decision process, which defines how the information
from the scenario pool is used to reach upon a decision regarding
the next customer to visit. The most common algorithms used to
reach a decision in MSA are: consensus, expectation, and regret.
The consensus algorithm [9,10] selects the customer appearing
first with the highest frequency among scenarios. Expectation
[8,10,26] consists in evaluating the cost of visiting each customer
first by forcing its visit in all scenarios and performing a complete
optimization. Finally, regret [8] approximates the expectation algo-
rithm and avoids the reoptimization of all scenarios. Even though
these algorithms were initially designed for the routing of a single
vehicle, they can be extended to the multi-vehicle case [145].

Hvattum et al. [70] developed the Dynamic Sample Scenario
Hedge Heuristic (DSHH), an approach similar to the consensus
algorithm for D-VRP. This method divides the planning horizon
into time intervals. At the beginning of each interval, DSHH revises
the routing by assigning a subset of promising requests to the vehi-
cles, depending on the frequency of their assignment over all sce-
narios. DSHH later led to the development of the Branch and Regret
Heuristic (BRH), where scenarios are merged to build a unique
solution.

Various local search approaches have been developed for the
stochastic and dynamic problems. Ghiani et al. [59] developed an
algorithm for the D-PDP that only samples the near future to re-
duce the computational effort. The main difference with MSA is
that no scenario pool is used and the selection of the distinguished
solution is based on the expected penalty of accommodating re-
quests in the near future. Azi et al. [3] developed an Adaptive Large
Neighborhood Search (ALNS) for a dynamic routing problem with
multiple delivery routes, in which the dynamic decision is the
acceptance of a new request. The approach maintains a pool of sce-
narios, optimized by an ALNS, that are used to evaluate the oppor-
tunity value of an incoming request.

Tabu search has also been adapted to dynamic and stochastic
problems. Ichoua et al. [75] and Attanasio et al. [1] tackled with
tabu search the D-VRPTW and the D-PDP, respectively.

4.2.3. Other strategies
In addition to the general frameworks described previously, the

use of stochastic knowledge allows for the design and implemen-
tation of other strategies that try to adequately respond to upcom-
ing events.

The waiting strategy consists in deciding whether a vehicle
should wait after servicing a request, before heading toward the
next customer; or planning a waiting period on a strategic location.
This strategy is particularly important in problems with time
windows, where time lags appear between requests. Mitrović-
Minić [100] proved that in all cases it is better to wait after servic-
ing a customer, but a more refined strategy can lead to further
improvements. The problem is in general to evaluate the likelihood
of a new request in the neighborhood of a serviced request and to
plan a waiting period accordingly. The waiting strategy has been
implemented in various frameworks for the D-VRP [22,141], D-
VRPTW [12,21,75,145], D-PDP [100,59], and Dynamic and Stochas-
tic TSP [58]. The strategy has shown good results, especially in the
case of a limited fleet facing a high request rate [145].

Aside from the waiting after or before servicing a customer, a
vehicle can be relocated to a strategic position, where new
requests are likely to appear. This strategy is the keystone of
emergency fleet deployment, also known as Emergency Vehicle
Dispatching – or Redeployment – Problem [54,66]. The reloca-
tion strategy has also been applied to other vehicle routing prob-
lems, such as the D-VRP [87], D-VRPTW [12,21,75,145], D-TSPTW
[89], D-PDP [59,119], and the Resource Allocation Problem (RAP)
[60].

Request buffering, introduced by Pureza and Laporte [119], con-
sists in delaying the assignment of some requests to vehicles in a
priority buffer, so that more urgent requests can be handled first.

4.3. Performance evaluation

In contrast to static problems, where measuring the perfor-
mance of an algorithm is straightforward (i.e., running time and
solution quality), dynamic problems require the introduction of
new metrics to assess the performance of a particular method.

