Software Project Cost Estimation Using Genetic Programming

Y. Shan, R.I. McKay, C.J. Lokan, D.L. Essam, Y. Chang
School of Computer Science, UC, University of New South Wales,
ADFA, Northcott Drive, Canberra,ACT 2600, Australia

Abstract

Knowing the estimated cost of a software project early
in the development cycle is a valuable asset for man-
agement. In this paper, an evolutionary computa-
tion method, Grammar Guided Genetic Programming
(GGGP) , is used to fit model, with the aim of improv-
ing the prediction of software development. Valuable
result is obtained, which is much better than simple lin-
ear regression’s. In this research, GGGP, because of its
flexibility and the ability of incorporating background
knowledge, also shows great potentials in being applied
in other software engineering modeling problems.

1 Introduction

Knowing the estimated cost of a particular software
project early in the development cycle is a valuable as-
set. Management can use cost estimates to evaluate a
project proposal or to manage the development process
more effectively. Therefore, the accurate prediction of
software development cost may have a large economic
impact: in fact, some 60% of large projects significantly
overrun their estimates and 15% of the software projects
are never completed due to the gross misestimation of
development [1].

A large range of metrics have been proposed for early
estimation of software project size and effort. A num-
ber of authors have suggested that the standard sets of
metrics have too many parameters, and a number of re-
duced sets have been suggested (large metric sets have
high collection costs, and also risk generating over-fitted
models). The reductions have relied on linear methods
to eliminate metrics, and linear models for estimating
size and effort from the metric sets, but there is a risk
that some of the dependencies may be non-linear. Re-
searchers elsewhere have begun to investigate alternative
methods of developing predictive models, including fuzzy
logic, neural networks, and regression trees. Evolution-
ary approaches have not been explored. In this paper,
one of evolutionary computation approaches, Grammar
Guided Genetic Programming (GGGP), is used to fit

nonlinear models to a dataset of past projects, with the
aim of determining appropriate metric sets and improv-
ing the prediction of software development and effort.

In the following Section 2, GGGP is introduced very
briefly. The application of GGGP in evolution of soft-
ware development effort estimation programs is dis-
cussed in Section 3. This includes data preparation, GP
details and the results obtained. The results is analyzed
in Section 4. In Section 5, the conclusion is given.

2 Grammar Guided Genetic Pro-
gramming

One of limitation of canonical Genetic Programming
(GP) [4, 5] is its requirement of closure. It means that
function set should be well defined for any combination
of arguments. Closure makes many program structures
difficult to express. To overcome it, an early attempt
is Strongly Typed Genetic Programming [6]. After this,
several attempts have been tried to impose syntactical
constraints, by means of grammar, in GP [2, 8, 10, 7].
In fact, in some of these research, grammar is not only
a way to represent syntactical constraints, but also a
way to incorporate background knowledge to guide GP
process. In this paper, Grammar Guided GP is used to
model the software development effort due to the salient
advantages of GGGP. Grammar in GGGP bias the GP
individual structure to find the optimal or near-optimal
result more effectively and efficiently. Compared with
canonical GP, GGGP have the following advantages:

e With the grammar constraint, the closure require-
ment in canonical GP is removed so that more ex-
pressive program structure can be evolved.

e Grammar in GGGP provide a natural and formal-
ized way to represent background knowledge. With
background knowledge, the search space is reduced
dramatically.

e Problem related building blocks, a kind of a pri-
ort knowledge, can be represent in grammar which
would improve more search efficiency.

e During the GP search process, the grammar itself
can be evolved which lead to incremental learn-
ing. Grammar can also be modified manually during
learning process to make it biased towards expected
result.

3 Evolution of Software Devel-
opment Effort Estimation Pro-
grams

3.1 Data preparation

The data of 423 software development projects is col-
lected. For each of project, there are 32 attributes
pl~p32, for example, software size, team size, de-
fects, platform, development language, team ability, etc.
Among them, pl~p4 are numeric variables, p5~pl3 are
unordered categorical variables, pld~p23 are ordered
categorical variables and p24~p32 are boolean variables.
These 423 records are randomly divided to training and
testing data sets, each of which contains the same num-
ber of records. In this research, we use GGGP to fit a
model with the aim of determining appropriate metric
sets containing the most relevant attributes and improv-
ing the prediction of software development effort.

