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Abstract Traffic lights play an important role nowadays
for solving complex and serious urban traffic problems.
How to optimize the schedule of hundreds of traffic lights
has become a challenging and exciting problem. This paper
proposes an inner and outer cellular automaton mechanism
combined with particle swarm optimization (IOCA-PSO)
method to achieve a dynamic and real-time optimization
scheduling of urban traffic lights. The IOCA-PSO method
includes the inner cellular model (ICM), the outer cellu-
lar model (OCM), and the fitness function. Our work can
be divided into following parts: (1) Concise basic transition
rules and affiliated transition rules are proposed in ICM,
which can help the proposed phase cycle planning (PCP)
algorithm achieve a globally sophisticated scheduling and
offer effective solutions for different traffic problems; (2)
Benefited from the combination of cellular automaton (CA)
and particle swarm optimization (PSO), the proposed inner
and outer cellular PSO (IOPSO) algorithm in OCM offers a
strong search ability to find out the optimal timing control;
(3) The proposed fitness function can evaluate and conduct
the optimization of traffic lights’ scheduling dynamically
for different aims by adjusting parameters. Extensive exper-
iments show that, compared with the PSO method, the
genetic algorithm method and the RANDOM method in
real cases, IOCA-PSO presents distinct improvements under
different traffic conditions, which shows a high adaptabil-
ity of the proposed method in urban traffic network scales
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under different traffic flow states, intersection numbers, and
vehicle numbers.
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1 Introduction

Traffic congestion in urban traffic networks is a costly
problem that has brought out many severe problems, such
as pollution, parking, and security. These problems have
already restricted the urban development. In large cities, the
possibility of the construction and expansion of urban roads
would be constrained by the urban space more and more
seriously. Even the simple idea that the government rebuilds
the existing urban infrastructures in a reasonable planning
may still be very hard to implement in practice. It has been
widely recognized that the optimization scheduling of traf-
fic lights at urban intersections provides an effective and
economic way to solve traffic congestion problems [1–3].
The key behind the problem is to achieve a global optimal
scheduling of traffic lights, which improves the urban traffic
conditions comprehensively and accelerates the traffic flow
through cities. Another important point desiring attention is
that many cities have hundreds of intersections under the
traffic light control. The behaviors of traffic lights at differ-
ent intersections must be coordinated to achieve a common
goal of optimizing traffic flow. The scheduling of hundreds
of traffic lights is very complex and challenging.

In this paper, a dynamic and real-time traffic light opti-
mization method based on cellular automata (CA) and parti-
cle swarm optimization (PSO) is proposed. The main moti-
vations can be summarized as follows. (1) CA is a decen-
tralized computing model, which provides an excellent
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platform for performing complex evolution with the help
of only local information. Due to its simplicity, flexibil-
ity and efficiency in computer simulations, CA has been
a powerful tool to conduct exploitations in physics, biol-
ogy, social science, computer science, and so on [9, 10].
(2) Because of the faster computing speed and the better
global searching ability in dynamic multi-objective opti-
mization environment, the PSO become one of the most
important areas in the field of swarm intelligence [11–
14]. Actually, it has been applied to solve many complex
optimization problems, but only a little previous literatures
focus on optimizing the scheduling of urban traffic lights
[16–19]. Meanwhile, in order to enhance the performance
of PSO, many attempts have been made, such as study-
ing particle’s neighbor topologies [23, 24], applying com-
prehensive learning strategies [25], employing cooperative
behaviors [26], considering time variant inertia and acceler-
ation coefficients [27]. These work suggests that PSO have
a huge potential to optimize the scheduling of urban traffic
lights.

Based on the above considerations, an inner and outer
CA mechanism combined PSO (IOCA-PSO) method is pro-
posed in the paper, which aims to achieve a globally optimal
scheduling of traffic flow by coordinating the traffic lights.
The IOCA-PSO method consists of the inner cellular model
(ICM), the outer cellular model (OCM), and the fitness
function. ICM conserves the scheduling settings of traffic
lights and provides a flexible way to control the change
of traffic lights. OCM devotes into optimizing the setting
in ICM. The fitness function is the link between ICM and
OCM by calculating the fitness value, which is used to
evaluate the settings in ICM and conducts the optimization
in OCM. The main contributions of this paper lie on the
following points.

(1) The IOCA-PSO method is proposed to optimize the
global scheduling of traffic lights in the extensive
urban area, which can efficiently control urban traffic
lights dynamically and in real time. It can also achieve
a comprehensive scheduling of all traffic lights, which
includes the timing control, the phase sequence con-
trol, and the special phase controls for different kinds
of traffic problems.

(2) In ICM, a phase cycle planning (PCP) algorithm is
proposed, which can achieve the globally sophisticated
control by the concise rules. The rules include the
basic transition rules and the affiliated transition rules.
Benefited from the discrete characters of CA, the basic
transition rules determine the phase shifting control of
traffic lights. The affiliated transition rules achieve the
special phase controls for different kinds of complex
traffic problems.

(3) In OCM, an inner and outer cellular PSO (IOPSO)
algorithm is proposed based on CA and PSO. Deriv-
ing from a powerful CA-based mechanism that guides
the site change of particles in OCM, the IOPSO algo-
rithm achieves a better balance of the local exploitation
and the global exploration. And the IOPSO algorithm
helps OCM find the optimal timing scheduling in ICM
in the limited time effectively.

The remainder of this paper are organized as follows.
Section 2 summarizes the latest and influential work related
to the traffic light scheduling. Section 3 details the prob-
lem of traffic light scheduling. Then the IOCA-PSO method
is presented in Section 4. And Section 5 details the exper-
iments and discussions. Finally, conclusions and perspec-
tives are concluded in Section 6

2 Literature review

Researchers have attempted to optimize the traffic light
scheduling by a variety of methods. Most methods can be
divided into six types: decision support systems [32, 33],
reservation and market-based systems [34, 35], neural net-
works [36, 37], genetic algorithms [20, 39], fuzzy logic
[40–42], reinforcement learning [43, 44]. Their latest and
influential work is reviewed as follows.

(1) Decision support systems: Shi and Li [32] described
a novel framework of decision support system proto-
type integrated data base, expert system and knowl-
edge creation. By improving the decisional context to
increase the efficiency of assessments and schedul-
ing, this system aims to aid environmental planners,
urban designer or transport administrators. A deci-
sion support system was also proposed by Shumin
et al. [33], which is applied for the urban traffic
emergency scheduling based on the expert system.
In the emergency incident, their system can formu-
late strategies of traffic control quickly and effectively.
Most systems can offer the effective scheduling, but
they are depended on judgments and historical traf-
fic data, and hard to consist with the change of traffic
scenarios.

(2) Reservation and market-based systems: Bazzan et al.
[34] proposed an agent-based method, which consid-
ers some variants for the demand processing and the
routing. Vasirani and Ossowski [35] designed a com-
petitive computational market, where driver agents
trade the use of the capacity inside the intersections
with intersection manager agents. They show how the
market dynamics influence the drivers’ behavior, lead-
ing to a more efficient use of the urban road traffic
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system, in terms of lower average travel times and less
congestion

(3) Neural networks: Park et al. [36] investigated various
methodologies for the traffic information prediction,
and presented a speed prediction algorithm. Their
algorithm is trained with the historical traffic data, and
can predict the vehicle speed profile with the current
traffic information. Based on back propagation neu-
ral network method, Huang et al. [37] presented a
scheduling algorithm, which is alterable in the phase
cycle. After considering the lengths of each phase
motorcade, their algorithm determines how much time
the current phase of the green light to extend. But the
urban road networks in control just have very sim-
ple structures. And those methods of neural networks
suffer degraded performances when traffic volumes
change.

(4) Genetic algorithms (GA): Sanchez-Medina et al. [20]
developed and tested a new model based on the genetic
algorithm for the optimization task. And cellular-
automata-based simulators are used to evaluate every
possible solution. In the work of Teo et al. [39], the
genetic algorithm took the current queue length as
its input, and it outputted the optimized green time
for the intersection. The result of the genetic algo-
rithm is improved by introducing the incoming traffic
flow during red time of each phase. However, due to
the delayed convergence behavior of the genetic algo-
rithm, the cost of simulation increases seriously for a
large size of network.

(5) Fuzzy logic: Karakuzu and Demirci [40] developed
fuzzy logic based traffic junction light simulator sys-
tem for the smart traffic junction light controller.
Mehan and Sharma [41] described a fuzzy logic sig-
nal controller for a four–way intersection suitable for
mixed traffic, including a high proportion of motorcy-
cles. They discuss the traffic control strategy, which
dictates the design criteria for the fuzzy logic con-
troller. Hwang and Cho [42] developed a fuzzy logic
traffic system that considers the two two-way inter-
sections, which is able to adjust traffic signals in time
based on traffic situation. To determine the preferred
actions of a traffic signal, a set of rules are used in
fuzzy logic signal controllers based on a number of
inputs. But it is difficult to generate an effective rule
base, especially for complex intersections with a lot of
possible phases.

