
Swarm and Evolutionary Computation 11 (2013) 16–30
Contents lists available at SciVerse ScienceDirect
Swarm and Evolutionary Computation
2210-65
http://d

n Corr
E-m

bkpanig
journal homepage: www.elsevier.com/locate/swevo
Regular Paper
Tsallis entropy based optimal multilevel thresholding using cuckoo
search algorithm

Sanjay Agrawal a, Rutuparna Panda a, Sudipta Bhuyan a, B.K. Panigrahi b,n

a Department of Electronics & Telecommunication Engineering, Veer Surendra Sai University of Technology, Burla 768018, India
b Department of Electrical Engineering, IIT Delhi-110003, India
a r t i c l e i n f o

Article history:
Received 21 May 2012
Received in revised form
3 February 2013
Accepted 11 February 2013
Available online 21 March 2013

Keywords:
Image segmentation
Multi-level thresholding
Cuckoo search algorithm
Tsallis entropy
02/$ - see front matter & 2013 Elsevier B.V. A
x.doi.org/10.1016/j.swevo.2013.02.001

esponding author. Tel./fax: þ91 1126591078.
ail addresses: bijayaketan.panigrahi@gmail.com
rahi@ee.iitd.ac.in (B.K. Panigrahi).
a b s t r a c t

In this paper, optimal thresholds for multi-level thresholding in an image are obtained by maximizing
the Tsallis entropy using cuckoo search algorithm. The method is considered as a constrained
optimization problem. The solution is obtained through the convergence of a meta-heuristic search
algorithm. The proposed algorithm is tested on standard set of images. The results are then compared
with that of bacteria foraging optimization (BFO), artificial bee colony (ABC) algorithm, particle swarm
optimization (PSO) and genetic algorithm (GA). Results are analyzed both qualitatively and quantita-
tively. It is observed that our results are also encouraging in terms of CPU time and objective function
values.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Image segmentation has the role as a preprocessing step in
image processing. Thresholding plays important role in image
segmentation. Note that Image segmentation deals with subdivid-
ing the image into objects of meaningful information, which is
useful for biomedical image processing, biomedical imaging,
pattern recognition, remote sensing etc. Over the years many
techniques for image segmentation have been developed and
proposed in the literature. Thresholding is considered the most
preferred technique out of all the existing techniques used for
image segmentation. Reason may be due to the fact that it is very
simple and efficient. Various techniques for global thresholding
are available in the literature to segment images and extract
meaningful patterns of interest [1–6]. Bi-level global thresholding
is used to divide the image into two regions, foreground and
background. The main idea behind using global thresholding as a
segmentation technique is that foreground and background areas
in an image can be distinguished by observing its histogram with
probabilities for each gray level. However, for real life images bi-
level thresholding does not give appropriate results. Hence, there
is a strong need for multi-level thresholding which divides the
histogram of the image into number of classes of homogenous
gray levels such that some criterion is optimized. Many such
criteria are proposed to achieve multi-level thresholding. Otsu's
ll rights reserved.

,

[7] criteria maximize the sum of between-class variances for
separating the classes. According to Kittler and Illingworth [8],
the histogram of an image is assumed to follow a mixture of
Gaussians and the error between the parametric form and the
actual histogram is minimized. Whereas Kapur's criteria [9] max-
imizes the entropy of each individual class or the sum of entropies
based on information theory.

All the above criteria are very effective for bi-level threshold-
ing. However, they fail to identify the optimal thresholds effec-
tively for multi-level thresholding. The computational complexity
increases as the number of thresholds increases. Obviously the
alternate solution is to think for using evolutionary computational
techniques. In this context, various thresholding algorithms are
proposed which use different kinds of evolutionary techniques
such as GA [10], PSO [11], ABC [12], BFO [13] and hybrid algorithms
[6]. Yin [10] proposed a fast scheme using genetic algorithm for
determining the optimal thresholds for multilevel thresholding.
Yin [11] presented a recursive programming technique to reduce
the computation time for computing the minimum cross entropy
threshold (MCET) objective function. He then used PSO for
obtaining the near-optimal thresholds. Zhang and Wu [12] used
ABC algorithm for optimizing the Tsallis entropy. These are used
to improvise efficiency of multilevel thresholding algorithms.
According to Kamal Hammouche, Moussa Diaf and Patrick Siarry
[14] multilevel thresholding has been taken as an optimization
problem. They have presented six meta-heuristic algorithms to
support their survey. Recently, the authors [15] have shown
statistical analysis which addresses the stability and convergence
of their method. This has motivated us to introduce a new method

www.elsevier.com/locate/swevo
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2013.02.001
http://dx.doi.org/10.1016/j.swevo.2013.02.001
http://dx.doi.org/10.1016/j.swevo.2013.02.001
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.swevo.2013.02.001&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.swevo.2013.02.001&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.swevo.2013.02.001&domain=pdf
mailto:bijayaketan.panigrahi@gmail.com
http://dx.doi.org/10.1016/j.swevo.2013.02.001

Table 1
Parameters used for GA.

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–30 17
for finding the optimal thresholds effectively for multi-level
thresholding. Here we consider optimal thresholding as a con-
strained optimization problem. The desired stability yields appro-
priate constraints for the maximization problem. Interesting and
stable solutions are obtained through the convergence of a new
meta-heuristic algorithm called cuckoo search.

Tsallis entropy also called non-extensive entropy has been
studied for a possible extension of Shannon's entropy to informa-
tion theory. This study has brought a similarity between the
Shannon's entropy and Boltzmann/Gibbs entropy functions. A
parameter ‘q’ called entropic index or Tsallis parameter is also
associated with the non-extensivity of the system [1,16–18]. This
paper uses the Tsallis entropy based method for image threshold-
ing. The proposed method is used for maximizing the Tsallis
entropy. Image thresholding results are presented for a qualitative
analysis. Quantitative results defined by PSNR, Standard deviation,
SSIM and FSIM are also presented for a comparison.

The paper is organized as follows: Section 2 presents concepts
of Tsallis entropy. Section 3 describes concepts of Cuckoo search
algorithm. Section 4 outlines the proposed method. Results and
discussions are presented in Section 5. Conclusions are drawn in
Section 6.
Parameter Value

Population size 20
No. of iterations 100
Crossover probability 0.9
Mutation probability 0.1
Selection operator Roulette wheel selection

Table 2
Parameters used for PSO.

Parameter Value

Swam size 20
No. of iterations 100
Wmax, Wmin 0.4, 0.1
C1, C2 2

Table 3
Parameters used for BFO.

Parameter Value

Number of bacterium (s) 20
Number of chemotatic steps (Nc) 10
Swimming length (Ns) 10
Number of reproduction steps (Nre) 4
2. Tsallis entropy method

Physically entropy is associated with the measure of disorder
in a system. But Shannon extended the concept of entropy to a
measure of uncertainty regarding the information content of the
system. It is also verified that the Shannon entropy has the
extensive property (additivity):

SðAþBÞ ¼ SðAÞþSðBÞ ð1Þ
By following the multi-fractal concepts, the Tsallis entropy can

be extended to non-extensive system based on a general entropic
formula:

Sq ¼
1−∑k

i ¼ 1ðpiÞq
q−1

ð2Þ

where k is the total number of possibilities of the system and q is
the measure of degree of non-extensivity of the system called
Tsallis parameter or entropic index. This entropic form can be
extended for a statistical independent system by a pseudo-additive
entropic rule:

SqðAþBÞ ¼ SqðAÞþSqðBÞþð1−qÞ:SqðAÞ:SqðBÞ ð3Þ
Such a method is now used for thresholding an image. Let there

be G gray levels in a given image and these gray levels are in the
range {1, 2… G}. Let pi¼p1, p2… pG be the probability distribution
Begin
Objective function f(x), x = (x1,…,xd)

T;
Initialize a population of n host nests, xi (i=1,2,…,n);
While (t < MaxIterations) or (fmin > tol);

