
Research Article
Improved Bat Algorithm Applied to Multilevel
Image Thresholding

Adis Alihodzic1 and Milan Tuba2

1 Faculty of Mathematics, University of Sarajevo, 71000 Sarajevo, Bosnia And Herzegovina
2 Faculty of Computer Science, Megatrend University Belgrade, 11070 Belgrade, Serbia

Correspondence should be addressed to Milan Tuba; tuba@ieee.org

Received 25 April 2014; Accepted 28 June 2014; Published 3 August 2014

Academic Editor: Xin-She Yang

Copyright © 2014 A. Alihodzic and M. Tuba. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation
and further higher level processing. However, the required computational time for exhaustive search grows exponentially with
the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization
methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm,
for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm
is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some
elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm
proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving
convergence speed.

1. Introduction

Image segmentation is process of subdivision of an image
into homogeneous anddisjoint sets sharing similar properties
such as intensity, color, and contours. Homogeneous sets are
introducedwith respect to a certain criterion of homogeneity.
Image segmentation usually represents the first step in image
understanding and representation and the results obtained
by segmentation are used for further high-level methods
such as feature extraction, semantic interpretation, image
recognition, and classification of objects. In general, image
segmentation simplifies the process of dividing an image
into regions that are used for further specific applications.
Several practical applications cover character recognition
[1], detection of video changes [2], medical imaging [3, 4],
automatic target recognition [5], and so forth. Over the last
few decades a lot of algorithms for image segmentation, either
for gray level or color images, were presented in the literature.
Good review of these algorithms can be found in [6]. In
general, image segmentation algorithms can be grouped into
thresholding, edge-based, region-grow, and clustering.

Image thresholding is one of the most widespread seg-
mentation techniques that performs image segmentation
based on the information contained in the global gray
value of the image histogram. Thresholding is called bilevel
thresholding in the case that an image is separated into
two classes, one including those pixels with gray levels
above a specified threshold and the other including the rest.
Unlike bilevel thresholding,multilevel thresholding performs
subdivision of an image into several classes. In this case the
pixels belonging to the same class take gray levels from the
intervals defined by successive thresholds. Multiple pixels
belonging to the same class are not always homogeneous
and may be represented by different feature values. Selection
or computing of the multilevel thresholds is crucial in
image segmentation since proper segmentation depends on
adequately computed thresholds.

There are many different methods for computing the
thresholds for an image such as maximizing the gray level
variance [7], entropy [8], similarity [9], andmeasure of fuzzi-
ness [10]. In general, thresholding methods can be divided
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into parametric and nonparametric methods. Using para-
metric methods, such as a novel image thresholding method
based on Parzen window estimate [11], nonsupervised image
segmentation based on multiobjective optimization [12], a
multilevel thresholding approach using a hybrid optimal
estimation algorithm [13], and optimal multithresholding
using a hybrid optimization approach [14], may involve
the solution of nonlinear equations which increases of
the computational complexity. Therefore, the nonparametric
methods [15] are introduced for finding the thresholds by
optimizing some discriminating criteria. Among the men-
tioned different thresholding criteria, the entropy is the
most popular optimization method. Using the entropy of the
histogram, Pun was the first to introduce a new method for
gray level image thresholding [8]. Later, this method was
corrected and improved by Kapur et al. [16], since Kapur
found some artifacts in Pun’s method. Sahoo used Shanon’s
concept of entropy, considering two probability distributions
for background and foreground objects. He has proposed
a thresholding technique based on Renyi’s entropy [17].
Information about the gray value of each pixel and the average
value of its immediate neighborhood are obtained by two-
dimensional entropy which is calculated by two-dimensional
histogram.

Another important group of methods based on discrim-
inant analysis is the clustering-based methods [18]. In these
methods, gray values are clustered into several classes, so
that there is a similarity of gray values within the class and
dissimilarity between classes. To perform the separation of
classes, Otsu has developed a thresholding method for com-
puting the optimal thresholds by maximizing the between-
class variance using an exhaustive search [7]. It has been
shown that this method gives acceptable results when the
number of pixels in each class is close to each other. For
bilevel image thresholding, the above-mentioned methods
are effective. However, for the optimal multilevel threshold-
ing, the existing conventional methods are being hindered
by an exhaustive search when the number of thresholds is
increased. To overcome this problem, powerful metaheuris-
tics are used to search for the optimal thresholds in order
to achieve a fast convergence and reduce the computational
time.

Metaheuristics are optimizationmethods that orchestrate
an interaction between local improvement procedures and
higher level strategies to create a process capable of escaping
from local optima and performing a robust search of a
solution space [19, 20]. Several metaheuristic algorithms
derived from the behavior of biological and physical systems
in the nature have been proposed as powerful methods
for searching the multilevel image thresholds. Since magic
algorithm that works for all problems does not exist [21],
different approaches have been developed for different classes
of problems such as combinatorial or continuous, with addi-
tions for constrained optimization problems [22]. Original
versions of metaheuristic algorithms are often modified or
hybridized in order to improve performance on some classes
of problems. The most popular nature-inspired algorithms

for optimization, with improvements, adjustments, and
hybridizations, include particle swarm optimization (PSO)
[23], differential evolution (DE) [24], firefly algorithm (FA)
[25, 26], cuckoo search (CS) [27–29], ant colony optimization
[30–33], artificial bee colony algorithm [34–38], bat algo-
rithm (BA) [39, 40], and human seeker optimization (HSO)
[41–43].

DE algorithm has been adapted for searching the optimal
multilevel thresholds [44]. PSO algorithmmodified by Yin to
search for the thresholds can be found in [45]. Akay presented
a comprehensive comparative study of the ABC and PSO
algorithms for finding multilevel thresholds using Kapur’s
and Otsu’s criteria [46]. Maitra and Chatterjee proposed an
improved variant of PSO algorithm for the task of image
multilevel thresholding [47]. The results showed that the
ABC algorithm with both the between-class variance and
the entropy criterion can be efficiently used in multilevel
thresholding. Hammouche focused on solving the image
thresholding problem by combining between-class variance
criterionwithmetaheuristic techniques such asGA, PSO,DE,
ACO, SA, and TS [48].