3.2 Target language

One of important preparation step for GGGP is to iden-
tify a suitable target language in which to evolve pro-
grams. On one hand, the language should be expressive
enough to cover potential solution space. On the other
hand, too general language may ruin the efficiency of ex-
ecution. Too general language deviates from one of the
most important purpose of employing grammar: con-
straining search space. This trade-off need to be care-
fully considered.

Two languages are used for evolving software develop-
ment effort estimation program. The context free gram-
mar [3, 9] for these languages are in Figure 1. Each of the
grammars describes a language, which try to regress a
mathematic model with a numeric return value as pred-
ication for software development effort. Grammar 1 is
for generating common mathematic expressions with all
independent variables pl~p32 and operators, such as + -
¥,/ ,exp, etc. Note in this grammar, the production for
constant:

CONSTVAR = if BOOL CONSTVAR CONSTVAR

is deliberately designed so that the constants could be
made depend on the other variables. Grammar 2 is
more general. More complex if-then is allowed. It is
a superset of Grammar 1. Most of these two grammars

are self-explanatory. ORDERED_VALUE is constant for
corresponding ordered categorical variables.For example,
for ordered categorical variable user_groups, there are
three different values: one, one_to_five, over_five. Hence,
for user_group, its ORDERED_VALUE is one of these
three values. UNORDERED_VALUE_SET is constant
value set for corresponding unordered categorical vari-
ables. For example, for unordered categorical variable
dbms, its possible values set is { access, adabas, db2,
ims, ingres, oracle, rdb, others}, which contains eight el-
ements. Therefore, for variable dbms, its corresponding
UNORDERED_VALUE_SET is any subset of this set.
<ephemeral const> is randomly generated floating-point

constant between 0 and 10. GP parameters is summa-
rized in Table 1.

Mean square error (MSE) is used as fitness function
as following;:

N
MSE = (Z(estimated_effort — actual_effort)?)/N

i=1

where N is total number of fitness case 423, esti-
mated_effort is the prediction from the model while ac-
tual_effort is actual value.

3.3 Results

Using grammar 1, five GP runs are generated. On
the same training and testing data sets, five lin-
ear and log regression are also conducted. With
the aid of visualization techniques, it is conjec-
tured that, linear relation maybe exits between
log(software_development_effort) and log(software_size).
Therefore, log regression, regression of linear
relation between log(software_development_effort) and
log(software_size), is used to verify this conjecture. The
MSE is recorded for the above three kinds of regression
as a criterion for comparison. The mean and standard
deviation of MSE are summarized in table 2.

i.€.

According to table 2, our result is quite promising.
From the perspective of modeling, GP is significantly
better than linear and log regression, in terms of mean
square error. Among these three regressions, the perfor-
mance of log regression and linear regression is compara-
ble. The training error of log regression is larger than lin-
ear regression’s while it generalizes marginally better on
testing data set than linear regression. The testing error
of GP is considerably smaller than the other two meth-
ods’ although its testing error is larger than its training
error.

domain expert interpret some of the results.

4 Discussion

With the successful application of GP in this software
engineering program, we turned to Grammar 2, which is
more general than Grammar 1. Not only common math-
ematic expression but also complex if-then clause can be
generated in Grammar 2. In Grammar 1, if-then per-
forms a relational test in order to evolve proper constants
for the whole model while, in Grammar 2, the statement
part in if-then can be highly complicated. However, no
better result is found. After study the result of Grammar
1, we found that this outcome is not surprising. In most
of best-of-run individuals discovered by Grammar 1, if-
then clause is missing. This means that even in evolution
of constants, those non-numerical attribute only play a
trivial role as non-numeric variable can only appear in
condition part of if-then. Therefore, it is not expected
those non-numerical attribute would impact the evolved
program of Grammar 2 very much.

But why non-numerical attributes has little influence
on estimated software development effort? Our con-
jecture is that 1) the non-numerical attributes are not
closely related to the software development effort or 2)
the combination of these non-numerical attributes are
too complex to be discovered by GP. We incline to the
latter one. Intuitively, some non-numerical attributes,
such as, whether fourth generation language is used,
whether object oriented technique is employed, should
influence the software productivity perceivably. How to
discover and model these factors needs to be investigated
in further research. Other further research issues, that
we will explore in the future, includes:

e As we can see in our experiment, little background
knowledge is incorporated into both of the gram-
No doubt, cooperated with domain expert
to incorporate background knowledge to bias search
space would lead to more accurate prediction.

mars.

e Grammar itself can be automatically refined during
the GP process. It is possible that novel pattern
may be discovery through the analysis of the auto-
matically refined grammar.

e Another research issue is how to deal with missing
values. There are a large number of missing values
in our date set. This should often be the case for
real world application. Several methods handling
this problem are investigated in other research fields,
such as decision tree. It would be meaningful to
borrow them to GP for real world application.