Get a cuckoo (say k) randomly by Levy flights;
Evaluate its quality/fitness Fk;
Choose a nest among n (say j) randomly;

if (Fk >Fj),
Replace j by the new solution;
end

Abandon a fraction (pa) of worst nests
[and build new ones at new locations via Levy flights];
Keep the best solutions (or nests with quality solutions);
Rank the solutions and find the current best;

end while
end

Fig. 1. Pseudo Code for Cuckoo Search Algorithm.
of the gray levels. From these distributions two probability
distributions, one for the foreground (class A) and another for
the background (class B), are derived. The probability distributions
of the foreground and background classes are given by [12,19]

pA ¼
p1
PA

,
p2
PA

,…,
pt
PA

and pB ¼
ptþ1

PB ,
ptþ2

PB ,…,
pG
PB ð4Þ

where PA ¼∑t
i ¼ 1pi and PB ¼∑G

i ¼ tþ1pi
Now the Tsallis entropy for each class can be defined as:

SAq ðtÞ ¼
1−∑t

i ¼ 1ðpi=PAÞq
q−1

ð5Þ

SBqðtÞ ¼
1−∑G

i ¼ tþ1ðpi=PBÞq
q−1

ð6Þ

The information measure between two classes (foreground
and background) is maximized and the corresponding gray level
for which this happens is considered to be the optimum
threshold value.
Number of elimination of dispersal events (Ned) 2
Depth of attractant (dattract) 0.1
Width of attract (xattract) 0.2
Height of repellent (hrepellent) 0.1
Width of repellent (xrepellent) 10
Probability of elimination and dispersal (Ped) 0.02

Table 4
Parameters used for CS.

Parameter Value

Number of nests 40
No. of iterations 20
Mutation probability value (pa) 0.25
Scale factor (β) 1.5
Tsallis parameter (q) 4

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

Gray levels

N
o.

 o
f p

ix
el

s

Fig. 2. Results of Lena Image using BFO and CS. a. Original Lena Image, b. Histogram of Lena Image, c. 2-level thresholding using BFO, d. 3-level thresholding using BFO,
e. 4-level thresholding using BFO, f. 5-level thresholding using BFO, g. 2-level thresholding using CS, h. 3-level thresholding using CS, i. 4-level thresholding using CS,
j. 5-level thresholding using CS.

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

Gray levels

N
o.

 o
f p

ix
el

s

Fig. 3. Results of Pepper Image using BFO and CS. a. Original Pepper Image, b. Histogram of Pepper Image, c. 2-level thresholding using BFO, d. 3-level thresholding using
BFO, e. 4-level thresholding using BFO, j. 5-level thresholding using BFO, g. 2-level thresholding using CS, h. 3-level thresholding using CS, i. 4-level thresholding using CS and
j. 5-level thresholding using CS.

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–3018

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

Gray levels

N
o.

of
 p

ix
el

s

Fig. 4. Results of Cameraman Image using BFO a nd CS. a. Original Cameraman Image, b. Histogram of Cameraman Image, c. 2-level thresholding using BFO, d. 3-level
thresholding using BFO, e. 4-level thresholding using BFO, f. 5-level thresholding using BFO, g. 2-level thresholding using CS, h. 3-level thresholding using CS, i. 4-level
thresholding using CS, j. 5-level thresholding using CS.

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

14000

Gray levels

N
o

.o
f p

ix
el

s

Fig. 5. Results of House Image using BFO and CS. a. Original House Image, b. Histogram of House Image, c. 2-level thresholding using BFO, d. 3-level thresholding using BFO,
e. 4-level thresholding using BFO, f. 5-level thresholding using BFO, g. 2-level thresholding using CS, h. 3-level thresholding using CS, i. 4-level thresholding using CS and
j. 5-level thresholding using CS.

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–30 19

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

Gray levels

N
o.

 o
f p

ix
el

s

Fig. 6. Results of Hunter Image using BFO and CS. a. Original Hunter Image, b. Histogram of Hunter image, c. 2-level thresholding using BFO, d. 3-level thresholding using
BFO, e. 4-level thresholding using BFO, f. 5-level thresholding using BFO, g. 2-level thresholding using CS, h. 3-level thresholding using CS, i. 4-level thresholding using CS and
j. 5-level thresholding using CS.

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

Gray levels

N
o.

 o
f p

ix
el

s

Fig. 7. Results of Map Image using BFO and CS. a. Original Map Image, b. Histogram of Map image, c. 2-level thresholding using BFO, d. 3-level thresholding using BFO,
e. 4-level thresholding using BFO, f. 5-level thresholding using BFO, g. 2-level thresholding using CS, h. 3-level thresholding using CS, i. 4-level thresholding using CS,
j. 5-level thresholding using CS.

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–3020

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

Gray levels

N
o.

 o
f p

ix
el

s

Fig. 8. Results of Livingroom Image using BFO and CS. a. Original Livingroom Image, b. Histogram of Livingroom image, c. 2-level thresholding using BFO, d. 3-level
thresholding using BFO, e. 4-level thresholding using BFO, f. 5-level thresholding using BFO, g. 2-level thresholding using CS, h. 3-level thresholding using CS, i. 4-level
thresholding using CS, j. 5-level thresholding using CS.

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

Gray levels

N
o.

 o
f

pi
xe

ls

Fig. 9. Results of Butterfly Image using BFO and CS. a. Original Butterfly Image, b. Histogram of Butterfly image, c. 2-level thresholding using BFO, d. 3-level thresholding
using BFO, e. 4-level thresholding using BFO, f. 5-level thresholding using BFO, g. 2-level thresholding using CS, h. 3-level thresholding using CS, i. 4-level thresholding using
CS, j. 5-level thresholding using CS.

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–30 21

0 50 100 150 200 250 300
0

1000
2000
3000
4000
5000
6000
7000
8000

Gray levels

N
o.

 o
f p

ix
el

s

Fig. 10. Results of Airplane Image using BFO and CS. a. Original Airplane Image, b. Histogram of Airplane image, c. 2-level thresholding using BFO, d. 3-level thresholding
using BFO, e. 4-level thresholding using BFO, f. 5-level thresholding using BFO, g. 2-level thresholding using CS, h. 3-level thresholding using CS, i. 4-level thresholding using
CS, j. 5-level thresholding using CS.

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

Gray levels

N
o.

 o
f p

ix
el

s

Fig. 11. Results of Baboon Image using BFO and CS. a. Original Baboon Image, b. Histogram of Baboon image, c. 2-level thresholding using BFO, d. 3-level thresholding using
BFO, e. 4-level thresholding using BFO, f. 5-level thresholding using BFO, g. 2-level thresholding using CS, h. 3-level thresholding using CS, i. 4-level thresholding using CS,
j. 5-level thresholding using CS.

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–3022

0 100 200 300
0

100

200

300

400

500

Gray levels

N
o.

 o
f P

ix
el

s

Fig. 12. Results of 46076 Image using BFO and CS. a. Original 46076 Image, b. Histogram of 46076 image, c. 2-level thresholding using BFO, d. 3-level thresholding using BFO,
e. 4-level thresholding using BFO, f. 5-level thresholding using BFO, g. 2-level thresholding using CS, h. 3-level thresholding using CS, i. 4-level thresholding using CS,
j. 5-level thresholding using CS.

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–30 23
This is obtained by maximizing the objective function for
bi-level thresholding:

Topt ¼ arg max½SAq ðtÞþSBqðtÞþð1−qÞ⋅SAq ðtÞ⋅SBqðtÞ� ð7Þ

Subject to the following constraint:

jPAþPBj−1oSo1−jPA−PBj
where

SðtÞ ¼ S¼ ½SAq ðtÞþSBqðtÞþð1−qÞ⋅SAq ðtÞ⋅SBqðtÞ� ð8Þ

It is noteworthy to mention here that the constraint equation
(8) is verified inside the proposed algorithm in order to ensure
stability. Here the optimal threshold value ‘T ’ is the gray level that
maximizes Eq. (7) subject to the constraint defined in Eq. (8). Note
that the solution is obtained by solving this constrained optimiza-
tion problem.