In this paper, we adapted the bat algorithm for mul-
tilevel image thresholding. Bat algorithm is simple to
implement and produces good results. However, based on
our experiments, it is powerful in intensification, but at
times it may get trapped into local optima when it is
applied to some difficult problems. Therefore, we propose
an improved version of bat algorithm adopted to search
for multilevel thresholds using Kapur and Otsu criteria.
Our proposed modification merges three approaches to
produce a new improved bat-inspired (IBA) algorithm
according to the principle of bat algorithm, differential
evolution, and some scout technique taken from the ABC
algorithm. We compared our proposed algorithm with state-
of-the-art algorithms from [49]. The experimental results
show that the proposed IBA algorithm always gives better
results compared to PSO, DE, CS, FA, and BA algorithms,
considering both accuracy and, especially, convergence
speed.

The remainder of the paper is organized as follows.
Section 2 describes the multilevel thresholding problem and
presents Kapur’s and Otsu’s objective functions. Section 3
and Section 4 describe the original BA and IBA algorithms
adopted to search for the optimal multilevel thresholds,
respectively. Section 5 shows the experimental and compar-
ative results of applying PSO, DE, CS, FA, BA, and IBA
to multilevel segmentation to standard benchmark images.
Finally, our conclusions are discussed in Section 6.

2. Multilevel Image Thresholding

Thresholding technique performs image segmentation based
on the information contained in the image histogram. If
we consider a gray-scale input image 𝐼 as a set of pixels
𝐴, multilevel thresholding can be defined as a method of
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dividing the set 𝐴 into 𝑛 + 1 disjoint subsets (𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑛
)

by some numbers (𝛼
0
, 𝛼
1
, . . . , 𝛼

𝑛−1
) such that

𝐴
0
= {𝑥 : 0 ≤ 𝑓 (𝑥) < 𝛼

0
} ,

𝐴
1
= {𝑥 : 𝛼

0
≤ 𝑓 (𝑥) < 𝛼1} ,

...

𝐴
𝑛
= {𝑥 : 𝛼

𝑛−1
≤ 𝑓 (𝑥) ≤ 𝐿 − 1} ,

(1)

where 𝑥 = (𝑥
1
, 𝑥
2
) is a pixel defined by coordinates 𝑥

1

and 𝑥
2
in the Cartesian coordinate system, 𝑓(𝑥) presents

a gray level value of pixel 𝑥, and the 𝑓(𝑥) takes values in
the range [0, 255]. The aim of multilevel thresholding is to
compute the optimal threshold values (𝛼

0
, 𝛼
1
, . . . , 𝛼

𝑛−1
). The

sets (𝐴
0
, 𝐴
1
, . . . , 𝐴

𝑛
) may represent different regions of the

object. It is clear that 𝐴
𝑖
∩ 𝐴
𝑗
= ø, and their union presents

the whole input image 𝐼.
Optimal threshold selection for bilevel thresholding is

not computationally expensive, while for multilevel thresh-
olding, computing more than few optimal threshold values
is an expensive and time consuming operation. The optimal
threshold values can be determined by optimizing some
criterion functions defined from the histogram of image. In
this paper, we use two popular threshold criteria: Kapur’s
entropy criterion andOtsu’s between-class variance criterion.

2.1. Kapur’s Thresholding Method. Entropy is a measure of
uncertainty proposed by Shannon [50], later widely used [51].
Let 𝑥 be a discrete random variable taking values 𝑥

𝑖
with

probabilities 𝑝
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, respectively. Then its entropy

is defined by

𝐻(𝑥) = −

𝑛

∑

𝑖=1

𝑝
𝑖
ln (𝑝
𝑖
) . (2)

The Kapur’s method [16] based on the entropy is used
to perform multilevel thresholding. For this method, the
threshold criteria can be formulated as follows. Assume that
an image 𝐼 contains 𝑛 pixels with gray levels belonging to
the set {0, 1, . . . , 𝐿 − 1}. Let ℎ(𝑖) present the number of
pixels at gray level 𝑖, and 𝑝

𝑖
= ℎ(𝑖)/𝑛 is the probability of

occurrences of gray level 𝑖 in the image 𝐼. The subdivision
of an image into 𝑘 + 1 classes can be considered as a 𝑘-
dimensional optimization problem for the calculation of 𝑘
optimal thresholds (𝑡

0
, 𝑡
1
, . . . , 𝑡

𝑘−1
). The optimal thresholds

are obtained by maximizing the objective function:

𝑓 (𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑘−1
) =

𝑘

∑

𝑖=0

𝐻
𝑖
, (3)

where the entropies𝐻
𝑖
are defined by

𝐻
0
= −

𝑡0−1

∑

𝑖=0

𝑝
𝑖

𝑤
0

ln
𝑝
𝑖

𝑤
0

, 𝑤
0
=

𝑡0−1

∑

𝑖=0

𝑝
𝑖
,

𝐻
1
= −

𝑡1−1

∑

𝑖=𝑡0

𝑝
𝑖

𝑤
1

ln
𝑝
𝑖

𝑤
1

, 𝑤
1
=

𝑡1−1

∑

𝑖=𝑡0

𝑝
𝑖
,

...

𝐻
𝑘
= −

𝐿−1

∑

𝑖=𝑡𝑘−1

𝑝
𝑖

𝑤
𝑘

ln
𝑝
𝑖

𝑤
𝑘

, 𝑤
𝑘
=

𝐿−1

∑

𝑖=𝑡𝑘−1

𝑝
𝑖
.

