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Abstract. Software cost estimation is one of the prerequisite managerial 

activities carried out at the software development initiation stages and also 

repeated throughout the whole software life-cycle so that amendments to the 

total cost are made. In software cost estimation typically, a selection of project 

attributes is employed to produce effort estimations of the expected human 

resources to deliver a software product. However, choosing the appropriate 

project cost drivers in each case requires a lot of experience and knowledge on 

behalf of the project manager which can only be obtained through years of 

software engineering practice. A number of studies indicate that popular 

methods applied in the literature for software cost estimation, such as linear 

regression, are not robust enough and do not yield accurate predictions. 

Recently the dual variables Ridge Regression (RR) technique has been used for 

effort estimation yielding promising results. In this work we show that results 

may be further improved if an AI method is used to automatically select 

appropriate project cost drivers (inputs) for the technique. We propose a hybrid 

approach combining RR with a Genetic Algorithm, the latter evolving the 

subset of attributes for approximating effort more accurately. The proposed 

hybrid cost model has been applied on a widely known high-dimensional 

dataset of software project samples and the results obtained show that accuracy 

may be increased if redundant attributes are eliminated.  
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1   Introduction 

Software companies and other stakeholders, such as, customers, end-users, managers 

and researchers, have worked over the past decades on improving the accuracy and 

consistency of effort estimations for developing software systems. To achieve this, 

several techniques have been developed aiming on one hand to develop high quality 
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software with the lowest possible costs and on the other hand to strive towards 

successful project completion [1]. Moreover, developing techniques to efficiently 

estimate the overall development costs, especially from the planning phases of a 

project, can offer a significant competitive advantage for software companies and 

project managers. This advantage can be used for reducing the risk of resource 

misallocation and enhancing the manager’s ability to deal with budgeting, planning 

and controlling of the project processes and assets.  

Software cost models proposed in literature are based on expert judgement or 

employ some mathematical or machine learning technique to reach to improved effort 

approximations. Models usually employ historical project data obtained from 

previous software developments and very rarely the suitability of this data is 

questioned. Moreover, for a software cost model to be regarded as practical the 

following requisites need to co-exist; firstly, the delivery of accurate, transparent and 

meaningful effort approximations and secondly, the utilisation of suitable, measurable 

and available information at the project initiation stages, where effort estimation is 

needed the most. Nevertheless, the majority of cost models found in the literature 

require project information that is available only after requirements specification and 

relate for instance to the size of the software, application type, function points and 

language type used.  

Experienced cost estimators or project managers need to manually perform 

evaluation, filtering and identification of the appropriate project parameters that 

should be used in each model as a pre-processing step. This task will be subsequently 

combined with obtaining measurements from real-life projects, evaluating the 

measurements through cost models and maintaining them for future estimations. 

Carrying out these processes manually is labour intensive and thus, focusing only on 

measuring and maintaining a subset of relevant project attributes that will direct cost 

models to better effort approximations, could lead in reducing a lot of time and effort 

required by project managers. 

Our previous work has targeted the production of reliable confidence measures 

based on the dual form Ridge Regression (RR) technique [2] where it was suggested 

that results could be improved if the most relevant project attributes were selected and 

engaged in the prediction process. RR has also been successfully applied in the past in 

the area of software engineering by various researchers yielding promising results. 

Specifically, RR has been used to estimate the coefficients for the COCOMO model 

[3], one of the most widely known cost models, to produce classification scores and 

remove unnecessary features [4] and to improve the performance of regressions on 

multi-collinear datasets [5]. However, none of these works explored the identification 

of the optimum feature set for estimating effort.  

In this paper, we propose the use of a Genetic Algorithm (GA) for automatically 

identifying the optimal subset of cost drivers participating in the cost estimation 

process of the dual variables RR technique. The advantage of the dual variables 

version of the technique is that it uses the so-called kernel trick to efficiently construct 

non-linear regressions. The proposed approach is tested on a real world dataset and 

the results indicate that the selection of appropriate attributes can not only reduce the 

information required to approximate effort, but it can also result in obtaining better 

approximations.  



The rest of this paper is organised as follows: Section 2 gives an overview of 

related work on the problem of software cost estimation. It also discusses common 

difficulties of data-driven cost estimation models and presents the attempt of several 

researchers to eliminate the number of features used in cost estimation models. 

Section 3 describes the dual form of Ridge Regression (RR) algorithm. Section 4 

presents the Genetic Algorithm (GA) for evolving the selection of attributes. Section 

5 gives a detailed description of the experiments conducted and discusses the main 

results obtained. Finally, Section 6 summarises our conclusions and future research 

plans. 