This method can also be easily extended to multi-level thresh-
olding. The optimal multilevel thresholding problem is configured
as an m-dimensional optimization problem. Interestingly, ‘m’

optimal thresholds [T1, T2,…,Tm] for a given image can be deter-
mined by maximizing the objective function:

½T1,T2,:::,Tm� ¼ arg max½S1qðtÞþS2qðtÞþ :::þSMq ðtÞ
þð1−qÞ⋅S1qðtÞ⋅S2qðtÞ⋅⋅⋅SMq ðtÞ� ð9Þ

where

S1qðtÞ ¼
1−∑t1

i ¼ 1ðpi=P
1Þq

q−1

S2qðtÞ ¼
1−∑t2

i ¼ t1 þ1ðpi=P2Þq
q−1
and

SMq ðtÞ ¼
1−∑G

i ¼ tm þ1ðpi=PMÞq
q−1

, M ¼mþ1

Subject to the set of constraints defined below:

jP1þP2j−1oS1o1−jP1−P2j
jP2þP3j−1oS2o1−jP2−P3j ð10Þ

jPmþPmþ1j−1oSMo1−jPm−Pmþ1j
These equations are important for stability point of view. Here,

P1, P2,…, Pmþ1 corresponding to S1, S2, …, SM are computed with
T1, T2,…, Tm, respectively. To be specific, here the aim is to optimize
the objective function defined by Eq. (9) subject to the constraints
given in the set of equations Eq. (10) using Cuckoo search
algorithm. These constraints are checked inside the proposed
algorithm. Thus, stability of the proposed algorithm is ensured
for different types of images.

Note that ‘M’ refers to ‘class M’ and is equal to mþ1. Here
Cuckoo search algorithm is used to optimize the objective function
defined by Eq. (9) subject to the constraints equation (10). The
validity of the theory is proved with the help of numerical
illustrations.
3. Cuckoo search algorithm

Recently, the Cuckoo Search (CS) algorithm is proposed by Yang
and Deb [20,21] and Rajabioun [22]. It is important to mention here
that CS is also a population based stochastic global search algorithm.
We can use CS for finding a global optimal solution. CS algorithm is

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–3024
inspired by the obligate brood parasitism of some cuckoo species by
laying their eggs in the nests of other host birds of other species
found in different places. While considering the multi-dimensional
space where the optimal solution is sought, the authors in [20–22]
proved that the CS algorithm provide us efficient means for max-
imizing the objective function. Note that the quality or fitness of a
solution can simply be proportional to the value of the objective
function as it is the case with other search algorithms. CS is different
from other population based search algorithms in the sense that it is
a meta-heuristic search algorithm. Since the CS utilizes the coded
discrete information, it can easily be applied to ill-structured discrete
optimization problems as well as to continuous optimization pro-
blems. It is capable in finding optimal solutions to complex problems
without any exhaustive search. Therefore CS may be useful for non-
linear problems and multi-objective optimizations. Here in a CS
algorithm, a pattern corresponds to a nest and each individual
attribute of the pattern corresponds to a Cuckoo-egg.
Table 5
Comparison of best objective function values and their corresponding threshold values.

Test images m Best objective function values Optimu

CS BFO PSO GA CS

Lena 2 0.888976 0.8889 0.8889 0.8889 98,170
3 1.296296 1.296278 1.296268 1.296247 79,116,
4 1.654320 1.654271 1.654255 1.654208 73,101,
5 1.995884 1.995787 1.995773 1.995717 56,106,

Pepper 2 0.888983 0.8889 0.8889 0.8889 51,161
3 1.296296 1.296278 1.296274 1.296262 109,157
4 1.654319 1.654264 1.654248 1.654225 47,61,8
5 1.995874 1.995771 1.995766 1.995739 51,90,1

Cameraman 2 0.888960 0.8889 0.8889 0.8889 72,155
3 1.296294 1.296189 1.296180 1.296141 36,66,1
4 1.654319 1.654190 1.654183 1.654177 45,86,1
5 1.995882 1.995674 1.995669 1.995663 51,94,1

House 2 0.888886 0.888761 0.888761 0.888761 79,173
3 1.296292 1.296092 1.296090 1.296052 56,127,
4 1.654316 1.653630 1.653586 1.653581 61,93,1
5 1.995879 1.994217 1.993744 1.993426 49,92,1

Hunter 2 0.888930 0.8889 0.8889 0.8889 98,170
3 1.296295 1.296270 1.296267 1.296227 70,117,1
4 1.654320 1.654258 1.654255 1.654240 61,91,15
5 1.995883 1.995766 1.995720 1.995713 51,91,13

Map 2 0.888885 0.881206 0.881206 0.881206 98,172
3 1.296192 1.273982 1.267481 1.232429 88,147,
4 1.654020 1.587902 1.585544 1.579716 56,109,
5 1.993884 1.828422 1.818369 1.788800 49,92,1

Livingroom 2 0.888888 0.888881 0.888881 0.888881 75,168
3 1.296292 1.296281 1.296275 1.296255 50,115,
4 1.654320 1.654263 1.654247 1.654244 61,91,15
5 1.995864 1.995743 1.995701 1.995627 51,92,1

Butterfly 2 0.888889 0.888825 0.888825 0.888825 78,150
3 1.296290 1.296202 1.296190 1.296168 84,113,
4 1.654320 1.653424 1.652617 1.652564 63,92,1
5 1.995884 1.994823 1.991453 1.989359 50,90,1

Airplane 2 0.888982 0.8889 0.8889 0.8889 78,171
3 1.296293 1.296223 1.296204 1.296180 71,125,
4 1.654318 1.654277 1.654262 1.654243 68,107,
5 1.995878 1.995795 1.995784 1.995768 50,89,1

Baboon 2 0.888976 0.8889 0.8889 0.8889 62,126
3 1.296296 1.296284 1.296274 1.296202 60,131,
4 1.654320 1.654266 1.654262 1.654241 59,99,1
5 1.995884 1.995744 1.995737 1.995708 57,69,1

46076 2 0.888888 0.888868 0.8888 0.8888 68,186
3 1.296295 1.296249 1.296228 1.296217 71,152,
4 1.654320 1.654057 1.654055 1.654008 43,134,
5 1.995883 1.995717 1.995703 1.995700 39,40,8
The underlying principles of CS algorithm are:
1.
m t

169
129,
153

,218
1,147
34,1

45
04,1
33,1

182
52,2
31,1

70
0,19
3,17

194
152,
31,1

169
0,2
34,1

167
50,2
32,1

182
135,
25,1

147
26,1
23,1

199
164,
9,15
Interestingly, each cuckoo bird lays one egg at a time, and
dumps its egg in a randomly chosen nest of another bird from
other species.
2.
 Usually the best nests containing high quality eggs are carried
over to the next generations.
3.
 The number of available host nests is fixed. And the egg laid by
a cuckoo bird is discovered by the host bird with a probability
pa∈ ½0, 1�. Note that the worst nests are discovered and
dropped from further calculations.

Based on these three principles, the basic steps of the CS algorithm
are summarized below (presented as a Pseudo Code in Fig. 1).

The choice of control parameters in CS algorithm is simple and
required for implementing the algorithm. Note that the control
parameters of the CS algorithm are the scale factor (β) and the
mutation probability value (pa) [23]. While generating new
hreshold values

BFO PSO GA

120,164 120,164 120,164
81,124,178 110,149,187 98,159,181

185 85,124,161,193 85,118,164,200 86,120,151,205
,175,213 76,108,136,164,193 86,117,142,166,196 95,130,152,173,200

82,154 82,154 82,154
86,118,190 93,133,179 75,103,182
71,121,161,197 73,121,141,176 73,109,141,193

71,203 70,109,139,169,197 78,111,141,169,198 78,105,139,168,200

120,154 120,154 120,154
78,128,178 78,121,173 81,143,170

60 91,123,156,211 82,122,154,201 76,116,148,202
71,202 70,107,134,158,200 78,110,133,159,199 88,118,143,169,205

87,145 87,145 87,145
88,133,199 90,133,199 82,123,177

12 67,105,146,189 70,112,152,189 73,111,151,189
70,203 66,95,121,155,200 70,104,134,160,212 60,99,114,158,198

94,137 94,137 94,137
82,118,171 83,143,174 87,147,173

3 71,110,142,182 78,109,143,187 90,119,150,191
2,203 65,93,123,150,182 70,103,139,174,198 79,114,144,174,198

114,176 114,176 114,176
84,142,198 90,131,183 80,145,172

206 73,113,156,203 78,121,158,189 80,117,157,199
70,202 75,112,147,174,206 79,113,142,170,191 91,118,144,174,206