Sleator and Tarjan [131] introduced the competitive analysis
[77,90]. Let P be a minimization problem and I the set of all in-
stances of P. Let z⁄(Ioff) be the optimal cost for the offline instance
Ioff corresponding to I 2 I . For offline instance Ioff, all input data
from instance I, either static or dynamic, is available when building
the solution. In contrast, the data of the online version I is revealed
in real time, thus an algorithm A has to take into account new
information as it is revealed and produce a solution relevant to
the current state of knowledge. Let zAðIÞ ¼ zðxAðIÞÞ be the cost of
the final solution xAðIÞ found by the online algorithmA on instance
I. Algorithm A is said to be c-competitive, or equivalently to have a
competitive ratio of c, if there exists a constant a such that

zAðIÞ 6 c � z�ðIoffÞ þ a; 8I 2 I ð4Þ

In the case where a = 0, the algorithm is said to be strictly c-compet-
itive, meaning that in all cases the objective value of the solution
found by A will be at most of c times the optimal value. The com-
petitive ratio metric allows a worst-case absolute measure of an
algorithm performance in terms of the objective value. We refer
the reader to Borodin and El-Yaniv [20] for an in-depth analysis of
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this measure, and to Jaillet and Wagner [77] and Fink et al. [46] for
results on various routing problems.

The main drawback of the competitive analysis is that it re-
quires to prove the previously stated inequality analytically, which
may be complex for real-world applications. The value of informa-
tion proposed by Mitrović-Minić [100] constitutes a more flexible
and practical metric. We denote by zAðIoff Þ the value of the objec-
tive function returned by algorithm A for the offline instance Ioff.
The value of information VAðIÞ for algorithm A on instance I is then
defined as

VAðIÞ ¼
zAðIÞ � zAðIoffÞ

zAðIoffÞ
ð5Þ

The value of information can be interpreted as the gap between the
solution returned by an algorithm A on an instance I and the solu-
tion returned by the same algorithm when all information from I is
known beforehand. In contrast with the competitive ratio, the value
of information gives information on the performance of an algo-
rithm based on empirical results, without requiring optimal solu-
tions for the offline instances. It captures the impact of the
dynamism on the solution yield by the algorithm under analysis.
For instance, Gendreau et al. [52] report a value of information be-
tween 2.5% and 4.1% for their tabu search algorithm for the D-
VRPTW, while Tagmouti et al. [136] report values between 10%
and 26.7% for a variable neighborhood search descent applied to a
dynamic arc routing problem.

4.4. Benchmarks

To date, there is no reference benchmark for dynamic routing
problems. Although, it is worth noting that various authors based
their computational experiments on adaptations of the Solomon
[133] instances for static routing [8,9,28,29,52]. Van Hentenryck
and Bent [145][Chap. 10] describe how the original benchmark
by Solomon [133] can be adapted to dynamic problems.

The interested reader is referred to the website of Pankratz and
Krypczyk [106] for an updated list of publicly available instances
sets for dynamic vehicle routing problems.

5. Conclusions

Recent technological advances provide companies with the
right tools to manage their fleet in real time. Nonetheless, these
new technologies also introduce more complexity in fleet manage-
ment tasks, unveiling the need for decision support systems
adapted to dynamic contexts. Consequently, during the last dec-
ade, the research community has shown a growing interest for
the underlying optimization problems, leading to a new family of
approaches specifically designed to efficiently address dynamism
and uncertainty. By analyzing the current state of the art, some
directions can be drawn for future research in this relatively new
field.

First, further work should aim at creating a taxonomy of dy-
namic vehicle routing problem, possibly by extending existing re-
search on static routing [39]. This would allow a more precise
classification of approaches, evaluate similarities between prob-
lems, and foster the development of generic frameworks.

Second, there is currently no reference benchmark for dynamic
vehicle routing problems. Therefore, there is a strong need for the
development of publicly available benchmarks for the most com-
mon dynamic vehicle routing problems.

Third, with the advent of multi-core processors on desktop
computers, and low-cost graphical processing units (GPUs), paral-
lel computing is now readily available for time-consuming meth-
ods such as those based on sampling. Although early studies
considered distributed optimization [52], most approaches re-
viewed in this document do not take advantage of parallel archi-
tectures. The development of parallel algorithms is a challenge
that could reduce the time needed for optimization and provide
decision makers with highly reactive tools.

Fourth, our review of the existing literature revealed that a large
fraction of work done in the area of dynamic routing does not con-
sider stochastic aspects. We are convinced that developing algo-
rithms that make use of stochastic information will improve the
fleet performance and reduce operating costs. Thus this line of re-
search should become a priority in the near future.