2   Related Work 

Data-driven models are considered the most popular approaches in software cost 

estimation. They employ historical project data for building and calibrating 

mathematical formulas that relate cost drivers with effort. These models require 

usually a wealth of data and make use of numerical transformations to achieve 

accurate and reliable effort estimates [6]. The most common parametric estimation 

models, such as the COCOMO, use linear regression to approximate effort [7]. 

Naturally, the accuracy of data-driven models depends mainly on the attributes 

selected and included in the estimate. In addition, data-driven methods frequently 

need to handle project data that are not only of numerical type, but also of binary, 

categorical and nominal type. Therefore in some cases, they need to be extended to 

handle transformations and to offer capabilities closer to reasoning and deduction. 

Thus, searching for mathematical models that capture relationships between the 

contributing factors and effort usually results in constructing considerably complex 

formulas. 

Related studies questioned the necessity of a large number of features involved 

usually in cost estimation techniques and some investigations showed that in most 

cases redundant features could be eliminated. In [8] the accuracy of the COCOMO 

was improved when a wrapper technique was used to identify the most promising 

features for the model. Other Feature Subset Selection (FSS) algorithms were 

investigated for increasing the accuracy performance in analogy-based software effort 

estimation models [9]. In [10] Genetic Algorithms (GA) were used to assign proper 

weights to features, and three different heuristics were proposed to increase the 

estimation performance. The authors identified that even though their approach 

presents certain advantages, GAs are random, greedy and iterative methods that are 

always prone to get stuck in local minima.  

The aforementioned difficulties led to a number of studies investigating further the 

cost estimation issue with computational intelligent methods, such as artificial neural 

networks [11, 12], fuzzy logic modelling [13, 14] and evolutionary algorithms [15, 

16] and seeking for optimised effort approximations. The popularity of research on 

alternative models has increased, according to systematic reviews [7], even though the 

obtained results are always compared to those of linear regression techniques as a 

baseline. Moreover, many of these models have been extended into hybrid forms in an 



attempt to improve their intuitiveness, accuracy and robustness in a number of studies 

e.g., [7, 17].  

As previously mentioned, the largest portion of research studies in cost estimation 

are using linear regression as the most applicable method which also serves as 

benchmark for assessing performance in terms of accuracy [7]. Recently dual 

variables RR has been proven promising for driving accuracy performance to higher 

levels [2, 5]. The authors’ focus in [2] was on deriving confidence intervals for effort 

estimation and in [5] it was on the multi-collinearities of datasets which were found to 

lead to unstable regression coefficients. This work studies the genetic evolution of 

cost attribute subsets for RR experimenting on a widely known, large and real life 

dataset. The aim is to both improve results and simplify the resulting model. The 

dataset selected for experimentation has a multi-dimensional form, contains a plethora 

of software projects and a large number of categorical and multi-valued attributes. 

The choice of the particular dataset was made due to its high complexity and big size. 

3   Dual Variables Ridge Regression  

Ridge Regression (RR) is an improvement of the classical Least Squares technique 

which is one of the dominant methods applied in software cost estimation and one of 

the most widely used regression algorithms in a large number of research areas such 

as ionospheric parameter prediction [18], ecological risk assessment [19] and face 

recognition [20]. In this work we use the dual variables RR method, proposed in [21], 

as it employs kernel functions to allow the construction of non-linear regressions 

without having to carry out expensive computations in a high dimensional feature 

space. 

To approximate a set of sample projects {(x1,y1), …, (xl,yl)}, where xi  
n
 is the 

vector of attributes (cost drivers) for project i and yi   is the effort of that project, 

the well known RR procedure recommends finding the w which minimises 
l
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where a is a positive constant, called the ridge parameter. Notice that RR includes 

Least Squares as a special case (by setting a = 0). The RR prediction 
tŷ  for an input 

vector 
tx  is then .ˆ

tt xwy  

The dual variables formula, derived in [21], for the prediction of an input vector 

tx is 
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where Y = (y1, ..., yl) is the vector consisting of the effort outputs of the projects in the 

training set (the set of known project samples), K is the l × l matrix of dot products of 

the input vectors x1, ..., xl of those data samples, 
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k is the vector of dot products between 
tx  and the input vectors of the training 

samples, 

,,...,1    ),,Κ( lixxk tii
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and ),K( xx  is the kernel function, which returns the dot product of the vectors x and 

x  in some feature space. 

In this work we used the RBF kernel function, which is the typical choice of kernel 

in machine learning literature and is defined as 
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4   Genetically Evolved Cost Driver Subsets  

A Genetic Algorithm (GA) is an optimisation technique inspired by natural evolution. 