81,144 81,144 81,144
89,143,197 91,137,198 88,117,178

13 67,107,145,186 87,126,165,200 90,126,158,199
71,201 72,111,139,164,199 71,125,150,176,205 69,126,157,182,204

97,136 97,136 97,136
99,135,197 100,135,185 89,124,169

10 95,120,144,189 89,122,143,178 94,121,141,179
65,198 89,114,141,170,213 70,107,134,162,189 70,119,140,170,214

72,153 72,153 72,153
99,143,193 98,134,192 89,148,172

190 68,103,135,182 85,117,153,180 79,111,153,173
56,182 61,94,121,150,185 75,107,134,157,185 73,98,131,162,192

91,147 91,147 91,147
111,148,188 108,155,181 111,136,193

86 75,114,146,175 62,115,144,174 94,125,152,177
56,198 78,106,136,157,179 84,110,132,153,175 90,116,139,159,180

78,165 70,164 60,164
51,116,158 40,149,187 30,159,181

212 62,92,153,212 55,118,164,200 46,120,151,205
2,206 51,93,134,171,200 56,117,142,166,196 45,130,152,173,200

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–30 25
solutions x(tþ1), for a cuckoo i, a Levy flight is performed:

xiðtþ1Þ ¼ xiðtÞ þα⊕LevyðλÞ, ð11Þ
where α40 is the step size. Here we choose α¼1. Levy flights
provide a random walk while their random steps are drawn from
a Levy distribution for large steps defined by:

Levy∽u¼ t−λ, ð1oλ≤3Þ, ð12Þ
which has an infinite variance and infinite mean.
4. Multilevel thresholding algorithm using CS

In this section, we introduce an efficient algorithm to find
the optimal threshold values for multilevel thresholding. These
optimal thresholds are useful for image segmentation. Here the
algorithm is developed to maximize the non-extensive Tsallis
Table 6
Comparison of PSNR and Standard Deviation.

Test Images m PSNR (dB)

CS BFO PSO GA

Lena 2 18.5339 15.2419 15.2419 15.2419
3 21.2417 17.4715 17.1425 16.9455
4 22.1490 19.5070 19.4324 19.0207
5 23.2855 20.9916 20.5637 19.8703

Pepper 2 18.9283 12.9108 12.9108 12.9108
3 19.6433 16.6563 16.0269 15.5628
4 21.7088 19.2433 16.7109 16.3735
5 22.2022 20.4910 20.2089 19.7642

Cameraman 2 18.8399 10.6258 10.6258 10.6258
3 21.2327 15.6856 14.9951 14.5900
4 22.2643 16.7835 15.9187 14.9756
5 24.8527 17.8802 17.2393 16.6026

House 2 18.6233 12.9865 12.9865 12.9865
3 20.6930 14.0213 13.8104 13.6918
4 22.4978 16.8884 16.4428 16.1794
5 23.9747 17.5635 16.7719 16.5772

Hunter 2 16.5926 11.3848 11.3848 11.3848
3 18.0245 14.5772 14.5135 14.0724
4 19.2790 16.2874 15.4496 14.1926
5 19.8811 17.3380 16.6426 15.6197

Map 2 18.1283 16.6045 16.6045 16.6045
3 19.6091 18.4286 18.0419 16.2161
4 21.3499 20.6499 19.7997 19.7340
5 23.6609 22.1638 21.8968 21.5746

Livingroom 2 14.6260 13.1208 13.1208 13.1208
3 18.2750 17.1198 16.9810 16.5873
4 19.6732 19.2320 18.8655 18.5189
5 21.4269 21.3385 20.9931 20.5597

Butterfly 2 16.8125 13.0516 13.0516 13.0516
3 19.1126 18.1337 17.8316 17.2964
4 21.4784 20.0356 18.9792 18.8382
5 23.7384 21.9096 21.4406 20.2055

Airplane 2 16.8125 13.7290 13.7290 13.7290
3 19.1125 15.8742 15.5913 14.6681
4 21.4784 16.3276 15.6294 14.9701
5 22.7385 17.6049 17.6077 16.1579

Baboon 2 18.6188 13.1404 13.1404 13.1404
3 19.5187 18.1076 17.0809 16.7728
4 20.4325 17.5204 17.1462 17.1583
5 21.0668 18.7616 18.2718 17.2903

46076 2 20.6830 19.9993 18.9983 19.9893
3 22.0758 20.8095 20.7095 20.7005
4 23.6611 22.5993 21.5963 20.5983
5 25.7109 23.5170 22.5240 21.5150
entropy. The proposed method is simple and easy to implement.
Different steps of our algorithm are presented below:

Step 1: Select the number of nests (different solutions). Choose
an appropriate value for the mutation probability parameter.
Step 2: Select the simple bounds of the search domain i.e. lower
bound and upper bound.
Step 3: Generate random initial solutions by evaluating
the objective function as defined in Eq. (9) and get the current
best nest subject to the constraints defined in Eq. (10).
The proposed constrained optimization idea is incorporated
in this algorithm to ensure stability.
Step 4: While the stopping criteria is not met, get a cuckoo
randomly by Levy flights. Evaluate its fitness and keep it as the
current value. Choose a nest randomly and compare its fitness
with the current one. Replace the new value, if it satisfies the
criteria of maximum.
Standard deviation

CS BFO PSO GA

0.0000 0.0000 0.0000 0.0000
0.0000 1.6827e−006 2.5418e−006 3.8999e−006
1.1102e−016 3.4304e−006 1.3306e−005 1.9104e−005
3.6425e−10 4.5355e−006 1.6797e−005 2.7208e−005

0.0000 0.0000 0.0000 0.0000
0.0000 2.8014e−006 7.3578e−006 2.0199e−005
4.4409e−016 1.6217e−005 7.0094e−005 1.7406e−004
5.0064e−008 2.0208e−004 6.3010e−004 1.1678e−003

0.0000 0.0000 0.0000 0.0000
1.4203e−009 4.7916e−006 5.4543e−006 8.4892e−006
1.7631e−008 3.6715e−005 7.5181e−005 1.1024e−004
2.8747e−007 6.6163e−005 1.0319e−004 7.7199e−004

0.0000 0.0000 0.0000 0.0000
2.7660e−009 2.5025e−006 4.3646e−005 6.9786e−005
1.0215e−008 3.7689e−006 8.7702e−005 1.1385e−004
4.8449e−008 7.5181e−005 9.5166e−005 1.2255e−004

0.0000 0.0000 0.0000 0.0000
6.6715e−011 4.6660e−007 1.8965e−006 1.0060e−005
3.755e−009 1.8203e−006 4.2172e−006 1.0886e−005
2.7454e−008 5.4613e−005 1.2255e−004 9.3619e−004

0.0000 0.0000 0.0000 0.0000
8.4267e−011 5.6090e−007 1.0167e−006 4.6714e−006
8.2589e−010 5.0556e−004 1.1493e−003 3.9730e−003
3.6792e−008 6.5988e−004 8.1623e−003 1.6169e−002

0.0000 0.0000 0.0000 0.0000
0.0000 1.6980e−006 6.9103e−005 7.0160e−004
3.5884e−009 4.3245e−006 8.4404e−006 2.2951e−005
5.8242e−008 4.3515e−005 9.3293e−005 1.8187e−004

0.0000 0.0000 0.0000 0.0000
4.4408e−016 1.4899e−006 4.8520e−005 8.5774e−004
4.4408e−015 1.9529e−005 6.7992e−004 1.3908e−005
4.6193e−008 6.4439e−005 9.1016e−004 5.1122e−003

0.0000 0.0000 0.0000 0.0000
2.4517e−009 8.3154e−007 3.1114e−006 6.9412e−006
7.9278e−008 9.5166e−007 2.6305e−006 9.2004e−006
1.9810e−007 5.1122e−006 3.3007e−005 6.3861e−005

0.0000 0.0000 0.0000 0.0000
1.1102e−015 2.9078e−006 9.3397e−006 1.2993e−005
2.0004e−010 3.4997e−006 7.2225e−006 1.3714e−005
4.6354e−008 9.7325e−006 1.1321e−005 1.8993e−005

0.0000 0.0000 0.0000 0.0000
1.1102e−015 2.80e−006 2.32e−006 2.15e−006
2.0004e−010 3.69e−006 3.09e−006 3.00e−006
4.6354e−008 9.63e−006 9.13e−006 8.63e−006

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–3026
Step 5: Abandon a fraction (pa) of worst nests and build new
ones at new locations via Levy flights.
Step 6: Keep the best solutions, rank the solutions and find the
current best.
Step 7: Output the optimal threshold values corresponding to
the best nests.
The lower bound and the upper bound are incorporated in the

algorithm according to the constraints defined above. This algo-
rithm is validated with the help of many illustrations shown in
Section 5. One of the main advantages of the proposed algorithm
over other algorithms is that we can check the stability from the
beginning of the procedure, since we introduced desired stability
as appropriate constraints.
Table 7
Comparison of CPU time, SSIM and FSIM.