(4)

2.2. Otsu’s Thresholding Method. Otsu’s method [7] based on
the maximization of the between-class variance is one of
the most popular methods proposed for image thresholding.
The algorithm for this method can be described as follows.
Assume that an image 𝐼 can be represented by 𝐿 gray levels.
The probabilities of pixels at level 𝑖 are denoted by 𝑝

𝑖
so 𝑝
𝑖
≥ 0

and𝑝
0
+𝑝
1
+⋅ ⋅ ⋅+𝑝

𝐿−1
= 1. Cumulative probabilities for classes

𝐴
𝑖
, 𝑖 = 0, 1, . . . , 𝑘, can be defined as

𝑤
0
=

𝑡0−1

∑

𝑖=0

𝑝
𝑖
, 𝑤

1
=

𝑡1−1

∑

𝑖=𝑡0

𝑝
𝑖
, . . . , 𝑤

𝑘
=

𝐿−1

∑

𝑖=𝑡𝑘−1

𝑝
𝑖
, (5)

where 𝑡
𝑗
are the thresholds separating these classes. For 𝑘 + 1

classes 𝐴
𝑖
, (𝑖 = 0, 1, . . . , 𝑘), the goal is to maximize the

objective function:

𝑓 (𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑘−1
) =

𝑘

∑

𝑖=0

𝜎
𝑖
, (6)

where the sigma functions are defined by

𝜎
0
= 𝑤
0
(

𝑡0−1

∑

𝑖=0

𝑖𝑝
𝑖

𝑤
0

−

𝐿−1

∑

𝑖=0

𝑖𝑝
𝑖
)

2

,

𝜎
1
= 𝑤
1
(

𝑡1−1

∑

𝑖=𝑡0

𝑖𝑝
𝑖

𝑤
1

−

𝐿−1

∑

𝑖=0

𝑖𝑝
𝑖
)

2

,

...

𝜎
𝑘
= 𝑤
𝑘
(

𝐿−1

∑

𝑖=𝑡𝑘−1

𝑖𝑝
𝑖

𝑤
𝑘

−

𝐿−1

∑

𝑖=0

𝑖𝑝
𝑖
)

2

.

(7)

3. Bat Algorithm Adapted for Multilevel
Image Thresholding

Bat algorithm is a recent metaheuristic introduced by Yang
[39], based on so-called echolocation of the bats. In this
algorithm, bats detect prey and avoid the obstacles by using
the echolocation. Bat algorithm was successfully applied
to a number of very different problems like large-scale
optimization problems [52], global engineering optimization
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[53], fuzzy clustering [54], parameter estimation in dynamic
biological systems [55], multiobjective optimization [56],
image matching [57], economic load and emission dispatch
problems [58], data mining [59], scheduling problems [60],
neural networks [61], and phishing website detection [62].

In the bat algorithm, bats navigate by using time delay
from emission to the reflection. The pulse rate can be simply
determined in the range from 0 to 1, where 0 means that
there is no emission and 1 means that the bat’s emitting
is at maximum. Apart from the control parameters, such
as the population size and maximum iteration number
which are common control parameters for all nature inspired
algorithms, the BA has few important parameters such as
frequency tuning parameter similar to the key feature used
in the PSO and HS, parameter for automatically zooming
into a region where the promising solutions have been found,
and the control parameter for automatically switching from
exploration to exploitation. This gives advantage to the BA
over other metaheuristic algorithms in the literature.

In order to implement the bat algorithm, the following
three idealized rules are used [39]:

(i) all bats use echolocation to sense distance, and they
also “know” the surroundings in some magical way;

(ii) bats fly randomly with velocity V
𝑖
at position 𝑥

𝑖
with

a fixed frequency 𝑓min, varying wavelength 𝜆, and
loudness 𝐴

0
to search for prey. They can automat-

ically adjust the wavelength of their emitted pulses
and adjust the rate of pulse emission 𝑟 from [0, 1],
depending on the proximity of their target;

(iii) although the loudness can vary in many ways, it is
assumed that the loudness varies from a positive large
value 𝐴

0
to a minimum constant value 𝐴min.

The proposed bat algorithm tries to select 𝑘 threshold
values which maximize the fitness functions which are
described by (3) and (6), respectively. The details of the
developed BA approach formultilevel image thresholding are
given as follows.

Step 1 (generate initial population of solutions). The bat
algorithmgenerates a randomly distributed initial population
of 𝑁 solutions (bats) (𝑖 = 1, 2, . . . , 𝑁), where each solution
has 𝑘 dimensions. All solutions can be presented by matrix
𝑋:

𝑋 =

[
[
[
[

[

𝑥
1,1

𝑥
1,2

𝑥
1,3
⋅ ⋅ ⋅ 𝑥

1,𝑘

𝑥
2,1

𝑥
2,2

𝑥
2,3
⋅ ⋅ ⋅ 𝑥

2,𝑘

...
𝑥
𝑁,1

𝑥
𝑁,2

𝑥
𝑁,3

⋅ ⋅ ⋅ 𝑥
𝑁,𝑘

]
]
]
]

]

, (8)

where 𝑥
𝑖,𝑗

is the 𝑗th component value that is restricted to
{0, . . . , 𝐿−1} and 𝑥

𝑖,𝑗
< 𝑥
𝑖,𝑗+1

for all 𝑗.The fitness values for all
solutions are evaluated and variable 𝑐𝑦𝑐𝑙𝑒 is set to one.The bat

algorithm detects the most successful solution as 𝑥best before
starting iterative search process.

Step 2 (calculation of new solutions). Calculation of a new
solution 𝑥𝑡

𝑖
is performed by moving virtual bats 𝑥𝑡−1

𝑖
accord-

ing to equation

𝑥
𝑡

𝑖
= 𝑥
𝑡−1

𝑖
+ V𝑡
𝑖
, (9)

where V𝑡
𝑖
denotes the bat velocity of movement, and it is

calculated by formula

V𝑡
𝑖
= V𝑡−1
𝑖
+ (𝑥
𝑡

𝑖
− 𝑥best) ∗ 𝑓𝑖. (10)

In (10),𝑓
𝑖
denotes the frequency and 𝑥best denotes the current

global best solution. The frequency 𝑓
𝑖
can be calculated as

𝑓
𝑡

𝑖
= 𝑓min + (𝑓max − 𝑓min) ∗ 𝛽, (11)

where 𝛽 is a random vector generated by a uniform distribu-
tion belonging to the closed interval [0, 1]. For min and max
frequency, the recommended values 𝑓min = 0 and 𝑓max = 2
are used. In this computation step, the bat algorithm controls
the boundary conditions of the calculated new solution 𝑥𝑡

𝑖
.