Finally, researchers have mainly focused on the routing aspect
of the dynamic fleet management. However, in some applications
there is more that can be done to improve performance and service
level. For instance, in equipment maintenance services, the call
center has a certain degree of freedom in fixing service appoint-
ments. In other words, it means that the customer time windows
can be defined, or influenced, by the call center operator. As a con-
sequence, a system in which aside from giving a yes/no answer to a
customer request, suggests convenient times for the company
would be highly desirable in such contexts.
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[101] S. Mitrović-Minić, G. Laporte, Waiting strategies for the dynamic pickup and
delivery problem with time windows, Transportation Research Part B:
Methodological 38 (7) (2004) 635–655.
[102] R. Montemanni, L.M. Gambardella, A.E. Rizzoli, A.V. Donati, Ant colony
system for a dynamic vehicle routing problem, Journal of Combinatorial
Optimization 10 (4) (2005) 327–343.

[103] Q. Mu, Z. Fu, J. Lysgaard, R. Eglese, Disruption management of the vehicle
routing problem with vehicle breakdown, Journal of the Operational
Research Society 62 (4) (2011) 742–749.

[104] C. Novoa, R. Storer, An approximate dynamic programming approach for the
vehicle routing problem with stochastic demands, European Journal of
Operational Research 196 (2) (2009) 509–515.

[105] C.M. Novoa, Static and dynamic approaches for solving the vehicle routing
problem with stochastic demands, PhD thesis, Lehigh University,
Pennsylvania, United States. AAT 3188502, 2005.

[106] G. Pankratz, V. Krypczyk, Benchmark data sets for dynamic vehicle routing
problems <http://www.fernuni-hagen.de/WINF/inhalte/benchmark_data.
htm>, 2009.

[107] V. Pillac, C. Guéret, A.L. Medaglia, An event-driven optimization framework
for dynamic vehicle routing, Decision Support Systems, in press, http://
dx.doi.org/10.1016/j.dss.2012.06.007.

[108] J.Y. Potvin, Y. Xu, I. Benyahia, Vehicle routing and scheduling with dynamic
travel times, Computers & Operations Research 33 (4) (2006) 1129–1137.

[109] W. Powell, J. Shapiro, H. Simao, An adaptive dynamic programming algorithm
for the heterogeneous resource allocation problem, Transportation Science
36 (2) (2002) 231–249.

[110] W.B. Powell, Approximate dynamic programming: solving the curses of
dimensionality, Wiley Series in Probability and Statistics, vol. 703, Wiley-
Interscience, Hoboken, New Jersey, 2007.

[111] W.B. Powell, What you should know about approximate dynamic
programming, Naval Research Logistics 56 (3) (2009) 239–249.

[112] W.B. Powell, B. Bouzaiene-Ayari, H. Simao, Dynamic models for freight
transportation, in: C. Barnhart, G. Laporte (Eds.), Transportation, Handbooks
in Operations Research and Management Science, vol. 14, North-Holland,
2007, pp. 285–365 (chapter 5).

[113] W.B. Powell, Y. Sheffi, K.S. Nickerson, K. Butterbaugh, S. Atherton, Maximizing
profits for North American Van Lines’ truckload division: a new framework
for pricing and operation, Interfaces 18 (1) (1988) 21–41.

[114] W.B. Powell, H. Topaloglu, Stochastic programming in transportation and
logistics, Handbooks in Operations Research and Management Science 10
(2003) 555–636.

[115] W.B. Powell, H. Topaloglu, Fleet management, in: S. Wallace, W. Ziemba
(Eds.), Applications of Stochastic Programming, MPS-SIAM Series on
Optimization, vol. 5, SIAM, 2005, pp. 185–215 (chapter 12).

[116] H. Psaraftis, A dynamic-programming solution to the single vehicle many-to-
many immediate request dial-a-ride problem, Transportation Science 14 (2)
(1980) 130–154.

[117] H. Psaraftis, Dynamic vehicle routing problems, in: B. Golden, A. Assas (Eds.),
Vehicle Routing: Methods and Studies, Elsevier Science Publishers BV, 1988,
pp. 223–248.

[118] H.N. Psaraftis, Dynamic vehicle routing: status and prospects, Annals of
Operations Research 61 (1) (1995) 143–164.

[119] V. Pureza, G. Laporte, Waiting and buffering strategies for the dynamic pickup
and delivery problem with time windows, INFOR 46 (3) (2008) 165–175.