(6) Reinforcement learning: Prashanth and Bhatnagar [43]
proposed a reinforcement learning algorithm with
function approximation for the traffic signal schedul-
ing. Their algorithm incorporates state-action features
and is easily implementable in high-dimensional set-

tings. The work of Desjardins and Chaib-draa [44]
designed a multiple-level architecture using reinforce-
ment learning techniques, which is the first step
toward a fully functional low-level controller. But most
approaches are effective with static traffic distribution,
and suffer a performance penalty when parameters
describe traffic state fluctuate over time

Although the abundant achievements have been made in
the above work. Three main weak points can be summarized
as follows.

(1) Many methods just focus on the special urban traf-
fic network with limited urban elements (traffic lights,
intersections, roads, and so on). And some methods are
even specially designed for a given scenario or a given
city.

(2) Because of the limitation of the convergence rate of
optimization algorithm, many methods can’t achieve
satisfactory results in a short computing time. Many
latest variants of classical optimization algorithms
with the faster convergence speed are not considered.

(3) Some optimization methods use the historical mea-
sured data to determine the scheduling of current
traffic lights. But the historical data couldn’t accu-
rately describe the current traffic condition. And the
traffic light scheduling applying historical data suffers
three percent performance decay per year [8].

Compared with the six types of methods above, the cur-
rent study of POS in the traffic light scheduling is just
at the early development stage. As an important part of
the artificial intelligence field [15], PSO has achieved the
substantial improvements. In order to enhance the perfor-
mance of PSO, many attempts have been made, such as
studying particle’s neighbor topologies [23, 24], applying
comprehensive learning strategies [25], employing cooper-
ative behaviors [26], considering time variant inertia and
acceleration coefficients [27]. Compared with the above six
types of methods, PSO has many advantages, such as faster
computing speed and better global searching ability.

These advantages make it present a tremendous poten-
tial to optimize traffic light scheduling. Chen and Xu [16]
applied PSO for training a fuzzy logic controller of each
intersection by determining the effective green time for each
phase of the traffic lights. And a simple network with two
basic junctions is used to test their method. Peng et al. [17]
presented PSO with isolation niches to control traffic lights,
where PSO is tested in a theoretical instance with a restric-
tive one-way road with two intersections. Their method
mainly applies the capacity of isolation niches to main-
tain the diversity of the swarm. Kachroudi and Bhouri [18]
used a predictive model based on a public transport progres-
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Fig. 1 The framework of the traffic light scheduling

sion model in a multi-objective version of PSO. This work
is simulated on a special urban road network of 51 links
and 16 intersections. Each intersection is controlled by traf-
fic lights with a same cycle time of 80s. Garcia-Nieto et
al. [19] applied PSO to optimize the scheduling of traffic
lights in the two different urban networks by simulations
in the microscopic traffic simulator. And the sequence of
valid phases remains unchanged, which needs be decided
correctly by operators in the beginning of optimization. The
original PSO algorithm in their method can’t provide the
enough search capability for an optimal scheduling in the
limited time.

In summary, the existing work based on PSO is just
designed to achieve the repetitive and monotonous timing
scheduling in a given time period. The work [16–18] can
only be applied to a theoretical road network. And they can’t
achieve the flexible optimization scheduling in the actual
urban road network. Meanwhile, the existing work [16–19]
only focuses on the original PSO method, and many lat-
est and high-efficiency PSO variants still can’t find their
way into the traffic light optimization. Their monotonous

schedules of traffic lights can’t solve different special traffic
problems flexibly.

To optimize the traffic light scheduling in a large urban
area efficiently, the IOCA-PSO method is proposed in this
paper, which is a dynamic and real-time traffic optimization
method based on PSO and CA mechanism. The discrete and
plain rules of the CAmechanism in ICMmake it easy to add
various rules to control the complex traffic lights. Different
rules can be designed to solve different given traffic prob-
lems. Meanwhile, the CA mechanism in OCM is integrated
into PSO to make the IOPSO algorithm, which makes the
performance of the IOCA-PSO method better than the other
state-of-the-art methods.

3 Problem description

As the urban traffic lights increase sharply, the traffic light
scheduling goes through from the local control in a sin-
gle intersection to the arterial coordination in a series of
intersections, finally focuses on the area scheduling which

Fig. 2 The phase sequence
control and the timing control
optimization for an intersection
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involves hundreds of intersections. The framework of the
traffic light optimization scheduling in a large urban area is
shown in Fig. 1.

The optimization scheduling of traffic lights can be
defined by the pair (Uf, JC). JC is the objective function.
And Uf is a known scheduling set. This pair is detailed as
follows.

(1) The objective function JC is an evaluation method-
ology for different scheduling settings. It is defined
below.

JC : X[t0,t] + Wt0,t → R

Through the transition of JC, a ordered pair(
X[t0,t],W[t0,t]

)
is mapped to a value in the set of real

numbers R. X[t0,t] are the set of the traffic volumes of
different roads from t0 to t. W[t0,t] are the set of the
traffic states from t0 to t. And the mapping value in
the set R denotes the comprehensive evaluation of the
optimization scheduling from t0 to t.

(2) Uf is a known total scheduling set, which contains all
possible schedules of traffic lights that make vehicles
and pedestrians go through intersections.

The optimization method ties to find the optimal schedul-
ing set U∗ in Uf according to JC. Assuming u(·) , u∗

C(·) are
specific scheduling sets (u(·), u∗

C(·) ∈ Uf), J∗C is the acces-
sible optimal value (J∗C ∈ R). And the optimal scheduling
set can be understood as the accessible scheduling with the
maximal or minimum value J∗C. It is described as follows.

When Max
u(·)∈Uf

JC (u(·)) = J∗C or Min
u(·)∈Uf

JC (u(·)) = J∗C, the
optimal scheduling set is determined.

U∗ = {
u∗

C(·)|u∗
C(·) ∈ Uf, JC

(
u∗

C(·)) = J ∗
C

}

In the practical optimization, the pair (Uf, JC) is what we
focus on. JC can consider many optimization goals, such
as the average delay, the number of stops, and the queuing
length of vehicle. But it is not possible to optimize all goals
at the same time. JC usually consider one or two goals to
select the optimal scheduling based on different aims.

All traffic lights at a same intersection have to be nec-
essarily synchronized for the security, and they carry out
a series of common phases. A phase of an intersection
includes a combination of all traffic lights’ color states at

the intersection, and the corresponding time span. When an
intersection is at a phase, all traffic lights at the intersection
carry out their corresponding color states, and keeps their
color states unchangeable in the corresponding time span.
To avoid the vehicle collisions and accidents, the phases are
always kept valid [22], which must follow traffic rules and
road constructions. To restrict optimizations to only work
with feasible states, only valid phases are considered. The
phase in the following paper is short for the valid phase.
The schedule in Uf contains the comprehensive schedul-
ing of traffic lights, which includes the timing control, the
phase sequence control and the special phase controls for
different kinds of traffic problems. It can be described as
follows.

(1) All selected phases at an intersection make up a phase
sequence. And the intersection will go through the
phase sequence periodically. To ensure that the traf-
fic flow in every direction can own a moving chance,
each selected phase in the phase sequence must obtain
a time span to carry out.

(2) The optimization of the phase sequence control is to
find a more effective sequence of all selected phases.
And the optimization of the timing control is to find
the best time span of each phase in the phase sequence.

Table 1 The process of the IOCA-PSO method

INPUT:

The road network, the traffic flow information, distributions of traffic

lights, the given time period, the phases of each intersection

PROCEDURE:

Divided the given time period into a sequence of cycle durations

For each cycle duration in the cycle duration sequence

Step 1: Establish cell, cell space, neighbor, transition rules

of ICM and OCM.

Step 2: Implement the PCP algorithm and the IOPSO

algorithm in ICM and OCM cooperatively.

Step 3: Determine the minimum cycle process for the current

cycle duration.

Step 4: Output the global optimal scheduling of traffic lights

U∗.
End for
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Table 2 Symbol definitions

Definitions Description

t The count of time-step units in

simulations, and initializes as 1.

i The number of an intersection in the

objective urban road network, and

initializes as 1

j The number of a phase in a phase

sequence, and initializes as 1.

h The number of a cycle duration in the

cycle duration sequence of a given time

period, and initializes as 1. hmax denotes

the number of the maximum cycle

duration.

k The number of a particle in the particle

swarm in OCM.

g The number of an iteration in the whole

simulative iterations, and initializes as 1.

gmax denotes the number of the maximum

iteration.

H The amount of vehicles appearing in

simulations in a given cycle duration.

M The amount of intersections in the

objective urban road network.

ph
j
i The phase j at the intersection i

phmax The maximum length of all phase

sequences.

L The size of whole particles swarm in OCM
H∑

e=0
T Te The total running time of all vehicles

appearing in our simulations in a cycle

duration.
H∑

e=0
WTe The total waiting time of all vehicles

appearing in our simulations in a cycle

duration.

ts(i,j) The time span of the phase j at the

intersection i.
j∑
1

ts(i,j) The accumulation of time spans from the

phase 1 to the phase j at the intersection

i.

g(i,j), r(i,j) The number of green traffic lights, and the number

of red traffic lights at the phase j

of the intersection i.