Test images m CPU time SSIM FSIM

CS BFO CS BFO CS BFO

Lena 2 8.0837 17.0671 0.9253 0.8522 0.9545 0.9369
3 8.3064 18.9397 0.9638 0.9318 0.9817 0.9694
4 8.7264 19.7398 0.9702 0.9567 0.9796 0.9722
5 9.8660 19.3526 0.9737 0.9735 0.9825 0.9820

Pepper 2 7.9601 13.6662 0.9129 0.9117 0.9765 0.9669
3 8.3510 13.0076 0.9460 0.9205 0.9749 0.9702
4 8.4639 14.4763 0.9659 0.9512 0.9829 0.9808
5 9.4155 15.1942 0.9773 0.9602 0.9869 0.9833

Cameraman 2 6.4983 16.9576 0.9438 0.8968 0.9831 0.9579
3 6.9959 16.5088 0.9678 0.9217 0.9810 0.9622
4 7.2340 17.6882 0.9783 0.9534 0.9922 0.9858
5 8.1029 17.7188 0.9793 0.9661 0.9972 0.9884

House 2 5.6700 17.2772 0.9236 0.9224 0.9866 0.9879
3 6.5587 17.4325 0.9547 0.9371 0.9944 0.9926
4 8.2643 18.0423 0.9689 0.9478 0.9963 0.9913
5 8.3900 20.8635 0.9793 0.9698 0.9974 0.9970

Hunter 2 7.2864 16.7736 0.9430 0.8728 0.9863 0.9790
3 7.4230 16.6818 0.9634 0.9123 0.9887 0.9738
4 7.5468 16.8745 0.9649 0.9375 0.9912 0.9882
5 8.4421 18.9907 0.9746 0.9467 0.9952 0.9904

Map 2 7.3831 16.3412 0.9423 0.8788 0.9963 0.9816
3 8.1370 16.9876 0.9499 0.9383 0.9944 0.9901
4 8.2775 17.0213 0.9741 0.9464 0.9988 0.9915
5 9.7967 19.7201 0.9767 0.9638 0.9975 0.9935

Livingroom 2 7.4939 16.9229 0.8446 0.7945 0.9561 0.9508
3 8.1606 17.7629 0.9350 0.9203 0.9815 0.9766
4 8.8905 17.8943 0.9397 0.9346 0.9916 0.9750
5 9.5986 19.9807 0.9706 0.9445 0.9767 0.9741

Butterfly 2 7.0794 16.6434 0.9236 0.8691 0.9592 0.9391
3 7.8238 17.3209 0.9547 0.9223 0.9768 0.9643
4 8.0921 17.9045 0.9689 0.9377 0.9819 0.9708
5 9.0213 18.3502 0.9793 0.9408 0.9850 0.9699

Airplane 2 6.1371 15.4562 0.8935 0.8377 0.9651 0.9612
3 6.9829 15.8934 0.9499 0.9325 0.9765 0.9701
4 9.6838 17.3201 0.9709 0.9420 0.9881 0.9823
5 9.8409 19.3254 0.9727 0.9491 0.9920 0.9885

Baboon 2 6.8131 15.9845 0.9338 0.8369 0.9859 0.9633
3 6.8874 16.9823 0.9467 0.8623 0.9823 0.9689
4 8.2326 17.0034 0.9543 0.9165 0.9900 0.9713
5 8.7030 17.0231 0.9578 0.9287 0.9904 0.9865

46076 2 8.0837 9.96 0.9683 0.9669 0.9779 0.9704
3 8.3064 10.89 0.9771 0.9670 0.9765 0.9776
4 8.7264 11.03 0.9814 0.9812 0.9821 0.9792
5 9.8660 11.67 0.9912 0.9845 0.9907 0.9814
5. Results and discussions

In this section, experimental results are presented. The experi-
ments are carried out on a P4 Dual-core platform with a 1.75 GHz
processor and 1 GBmemory, running under the Windows 7.0 oper-
ating system. The algorithms are developed using MATLAB Release
2009. Tables 1–4 represent the parameters used for GA, PSO, BFO
and CS algorithms. The results obtained are then compared with
BFO, PSO and GA as presented by Sathya and Kayalvizhi [13].
The parameters for GA, PSO and BFO used here are same as that of
Sathya and Kayalvizhi [13]. Table 4 presents parameter values we
have used for our algorithm.

It is wise to reiterate the fact that a simple CS relies on the
selection of number of nests and number of maximum iterations
or objective function values greater than some tolerance limit.
To start the search, CS requires an initial set of points. This set
of points is called population size, which is quite analogous to
biological systems. A random number generator generates the
initial solution. Initial points in the search space are equal to
the number of nests. Here the population size is 40. Number
of maximum iterations considered for this experiment is 20. Two
important control parameters are mutation probability value (pa)
and the scale factor (β). In this experiment, mutation probability
pa¼0.25 and scale factor β¼1.5. The mutation probability value
(pa) decides the fraction of worst nests that are dropped from
further calculations and build new ones at new locations via Levy
flights. Mutation probability of ‘1’ implies that a host bird
recognizes the Cuckoo's egg and throws it or simply leaves its
nest. Mutation probability of ‘0’ implies that a host bird does not
recognize the Cuckoo's egg and may hatch it. Therefore the range
of mutation probability is chosen between 0 and 1 and a value of
0.25 gives satisfactory results for this experiment. The scale factor
‘β’ plays an important role in controlling the step size of Levy
flights [23].

Already we have discussed about q in Section 2, which is the
measure of degree of non-extensivity of the system called Tsallis
parameter or entropic index. To be precise, a value of ‘q’ less than
one leads to subextensive entropy, where Sq(AþB)oSq(A)þSq(B).
When ‘q’ is equal to one, the entropy is called extensive entropy
and Sq(AþB)¼Sq(A)þSq(B). If ‘q’ is greater than one, then we get
superextensive entropy and Sq(AþB)4Sq(A)þSq(B). It is note-
worthy to mention here that superextensive entropy, a class of
entropy, is useful for multilevel thresholding for image segmenta-
tion. Here we choose q¼4 for our calculations.

In this simulation, we tried to solve our constrained optimiza-
tion problem with different population size, n¼20, 30, 40, 50. It is
observed that with increase in the population size the maximum
objective function value also increases initially. But when it is
increased beyond n¼40, the increase in the objective function
value was marginal, whereas the CPU run time increases con-
siderably. Hence, in this experiment we choose the population size
of 40. While doing simulation we observed that an increase in the
number of iterations does not improve the objective function value
further. So we choose an appropriate value of 20 for this
experiment.

We have also tried different values of mutation probability,
for example, pa¼0.20, 0.25, 0.30. But it is observed that pa¼0.25
yields best results in this experiment. The objective function as
defined in Eq. (9) subject to the constraints defined in Eq. (10) is
maximized for the best nests. These nests are selected with
highest values of the fitness/objective function. By repeated
iterations and natural selection we get the maximum value of
the objective function. A fraction (pa) of worst nests is dropped
and new ones are built at new locations via Levy flights. The
termination criterion is fulfilled provided the objective function
value does not improve further. The best nests correspond to the
optimum threshold values for an image. It may be noted that
stability and validity of the proposed algorithm is ensured through
repeated checking of the constraints defined in Eq. (10). The

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–30 27
algorithm is validated over a range of images. The thresholded
images are shown for a comparison.