[120] A. Regan, H. Mahmassani, P. Jaillet, Improving efficiency of commercial
vehicle operations using real-time information: potential uses and
assignment strategies, Transportation Research Record: Journal of the
Transportation Research Board 1493 (1995) 188–198.

[121] A. Regan, H. Mahmassani, P. Jaillet, Evaluation of dynamic fleet management
systems – simulation framework, in: Forecasting, Travel Behavior, And
Network Modeling, number 1645 in Transportation Research Record, 1998,
pp. 176–184.

[122] A.C. Regan, H.S. Mahmassani, P. Jaillet, Dynamic decision making for
commercial fleet operations using real-time information, Transportation
Research Record: Journal of the Transportation Research Board 1537 (1996)
91–97.

[123] A. Rizzoli, R. Montemanni, E. Lucibello, L. Gambardella, Ant colony
optimization for real-world vehicle routing problems, Swarm Intelligence 1
(2007) 135–151.

[124] M. Romero, L. Sheremetov, A. Soriano, A genetic algorithm for the pickup and
delivery problem: An application to the helicopter offshore transportation,
in: Theoretical Advances and Applications of Fuzzy Logic and Soft Computing,
Advances in Soft Computing, vol. 42, Springer, Berlin/Heidelberg, 2007, pp.
435–444.

[125] J. Roy, Recent trends in logistics and the need for real-time decision tools in
the trucking industry, in: Proceedings of the 34th Annual Hawaii
International Conference on System Sciences, 2001, 2001.

[126] N. Secomandi, Comparing neuro-dynamic programming algorithms for the
vehicle routing problem with stochastic demands, Computers & Operations
Research 27 (11–12) (2000) 1201–1225.

[127] N. Secomandi, A rollout policy for the vehicle routing problem with stochastic
demands, Operations Research 49 (5) (2001) 796–802.

[128] N. Secomandi, F. Margot, Reoptimization approaches for the vehicle-routing
problem with stochastic demands, Operations Research 57 (1) (2009) 214–
230.

[129] H. Simao, J. Day, A. George, T. Gifford, J. Nienow, W.B. Powell, An approximate
dynamic programming algorithm for large-scale fleet management: a case
application, Transportation Science 43 (2) (2009) 178–197.

http://www.fernuni-hagen.de/WINF/inhalte/benchmark_data.htm
http://www.fernuni-hagen.de/WINF/inhalte/benchmark_data.htm
http://dx.doi.org/10.1016/j.dss.2012.06.007
http://dx.doi.org/10.1016/j.dss.2012.06.007


V. Pillac et al. / European Journal of Operational Research 225 (2013) 1–11 11
[130] A. Slater, Specification for a dynamic vehicle routing and scheduling system,
International Journal of Transport Management 1 (1) (2002) 29–40.

[131] D. Sleator, R. Tarjan, Amortized efficiency of list update and paging rules,
Communications of the ACM 28 (2) (1985) 202–208.

[132] N. Smolic-Rocak, S. Bogdan, Z. Kovacic, T. Petrovic, Time windows based
dynamic routing in multi-agv systems, IEEE Transactions on Automation
Science and Engineering 7 (1) (2010) 151–155.

[133] M.M. Solomon, Algorithms for the vehicle-routing and scheduling problems
with time window constraints, Operations Research 35 (2) (1987) 254–265.

[134] M. Spivey, W.B. Powell, The dynamic assignment problem, Transportation
Science 38 (4) (2004) 399–419.

[135] R. Stahlbock, S. Voss, Operations research at container terminals: a literature
update, OR Spectrum 30 (1) (2008) 1–52.

[136] M. Tagmouti, M. Gendreau, J.-Y. Potvin, A dynamic capacitated arc routing
problem with time-dependent service costs, Transportation Research Part C:
Emerging Technologies 19 (1) (2011) 20–28.

[137] E. Taillard, P. Badeau, M. Gendreau, F. Guertin, J. Potvin, A tabu search
heuristic for the vehicle routing problem with soft time windows,
Transportation Science 31 (2) (1997) 170–186.

[138] E.D. Taillard, L.M. Gambardella, M. Gendreau, J.-Y. Potvin, Adaptive memory
programming: a unified view of metaheuristics, European Journal of
Operational Research 135 (1) (2001) 1–16.

[139] E. Taniguchi, H. Shimamoto, Intelligent transportation system based dynamic
vehicle routing and scheduling with variable travel times, Transportation
Research Part C: Emerging Technologies 12 (3–4) (2004) 235–250.