Grammar 1:

EXP = PREOP EXP | EXP OP EXP | NUMERIC |
CONSTVAR

BOOL = BOOL and BOOL | BOOL or BOOL
| not BOOL | EXP CP EXP | ORDERED CP
ORDERED_VALUE | UNORDERED in UN-
ORDERED_VALUE_SET | BOOLVAR

PREOP = exp | sqrt | log

OP =+ |-|*| /| power

CP=x<|>|=

NUMERIC = pl |- - |p4

ORDERED = p5 |- | p13

UNORDERED = pl4|-- - [p23

BOOLVAR = p 24 |- - | p32

CONSTVAR = if BOOL CONSTVAR CONSTVAR |
CONSTVAR OP CONSTVAR | <ephemeral const>

Grammar 2: (More general)

EXP = PREOP EXP | EXP OP EXP | if BOOL EXP
EXP | NUMERIC | CONST

CONST = <ephemeral const>

All the other production rules same as Grammar 1

Figure 1: Grammar of the GP languages

5 Conclusions

As we have mentioned, accurate estimation software de-
velopment effort is important for software industry.(any
figure for potential economic value of accuracy of estima-
tion?) The research in the paper successfully used GP for
evolving programs to this problem. To our knowledge,
this is the first attempt at using evolutionary computa-
tion to software development effort estimation problem.
In this experiment, GGGP because of its flexibility and
the ability of incorporating background knowledge, also
shows great potentials in being applied in other software
engineering modeling problem.

References

[1] M. Boraso, C. Montangero, and H. Sedehi. Software
cost estimation: an experimental study of model
performances. Technical Report TR-96-22, DE-
PARTIMENTO DI INFORMATATICA, UNIVER-
SITA DI PISA, Italy, 1996.

[2] Frederic Gruau. On using syntactic constraints with
genetic programming. In Peter J. Angeline and
K. E. Kinnear, Jr., editors, Advances in Genetic
Programming 2, chapter 19, pages 377-394. MIT
Press, Cambridge, MA, USA, 1996.

Parameter

Value

Terminals, non-terminals
Fitness function
Generation type
Selection scheme

(see Fig. 1)

Mean square error
Steady state
Tournament, 3

Population 1000
Max. generations 200
Runs)

Init. population tree size

Ramped half&half

Min/max depth initial popn 6/9
Probability crossover 0.9
Probability mutation 0.1
Probability internal corssover 0.9
Probability terminal mutaion 0.75

Table 1: GP parameters

Linear Log GP

Mean STD Mean STD Mean

STD

Train 17.9 2.7 23.0 2.8 2.90 0.47
Test 15.9 2.5 15.6 2.8 5.40 0.61

Table 2: Mean and standard deviation of mean square
error of linear, log and GP regression. (Scaled by 10~°)

[3]

D. A. Gustafson, W. A. Barrett, R. M. Bates, and
J. D. Couch. Compile construction: Theory and
Practice. Science Research Assoc, Inc., 1986.

John R. Koza. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion. MIT Press, Cambridge, MA, USA, 1992.

John R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press, Cam-
bridge Massachusetts, May 1994.

David J. Montana. Strongly typed genetic program-
ming. BBN Technical Report #7866, Bolt Beranek
and Newman, Inc., 10 Moulton Street, Cambridge,
MA 02138, USA, 7 May 1993.

Michael O’Neill and Conor Ryan. Grammatical evo-
lution. IEEFE Transaction on Evolutionary Compu-

ation, 5(4):349-358, 2001.

P. A. Whigham. Grammatically-based genetic pro-
gramming. In Justinian P. Rosca, editor, Pro-
ceedings of the Workshop on Genetic Programmaing:
From Theory to Real-World Applications, pages 33—
41, Tahoe City, California, USA, 9 July 1995.

P.A. Whigham. Grammatical Bias for Evolutionary
Learning. PhD thesis, School of Computer Science,
University College, Univ. of New South Wales, Aus-
tralia, 1996.

[10] Man Leung Wong and Kwong Sak Leung. Com-

bining genetic programming and inductive logic
programming using logic grammars. In 1995
IEEE Conference on FEvolutionary Computation,
volume 2, pages 733-736, Perth, Australia, 29
November - 1 December 1995. IEEE Press.