In the case that the value of a variable overflows the allowed
search space limits, then the value of the related variable is
updated with the value of the closer limit value to the related
variable.

Step 3 (improving the current best solution). For each
solution 𝑥𝑡

𝑖
apply the next operator which is defined by

𝑥new = {
𝑥best + 𝜖𝐴 𝑡, if 𝑟𝑎𝑛𝑑

1
> 𝑟
𝑡

𝑖
,

𝑥
𝑡

𝑖
, otherwise,

(12)

where 𝑟𝑎𝑛𝑑
1
is a uniform random number in range [0, 1], 𝜖 is

a scaling factor drawn from uniform distribution in the range
[−1, 1], 𝐴

𝑡
= ⟨𝐴
𝑡

𝑖
⟩ is the average loudness of all bats at the

computation step 𝑡, and 𝑟𝑡
𝑖
is the pulse rate function.The pulse

rate function is defined by

𝑟
𝑡

𝑖
= 𝑟
0

𝑖
(1 − 𝑒

−𝛽𝑡
) , (13)

where 𝛽 is a constant and 𝑟0
𝑖
are initial pulse rates in the range

[0, 1]. It can be seen from (12) that this function controls
the intensive local search depending on the value of uniform
variable 𝑟𝑎𝑛𝑑

1
and the rate 𝑟𝑡

𝑖
. Also, at this step, the BA

controls the boundary conditions at each iteration.

Step 4 (acceptation of a new solution by flying randomly). In
this step, the solution 𝑥new obtained in Step 3 is accepted as
a new solution and 𝑓(𝑥new) as a new objective function value
by using

(𝑥
𝑡

𝑖
, fit (𝑥𝑡

𝑖
)) =

{

{

{

(𝑥new, 𝑓 (𝑥
𝑡

new)) ,

if (𝑟𝑎𝑛𝑑
2
< 𝐴
𝑡

𝑖
and𝑓 (𝑥𝑡new) > 𝑓 (𝑥

𝑡−1

𝑖
)) ,

(𝑥
𝑡−1

𝑖
, 𝑓 (𝑥
𝑡−1

𝑖
)) , otherwise,

(14)

where 𝑟𝑎𝑛𝑑
2
is a uniform random number in range [0, 1] and

𝐴
𝑡

𝑖
is the loudness function defined by

𝐴
𝑡

𝑖
= 𝛼𝐴
𝑡−1

𝑖
, (15)
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where 𝛼 is a constant and plays a similar role as the cooling
factor of a cooling schedule in the simulated annealing.
Therefore, if the solution 𝑥new has the higher objective
function value compared to the old solution 𝑥𝑡−1

𝑖
and the

loudness 𝐴𝑡
𝑖
is more than 𝑟𝑎𝑛𝑑

2
, then the new solution is

accepted, the old fitness value is updated, and functions
defined by (13) and (15) are updated, too. Otherwise, the new
solution 𝑥new is abandoned, and the old best solution is kept.

Step 5 (memorize the best current solution). Record the best
solution so far (𝑥best), that is, the solution with the highest
objective function value.

Step 6 (check the stopping criteria). If the termination
criterion is met or the variable 𝑐𝑦𝑐𝑙𝑒 is equal to the maximum
number of iterations, then the algorithm is finished. Other-
wise, increase the variable 𝑐𝑦𝑐𝑙𝑒 by one and go to Step 2.

4. Our Proposed Improved Bat Algorithm: IBA

As described in the previous section, we selected the BA for
multilevel image thresholding. BA is simple to implement and
it produces good results when the number of thresholds is
small. However, based on our experiments, the BA algorithm
often fails when the number of thresholds is larger, especially
for the Kapur’s objective function. Therefore, an adjustment
of the bat algorithmwas required. In this paper, the improved
hybridized bat algorithm (IBA) is proposed to overcome the
mentioned drawback of the pure bat algorithm. It combines
two different solution search equations of the bat algorithm
and DE algorithm [24]. The IBA algorithm includes differ-
ential operators mutation and crossover from DE algorithm,
with the aim of speeding up convergence and to achieve
a good balance between intensification and diversification.
Mutation and crossover operators are used to improve the
original BA generation of a new solution for each bat so
that the IBA can more efficiently explore and exploit the new
search space and avoid being trapped into local optima.

In the pure BA, exploration and exploitation are con-
trolled by pulse rate function (13). Analyzing this function we
noticed that the algorithm loses exploration capability as iter-
ations progress. The form of this function makes switching
from the exploration to exploitation and vice versa possible.
In this way, the exploration capability of BA can be modified
by inserting differential operators for crossover andmutation
[24] instead of (12) and for the exploitation capability (12)
continues to be used for a good intensification. Therefore,
a good balance is established between intensification and
diversification.

Although the above modification can improve many
solutions, some solutions will still remain stuck in some local
optimum. In order to fix this lack of the former modification,
we introduced the second modification which is inspired by
launch of the scouts in the scout phase of the ABC algorithm.
When some solution gets trapped in a local optimum after
a certain number of iterations, it will eventually exceed the
predetermined number of allowed trials called “limit.” When
a solution exceeds the “limit” trials unchanged, it is redirected
to search new space by using the random walk.

In the proposed IBA algorithm, bats form a population
of threshold values. The threshold values produced by the
bat 𝑖 are noted as 𝑥

𝑖
= (𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝑘
), 𝑖 = 1, . . . , 𝑁. All

bats perform searching in the solution search space with the
aim to optimize the objective functions described by (3) or
(6). The details of the proposed IBA approach for multilevel
thresholding are given as follows.

Step 1 (generate the initial population of solutions). The IBA
begins by randomly generating populationwith 𝑘 dimensions
as in the case of the proposed BA approach for multilevel
thresholding. Each threshold value 𝑥

𝑖,𝑗
(𝑖 = 1, . . . , 𝑛; 𝑗 =

1, . . . , 𝑘) of the matrix 𝑋 generated by the bat 𝑖 is restricted
to set {0, 1, . . . , 𝐿 − 1} and for all 𝑗 holds 𝑥

𝑖,𝑗
< 𝑥
𝑖,𝑗+1

.
Also, at this step initialization is done for the parameter limit
which presents the number of allowed attempts to improve
a bat, the initial loudness 𝐴

𝑖
and pulse rate 𝑟0

𝑖
, as well as

the initial values of the parameters in the DE algorithm such
as the differential weight 𝐹 and crossover probability 𝐶

𝑟
.