In this experiment, we consider 11 different images for thresh-
olding. An image (image 46076) Fig. 12 from Berkley University
dataset for image segmentation [24] is also used for testing our
method to strengthen the results. Optimal thresholds are obtained
using the proposed method. Here we present 2-level, 3-level, 4-
level and 5-level thresholding for visual perception. The size of all
images considered for this experiment is 512�512. The image
thresholding results are displayed in Figs. 2–12. The thresholding
results using CS are also compared with BFO algorithm. These
figures show the effectiveness of the proposed method. For
instance, the output with 5-level thresholding of Lena image using
CS shown in Fig. 2(j) seems qualitatively better as compared to the
5-level thresholding using BFO shown in Fig. 2(f). Similarly, all
other images displayed in this paper also reveal the fact that
thresholding results obtained by our method seem qualitatively
better as compared to earlier methods [13]. From Figs. 2–12, it is
also observed that thresholding results are better qualitatively
when we increase the number of thresholds. For example, let us
consider histogram image (of cameraman) shown in Fig. 4(b),
Table 8
Comparison of CS and ABC algorithms.

Test images m CPU time PSNR

CS ABC CS

Lena 2 8.0837 9.96 18.5339
3 8.3064 10.89 21.2417
4 8.7264 11.03 22.1490
5 9.8660 11.67 23.2855

Pepper 2 7.9601 8.57 18.9283
3 8.3510 9.13 19.6433
4 8.4639 10.45 21.7088
5 9.4155 11.87 22.2022

Cameraman 2 6.4983 9.56 18.8399
3 6.9959 9.89 21.2327
4 7.2340 8.67 22.2643
5 8.1029 10.20 24.8527

House 2 5.6700 7.96 18.6233
3 6.5587 8.45 20.6930
4 8.2643 10.78 22.4978
5 8.3900 10.98 23.9747

Hunter 2 7.2864 9.56 16.5926
3 7.4230 9.78 18.0245
4 7.5468 9.88 19.2790
5 8.4421 10.45 19.8811

Map 2 7.3831 10.53 18.1283
3 8.1370 11.45 19.6091
4 8.2775 11.86 21.3499
5 9.7967 12.45 23.6609

Livingroom 2 7.4939 10.13 14.6260
3 8.1606 11.78 18.2750
4 8.8905 11.98 19.6732
5 9.5986 12.86 21.4269

Butterfly 2 7.0794 10.23 16.8125
3 7.8238 11.45 19.1126
4 8.0921 12.56 21.4784
5 9.0213 12.87 23.7384

Airplane 2 6.1371 9.77 16.8125
3 6.9829 10.45 19.1125
4 9.6838 12.78 21.4784
5 9.8409 12.98 22.7385

Baboon 2 6.8131 8.18 18.6188
3 6.8874 8.78 19.5187
4 8.2326 10.43 20.4325
5 8.7030 10.73 21.0668
which is multimodal in nature. That is why probably the thresh-
olding result using 5-level thresholding (of cameraman) shown in
Fig. 4(j) seems much better than the 2-level thresholding (of
cameraman) shown in Fig. 4(g). Similar is the situation with all
other images.

The effect of multilevel thresholding is visible from different
images. In Fig. 4(g), the background in the cameraman image is not
clearly distinct with two level thresholding. But as the number of
threshold is increased to 5 (i.e. Fig. 4(j)), the background becomes
identifiable. Similarly in Fig. 9(g), the butterfly image mixes up
with the background objects. But as the number of threshold is
increased to 5 (i.e. Fig. 9(j)), the butterfly image becomes
clearly identifiable. Further, an increase in the number of thresh-
olds from 2 to 5 in Fig. 12(g)–(j) makes the cloud object clearer.
This effect of multilevel thresholding is observed in other set of
images also.

Sarkar et al. [25] presented the construction equation for
segmented image. However, in this paper we propose the con-
struction logic for the thresholded image as follows:

For 2-level thresholding, let T1 and T2 represent the optimum
threshold gray values. Let Ti is the gray value of a pixel at position i,
SSIM FSIM

ABC CS ABC CS ABC

11.2131 0.9253 0.6820 0.9545 0.8999
11.3250 0.9638 0.7498 0.9817 0.9634
12.5290 0.9702 0.8033 0.9796 0.9670
18.2878 0.9737 0.9321 0.9825 0.9818

15.4509 0.9129 0.8570 0.9765 0.8790
16.9023 0.9460 0.8956 0.9749 0.9260
18.3478 0.9659 0.9101 0.9829 0.9398
18.9900 0.9773 0.9187 0.9869 0.9678

16.9820 0.9438 0.6825 0.9831 0.8841
17.3475 0.9678 0.7455 0.9810 0.8810
19.4362 0.9783 0.8873 0.9922 0.9612
19.8520 0.9793 0.9122 0.9972 0.9652

15.6230 0.9236 0.7145 0.9866 0.8990
16.5363 0.9547 0.7596 0.9944 0.9601
18.7828 0.9689 0.7954 0.9963 0.9653
19.4747 0.9793 0.8045 0.9974 0.9710

13.5236 0.9430 0.8412 0.9863 0.9688
15.0265 0.9634 0.8614 0.9887 0.9698
15.4658 0.9649 0.8649 0.9912 0.9735
16.0023 0.9746 0.8926 0.9952 0.9785

14.9454 0.9423 0.7789 0.9963 0.9823
16.2635 0.9499 0.7999 0.9944 0.9814
17.4635 0.9741 0.8512 0.9988 0.9878
18.6654 0.9767 0.8747 0.9975 0.9888

11.2365 0.8446 0.6445 0.9561 0.8989
15.9652 0.9350 0.7366 0.9815 0.9615
15.2364 0.9397 0.7350 0.9916 0.9874
18.4478 0.9706 0.7965 0.9767 0.9545

11.3245 0.9236 0.7120 0.9592 0.9389
11.9876 0.9547 0.7234 0.9768 0.9421
15.8740 0.9689 0.8965 0.9819 0.9743
19.5436 0.9793 0.9688 0.9850 0.9849

12.4789 0.8935 0.7953 0.9651 0.9551
15.2322 0.9499 0.8945 0.9765 0.9665
18.6533 0.9709 0.9004 0.9881 0.9741
19.7458 0.9727 0.9044 0.9920 0.9821

13.2245 0.9338 0.8336 0.9859 0.8843
14.6533 0.9467 0.8396 0.9823 0.8823
17.2133 0.9543 0.9038 0.9900 0.8900
18.0546 0.9578 0.9078 0.9904 0.8954

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–3028
then the thresholded image will have gray values,

Ti ¼ Ti, if Ti≤T1

Ti ¼ T1, if T1oTi≤T2 and
Ti ¼ Ti, if Ti4T2, for all i:

For 3-level thresholding, let T1, T2 and T3 represent the
optimum threshold gray values. Let Ti is the gray value of a pixel
at position i, then the thresholded image will have gray values,

Ti ¼ Ti, if Ti≤T1

Ti ¼ T1, if T1oTi≤T2

Ti ¼ T2, if T2oTi≤T3 and
Ti ¼ Ti, if Ti4T3, for all i:

The same logic is implemented for all other levels of thresholding.
Numerical illustrations are presented below with various

parameters such as objective function values, optimal threshold
values, Peak Signal to Noise ratio (PSNR in dB), CPU time (in
seconds), Standard Deviation, Structure similarity (SSIM) index
[26] and Feature similarity (FSIM) index [27]. Numerical findings
are displayed in Tables 5–7 . A higher objective function value
Table 9
Comparison of CS and ABC algorithms.