For example in Fig. 2, after the optimization of the
phase sequence control, the phase sequence of num-
ber sequence 1, 2, 3, 4, 5 is adjusted into 2, 5, 1, 4, 3.
After the optimization of the timing control, their time

spans 10, 8, 12, 15, 20 are adjusted into 12, 6, 17, 23,
15. What’s more, there are many different given traffic
problems that need special phase controls, such as the
greenlight roads with no vehicles.

In the actual application, the scheduling process of Uf

consists of two basic parts, the minimum cycle process of
traffic lights and its corresponding cycle duration. And all
traffic lights repeatedly execute the minimum cycle pro-
cess periodically in its corresponding cycle duration. Most
optimization methods practically are devoted to finding the
optimal minimum cycle process for a given cycle duration.

Furthermore, the dynamic and real-time charac-
ters of the proposed IOCA-PSO method are described
below.

(1) The discovery process of the IOCA-PSO method will
be completed at the beginning of each cycle duration.
By the actual control system, the optimal minimum
cycle process for each cycle duration can be applied
for its corresponding actual duration. Because of the
gradual change character of the urban traffic flow, the
current discovery result also can be applied for the
delayed future duration, which can win more time for
the execution of the IOCA-PSO method.

(2) The objective time period can be divided into a
sequence of successive cycle durations flexibly. Then
the IOCA-PSO method will try to find the optimal
minimum cycle process for each cycle duration by
simulations in the traffic simulator. Because the min-
imum cycle process for each cycle duration in the
objective time period is different, so the IOCA-PSO
method is dynamic.

(3) When the acquisition interval of actual traffic infor-
mation is less than the time span of corresponding
minimum cycle processes, and the computing power
is enough, the IOCA-PSO method can achieve a real-
time scheduling. The time span of each cycle duration
is equal to the time span of its corresponding minimum
cycle processes. And each minimum cycle process just
executes once without repetitions in its corresponding
cycle duration.

cell (i,j)i+1

i

m

1

1 2 3 4 5 6 7

i-1
o

State: the combination of

traffic lights’ color states

and the time span.

Connotation: the phase j of the

intersection i

Fig. 4 The state and connotation of cell (i, j)
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Fig. 5 a The real urban network. b Phase sequences of different intersections. c The M × phmax time-span matrix when phmax = 7. d The cell
space in ICM, and the gray cells denote virtual cells

4 The IOCA-PSO method

In this section, the IOCA-PSO method is detailed, which
can achieve a dynamic and real-time optimization schedul-
ing of traffic lights in an extensive urban area, and achieve
the global optimal scheduling of traffic lights in the objec-
tive urban area. The framework of the IOCA-PSO method
is shown in Fig. 3. The IOCA-PSO method consists of
ICM, OCM, and the fitness function. (1) The real traffic
scheduling has a great deal of problems. ICM is established
on its the CA mechanism (cell, cell space, neighbor, tran-
sition rule). So that flexible and efficient transition rules
of CA can be designed in ICM to solve different traffic
problems. ICM make the IOCA-PSO method achieve a
comprehensive scheduling. The PCP algorithm in ICM can
ensure that the transition rules carry out smoothly. (2) How-
ever, it is still hard to artificially determine the color of a
huge number of traffic lights at different time. So OCM
is proposed to automatically determine the corresponding
color state of each traffic light at different time. OCMmakes
the IOCA-PSO method achieve optimized scheduling. The
IOPSO algorithm is the main body of OCM. Based on the
CA mechanism (cell, cell space, neighbor, transition rule) in
OCM, the IOPSO algorithm can optimize the scheduling of
traffic lights more efficiently than other PSO algorithms. (3)
In the end, how to verify whether a scheduling by a method
is better or not? The fitness function is proposed to evaluate

Fig. 6 The vertical and horizontal neighbors of the cell o

a given scheduling. The content of this section is arranged
as follows.

(1) In Section 4.1, some symbols and definitions are
defined to illustrate the IOCA-PSO method, which
consists of ICM, the fitness function, and OCM.

(2) Section 4.2 elaborates ICM, which achieves the glob-
ally sophisticated scheduling by basic transition rules
and affiliated transition rules. In Section 4.4, OCM is
devoted to finding the optimal timing control based on
the control scheduling conserved in ICM. In ICM and
OCM, their corresponding cell, cell space, neighbor,
transition rule build the fundamental elements of the
CA mechanism. For solving the practical traffic opti-
mization problems, the PCP algorithm and the IOPSO
algorithm are designed in ICM and OCM, respectively.
ICM is detailed from the cell (in Section 4.2.1), cell
space (in Section 4.2.2), neighbor (in Section 4.2.3),
transition rule (in Section 4.2.4) and the PCP algorithm
(in Section 4.2.5). OCM is detailed from the cell (in
Section 4.4.1), cell space (in Section 4.4.2), neighbor
(in Section 4.4.3), transition rule (in Section 4.4.4), and
the IOPSO algorithm (in Section 4.4.5).

(3) In Section 4.3, the fitness function is detailed, which is
the link between ICM and OCM. The fitness function
calculates the fitness values of the scheduling setting in
ICM. And OCM applies the calculated fitness values
to conduct and adjust their optimization of the timing
control based on the control scheduling conserved in
ICM.

In terms of the pair (Uf, JC), ICM and OCM offer a coor-
dinated effort to find U∗ in Uf, and the fitness function plays
the role of JC. The process of the IOCA-PSO method is
described in Table 1.

4.1 Symbols and definitions

Some symbols are defined in Table 2 .
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4.2 ICM

The connection of traffic lights in an urban road network
is so complex that it is hard to control all traffic lights
intuitively and globally. With the help of transition rules
in CA, ICM provides a perfect way to control hundreds
of traffic lights and develop the solutions for many given
problems. ICM is detailed from cell, cell space, neighbor,
transition rule, and the PCP algorithm in this subsection.
The cell, cell space, neighbor, transition rule make for the
CA mechanism in ICM, which conserves the scheduling of
traffic lights. The PCP method carries out the conserved
scheduling.

4.2.1 Cell

Each cell represents a phase of an intersection. The state
of a cell has two basic elements corresponding to its phase,
which are a valid combination of traffic lights’ color states,
and its corresponding time span. A cell in the cell space
(detailed in Section 4.2.2) is denoted by its coordinate. For
example in Fig. 4, cell (i, j) denotes the phase j of the inter-
section i. And The Fig. 4 shows the connotation and state of
cell (i, j).

4.2.2 Cell space

Each intersection in the objective urban road network is
assigned with a number. And the adjacent intersections on a
main road are tied to be assigned with the continuous num-
bers, which is helpful to study and solve the urban trunk
road coordination scheduling [28, 29].

All successive phases for one intersection make up a
phase sequence. For example, the sequences of the adjacent
intersections i and i+1 in Fig. 5a are showed in Fig. 5b. The
intersection i contains seven phases, and the time spans of
the seven phases are 40, 10, 15, 36, 18, 42 and 14s. Twelve

i+1

i

m

1

1 2 3 4 5 6 7

Fig. 7 The sites of some arrows at t = 25

Fig. 8 The moving process of the arrow in the row i + 1 (Fig. 5d) at
different time steps

traffic lights are located at the intersection i, so the com-
binations of twelve color states are considered in the seven
successive phases. And g, r and y are used to denote that
the color state of a traffic light is green, red and yellow,
respectively. When the intersection i is at the second phase,
the combination of the color states is “ggrrrrrrrggg”, which
means that the color states of five traffic lights are green
(g), and the color states of seven traffic lights are red (r)
during the corresponding time span 10s. When the intersec-
tion i enters into the new phase, the color states of all traffic
lights at the intersection i are adjusted to the corresponding
new combination. For instance, the following combination
of color states in the third phase is “ggyyyyrrrggg”, four red
traffic lights will be changed in the yellow color states (y)
for next 15s.

The phase sequence lengths of different intersections
vary. If the objective urban road network has M intersec-
tions, and the maximum length among M corresponding
sequences is phmax, the time spans of M independent phase
sequences are integrated into aM×phmax time-span matrix.
Each time span is an element of the time-span matrix. To
make the phase sequence of each intersection is phmax,
the additional vacant elements are added in the time-span
matrix. They are marked by the time span of 0. For example,
as is shown in Fig. 5c, the maximum length among M phase
sequences is 7. The intersection i + 1 (Fig. 5b) has only
five phases, which corresponds to the first five time spans
in row i + 1 of the M × phmax time-span matrix (Fig. 5c).
As the additional vacant elements, the sixth and seventh ele-
ments in row i + 1 are marked with the time span of the
value 0.