After generation of the initial population, the fitness value for
each solution 𝑥

𝑖
is evaluated. Then the IBA algorithm detects

the most successful solution as 𝑥best, before starting iterative
search process. After that it sets the variable 𝑐𝑦𝑐𝑙𝑒 to one.

Step 2 (calculate the new population). Calculation of a new
threshold 𝑥𝑡

𝑖
is performed bymoving virtual bats 𝑥𝑡−1

𝑖
accord-

ing to (9). The velocity V𝑡
𝑖
and frequency 𝑓

𝑖
are calculated

by (10) and (11), respectively. At this computation step, the
IBA controls the boundary conditions of the calculated new
solution 𝑥𝑡

𝑖
. In the case that the value of the 𝑥𝑡

𝑖
is less than 0

or is more than 𝐿− 1, then the value of the 𝑥𝑡
𝑖
is updated with

the value of the closer limit value to the variable 𝑥𝑡
𝑖
.

Step 3 (improving the current best solution by differential
operators). For each solution𝑥𝑡

𝑖
apply the next operatorwhich

is defined by

𝑥new = {
𝑥
𝑡

dif, if 𝑟𝑎𝑛𝑑
1
> 𝑟
𝑡

𝑖
,

𝑥
𝑡

loc, otherwise,
(16)

where 𝑟𝑎𝑛𝑑
1
is randomization term in the range [0, 1], 𝑟𝑡

𝑖
is

the pulse rate function defined by (13), 𝑥𝑡dif is the differential
operator for mutation and crossover, and 𝑥𝑡loc is the operator
based on the local search in the BA.The differential mutation
and crossover operations are performed by

𝑥
𝑡

dif,𝑗 = {
𝑥
𝑡

𝑐,𝑗
+ 𝐹 (𝑥

𝑡

𝑎,𝑗
− 𝑥
𝑡

𝑏,𝑗
) , if (𝑟𝑎𝑛𝑑

2
< 𝐶
𝑟
or 𝑗 = 𝑗

𝑟
) ,

𝑥
𝑡

𝑖,𝑗
, otherwise,

(17)

where 𝑥
𝑎
, 𝑥
𝑏
, and 𝑥

𝑐
are three randomly chosen different

vectors in the range [0,𝑁−1] at the cycle 𝑡,𝐹 is the differential
weight that scales the rate of modification,𝐶

𝑟
is the crossover

probability in the interval [0, 1], 𝑗
𝑟
is randomly selected in

the range [0, 𝑘], and 𝑟𝑎𝑛𝑑
2
is a uniform variable in the range

[0, 1]. Inside the implementation of the differential operator
𝑥dif, the boundary conditions for all 𝑗 (𝑗 = 1, . . . , 𝑘) are
controlled. As an important improvement of the proposed
method, the binomial “DE/rand/1/bin” scheme is used in
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order to increase the diversity of the bats and achieve both the
precision and search efficiency.The local search is performed
by

𝑥
𝑡

loc,𝑗 = {
𝑥
𝑡

𝑙best,𝑗, if (𝑓 (𝑥𝑡
𝑙best,𝑗) > 𝑓 (𝑥

𝑡

𝑖,𝑗
)) ,

𝑥
𝑡

𝑖,𝑗
, otherwise,

(18)

where 𝑥𝑡
𝑙best,𝑗 is defined by

𝑥
𝑡

𝑙best,𝑗 = 𝑥
𝑡−1

best,𝑗 + 𝜖𝐴
𝑡−1

𝑖,𝑗
. (19)

As in the ordinary BA, parameters 𝜖 and 𝐴
𝑖,𝑗
denote the

scaling factor and the loudness function, respectively. Also,
inside the local search operator 𝑥loc, the boundary conditions
for all 𝑗 (𝑗 = 1, . . . , 𝑘) are checked. In our proposed approach,
we found that it is beneficial to replace (13) by 𝑟𝑡

𝑖
= 𝑟
0

𝑖
(1 − 𝛽

𝑡
).

It will be shown in experimental study that the best results
are obtained for initial pulse rates 𝑟0

𝑖
= 0.5, initial loudness

𝐴
0
= 0.95, and 𝛽 = 0.9.

Step 4 (acceptation of a new solution by flying randomly). In
this step, the solution 𝑥new obtained in Step 3 is accepted as
a new solution and 𝑓(𝑥new) as a new objective function value
by using

(𝑥
𝑡

𝑖
, fit (𝑥𝑡

𝑖
)) =

{{{

{{{

{

(𝑥
𝑡

new, 𝑓 (𝑥
𝑡

new)) ,

if (𝑟𝑎𝑛𝑑
3
< 𝐴
𝑡

𝑖
and𝑓 (𝑥𝑡new) > 𝑓 (𝑥

𝑡−1

𝑖
)) ,

(𝑥
𝑡−1

𝑖
, 𝑓 (𝑥
𝑡−1

𝑖
)) tr

𝑖
= tr
𝑖
+ 1,

otherwise,
(20)

where 𝑟𝑎𝑛𝑑
3
is a random number in the range [0, 1], 𝑡𝑟

𝑖
is

a vector recording the number of attempts through which
solution 𝑥𝑡

𝑖
could not be improved at cycle 𝑡, and𝐴𝑡

𝑖
is defined

by (15). In the above equation, if the solution 𝑥𝑡−1
𝑖

cannot be
improved, then the new solution 𝑥new is abandoned and the
𝑖th element of the trial vector tr is increased by one. Also, after
certain number of cycles determined by the variable limit, if
the solution 𝑥𝑡

𝑖
cannot be further improved, it is abandoned

and replaced by randomly generated solution. In this case, the
𝑖th element of the trial vector is set to 0. This modification
can improve the exploration process and it will help to avoid
trapping into some local optima. Also, it will improve the
solution quality and speed convergence.

Step 5 (memorize the best current solution). Record the best
solution so far (𝑥best), that is, the solution with the highest
objective function value.