Test images m Best objective function value Optimu

CS ABC CS

Lena 2 0.888976 0.888888 98,170
3 1.296296 1.296294 79,116,1
4 1.654320 1.654319 73,101,1
5 1.995884 1.995881 56,106,1

Pepper 2 0.888983 0.888888 51,161
3 1.296296 1.296295 109,157
4 1.654319 1.654308 47,61,81
5 1.995874 1.995864 51,90,13

Cameraman 2 0.888960 0.888950 72,155
3 1.296294 1.296289 36,66,14
4 1.654319 1.654290 45,86,10
5 1.995882 1.995774 51,94,13

House 2 0.888886 0.888771 79,173
3 1.296292 1.296192 56,127,1
4 1.654316 1.653630 61,93,15
5 1.995879 1.994227 49,92,13

Hunter 2 0.888930 0.888920 98,170
3 1.296295 1.296275 70,117,1
4 1.654320 1.654228 61,91,15
5 1.995883 1.995760 51,91,13

Map 2 0.888885 0.881216 98,172
3 1.296192 1.283982 88,147,1
4 1.654020 1.589902 56,109,1
5 1.993884 1.928422 49,92,13

Livingroom 2 0.888888 0.888881 75,168
3 1.296292 1.296280 50,115,1
4 1.654320 1.654260 61,91,15
5 1.995864 1.995763 51,92,13

Butterfly 2 0.888889 0.888888 78,150
3 1.296290 1.296286 84,113,1
4 1.654320 1.654319 63,92,15
5 1.995884 1.995883 50,90,13

Airplane 2 0.888982 0.888920 78,171
3 1.296293 1.296253 71,125,1
4 1.654318 1.654275 68,107,1
5 1.995878 1.995790 50,89,12

Baboon 2 0.888976 0.888906 62,126
3 1.296296 1.296286 60,131,1
4 1.654320 1.654260 59,99,12
5 1.995884 1.995784 57,69,12
indicates better result. Our method has given better results as
observed from Table 5, which display objective function values and
their corresponding threshold values for a comparison. Our
method seems to be quantitatively better as compared to BFO,
PSO and GA. It is seen that the fitness/objective function values are
higher for our algorithm using CS, which is desirable.

The PSNR value is calculated as

PSNRðin dBÞ ¼ 20 log10
255
RMSE

� �
ð13Þ

where

RMSE¼
ffi
1

MN
∑
M

i ¼ 1
∑
N

j ¼ 1
½Iði,jÞ−~Iði,jÞ�2

s
ð14Þ

and M, N are the size of image, I is the original image and ~I is the
thresholded image at a particular level. A higher value of PSNR
indicates a better quality of thresholding. For all the test images,
the proposed method proves to be better than BFO, ABC, PSO and
GA. The standard deviation
m threshold values SD

ABC CS ABC

58,196 0.0000 0.0000
69 23,132,199 0.0000 1.68e−006
29,185 23,124,132,175 1.1102e−016 2.13e−006
53,175,213 17,103,122,136,212 3.6425e−10 3.43e−006

46,198 0.0000 0.0000
,218 99,161,183 0.0000 1.70e−006
,147 37,89,138,246 4.4409e−016 2.65e−005
4,171,203 28,97,107,193,206 5.0064e−008 4.12e−004

62,185 0.0000 0.0000
5 26,86,175 1.4203e−009 3.69e−006
4,160 35,106,124,195 1.7631e−008 5.66e−005
3,171,202 31,107,184,198,220 2.8747e−007 7.68e−005

59,195 0.0000 0.0000
82 38,133,199 2.7660e−009 2.57e−006
2,212 41,105,176,236 1.0215e−008 3.79e−006
1,170,203 26,95,141,185,220 4.8449e−008 7.61e−005

84,187 0.0000 0.0000
70 52,128,191 6.6715e−011 4.96e−007
0,193 41,110,172,212 3.755e−009 1.22e−006
3,172,203 45,93,153,180,242 2.7454e−008 5.16e−005

84,176 0.0000 0.0000
94 74,149,199 8.4267e−011 5.60e−007
52,206 33,113,159,213 8.2589e−010 5.35e−004
1,170,202 25,112,147,184,216 3.6792e−008 6.79e−004

61,184 0.0000 0.0000
69 39,143,197 0.0000 1.49e−006
0,213 47,107,165,226 3.5884e−009 4.62e−006
4,171,201 32,111,139,184,219 5.8242e−008 4.55e−005

45,178 0.0000 0.0000
67 24,145,222 4.4408e−016 1.68e−006
0,210 16,78,222,255 4.4408e−015 1.85e−005
2,165,198 39,48,93,131,150 4.6193e−008 6.74e−005

62,153 0.0000 0.0000
82 59,143,193 2.4517e−009 8.61e−007
35,190 38,103,139,182 7.9278e−008 9.21e−007
5,156,182 31,94,121,150,195 1.9810e−007 5.81e−006

51,147 0.0000 0.0000
47 35,148,188 1.1102e−015 2.80e−006
6,186 45,114,146,175 2.0004e−010 3.69e−006
3,156,198 38,96,136,167,215 4.6354e−008 9.63e−006

0 500 1000 1500
1.296

1.2961

1.2961

1.2962

1.2962

1.2963

1.2963

No. of Iterations

Rate of Convergence for BFO

0 100 200 300 400
1.25

1.26

1.27

1.28

1.29

1.3

1.31

No. of Iterations

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
es

Rate of Convergence for CS

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
es

Fig. 13. Rate of convergence of objective function values with BFO and CS.

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–30 29
s is defined as:

s¼
ffi
1
k

∑
k

i ¼ 1
ðsi−μÞ2

s
: ð15Þ

where k is the number of runs for each algorithm. Here we use a
value of k¼50. Note that si is the best objective value obtained by
the i-th run of the algorithm. Both PSNR and standard deviation s
are displayed in Table 6. A lower value of sigma ‘s’ indicates a
better quality of thresholding. From sigma values listed in Table 6,
it is clear that our method outperform other methods. Note that
the standard deviation is smaller in our case, which shows a better
stability.

Further, Table 7 displays CPU time (seconds), SSIM and FSIM
index values for both CS and BFO for a comparison. CS and ABC
algorithms are compared in terms of CPU time (seconds), PSNR,
SSIM, FSIM and results are displayed in Table 8. CS and ABC
algorithms are also compared in terms of best objective function
values, optimal threshold values, standard deviation and results
are shown in Table 9. We choose two more measures SSIM and
FSIM index to support our claim. The CPU time is less in our
proposed method as compared to BFO and ABC. The SSIM is used
to compare the structures of the original and thresholded image
[26]. The SSIM index is calculated as:

SSIMðI,~IÞ ¼ ð2μIμ~I þC1Þð2sI~I þC2Þ
ðμ2 Iþμ2~IþC1Þðs2Iþs2~IþC2Þ

ð16Þ

where μI ¼ 1=N∑N
i ¼ 1Ii is the mean intensity of image I and

sI ~I ¼ 1=ðN−1Þ∑N
i ¼ 1ðIi−μIÞ ð~I i−μ~I Þ is the standard deviation. C1

and C2 are constants and are included to avoid instability when
μ2 Iþμ2~I are very close to zero. Here C1¼C2¼0.065. A higher value
of SSIM shows better performance and our method gives higher
values as compared to BFO and ABC.

The FSIM is used to calculate the similarity between two
images [27]. It is calculated between two images I,~I as

FSIM ¼ ∑X∈ΩSLðXÞPCmðXÞ
∑X∈ΩPCmðXÞ

ð17Þ

where

SLðXÞ ¼ SPCðXÞSGðXÞ;

SPCðXÞ ¼
2PC1ðXÞPC2ðXÞþT1

PC2
1ðXÞþPC2

2ðXÞþT1
;

SGðXÞ ¼
2G1ðXÞG2ðXÞþT2

G2
1ðXÞþG2

2ðXÞþT2

and T1 and T2 are constants. Here we choose T1¼0.85 and T2¼160.
G represents the gradient magnitude (GM) of an image and is
defined as:

G¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x þG2

y

q
PC is the phase congruence and is defined as:

PCðXÞ ¼ EðXÞ
ðεþ∑nAnðXÞÞ

An(X) is the local amplitude on scale n and E(X) is the magnitude of
the response vector at position X on scale n. Note that ε is a small
positive constant. A higher value of FSIM implies better perfor-
mance. Interestingly, in our case, we get higher values of FSIM as
compared to BFO and ABC.