[140] E. Taniguchi, R. Thompson, Modeling city logistics, Transportation Research
Record: Journal of the Transportation Research Board 1790 (1) (2002) 5–51.

[141] B.W. Thomas, Waiting strategies for anticipating service requests from
known customer locations, Transportation Science 41 (3) (2007) 319–331.

[142] B.W. Thomas, Chelsea C.I. White, Anticipatory route selection, Transportation
Science 38 (4) (2004) 473–487.

[143] P. Toth, D. Vigo (Eds.) The Vehicle Routing Problem, SIAM Monographs on
Discrete Mathematics, vol. 9, SIAM Philadelphia, 2002.

[144] J.I. Van Hemert, J.L. Poutré, Dynamic routing problems with fruitful regions:
models and evolutionary computation, in: X. Yao, E. Burke, J.A. Lozano, J.
Smith, J.J. Merelo-Guervós, J.A. Bullinaria, J. Rowe, P. Tino, A. Kabán, H.-P.
Schwefel (Eds.), Parallel Problem Solving from Nature, Lecture Notes in
Computer Science, vol. 3242, Springer, Berlin/Heidelberg, 2004, pp. 692–701.

[145] P. Van Hentenryck, R. Bent, Online Stochastic Combinatorial Optimization,
MIT Press, 2006.

[146] B. Verweij, S. Ahmed, A. Kleywegt, G. Nemhauser, A. Shapiro, The sample
average approximation method applied to stochastic routing problems: a
computational study, Computational Optimization and Applications 24 (2)
(2003) 289–333.

[147] C. Waters, Vehicle-scheduling problems with uncertainty and omitted
customer, The Journal of the Operational Research Society 40 (12) (1989)
1099–1108.

[148] N. Wilson, N. Colvin, Computer control of the Rochester dial-a-ride system,
Technical Report Report R77-31, Dept. of Civil Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts.

[149] Z. Xiang, C. Chu, H. Chen, The study of a dynamic dial-a-ride problem under
time-dependent and stochastic environments, European Journal of
Operational Research 185 (2) (2008) 534–551.

[150] J. Yang, P. Jaillet, H. Mahmassani, Real-time multivehicle truckload pickup
and delivery problems, Transportation Science 38 (2) (2004) 135–148.

[151] S. Yang, M. Hamedi, A. Haghani, Online dispatching and routing model for
emergency vehicles with area coverage constraints, in: Network Modeling
2005, number 1923 in Transportation Research Record, 2005, pp. 1–8.

[152] Y. Yao, O. Ergun, E. Johnson, Integrated model for the dynamic on-demand air
transportation operations, in: V. Zeimpekis, C.D. Tarantilis, G.M. Giaglis, I.
Minis (Eds.), Dynamic Fleet Management, Operations Research/Computer
Science Interfaces Series, vol. 38, Springer, US, 2007, pp. 95–111.

[153] V. Zeimpekis, I. Minis, K. Mamassis, G.M. Giaglis, Dynamic management of a
delayed delivery vehicle in a city logistics environment, in: V. Zeimpekis, C.D.
Tarantilis, G.M. Giaglis, I. Minis (Eds.), Dynamic Fleet Management,
Operations Research/Computer Science Interfaces Series, vol. 38, Springer,
US, 2007, pp. 197–217 (chapter 9).

[154] V. Zeimpekis, C.D. Tarantilis, G.M. Giaglis, I. Minis (Eds.), Dynamic Fleet
Management, Operations Research Computer Science Interfaces Series, vol.
38, Springer, US, 2007.


	A review of dynamic vehicle routing problems
	1 Introduction
	2 Dynamic vehicle routing problems
	2.1 A general definition
	2.2 Differences with static routing
	2.3 Measuring dynamism

	3 A review of applications
	3.1 Services
	3.2 Transport of goods
	3.3 Transport of persons

	4 Solution methods
	4.1 Dynamic and deterministic routing problems
	4.1.1 Periodic reoptimization
	4.1.2 Continuous reoptimization

	4.2 Dynamic and stochastic routing problems
	4.2.1 Stochastic modeling
	4.2.2 Sampling
	4.2.3 Other strategies

	4.3 Performance evaluation
	4.4 Benchmarks

	5 Conclusions
	Acknowledgements
	References