Furthermore, the cell space in ICM is a set of phases of
all intersections in the objective urban network, which is
cut by the infinite M × phmax grids. Each grid creates a
cell. The cell in the cell space (Fig. 5d) corresponds to the
time span in the time-span matrix (Fig. 5c). And the time
span of cell (i, j) can obtained from the element (i, j) in
the corresponding time-span matrix. If the corresponding
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Fig. 9 Different simulative
states at an intersection at
T1, T2 and T3 (T1 < T2 < T3)

T1 T2 T3

element of a cell in the time-span matrix is an additional
vacant element, this cell is called as a virtual cell. The vir-
tual cell is set for maintaining the structural integrity of the
cell space. For example in Fig. 5d, the time span of cell
(i, 1) is 40s, and cell (i + 1, 6), cell (i + 1, 7) are virtual
cells.

The novel two-dimensional encode of M × phmax cell
space has three main advantages. (1) This encode is help-
ful to integrate the CA mechanism into ICM, which is the
foundation to add concise rules to achieve the complex
traffic scheduling. (2) This encode makes every intersec-
tion own independence. The adjustment of each intersection
only involves its corresponding row. The scheduling in the
cell space can be precise and flexible.

4.2.3 Neighbor

The neighbors of a cell contain two adjacent vertical cells
(neighbors) and two adjacent horizontal cells (neighbors).
Its two vertical neighbors denote two different phases with
the same phase number at different intersections, and its two
horizontal neighbors denote its two consecutive phases at
the same intersection. Note that the adjacent intersections
on one main road are assigned with continuous numbers, so
they are mostly adjacent in the cell space vertically.

As an example in Fig. 6, the site of the cell o is (i,4).
The cell o has two vertical neighbors a, c and two horizontal

Fig. 10 The moving process of the arrow in the row i + 1 (Fig. 5d) at
different time steps with the affiliated rule Rule2

neighbors b, d . For cell o, a and c are two different phases
of intersections i − 1 and i + 1 , b and d are its two consec-
utive phases in the phase sequence of the intersection i. The
intersections i − 1 and i + 1 are likely to be adjacent with
the intersection i in the urban trunk road.

4.2.4 Transition rule

The CA mechanism of ICM provides an efficient plat-
form to insight the scheduling of traffic lights from the
global view. The supreme advantage of the CA mecha-
nism is that concise discrete rules can be defined to achieve
the sophisticated control. And the complex and global traf-
fic scheduling in ICM can also be achieved by adding
rules. The rules in ICM are classified as the basic tran-
sition rules and the affiliated transition rules. They can
achieve the timing control, the phase sequence control and
the special phase controls for different kinds of traffic
problems.

Assuming each intersection is seen as an arrow, the arrow
can only move in the cell row whose number is same with its
intersection number. The arrow goes through its successive
cell in a row periodically. The last cell is followed by the
first cell, and this arrow cycle is repeated during the current
cycle duration. When an arrow locates in a cell, it means
that the intersection denoted by the arrow is at the phase
denoted by the cell. Under normal circumstances without
the affiliated transition rules, an arrow need stay at a cell up
to the corresponding time span of the cell. That is to say,
the intersection remains the combination of traffic lights’
color states of the current phase unchanged in the time span
of the current phase. For example, the arrow denoting the
intersection i + 1 can only move in the row i + 1 of the cell
space. And the current site of this arrow in row i + 1 is at
cell(i + 1, 2), which means the intersection i + 1 is going
through its second phase. Figure 7 shows the sites of some
arrows at t = 25 in Fig. 5d, and different arrows at the same
time can locate in different phases.

(1) The basic transition rules are used to determine the
phase shifting control of traffic lights, which can also
be seen as the right site of each arrow in the cell space
at different time steps. PR is introduced to calculate



A swarm intelligent method for traffic light scheduling 217

18 24 12 14 0 020

10 20 0 12 0 018

Row i+1 in the cell space

Initial row i+1 in the

matrix of time spans

Optimized row i+1 in the

matrix of time spans

Fig. 11 The change of time spans for the cell row i + 1 in the cell
space (Fig. 5d)

the accumulation of all phases’ time spans at the

intersection i, which can be denoted PR =
phi∑
1

ts(i,j).

At each time step t , each arrow in the cell space carries
out the basic transition rule Rule1, which can be defined as
follows.

Definition Rule1: For an arrow at cell (i, j), if t
PR

−
j∑
1

ts(i,j) > ts(i,j), then i = i, j = j + 1. The arrow will

enter into the next adjacent cell (i, j +1). Else, i = i, j = j ,
the arrow will still stay at its current cell (i, j).

According to Rule1, the moving process of the arrow in
the row i + 1 (Fig. 5d) is shown in Fig. 8. Because the
time spans of the last two phases are all with the value 0,
the intersection goes through first five successive phases.
Then it returns to the first phase to start a new moving
cycle.

(2) Based on the basic transition rule Rule1, the affiliated
transition rules can be made to achieve the timing con-
trol and the special phase controls for different kinds
of traffic problems.

It is a common traffic problem that the roads with green
lights have no vehicles to advance. If sensor detections in
cities can afford to collect the real-time traffic information,
it can be solved in ICM. As an example shows in Fig. 9 at
an intersection, T1 and T2 (T1 < T2) are two moments in
the common phase j, T3 is the initial moment of the next
phase (the phase j + 1 or the first phase). The east-west and

north-south lanes both have waiting vehicles at T1. After the
running phase goes on at T2, all vehicles on the north-south
lanes have leaved, while the vehicles on the east-west lanes
with the red lights are still waiting. When this condition is
discovered, the current phase j has no effect on improving
local traffic flow again. So it is ideal to force the intersection
into the next phase at T3, which make the vehicles on the
east-west lanes go through at once. Meanwhile, these opera-
tions of the special phase controls are expected not to affect
the following cycles of the phases.

For the above condition that the roads with green lights
have no vehicles, the solution can be defined by the affili-
ated transition rule Rule2 For an arrow at cell (i, j), tb(i,j)

is the consuming time of the arrow at the current cell.
The remaining time of the arrow that need wait at the
current cell can be calculated by ts(i,j) − tb(i,j). When
the intersection i at the phase j is forced into the next
phase (the phase j + 1 or the first phase), ts(i,j) − tb(i,j)

is called as the jump time. ti is the accumulation of all
jump time at the intersection i, and initializes as 0. At
each time step t , each arrow in the cell space carries out
the affiliated transition rule Rule2, which can be defined
as follows.

Definition Rule2: If the condition that the roads with green
lights have no vehicles is discovered at the phase j of the
intersection i at the time step t , then i = i, j = j + 1, ti =
ti + (

ts(i,j) − tb(i,j)

)
. And the arrow at the cell (i, j) will

enter into the next adjacent cell (i, j + 1) immediately. Else

if this condition is not discovered, when t+ti
PR

−
j∑
1

ts(i,j) >

ts(i,j), then i = i, j = j + 1. The arrow will enter into the
next adjacent cell (i, j + 1). Else, i = i, j = j , the arrow
will still stay at its current cell (i, j).

Different from the basic transition rule Rule1, the affil-
iated transition rule Rule2 considers the ti . The moving
process of the arrow in the row i + 1 at different time steps
is shown in Fig. 10. The condition that the roads with green
lights have no vehicles is discovered at t = 10 and t = 70.
Then the intersection terminates the current phase at t = 10
and t = 70, and is forced into the next phase by adding ti+1.

Fig. 12 The interaction
between ICM and the simulator
(VISSIM) by the PCP algorithm
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Furthermore, the addition of affiliated transition rules
can also adjust the existing unreasonable phase sequence.
It is an absolute imperative when the optimization of cur-
rent phase sequence is not satisfying. For the phase j at
the intersection i, if the time span of ph

j
i (not including

phases of virtual cells) is smaller than the setting thresh-
old value for the time span after the optimization. It can
be speculated that the phase ph

j
i has no obvious effect

on its corresponding traffic flow. So the phase sequence
should be rebuilt to make ph

j
i more effective. The sequence

of all phases at the intersection i will be randomly pro-
duced again. Then the IOCA-PSO method is implemented
to find the optimal scheduling again. For examples in
Fig. 5d, the change of time spans of row i + 1 is shown
in Fig. 11. When ph4i+1 = 0 is discovered after the
optimization, the phase sequence of row i + 1 is rebuilt
randomly.

For the above condition that needs change the phase
sequence, the solution can be defined by the affiliated
transition rule Rule3, which can be defined as follows.

Definition Rule3: After the optimization, for each row i in
the cell space if there is one phase in the phase sequence
whose time span is less than the threshold value , then
phi = random(phi). The phase sequence of the row i will
be randomly produced. After the inspections of each row, a
new start that finds the optimal scheduling will be executed,
which is based on the adjusted phase sequences of the rows.

4.2.5 The PCP algorithm

As is shown in Fig. 12, the PCP algorithm in ICM pro-
vides an interaction between the ICM and the urban traffic
simulator. It is unrealistic to test the scheduling in ICM by
the tentative and repetitive applications in the real urban
road network. But the scheduling in ICM can be tested by
the urban traffic simulator. VISSIM is a famous simulator,
which will be detailed in Section 5.4.3.