Rate of convergence of objective function values with BFO and
CS are shown in Fig. 13 for a comparison. These convergence
graphs are obtained for the Lena image with m¼3. Recently, we
find many applications of BFO in the literature [28–32]. But the
convergence rate still seems to be slow. It may be reiterated the
fact that number of bacteria chosen here is equal to 20, number of
chemotaxis steps is equal to 10, number of reproduction steps
is 4 and number of elimination and dispersal steps is 2 while
implementing BFO. Therefore total number of iterations is equal to
20�10�4�2¼1600. In case of BFO, the maximum objective
function value is obtained after about 1500 iterations. Whereas,
the maximum objective function value is obtained after about 100
iterations only in the case of CS algorithm. It is observed from
Fig. 13 that the rate of convergence is much faster in our case. The
parameters for ABC algorithm are as follows: Number of colony
size is 40, Number of food sources is 20, and Number of iterations
is 40. This gives us 1600 evaluations of the objective function.
6. Conclusions

An extensive study on the application of Cuckoo search algo-
rithm for multilevel thresholding for image segmentation is made.
As seen from the experimental results, non-extensive entropy
based image thresholding using Cuckoo search algorithm is useful
for image segmentation. An interesting feature of the proposed
method is that Tsallis entropy uses global and objective property
of the image histogram and is easily implemented. The Tsallis
parameter ‘q’ can be used as a tuning parameter for improvising
image thresholding results. It is observed that the results obtained
are superior to that of BFO, ABC, PSO and GA. The proposed
method is faster (CPU time is less) than other techniques. The
numerical illustrations demonstrate that the proposed algorithm

S. Agrawal et al. / Swarm and Evolutionary Computation 11 (2013) 16–3030
outperforms other methods. The validity and stability of the
method is justified both qualitatively and quantitatively. The
future work will include introduction of multi-objective criteria
for multilevel thresholding, optimization of Tsallis parameter ‘q’,
use of penalty function in the optimization problem and using
other methods of measuring non-extensive entropy. Further, the
idea can be easily extended to other applications of Image
Processing like image enhancement and image fusion.

References

[1] M. Portes de Albuquerque, I.A. Esquef, A.R. Gesualdi Mello, Image thresholding
using Tsallis entropy, Pattern Recognition Letters 25 (9) (2004) 1059–1065.

[2] P.L. Rosin, Unimodal thresholding, Pattern Recognition Letters 34 (2001)
2083–2096.

[3] C.H. Li, C.K. Lee, Minimum cross entropy thresholding, Pattern Recognition
Letters 26 (1993) 617–625.

[4] P.K. Sahoo, S. Soltani, A.K.C. Wong, A survey of thresholding techniques,
Computer Vision Graphics Image Processing 41 (1988) 233–260.

[5] N.R. Pal, On minimum cross entropy thresholding, Pattern Recognition Letters
29 (1996) 575–580.

[6] E. Zahara, S.K.S. Fan, M.D. Tsai, Optimal multi-thresholding using a hybrid
optimization approach, Pattern Recognition Letters 26 (8) (2005) 1082–1095.

[7] N. Otsu, A threshold selection method from gray-level histograms, IEEE
Transactions on Systems Man and Cybernetics SMC-9 (1) (1979) 62–66.

[8] J. Kittler, J. Illingworth, Minimum error thresholding, Pattern Recognition
Letters 19 (1) (1986) 41–47.

[9] J.N. Kapur, P.K. Sahoo, A.K.C. Wong, A new method for gray-level picture
thresholding using the entropy of the histogram, Computer Vision Graphics
Image Processing 29 (1985) 273–285.

[10] Peng-Yeng Yin, A fast scheme for multilevel thresholding using genetic
algorithms, Signal Processing 72 (1999) 85–95.

[11] P.Y. Yin, Multilevel minimum cross entropy threshold selection based on
particle swarm optimization algorithm, Applied Mathematics and Computa-
tion 184 (2) (2007) 503–513.

[12] Yudong Zhang, Lenan Wu, Optimal multi-level thresholding based on max-
imum Tsallis entropy via an artificial bee colony approach, Entropy 13 (4)
(2011) 841–859.

[13] P.D. Sathya, R. Kayalvizhi, Optimum multilevel image thresholding based on
Tsallis entropy method with bacterial foraging algorithm, International Journal
of Computer Science 7 (5) (2010) 336–343.

[14] Kamal Hammouche, Moussa Diaf, Patrick Siarry, A comparative study of
various meta-heuristic techniques applied to the multilevel thresholding
problem, Engineering Applications of Artificial Intelligence 23 (5) (2010)
676–688.

[15] S. Sarkar, G.R. Patra, S Das, A differential evolution based approach for
multilevel image segmentation using minimum cross entropy thresholding,
SEMCCO LNCS 7076 (2011) 51–58.
[16] C. Tsallis, In Abe, Y.S. Okamoto, Non-extensive statistical mechanics and its
applications, Series Lecture Notes in Physics, Springer, Berlin, 2001.

[17] C. Tsallis, Entropic nonextensivity: a possible measure of complexity, Chaos,
Solitons, & Fractals 13 (2002) 371–391.

[18] A.R ´enyi, On Measures of Entropy and Information, University California Press,
Berkeley, California, 1988 547–561.

[19] Luis Rueda, A polynomial-time algorithm for optimal multilevel thresholding,
Structural, syntactic, and statistical pattern recognition, Joint IAPR Interna-
tional Workshop, SSPR & SPR 2008, Orlando, USA, LNCS 5342, Springer, 2008
pp. 1–28.

[20] X. Yang, S. Deb, Cuckoo search via levey flights, in: Proceedings of the World
congress on nature and biologically inspired computing, NABIC, Coimbatore,
vol. 4, 2009 pp. 210–214.

[21] X. Yang, S. Deb, Engineering optimization by cuckoo search, International
Journal of Mathmatical Modelling & Numerical Optimization 1 (4) (2010)
330–343.

[22] Ramin Rajabioun, Cuckoo Optimization Algorithm, Applied Soft Computing,
vol. 11, 2011, pp. 5508–5518.

[23] Pinar Civicioglu, Erkan Besdok, A conceptual comparison of the cuckoo-search,
particle swarm optimization, differential evolution and artificial bee colony
algorithms (2011) Artificial Intelligence Review, 39 (4) (2013) 315–346,
10.1007/s10462-011-9276-0.

[24] Berkeley University dataset for image segmentation, 〈http://www.eecs.berke
ley.edu/Research/Projects/CS/vision/bsds〉.

[25] S. Sarkar, N. Sen, A. Kundu, S. Das, S.S. Chaudhuri, A differential evolutionary
multilevel segmentation of near infra-red images using Renyis entropy, in:
Proceedings of the International Conference on Frontiers of Intelligent
Computing: Theory and Applications, Advances in Intelligent Systems and
Computing, vol. 199, 2013 pp. 699–706.

[26] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, Eero P. Simoncelli, Image quality
assessment: from error visibility to structural similarity, IEEE Transactions on
Image Processing 13 (4) (2004) 600–612.

[27] Lin Zhang, Lei Zhang, Xuanqin Mou, David Zhang, FSIM: A feature similarity
index for image quality assessment, IEEE Transactions on Image Processing
20 (8) (2011) 2378–2386.

[28] S. Dasgupta, S. Das, A. Abraham, A. Biswas, Adaptive computational chemo-
taxis in bacterial foraging optimization: an analysis, IEEE Transaction on
Evolutionary Computation 13 (4) (2009) 919–941.

[29] S. Dasgupta, S. Das, A. Abraham, A. Biswas, Automatic circle detection on
digital images using an adaptive bacterial foraging algorithm, Soft Computing:
A Fusion of Foundations Methodologies and Applications, 14, Springer-Verlag,
Germany. 1151–1164.

[30] S. Das, A. Biswas, S. Dasgupta, A. Abraham, The bacterial foraging optimiza-
tion-algorithm, analysis and applications, in: Aboul-Ella Hassanien,
Ajith Abraham (Eds.), Foundations on Computational Intelligence, Studies in
Computational Intelligence, Springer-Verlag, Germany, 2008.

[31] R. Panda, S. Agrawal, EBFS-ICA—An efficient algorithm for CT-MRI image
fusion, SEMCCO 2010, LNCS 6466, Springer Verlag, Berlin, Heidelberg356–361.

[32] R. Panda, M.K. Naik, B.K. Panigrahi, Face recognition using bacterial foraging
strategy, Swarm and Evolutionary Computation 1 (2011) 138–146.

)http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds*
)http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds*

	Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
	Introduction
	Tsallis entropy method
	Cuckoo search algorithm
	Multilevel thresholding algorithm using CS
	Results and discussions
	Conclusions
	References