It evolves a population of encoded solutions (called individuals) to a given problem 

through generations using genetic operations. The typical genetic operations used are 

crossover, or recombination, and mutation. The individuals at each step, called a 

generation, are evaluated and a score is assigned to each one, called its fitness value, 

indicating how good the solution it represents is. The fitness of each individual 

defines its likelihood of being selected for the next generation. Until a new generation 

is completed, individuals from the current generation are selected probabilistically 

based on their fitness to generate offspring for the new generation. There are also a 

few individuals, the fittest ones, which are carried forward to the new generation 

unchanged, that is, without the application of any genetic operation on them. The 

same process is repeated until an optimal solution is reached or a stopping criterion is 

met, which in many cases is a maximum number of generations. The solution 

represented by the fittest individual in the last population is the one adopted as the 

resulting solution of the GA. 

In our case each individual is a bit string of the size of the cost drivers contained in 

the dataset. The cost drivers represented by the bits set to 1 are taken into account as 

inputs while all others (set to 0) are not. To evaluate each individual we perform a 10-

fold cross-validation process on the set of known examples (the training set) using as 

inputs only the selected cost drivers. Specifically, we split the training set into 10 

parts of almost equal size and we apply the RR technique (with only the selected cost 

drivers) 10 times, each time evaluating its performance on one part after training on 

the other nine. For the performance evaluation we calculate the Magnitude of Relative 

Error (MRE) of each project i as: 

ˆ
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i

i
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At the end of the 10-fold cross-validation process the Mean Magnitude of Relative 

Error (MMRE) over the whole set is calculated as the mean value of the MREs of all 

projects. Since the smaller the MMRE the fitter the corresponding individual, the 

fitness of each individual is defined as: 



.fitness MMRE  (7) 

To create each generation we first select the 10% fittest individuals and place them 

in the new generation as they are. Then until the new generation is complete we select 

two individuals at a time, which we recombine and mutate to generate two new 

individuals for the new population. To select the individuals we perform stochastic 

uniform selection based on the rank of the individuals in the current population. In 

effect this selection function lays out a line in which each individual corresponds to a 

section of the line of length proportional to its rank. The function then moves along 

this line in steps of equal size selecting the individual from the section it lands on. The 

size of the first step is a uniform random number less than the fixed step size. 

The crossover function we use is the uniform crossover, with a probability of being 

applied to each pair, called crossover rate, of 0.8. This function creates a random bit 

string of the same size as the two parents, called crossover mask, and generates the 

first child by copying the parts of the first parent at the points where the crossover 

mask has a 1 and the parts of the second parent at the points where the crossover mask 

has a 0. For the second child the same process is repeated with the parents reversed. 

We also use uniform mutation, which flips each bit of an individual with a given 

probability, which in this case was set to 0.01. 

5   Experiments and Results 

The proposed genetically evolved algorithm of software cost drivers was 

implemented using the MATLAB (R2008b) Genetic Algorithm and Direct Search 

Toolbox [22] and had a two-fold aim: Firstly, select the best subset of cost drivers 

from a wider pool of drivers, and secondly minimise the overall relative error rate of 

the RR technique.  

The ISBSG dataset used in the experiments [23] includes a vast number of project 

attributes related to the application domain, programming language used, language 

type, development technique, resource level, functional size of the software produced, 

etc. The dataset contained numeric, categorical, multi-categorical and null values and 

so, we performed the following actions of column and row filtering: 

a) Excluded attributes that have been measured after the project completion and 

would not be therefore practical for the cost estimation model we were 

building. 

b) Calculated the number of null records for the remaining attributes and 

excluded those that presented more than 40% because they would cause 

dramatic decrease to the useful sample finally used. 

c) Referred to the quality rating provided by the ISBSG (the organization from 

which the data used in this study is drawn) reviewers and excluded project 

information that were rated lower to grade ‘B’. 

d) Excluded records that contained null values in numerical attributes. 

e) Created new binary columns for different values of categorical attributes. In 

these columns and for each project reported the value of 1 if it belonged to the 

new categories created, or 0 if it did not belong. 



f) All numerical values were normalized to the minimum and maximum range of 

0 and 1 respectively so that they all had the same impact. 

From the original software attributes reported within the dataset, we included in our 

experiments only those that contained enough data to be useful and meaningful for 

cost estimation and the final ISBSG dataset after this preprocessing contained 467 

projects and 82 attributes. Therefore, the bit string representation used for the 

individuals of the algorithm had 82 bits and all combinations of selected attributes 

were treated as solutions to the problem. 

5.2   Results  

The summary statistics of the output (dependent) effort variable of the ISBSG sample 

used in the experiments is shown in Table 1. The figures show major differences 

between the actual data used for the estimation.  