Based on the CA mechanism of ICM (cell, cell space,
neighbor, transition rule), the PCP algorithm can achieve
the complex scheduling of traffic lights in the simulator by
executing concise rules. The PCP algorithm performs the
scheduling transition rules (the basic transition rules, the
affiliated transition rules) for different cycle durations of
different time periods. The process of the PCP algorithm is
detailed in Table 3.

4.3 Fitness function

In order to evaluate the performances of different opti-
mization methods, the fitness function is proposed. As
is shown in Fig. 3, the fitness function links ICM
with OCM.

After an iterative simulation in the simulator under a
given scheduling, the traffic information will be obtained.
The fitness function makes use of the necessary informa-
tion to compute the corresponding fitness value of the given
scheduling. The fitness function is defined in the equa-
tion (1). The scheduling conserved in the CA mechanism of
ICM for a cycle duration h is denoted as Sh

ICM .

f itness
(
Sh

ICM

)
= α×WT

T T
+β× T r

T g
+ψ(t) (0< α< 1, 0< β < 1)

(1)

T T =
H∑

e=0

T Te (2)

WT =
H∑

e=0

WTe (3)

T g =
M∑
i=0

phi∑
j=0

ts(i,j) × g(i,j) (4)

T r =
M∑
i=0

phi∑
j=0

ts(i,j) × r(i,j) (5)

The main purpose of equation (1) is to minimize the propor-
tion of the waiting time to the running time

(WT
TT

)
, and the

proportion of the red light time to the green light time
(
Tr
Tg

)
.

A scheduling with the lower fitness value indicates the bet-
ter simulative performance. The proposed fitness function is
detailed as follows:

(1) The vehicles’ total trip time includes the total run-
ning time (T T ) and the total waiting time (WT ). T T

Table 3 The process of the PCP algorithm

INPUT:

1. The cell, cell space, neighbor and rule set in ICM.

2. The divided cycle duration sequence of the given time period.

3. Road network, traffic flow information, the distribution of traffic

lights.

PROCEDURE:

Initialize the settings of VISSIM.

FOR each cycle duration in the cycle duration sequence

FOR t = 0 to the cut-off time step of the cycle duration.

Execute the basic transition rules and the corresponding

affiliated transition rules

Get the simulative information from VISSIM.

END FOR

END FOR
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and WT are formulated by (2) and (3), respectively.
When a vehicle’s route is decided, if the vehicle always
keeps moving to its destination, its ideal running time
that arrives at its destination is fixed. The waiting time
mainly derives from traffic congestions and red lights.
And the excessive waiting time can produce a higher
delay to arrive at the final destinations. The waiting
time is not essential for vehicles to research their final
destinations. So T T is enlarged, andWT is diminished
in the fitness function.

(2) T gdenotes the total green time of all traffic lights,
and it can be formulated by (4). T r denotes the total
red time , and it can be formulated by (5). For all
intersections, the phases with more green traffic lights
are more likely to circulate more vehicles, while the
phases with more red traffic lights are more likely to
circulate fewer vehicles. The final proportion of states
should promote these states with more green traffic
lights, and restrain others with more red traffic lights.
So T g is enlarged, and T r is diminished in the fitness
function.

(3) α and β are the weights of the proportions WT
TT and

Tr
Tg , respectively. By changing the value of α and β,
the fitness function can be adjusted for different aims.
The simulative information obtained from the traffic
simulator may have deviations from the actual traffic,
so the modification value ψ(t) is added to adjust the
fitness value.

The standard PSO and variances of PSO are usually
applied to find the optimal solutions of mathematical func-
tions theoretically [13, 14]. Without considerations for
practical applications, they can simply use the existing
mathematical functions as the fitness functions. But in the
actual application of traffic scheduling, the meaningful traf-
fic parameters should be considered in the fitness function
with no unified standards (Evangelos et al.). To better illus-
trate our fitness function (SFF ), it is compared with the

related fitness function (PFF ) [19]. The advantages of
SFF can be listed as follows.

(1) SFF is effective and concise. PFF just puts the
parameters that need decrease on the numerator ,
and that need increase on the denominator. The rela-
tionships among different parameters are disorder in
PFF . The V in PFF is dynamic and hard to be mea-
sured. When a vehicle is allocated a route, WT and
T T in SFF can comprehensively show the driving
conditions, including the change of V .

(2) Instead of static fitness function PFF , SFF can be
adjusted for different traffic optimization aims. Tr

Tg
is a typical indicator for the urban traffic condition.
And WT

TT is associated with drive feelings. SFF can
achieve a comprehensive balance at different cases by
adjusting α and β.

(3) In SFF , the modification value ψ(t) is introduced to
remedy the simulative deviation from the actual traffic
information. The fitness function PFF doesn’t con-
sider the precision of traffic simulator, and establish on
the ideal condition.

(4) The fitness value of SFF is valuable to be compared
under different traffic conditions with different vehi-
cle numbers or different simulative time spans. But
the vehicle number and the simulative time span are
parameters in PFF , PFF is affected seriously by
vehicle numbers and the simulative time.

4.4 OCM

OCM is an efficient and fast model to find the optimal tim-
ing scheduling for ICM. The time-span matrix conserved
in the CA mechanism of ICM is adjusted in OCM for
the better timing scheduling. The cell, cell space, neigh-
bor and transition rule constitute the CA mechanism in
OCM, which are hybridized with PSO to make the IOPSO
algorithm.

(a) Cubic structure (b) Trigonal structure (c) Hexagonal structure

Fig. 13 Three typical lattice structures of CA
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Fig. 14 The particles in the cell
space randomly mapped by
assigning Sh

ICM with different
time-span matrixes
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4.4.1 Cell

Each cell is seen as a possible position of the search space,
which is similar to a position of birds’ flying space. Each
particle denotes a potential candidate solution, which is sim-
ilar to a bird. Each cell can contain unlimited number of
particles. A cell with one or more particles is called as a
solution cell.

The time-span matrix for Sh
ICM (a given the scheduling

conserved in ICM) is denoted as MS
g
k , and is short for MS.

Note that the optimization in OCM is just for the timing con-
trol by adjusting the time-span matrix of ICM. The Sh

ICM

with a given time-span matrix is mapped into the cell space
as a particle randomly. As is shown in Fig. 14a, Sh

ICM is
assigned with different time-span matrixes, which produces
different mapping particles in the cell space.

4.4.2 Cell space

A set of cells constitutes the cell space, which is similar to
the birds’ flying space. Based on different cell structures,
the cell space can be defined differently. Three typical lat-
tice structures are shown in Fig. 13. For the briefness and

easy comprehension, the cubic lattice structure is used as an
example in the paper. As is shown in Fig. 14a, it is assumed
that the cell space is cut by the infinite N × N grids. Every
virtual grid is seen as a cell (in Section 4.4.1), which can’t
be subdivided any more. The size N is determined by the
simulative need. An iteration in OCM is accompanied by a
complete simulation under a given scheduling setting Sh

ICM

in ICM.

4.4.3 Neighbor

The neighboring cells of a solution cell (a cell with one
or more particles) in the cell space don’t simply contain
its adjacent cells, which are determined by its neighboring
radius. The optimal time-span matrix makes Sh

ICM in ICM
achieve the smallest fitness value in the simulation. The
personal optimal time-span matrix that the particle k has
created until the iteration g is stored as MP

g
k . The global

optimal time-span matrix that the neighbor particle set of the
particle k has ever created until the iteration g is stored as
MG

g
k . The distance between the particle k and the farthest

particle among all particles is RL. T is the total iterations
for the current cycle duration.

Fig. 15 The neighboring
particle set of the particle k for
the x-dimension and
y-dimension
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For the particle k, the neighboring radius of its solution
cell (i, j) is denoted as Radius(i, j), which is defined by
(6) and (7).

Ra =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∣∣
f itness

(
MP

g
k

)

f itness
(
MG

g
k

)
∣∣∣∣∣ × t

T
× (RL + 1),

(
f itness

(
MG

g
k

)! = 0
)

ef itness(MP
g
k )

ef itness(MG
g
k )

× t
T

× (RL + 1),
(
f itness

(
MG

g
k

) = 0
)

(6)

Radius (i, j) =
{ �Ra� , if Random(0, 1) ≤ λ

�Ra	 , otherwise
(7)

Because the length unit of a cell is 1, the parameter λ

determines the probability of performing the ceil or floor
function for the intermediate parameter Ra. At the early

iterations, the range of

∣∣∣∣
f itness(MP

g
k )

f itness(MG
g
k )

∣∣∣∣ or e
f itness(MP

g
k
)

e
f itness(MG

g
k
)
can be

small, because the difference ofMP
g
k andMG

g
k is relatively

large. As the simulative iterations go on, all particles con-
tinually converge to the particle with the best fitness value,
MP

g
k is adjusted towards to MG

g
k . At finally, the difference

continually reduces, and

∣∣∣∣
f itness(MP

g
k )

f itness(MG
g
k )

∣∣∣∣ or e
f itness(MP

g
k
)

e
f itness(MG

g
k
)
tends

to be the uniform value 1. When all particles converge to a
neutral cell after enough iterations, RL = 0, t

T
= 1, and

Radius(i, j) = 1.
Revolving around cell (i, j), and its neighboring cells can

be obtained from function (8). As is shown in Fig. 15, all
cells in the shaded quadrate region are the neighboring cells
of the solution cell (i, j), which constitutes the neighboring
cell set NS(i, j).