Step 6 (check the stopping criteria). If the termination
criterion is met or the variable 𝑐𝑦𝑐𝑙𝑒 is equal to the maximum
number of iterations, then the algorithm is finished. Other-
wise, increase the variable 𝑐𝑦𝑐𝑙𝑒 by one and go to Step 2.

5. Experimental Results

Themultilevel image thresholding problemdealswith finding
optimal thresholds within the range [0, 𝐿 − 1] that maximize
the functions defined by (3) and (6). The dimension of the

optimization problem is the number of thresholds 𝑘, and
the search space is [0, 𝐿 − 1]𝑘. In this study our proposed
IBA algorithm was compared against four other standard
population based metaheuristic techniques: PSO, DE, CS,
and FA from [49] and pure BA.

The experiments were conducted on 6 standard images,
the same as used in [49], in order to make comparison of
the obtained results simpler. Images used in this paper,
namely, Barbara, Living room, Boats, Goldhill, and Lake, are
of size (512 × 512) and Aerial has size (256 × 256). Barbara
and Boats images are available at http://decsai.ugr
.es/∼javier/denoise/test images/. The Living room and Lake
images were chosen from http://www.imageprocessingplace
.com/root files V3/image databases.htm. The Goldhill
image can be found at https://ece.uwaterloo.ca/∼z70wang/
research/quality index/demo.html. The Aerial image was
taken from the University of Southern California Signal and
Image Processing Institute’s image database at http://sipi.usc
.edu/database/database.php?volume=misc. These original
images and their gray level histograms are depicted in Figures
1 and 2, respectively.

For the Kapur’s and Otsu’s thresholding methods, the
exhaustive search method was conducted first to derive
the optimal solutions, the corresponding optimal objective
function values, and the processing time for comparison
with the results generated by the PSO, DE, CS, FA, BA, and
IBA algorithms. These results generated by the exhaustive
search for Kapur’s and Otsu’s criterion are presented in
Tables 1 and 2, respectively. It is obvious that computational
times increase exponentially and for more than 5 thresholds
become unacceptable. We did not implement optimal use
of multicore processor, but improvements would not be
significant.

The number of thresholds 𝑘 explored in the experiments
were 2, 3, 4, and 5. Since metaheuristic algorithms have
stochastic characteristics, each experiment was repeated 50
times for each image and for each 𝑘 value. Each run of an
algorithm was terminated when the fitness value of the best
solution 𝑓(𝑥best) reached the known optimal value (from
the exhaustive search) of the objective function 𝑓opt, that is,
|𝑓(𝑥best) − 𝑓opt| < 𝜖, where 𝜖 = 10

−9 was a tolerance for the
accuracy of the measurement. Hence, the stopping condition
for all algorithmswas the value of the fitness, unless optimum
could not be reached within 2000 iterations.

The proposed IBA method has been implemented in C#
programming language, as the rest of the algorithms. Results
for CS and FA are from [49]. All tests were done on an
Intel Core i7-3770K @3.5GHz with 16GB of RAM running
under the Windows 8 x64 operating system. The PSO and
DEalgorithmshave been implemented in their basic versions,
while the BA and IBA have been implemented as it was
described in the previous two sections.

5.1. Parameters Setup. To compare the proposed IBA algo-
rithm with PSO, DE, CS, FA [49], and BA algorithms, the
objective function evaluation was computed 𝑁 × 𝐺 times,
where 𝑁 is the population size and 𝐺 is the maximum
number of generations (unless optimumwas reached earlier).
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Test images: (a) Barbara, (b) Living room, (c) Boats, (d) Goldhill, (e) Lake, and (f) Aerial.

The population size in all algorithms was set to 𝑁 = 40

and the number of generation is set to 𝐺 = 2000 for
all algorithms, as in [49]. Besides these common control
parameters, each of mentioned algorithms has additional
control parameters that directly improve their performance.

For both the proposed IBA and pure BA algorithms, the
additional control parameters 𝑓min and 𝑓max were set to 0
and 2.0, respectively. The initial values for parameters 𝑟0

𝑖

and loudness 𝐴
𝑖
were set to 0.5 and 0.99, respectively. The

constant 𝛽was set to 0.9. Instead of the average loudness ⟨𝐴𝑡
𝑖
⟩
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Figure 2: Gray-level histogram of test images: (a) Barbara, (b) Living room, (c) Boats, (d) Goldhill, (e) Lake, and (f) Aerial.

of all bats, we found that the value 1.66 was acceptable for all
images. In the proposed IBA algorithm, control parameters
introduced from DE algorithm, such as differential weight
𝐹 and crossover probability 𝐶

𝑟
, were set to 0.75 and 0.95,

respectively. Also, in the IBAmethod, the parameter limit was
set to 150.

5.2. Quality and Computational Analysis of the Results. The
mean and standard deviations for 50 runs for six testedmeta-
heuristic algorithms have been calculated and are presented
in Table 3 for the experiments based on Kapur’s entropy
and in Table 4 for the experiments based on Otsu’s objective
function. These mean values can be compared to the optimal

values of the corresponding objective functions found by an
exhaustive search from Tables 1 and 2.

The first conclusion that can be drown from the results
in Tables 3 and 4 is that the cases when the number of
desired thresholds is 2 or 3 are too easy and are not interesting
for nondeterministic metaheuristics. Almost all algorithms
in almost all cases reached optimal results (PSO and DE
had few misses). We included these results in the tables for
comparison with results in [49], but we will not discuss them
further. All the remaining discussion is only about caseswhen
the number of desired thresholds is 4 or 5.

From Tables 3, 4, 5, and 6 many details can be seen.
We will here, in three additional tables, synthetize the most
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Table 1: Thresholds, objective function values, and time processing
provided by the exhaustive search for Kapur’s method.