 

Table 1: Summary statistics of dependent variable (full-cycle summary work effort) 

Mean 

6,644.43 

Std. Error 

595.62 

Median 

2,385.00 

Mode 

1,238.00 

Std. Dev. 

12,871.37 

Sample Variance 

165,672,215.32 

Kurtosis 

38.86 

Skewness 

5.08 

Min 

97.00 

Max 

150,040.00 

 

Table 2: Results for the ISBSG dataset - Genetically evolved cost drivers for RR  
 Training Set  Testing Set 

Partition 
MMRE  

full  

MMRE 

selection 

No. of 

selections 

MMRE  

full  

MMRE 

selection 

1 0.314 0.374 33 0.763 0.733 

2 0.335 0.418 30 0.524 0.490 

3 0.333 0.415 29 0.506 0.470 

4 0.328 0.397 34 0.502 0.521 

5 0.355 0.424 35 0.434 0.445 

6 0.312 0.374 30 0.815 0.748 

7 0.319 0.398 32 0.551 0.538 

8 0.328 0.375 40 0.549 0.513 

9 0.337 0.411 32 0.657 0.745 

10 0.344 0.421 33 0.547 0.495 

 

In order to test the performance of the proposed approach we randomly partitioned 

the dataset into training and testing sets 10 times, each time allocating 80% of the 

projects to the training set and the remaining 20% to the testing set. Our GA was then 

applied to each of the resulting training sets with a population of 100 individuals for 

100 generations producing the evolved subset of selected cost drivers for the 

corresponding partition. The selected cost drivers were then used as inputs for training 

the RR technique on the training set of each partition and evaluating its cost estimates 

on both the training and testing sets of the partition.  

The obtained results are summarised in Table 2. The first column of this table 

indicates the sequence number of the dataset partition. The second and fifth columns 



report the error figures obtained when using the complete set of inputs for training 

and evaluating the algorithm while the third and sixth columns report the 

corresponding error figures obtained when using only the selected subset of inputs. 

Finally the fourth column indicates the number of attributes included in the selected 

subset of the GA.  

The values reported in the second and third column of Table 2 show that the 

performance of RR on its training sets deteriorates slightly with the reduction of the 

used attributes. This is of course natural since by reducing the number of inputs we 

also reduce the number of free parameters and therefore the ability of the function to 

fit the training data. As a result, by removing inputs which are either misleading or 

contain little information relevant to our problem, we in effect reduce the degree of 

overfitting that occurs.  

The actual improvement resulting from the use of only the selected attributes is 

evident from the performance of RR on the testing sets reported in the fifth and sixth 

columns of the table. Here we see that the selection of attributes made by the GA 

reduced the resulting error in 7 out of 10 cases. The mean values over the 10 

partitions give an MMRE of 0.5848 when using all attributes compared to 0.5698 

when using only the selected attributes. Furthermore, this is achieved by selecting 

always less than half of the available cost drivers and on average only 33 out of the 

full 82. This improvement in MMRE values on the testing set also confirms that the 

increase of MMRE observed on the training set represents a reduction of overfitting. 

Finally, it would be very interesting to analyse the actual attributes selected by the 

GA, but due to the large original size of the dataset (82 attributes), this is not practical 

and requires further investigation, filtering or weighting. However, our results have 

shown that the proposed approach can be used successfully for identifying the 

appropriate attributes to measure and maintain for future cost estimations and 

therefore saving an important amount of time and effort that is spent in acquiring and 

maintaining large quantities of data.  

6   Conclusions 

This paper proposed the use of the dual variables Ridge Regression (RR) technique in 

conjunction with a Genetic Algorithm (GA) to evolve the selection of cost drivers 

used as inputs for the estimation of software effort. An important advantage of using a 

GA is that it can search the vast space of possible combinations of cost drivers 

efficiently and reach a near-to-optimal outcome. The results obtained from the 

evaluation phase of our experiments show that the proposed algorithm did not only 

reduce the number of cost drivers used to less than half, but it also resulted in an 

improvement to the performance of the dual variables RR technique. 

In the future we plan to further investigate the use of our approach in combination 

with other techniques such as stepwise regression, greedy hill climbing, simulated 

annealing and artificial neural networks. We also plan to study the effect that each 

cost driver has on the resulting predictions, both for the ISBSG dataset used in this 

work and for other datasets. The results of such a process may enable decision 

makers, project managers or cost estimators to make more informed decisions about 



the project parameters that should be measured and used for producing accurate effort 

estimates. Another future direction of this work is to extend the Genetic Algorithm 

developed into including the optimisation of the Ridge Regression parameter values, 

i.e., the ridge factor and RBF spread, as part of the implementation, so that the model 

becomes properly calibrated for the selected cost drivers. 
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