NS(i, j) = {(a, b)|min(1, i − Radius(i, j))

< a < min(i − Radius(i, j), N),

min(1, j − Radius(i, j))

< b < min(j−Radius(i, j), N)} (8)

For a particle k located in its solution cell (i, j), its neighbor-
ing particle set only contains all particles (include itself) in
the neighboring cells of its solution cell (i, j). As is showed
in the shaded quadrate area of Fig. 15, the particle k locates
in its current solution cell (i, j), so its neighboring particle
set are the twelve particles that locate in the neighboring
cells of its solution cell (i, j),

4.4.4 Transition rule

To get the lower fitness value, the particle moves inside the
cell space to detect its promising solution cells. There are
two steps. Firstly, the particle selects the particle with the
lowest fitness value in its neighboring particle set. Secondly,
the particle will jump into the solution cell of its selected

Table 4 The processing procedure of the IOPSO algorithm

Input:

1. The cell, cell space, neighbor, transition rule in OCM.

2. The divided cycle duration sequence of the given time period.

3. The road network, the traffic flow information, the distribution of

traffic lights.

Establish ICM of the objective urban network.

Initialize the settings of VISSIM.

For h = 1 to the maximum number of the cycle duration in the cycle

duration sequence.

Choose the suitable lattice structure (cubic, trigonal, hexagonal).

Initialize OPS of each particle in the particle swarm.

For g = 1 to the maximum iteration gmax

For k = 1 to the swarm size L

Determine its neighboring particle set by (6), (7) and (8)

Carry out the transition rule Rule4 to update SI
g
k .

Determine MV
g
k and MS

g
k by (9), (10) and (11)

MP
g+1
k = MP

g
k , MG

g+1
k = MG

g
k

if fitness
(
MS

g+1
k

)
<fitness

(
MP

g+1
k

)
then

MP
g+1
k = MS

g+1
k

End if

if fitness
(
MP

g+1
k

)
<fitness

(
MG

g+1
k

)
then

MG
g+t
k = MP

g+1
k

End if

End

End

Select and output the optimal time-span matrix MG
g+1
k for Sh

ICM .

End

particle. If the selected particle is itself, the particle will not
move in the current iteration.

At each iteration g, the transition rule Rule4 in OCM
determines the move of each particle in the cell space, which
can be defined as follows. SI

g
k is the site of the particle k

at the iteration g, which is denoted by the coordination of
its solution cell. For each particle k, lk is the amount of its
neighboring particles at the current iteration.

Definition Rule4: Assuming SI
g+1
k is

(
x

g+1
k , y

g+1
k

)
,

SI
g
k+δ is

(
x

g
k+δ, y

g
k+δ

)
, if

f itness
(
MS

g
φ

)

=min
(
f itness

(
MS

g
k

)
, f itness

(
MS

g

k+1

)
, . . . , f itness

× (
MS

g
k+δ

)
, . . . , f itness

(
MS

g
k+lk

))
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where φ = k + δ, and f itness
(
MS

g
φ

)
=

f itness
(
MS

g
k+δ

)
, then SIg+1

k = SIgk+δ , x
g+1
k =

x
g
k+δ, y

g+1
k = y

g
k+δ . The particle k will jump from the cell

site SI
g
k to the cell site SI

g
k+δ at the end of the iteration g,

and its updated solution cell site at the iteration g + 1 is
SI

g
k+δ .

4.4.5 The IOPSO algorithm

The IOPSO algorithm is an improved and modified version
of the PSO in OCM. The IOPSO algorithm integrates PSO
with the above CA mechanism in OCM. And the combina-
tion of PSO and CAmechanism is inspired by Shi et al. [14].
Their work has proved the final converge of the cellular par-
ticle swarm optimization algorithm theoretically, when the
inertia weight of the velocity changes with iterations. And
their algorithm performs better than other variants of PSO
on many benchmark test functions. More detail of the com-
putational study can be consulted in the work of Shi et al.
[14]. But they can’t find the way to handle discrete vari-
ables to solve real-world optimization problems, their work
just seeks for an optimal solution for mathematical functions
without practical application values.

Benefit from the CA mechanism of the proposed IOCA-
PSO method setting the traffic scheduling background,
the IOPSO algorithm is proposed. It is a novel combina-
tion of CA and PSO. And it firstly finds the approach to
optimize the global timing control of traffic lights. The
timing control is of great importance to the traffic light
scheduling.

The IOPSO algorithm continually adjusts the time-span
matrixes of each mapped particle during the process of con-
tinuous iterations. And the IOPSO algorithm is devoted to
finding the optimal time-span matrix for a given schedul-
ing Sh

ICM in ICM. Along with the continuous iterations, the
time-span matrix and the changing velocity are adjusted,
which is denoted by (9) and (11).

θ1 and θ2 are the weights allowed by the actual need. θt

changes linearly in the process of optimization iterations.
At the beginning, θt is introduced with a high value θmax,
which will decrease until reaching the lowest value θmin.
The dynamic θt promotes the exploration and exploitation

capability. ζ and η are two uniform random values in [0,1].
MS

g
k is the time-span matrix of the particle k at the iteration

g. MV
g
k is the changing velocity of the current time-span

matrix MS
g
k .

MV
g+1
k = θtMV

g
k +θ1ξ

(
MP

g
k − MS

g
k

)+θ2η
(
MG

g
k − MS

g
k

)
, (9)

θt = θmax − (θmax − θmin) × g

gmax

(10)

MS
g+1
k = MS

g
k + MV

g+1
k (11)

The process of the IOPSO algorithm is detailed in
Table 4. Differ from most variants of PSO, the IOPSO algo-
rithm has three predominant features, which are detailed as
follows.

(1) Instead of owning static neighbors, each particle can
select its neighbors in the cell space independently and
dynamically.

(2) The move of a particle in the cell space is not just for
entering a better solution cell with a smaller fitness
value. Its fundamental purpose is to find an optimal
time-span matrix for the scheduling conserved in the
CA mechanism of ICM for a given cycle duration. So
the IOPSO algorithm not only changes cell site SI

g
k

of each particle, but also adjusts MS of each parti-
cle by adjusting corresponding updating velocity MV .
The CAmechanism for the IOPSO algorithm helps the
particle to make a wise jump, which can effectively
prevent the particle to fall into the local optimization
too early. It enhances the diversity of the swarm, and
makes the IOCA-PSO method have more potential to
seek for the optimal solution in the search space.

(3) Most variants of PSO only remain at the theory stage,
but the IOPSO algorithm of the IOCA-PSO method
is of high practical value. Along with the change of
particle states in iterations, the IOPSO algorithm tries
to make each particle in a better solution cell with the
lower fitness value. At the final iteration, the IOPSO
algorithm determines the global optimal timing control
of all traffic lights in the objective area for each given
cycle duration.

(4) Within the short-lived computing time, the IOPSO
algorithm can’t always ensure the final convergence

Fig. 16 The actual urban area a
from Google maps map is
mapped to the road network b in
VISSIM

(a) (b)
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Table 5 The description of
some typical time periods in
the Wuhan case

Time period Time Average vehicle Average vehicle

description span number velocity

The congestion period 8:00–8:30 1237 19 km/h

The half free flow period 10:00–10:30 863 38 km/h

The free flow period 21:00–21:30 531 55 km/h

of all particles, which is different from the hypotheti-
cal condition [14]. So that the limit of the IOCA-PSO
method is that it just tries to achieve the traffic light
scheduling approaching the best scheduling.

5 Experiments and discussions

In this section, sound experimental evidences are provided,
which show the characters of the IOCA-PSO method. This
section is arranged as follows.

(1) Section 5.1 introduces the Wuhan case and the corre-
sponding traffic information. Our method is tested in
the real urban case with the actual traffic data.

(2) The settings of basic and dynamic parameters are
detailed in Section 5.2. And the effect of the dynamic
parameters α and β in the fitness function is studied
in experiments, which shows the flexible use of the
proposed fitness function for different aims.

(3) In Section 5.3, the IOCA-PSO method is exhaus-
tively compared with three typical methods, the GA
method, the PSO method and the RANDOM method.
In Section 5.3.1, the computing complexity analy-
sis of three methods is detailed, which is important
for an optimization method to carry out successfully
in the limited time. Based on parameter settings in
Section 5.2, the optimization results by three meth-
ods for different time periods in the Wuhan case are
detailed in Section 5.3.2, which show the good per-
formance of the IOCA-PSO method. Furthermore, the
effects of three methods on different vehicle numbers
and different intersection numbers are compared in
Sections 5.3.3 and 5.3.4, respectively. The IOCA-PSO
has advantage over three comparison methods with the
same traffic settings.

(4) To better study the IOCA-PSO method, its behav-
ior with different vehicle and intersection numbers is
observed in Section 5.4.