Images 𝐾
Threshold
values

Objective
function Time (ms)

Barbara

2 96, 168 12.668336540 25
3 76, 127, 178 15.747087798 341

4 60, 99, 141,
185 18.556786861 11103

5 58, 95, 133,
172, 210 21.245645310 666869

Living room

2 94, 175 12.405985592 31
3 47, 103, 175 15.552622213 339

4 47, 98, 149,
197 18.471055578 12612

5 42, 85, 124,
162, 197 21.150302316 478114

Boats

2 107, 176 12.574798244 25
3 64, 119, 176 15.820902860 342

4 48, 88, 128,
181 18.655733570 11461

5 48, 88, 128,
174, 202 21.401608305 469862

Goldhill

2 90, 157 12.546393623 24
3 78, 131, 177 15.607747002 329

4 65, 105, 147,
189 18.414213765 11958

5 59, 95, 131,
165, 199 21.099138996 399458

Lake

2 91, 163 12.520359742 24
3 72, 119, 169 15.566286745 336

4 70, 111, 155,
194 18.365636309 12658

5 64, 99, 133,
167, 199 21.024982760 410753

Aerial

2 68, 159 12.538208248 29
3 68, 130, 186 15.751881495 347

4 68, 117, 159,
200 18.615899102 11390

5 68, 108, 141,
174, 207 21.210455499 599570

important conclusions concerning the quality of the results
and the convergence speed.

Table 7, computed from Tables 3 and 4, shows for each
tested algorithm in what percentage of cases it achieved the
best result, considering all tested images and both optimiza-
tion criteria. From Table 7, we can see that PSO and DE were
very inferior compared to other tested algorithms.The results
for the CS and FA [49] algorithms are quite acceptable, where
FA had slightly better results.

For the BA we can notice that it gives rather poor results
for the Kapur’s method, while it gives rather good results for
theOtsu’smethod.When theKapur’s criterion is used, the BA
gets trapped in local optima, so it consumes the maximum
number of iterations without switching to another subspace

Table 2:Thresholds, objective function values, and time processing
provided by the exhaustive search for Otsu’s method.

Images 𝐾
Threshold
values

Objective
function Time (ms)

Barbara

2 82, 147 2608.610778507 39
3 75, 127, 176 2785.163280467 89
4 66, 106, 142, 182 2856.262131671 3014

5 57, 88, 118, 148,
184 2890.976609405 100079

Living room

2 87, 145 1627.909172752 39
3 76, 123, 163 1760.103018395 88
4 56, 97, 132, 168 1828.864376614 2945

5 49, 88, 120, 146,
178 1871.990616316 130397

Boats

2 93, 155 1863.346730649 38
3 73, 126, 167 1994.536306242 89
4 65, 114, 147, 179 2059.866280428 2931

5 51, 90, 126, 152,
183 2092.775965336 75879

Goldhill

2 94, 161 2069.510202452 38
3 83, 126, 179 2220.372641501 88
4 69, 102, 138, 186 2295.380469158 2775

5 63, 91, 117, 147,
191 2331.156597921 74674

Lake

2 85, 154 3974.738214185 39
3 78, 140, 194 4112.631097687 89
4 67, 110, 158, 198 4180.886161109 2613

5 57, 88, 127, 166,
200 4216.943583790 73019

Aerial

2 125, 178 1808.171050536 46
3 109, 147, 190 1905.410606582 103
4 104, 134, 167, 202 1957.017965982 2670

5 99, 123, 148, 175,
205 1980.656737348 99880

which is more promising. That explains why it needed some
modifications to be introduced to help it leave the local
optimum space and continue to search new spaces.

Our proposed improved IBA algorithm, by taking some
features of the DE and ABC algorithms, obtained the best
results compared to the rest of algorithms. It actually achieved
the best result for bothmean value and variance, for all tested
cases.

Tables 5 and 6 report the mean number of iterations
and the average CPU time taken by each algorithm to
satisfy the stopping condition for Kapur’s and Otsu’s criteria,
respectively. Most significant conclusions concerning the
convergence speed of the tested algorithms are shown in
Tables 8 and 9.

In Table 8 (for Kapur’s criterion) in each column labeled
byThrs. 𝑘 (𝑘 = 2, 3, 4, 5) we calculated for each of the tested
algorithms: PSO, DE, CS, FA, BA, and IBA, the sum of mean
number of required iterations for each test image. We can
observe that in the case of the FA and especially the IBA
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Table 7: The percent of the best results for thresholds 4 and 5.

Alg. Kapur’s method Otsu’s method
PSO 8% 8%
DE 0% 0%
CS 67% 58%
FA 67% 92%
BA 42% 83%
IBA 100% 100%

Table 8: The number of evaluations for all test images and all
threshold values for Kapur’s method.

Alg. Trsh. 2 Trsh. 3 Trsh. 4 Trsh. 5 Total
PSO 1214 411 3130 5439 10194
DE 96 186 1456 3356 5094
CS 1004 2183 3112 4891 11189
FA 70 176 347 932 1525
BA 876 1193 2784 3777 8631
IBA 74 116 192 352 734

Table 9: The number of evaluations for all test images and all
threshold values for Otsu’s method.

Alg. Trsh. 2 Trsh. 3 Trsh. 4 Trsh. 5 Total
PSO 56 85 665 25206 3326
DE 95 294 1164 4245 5798
CS 1323 2322 3669 5665 12979
FA 72 171 230 889 1362
BA 10 40 196 2110 2356
IBA 53 99 158 249 559

method, the number of iterations does not grow rapidly with
the increase of the number of thresholds as is the case with
the rest of algorithms. From Table 8 we can also observe that
the proposed IBA converges in considerably less iterations
compared to the rest of algorithms.

From Table 9 (for the Otsu’s criterion), it can be seen
that the proposed IBA method in this case also converges in
considerably less iterations compared to the other methods.
It also maintains the feature of linearity with increasing the
number of thresholds. Actually, in both cases, for Kapur’s and
Otsu’s criteria, our proposed IBA algorithm improved the
convergence speed by more than a factor of 2, compared to
the next best algorithm.

6. Conclusion

In this paper, we considered an important optimization
problemofmultilevel image thresholding. It is an exponential
problem and as such it is appropriate for swarm intelligence
metaheuristics. We adapted new bat algorithm for this prob-
lem and compared it to other state-of-the-art algorithms from
[49]. Pure version of the bat algorithm performed well, but
the results were slightly below the average, especially when
Kapur’s criterion was used. We determined that the pure
bat algorithm, when applied to this problem, may be easily

trapped into local optimum so we modified it by changing
new solution equation by hybridized one with elements from
DE.We also included limit parameter similar to the one used
in the ABC algorithm.