5.1 Case and data

To develop a practical method for real urban cases, a tested
urban case is selected randomly as an example in this

section. As is shown in Fig. 16a, an area covering approx-
imately 2.5 km2 in Wuhan is used as the objective urban
area. The area centers the optical valley, which is a pros-
perous business district with the dramatic change of traffic
flow. In this area, the numbers of traffic lights at an inter-
section change from 6 to 20, and most intersections connect
with three and four streets. The main avenues crossing this
urban area are: Luoxiong Road, Jiayuan Road, Guanshan
avenue, Guanggu avenue, Luoyu Road, Xiongchu avenue,
the SBI street, and Gaoxin avenue (http://www.ditu.google.
cn/). Four different ranges of the objective urban area (area
A, area B, area C, area D) in the Wuhan case are denoted
in Fig. 16a. Area D denotes the whole objective urban
area.

The urban traffic is simulated by the simulator VIS-
SIM. Its simulation includes vehicles, directions, streets,
obstacles, traffic lights, routes, speed [4, 5]. Different from
most less-complex models using the constant speeds and
deterministic car following logic, VISSIM uses the psycho-
physical drive behavior model developed byWIEDEMANN
[21]. Through the COM interface, VISSIM can serve as
a simulative toolbox under the user-defined signal control
logic. And the information in the simulative process can be
returned to the user.

By extracting actual information from the digital map, a
lot of information is considered into the simulator VISSIM:
traffic element locations, the number of lanes, roads, inter-
sections, etc. Each experiment includes two parts: the traffic

Table 6 The setting of some basic parameters in the Wuhan case

Parameter Value

Simulation time 600 s

The amount of intersections M 17

Maximal iteration time gmax 300

The maximum cycle duration hmax 3

Swarm size L 400

The maximum length phmax 12

M × phmax 17 × 12

The size N × N in OCM 50 × 50

Amount of traffic lights 195

Time span scope 4–60 s

http://www.ditu.google.cn/
http://www.ditu.google.cn/
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simulation and the method implementation. All traffic sim-
ulations are carried out in VISSIM to obtain the traffic
information, which is used to evaluate the scheduling of traf-
fic lights. The optimization methods are implemented in the
VC++6.0 environment [30, 31], which control the signal
logic of traffic lights in VISSIM through the COM interface.
All experiments are controlled by a distributed task sched-
uler, and each task is executed as one independent run [6,
7].

Based on the main road networks in Fig. 16a, the sim-
ulated view in VISSIM is showed in Fig. 16b. According
to the traffic management bureau in Wuhan (http://www.
whjg.gov.cn/), the traffic information in the main roads
is obtained every 10 minutes, which is collected by sen-
sor detections. Three typical time periods in April 1, 2014
are selected in the following experiments to verify the
IOCA-PSO method. They are detailed in Table 5.

5.2 Parameter setting

5.2.1 Basic parameter setting

Before the executions of our method for the Wuhan case,
some basic parameters were set in Table 6. They are detailed
as follows.

(1) The Wuhan case has 17 intersections and 195 traf-
fic lights. Based on the actual circumstance, the phase
array of each intersection are determined. The maxi-
mum length phmax is 12. The additional vacant ele-
ment in the time-span matrix is marked by time the
span of 0. And the time spans of other elements in
the 17 × 12 time-span matrix are produced randomly
among 4 and 60s (a common time span set).

(2) For three time periods (the congestion period, the half
free flow period and the free flow period), each time
period will be divided into a cycle duration sequence
of three cycle durations. Because the data of the actual
traffic information in each road is obtained every 10
minutes, the time span of each cycle duration is set as
10 minutes. For example, the congestion period from
8:00 AM to 8:30 AM is divided into a cycle duration

Table 7 The setting of dynamic parameters in the Wuhan case

Local coefficient θ1 1.5

Social coefficient θ2 1.5

Minimum coefficient θmax 0.2

Maximal coefficient θmin 0.8

α 0.5

β 0.5

λ 0.5

ψ(t) 0

sequence of three cycle durations (8:00–8:10, 8:10–
8:20, and 8:20–8:30). The three cycle durations are
called as the first, second, third cycle duration of the
congestion period in turn.

(a) The congestion period 

(b) The half free flow period  

(c) The free flow period 

Fig. 17 The average final fitness value, WT
T T

, T r
T g

of the three time
periods with different α and β at the Wuhan case

http://www.whjg.gov.cn/
http://www.whjg.gov.cn/
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(3) At the beginning of each cycle duration, the number
of vehicles on each road is initialized in the VIS-
SIM, which is based on the actual measured data.
The initial velocity of each vehicle is randomly pro-
duced among the speed limitation of corresponding
roads. Each vehicle performs its own route from its
origin to its destination. And their routes were gener-
ated randomly from a set of reasonable paths at the
beginning.

(4) The corresponding simulation time for a cycle dura-
tion in VISSIM is 600s (corresponding to the 10
minutes of each cycle duration), which is a deadline
for all vehicles to stop their movement. In VISSIM,
the moving speed of a vehicle is less than the maxi-
mum speeding limitation of its located road. Because
of the actual data measured every 10 minutes, it is
assumed that the total vehicle number in the simu-
lated view does not change in the corresponding cycle
duration, and each vehicle circulates their routes. In
the permit of computer computing power and frequent
measured dates, each time period can be divided into
unequal and shorter cycle durations so that more excise
optimization will be obtained.

(5) The optimization operation of the IOCA-PSO method
for the above three time periods can be concluded
as the following two steps. Firstly, the IOCA-PSO
method is applied successively for the three cycle dura-
tions in the congestion period. The swarm size in
OCM is 400, and each particle in the swarm will go
through 300 iterations. Hence, 120,000 solution evalu-
ations are generated per cycle duration to find the best
solution of each cycle duration. Secondly, the opti-
mization method is carried out in the same way for
the half free flow period and the free flow period in
turn.

5.2.2 Dynamic parameter setting

As recommended by the study about the convergence in the
way of integrating CA and PSO [14], θ1, θ2 θ3, θmax and
θmin are selected and determined in the IOCA-PSO method.
The values of these dynamic parameter settings are shown
in Table 7.

The IOCA-PSO method devotes to offering the real-time
traffic light scheduling. Within the short-lived computing
time, the maximal iteration can’t be larger enough to ensure
the possible final convergence of the particles in OCM,
which is different from the hypothetical condition [14]. So it
must be noted that the best timing control with the smallest
fitness value is selected from the historic and current solu-
tions of 400 particles, when the iterations are terminated.
Based on the scheduling settings in ICM, the fitness value
of the best scheduling is selected as the final fitness value to
evaluate the performance of an optimization method.

λ = 0.5 means thatRadius(i, j) is ceiled or floored with
same probability. To simplify the fitness function, ψ(t) = 0
is assumed. α and β are the weights of the proportions
WT
T T

and T r
T g

, respectively. WT
T T

and T r
T g

are not detached
absolutely, which exist a mutual promotion.

As showed in Fig. 17, the average final fitness value of
the free flow period is lower than that of the half free flow
period, the congestion period relatively. Because the IOCA-
PSO method is applied in the free flow period with a better
traffic condition. The vehicle number of the free flow period
is lower than that of the other two time periods.

And the fitness function can not only evaluate the opti-
mization of a comprehensive scheduling , but also conduct
the optimization of the timing control dynamically. By
adjust α and β, the fitness function can be used for different
optimization aims. The Fig. 17 shows the average final fit-
ness values of the three time periods with different α and β.

Table 8 Computation complexities of different methods

Methods Procedure

Initialize Fitness Identify Update Scheduling

OPS
g
k Value MP

g
k and OPS

g
k Implementation

Evaluation MG
g
k

IOCA-PSO O(L × M × phmax) O(L × gmax) O(L × gmax) O(L × gmax) O(L × gmax × M × phmax)

(Cubic)

IOCA-PSO O(L × M × phmax) O(L × gmax) O(L × gmax) O(L × gmax) O(L × gmax × M × phmax)

(Trigonal)

IOCA-PSO O(L × M × phmax) O(L × gmax) O(L × gmax) O(L × gmax) O(L × gmax × M × phmax)

(Hexagonal)

PSO O(L × M × phmax) O(L × gmax) O(L × gmax) O(L × gmax) O(L × gmax × M × phmax)

GA O(L × M × phmax) O(L × gmax) O(L × gmax) O(L × gmax) O(L × gmax × M × phmax)

RANDOM O(M × phmax) O(gmax) O(gmax) O(gmax) O(gmax × M × phmax)
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The average final fitness of a time period is the mean value
of the fitness values of the corresponding three cycle dura-
tions. When α increases, WT

T T
decreases. When β increases,

T r
T g

decreases. Meanwhile, the fluctuation of WT
T T

is smaller,
so when α is higher, corresponding fitness value is higher.
And the same results are obtained in the three different time
periods.

When α increases to a higher value, WT
T T

mainly affects
the final value of the fitness function. In the iterations to
optimize (decrease) the fitness value, WT

T T
will be empha-

sized to decrease. And β and T r
T g

is in the same way. To keep

the balance between WT
T T

and T r
T g

, α = β = 0.5 is set in
below experiments.