Our proposed improved bat-inspired hybridized with
DE (IBA) algorithm was tested on 6 standard benchmark
images, the same as used in [49]. It proved to be superior
to all other tested algorithms considering the quality of
the solutions (it actually achieved the best result for both
mean value and variance, for all tested cases), especially it
significantly improved convergence speed (more than two
times better than the next algorithm). This shows that our
proposed algorithm is excellent choice for the multilevel
image thresholding problem. Additional adjustments can
be done in the future using larger set of synthetic images
which will allow more precise modifications and parameter
adjustment.
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Proceedings of the World Congress on Nature and Biologically
Inspired Computing (NABIC ’09), pp. 210–214, Coimbatore,
India, December 2009.

[28] X.-S. Yang and S. Deb, “Engineering optimisation by cuckoo
search,” International Journal of Mathematical Modelling and
Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 2010.

[29] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, “Cuckoo search
algorithm: a metaheuristic approach to solve structural opti-
mization problems,” Engineering with Computers, vol. 29, no. 1,
pp. 17–35, 2013.

[30] M. Dorigo and L. M. Gambardella, “Ant colonies for the
travelling salesman problem,” BioSystems, vol. 43, no. 2, pp. 73–
81, 1997.

[31] M. Tuba and R. Jovanovic, “Improved ACO algorithm with
pheromone correction strategy for the traveling salesman prob-
lem,” International Journal of Computers, Communications &
Control, vol. 8, no. 3, pp. 477–485, 2013.

[32] R. Jovanovic and M. Tuba, “An ant colony optimization algo-
rithm with improved pheromone correction strategy for the
minimum weight vertex cover problem,” Applied Soft Comput-
ing Journal, vol. 11, no. 8, pp. 5360–5366, 2011.

[33] R. Jovanovic and M. Tuba, “Ant colony optimization algo-
rithm with pheromone correction strategy for the minimum
connected dominating set problem,” Computer Science and
Information Systems, vol. 10, no. 1, pp. 133–149, 2013.

[34] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” Tech. Rep. TR06, ErciyesUniversity, Engineering
Faculty, Computer Engineering Department, 2005.

[35] N. Bacanin andM. Tuba, “Artificial bee colony (ABC) algorithm
for constrained optimization improved with genetic operators,”
Studies in Informatics and Control, vol. 21, no. 2, pp. 137–146,
2012.

[36] I. Brajevic and M. Tuba, “An upgraded artificial bee colony
(ABC) algorithm for constrained optimization problems,” Jour-
nal of IntelligentManufacturing, vol. 24, no. 4, pp. 729–740, 2013.

[37] M. Subotic and M. Tuba, “Parallelized multiple swarm artificial
bee colony algorithm (MS-ABC) for global optimization,”
Studies in Informatics and Control, vol. 23, no. 1, pp. 117–126,
2014.

[38] M. Tuba and N. Bacanin, “Artificial bee colony algorithm
hybridizedwith fireflymetaheuristic for cardinality constrained
mean-variance portfolio problem,” Applied Mathematics &
Information Sciences, vol. 8, no. 6, pp. 2831–2844, 2014.

[39] X.-S. Yang, “A new metaheuristic bat-inspired Algorithm,”
Studies in Computational Intelligence, vol. 284, pp. 65–74, 2010.

[40] A. Alihodzic andM. Tuba, “Improved hybridized bat algorithm
for global numerical optimization,” in Proceedings of the 16th
IEEE International Conference on Computer Modelling and
Simulation (UKSim-AMSS '14), pp. 57–62, March 2014.

[41] C. Dai, W. Chen, Y. Song, and Y. Zhu, “Seeker optimization
algorithm: A novel stochastic search algorithm for global
numerical optimization,” Journal of Systems Engineering and
Electronics, vol. 21, no. 2, pp. 300–311, 2010.

[42] M. Tuba, I. Brajevic, andR. Jovanovic, “Hybrid seeker optimiza-
tion algorithm for global optimization,”Applied Mathematics &
Information Sciences, vol. 7, no. 3, pp. 867–875, 2013.

[43] M. Tuba and N. Bacanin, “Improved seeker optimization
algorithm hybridized with firefly algorithm for constrained
optimization problems,” Neurocomputing, 2014.

[44] S. Sarkar, G. R. Patra, and S. Das, “A differential evolution
based approach for multilevel image segmentation using mini-
mum cross entropy thresholding,” in Swarm, Evolutionary, and
Memetic Computing, vol. 7076 of Lecture Notes in Computer
Science, pp. 51–58, 2011.



16 The Scientific World Journal

[45] P. Yin, “Multilevel minimum cross entropy threshold selection
based on particle swarm optimization,” Applied Mathematics
and Computation, vol. 184, no. 2, pp. 503–513, 2007.

[46] B. Akay, “A study on particle swarm optimization and artificial
bee colony algorithms for multilevel thresholding,” Applied Soft
Computing Journal, vol. 13, no. 6, pp. 3066–3091, 2013.

[47] M. Maitra and A. Chatterjee, “A hybrid cooperative-
comprehensive learning based PSO algorithm for image
segmentation using multilevel thresholding,” Expert Systems
with Applications, vol. 34, no. 2, pp. 1341–1350, 2008.

[48] K. Harnrnouche, M. Diaf, and P. Siarry, “A comparative study
of various meta-heuristic techniques applied to the multilevel
thresholding problem,” Engineering Applications of Artificial
Intelligence, vol. 23, no. 5, pp. 676–688, 2010.

[49] I. Brajevic and M. Tuba, “Cuckoo search and firefly algorithm
applied to multilevel image thresholding,” in Cuckoo Search
and Firefly Algorithm: Theory and Applications, X.-S. Yang, Ed.,
vol. 516 of Studies in Computational Intelligence, pp. 115–139,
Springer, Berlin, Germany, 2014.

[50] D. Campos, “Real and spurious contributions for the Shannon,
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