5.3 Comparison experiment

The PSO method [19], the GA method [20] and the RAN-
DOM method [18, 19] are introduced as three comparison
methods against the proposed IOCA-PSOmethod. The PSO
method and the GA method are the latest works of PSO and
GA related to traffic light scheduling, respectively. And the
RANDOM method is a typical optimization method. The
below experiments are explained as follows.

(1) Because the original aim of the PSO method, the GA
method and the RANDOMmethod is only to optimize
the timing control, the IOCA-PSO method in the fol-
lowing experiments only considers basic rules (1) and
(2) to achieve a better comparison. The cycle duration
sequence and the phase sequence in different time peri-
ods are determined by the actual traffic condition in
advance.

(2) The fitness function, the swarm size and the running
time of three comparison methods are same with the
IOCA-PSO method, and their other parameters are set
in accordance of their original settings [18, 19].

5.3.1 Computing complexity analysis

In the real-time application, the computing time is impor-
tant. Because the proposed method must find the optimized
scheduling in the short-lived computing time, which can
ensure that the scheduling is valid for the current cycle
duration. The value of the valid time for the current cycle
duration is decided by the actual need.

Considering the running environment, programming lan-
guages and coding styles, the computing time is not reliable
to measure. So the computing complexity analysis is used
to evaluate the efficiency of the optimization methods.
The runtime in ◦ notation is evaluated by counting critical
programming statements in iterations. The computing com-
plexities of different methods are showed qualitatively in
Table 8. It is summarized as follows.

(1) The IOCA-POS method includes three typical lattice
structures, cubic structure, trigonal structure, hexag-
onal structure. The three typical structures have the
same computational complexity. Because of briefness
and easy comprehension, the cubic structure is selected
in experiments.

(2) The computational complexity of the RANDOM
method is lower than other two methods. Because a
swarm is considered the IOCA-PSO method, the PSO
method and the GA method, they need evaluate and
update the particle in the swarm in each iteration.

(c) The free flow period 

(a) The congestion period

(b) The half free flow period

Fig. 18 Boxplots of the appearing fitness values for four methods in
three time periods in the Wuhan case
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The IOCA-PSO method, the PSO method and the GA
method have the same computational complexity.

(3) The computational complexity is mainly affected by
the particle swarm size (L), the maximum itera-
tion (gmax), the number of intersections (M). A
larger swarm size, more iteration or more intersec-
tions require more computational efforts. The schedul-
ing implementation causes cost the main computing
power.

5.3.2 Comparison results in the three time periods

Figure 18 shows the boxplots of the fitness values for differ-
ent methods in three time periods, which includes all fitness
values appearing in the corresponding time periods. The
findings are listed as follows.

(1) Among the four methods, the IOCA-PSO method
achieves best performance in limited iterations. In
three different time periods, the IOCA-PSO method
has the largest fluctuation range and finds the smallest
fitness value.

(2) As Table 8 has shown, the IOCA-PSO method, the
GA method and the PSO method have the same com-
putational complexity. But the IOCA-PSO is more
efficient to find the smallest fitness value, which
can schedule the traffic lights of the objective urban
area best. The IOCA-PSO method achieves a bet-
ter balance of the local exploitation and the global
exploration, which derives from a powerful CA-based
mechanism that guides the site change of particles in
OCM.

Fig. 19 The final fitness values for four methods in Wuhan case with
different numbers of vehicles

5.3.3 Comparison results with different numbers of vehicles

To observe the performance of the three optimization meth-
ods with different numbers of vehicles, we assume the
whole urban area in the Wuhan case with the change of
vehicles in simulations. The final fitness values for three
methods with different numbers of vehicles are showed in
Fig. 19. The findings are listed as follows.

(1) When the vehicle number is less than or equal to 600,
the final fitness values of four methods have no dis-
tinct difference. Because when the vehicle number is
small, almost all vehicles can travel freely without
the optimization methods, and the optimization meth-
ods can’t achieve further improvements on the traffic
flow.

(2) When the vehicle number exceeds 600 and less than
2300, the final fitness values of four methods will
increase. And this is because the increasing vehi-
cles result in local traffic jams, WT increases and
T T decreases. Meanwhile, when the vehicle number
increases to cause local traffic jams and is insufficient
for global traffic jam, the IOCA-PSOmethod has obvi-
ous advantages to achieve lower final fitness values
than three comparison methods.

(3) When global jams happen, the final fitness value tends
to infinity. The critical vehicle numbers that lead to
global jams by the IOCA-PSO method, the RAN-
DOM method, the PSO method, the GA method are
3000, 2300, 2500 and 2600, respectively. The critical
vehicle number that leads to global jams by the IOCA-
PSO method is higher than that by three comparison
methods.

Fig. 20 The final fitness values for four methods in the Wuhan case
with different numbers of intersections
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5.3.4 Comparison results with different numbers
of intersections

To observe the performance of the optimization methods
with different numbers of intersections, different ranges of
the objective urban area with different numbers of intersec-
tions are considered in experiments. As shown in Fig. 16a,
the areas of A, B, C and D have 8, 11, 14, and 17 inter-
sections, respectively. In the experiments, all comparison
methods should be used to optimize and control the traffic
lights in the corresponding range (area A, area B, area C or
area D). Other traffic lights not in the corresponding range
would not consider in the experiments. The calculation of
the final fitness values still considers the whole objective
urban area (area D). From the Fig. 20, the findings are listed
as follows.

(1) The four optimization methods all have positive effects
on the objective urban area. With the control range of
intersections increased, the final fitness values of four
methods all diminishes. The more traffic lights are in
control, the better global scheduling with the smaller
fitness value can be discovered by the optimization
methods.

(2) The performance of the IOCA-PSO method is better
than three comparison methods with different inter-
sections. The final fitness values of the IOCA-PSO
method are lower than three comparison methods.

5.4 The performance of the IOCA-PSO method
with different numbers of vehicles and intersections

To get a deep insight of the performance of the IOCA-
PSO method with different numbers of vehicles and

Fig. 21 The final fitness values by the IOCA-PSO method in the
Wuhan case with different numbers of vehicles and intersections

intersections, the change of the final fitness values by the
IOCA-PSO method are shown in Fig. 21. The findings can
be listed as follows.

(1) The increase of controlling intersections is helpful to
find a better scheduling of the objective urban area.
When the vehicle number is less than the critical
vehicle number that leads to global jams, as the inter-
sections in control increase, the final fitness value will
be smaller.

(2) With different numbers of intersections in control,
the objective urban area by the IOCA-PSO method
has different critical vehicle numbers that lead to
global jams. As the number of controlling intersections
increases, the critical vehicle number becomes higher.
For a special vehicle number less than the critical vehi-
cle number that leads to global jams, the increase of
the number of controlling intersections improves the
final fitness value.

6 Conclusion

This paper studies the optimization scheduling of traffic
lights in the actual large urban road network. The IOCA-
PSO method is proposed as a dynamic and real-time opti-
mization method, which consists of ICM, the fitness func-
tion, and OCM. The optimization scheduling by the IOCA-
PSO method can achieve comprehensive phase scheduling
of traffic lights, which includes the timing control, the phase
sequence control and the special phase controls for different
kinds of traffic problems.

(1) The IOCA-PSO method is compared with the PSO
method and the RANDOMmethod in extensive exper-
iments under different traffic conditions of the Wuhan
case. Among the three methods, the IOCA-PSO
method achieves the best performance in three differ-
ent time periods. For each time period, the IOCA-PSO
method has the largest fluctuation range and finds the
best scheduling with the minimum fitness value in
limited iterations.

(2) The IOCA-PSO method achieves a better scheduling
than the PSO method and the RANDOM method with
different numbers of vehicles. When the vehicle num-
ber is small, the final fitness values of three methods
have no distinct difference. However, when the vehicle
number increases to cause local traffic jams and is less
than the critical vehicle number that leads to the global
jams, the IOCA-PSO method has obvious advantages
to achieve lower final fitness values than three com-
parison methods and the critical number of vehicles
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that leads to global jams by the IOCA-PSO method is
higher than that by three comparison methods.

(3) The IOCA-PSO method achieves a better scheduling
than the PSO method, the GA method and the RAN-
DOM method with different numbers of controlling
intersections. The more intersections are in control, the
better global scheduling with the smaller fitness value
can be achieved by the IOCA-PSO method.

(4) When the vehicle number is less than the critical vehi-
cle number that leads to the global jams, the increase of
controlling intersections and the decrease of vehicles
in the objective urban area are conducive to discover a
better scheduling with the smaller fitness value by the
IOCA-PSO method.

Despite our proposed method being promising, further
research is still needed which include (1) how to con-
sider more available realistic features in the evaluation of
scheduling results. (2) how to avoid the deviation between
the simulative information and the actual information. And
the proposed ψ(t) in the fitness function can only provide
empirical settings. (3) how to make the IOCA-PSO method
more efficient to achieve the better scheduling in the limited
time.
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