
118 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 1, FEBRUARY 2015

Optimizing Existing Software with
Genetic Programming

William B. Langdon and Mark Harman

Abstract—We show that the genetic improvement of programs
(GIP) can scale by evolving increased performance in a widely-
used and highly complex 50 000 line system. Genetic improvement
of software for multiple objective exploration (GISMOE) found
code that is 70 times faster (on average) and yet is at least as
good functionally. Indeed, it even gives a small semantic gain.

Index Terms—Automatic software reengineering, Bowtie2GP,
genetic programming (GP), multiple objective exploration, search
based software engineering (SBSE).

I. INTRODUCTION

GENETIC improvement [1]–[4] is the process of auto-
matically improving a system’s behavior using genetic

programming. Starting from a human written system, genetic
improvement tries to evolve it so that it is better with respect to
given criteria. The criteria for improvement are typically non-
functional properties of the system, such as execution time and
power consumption, though many others are possible [1], [4].
The functional properties of the evolved system are usually
required to mimic as faithfully as possible those of the original
system. However, we show that it may also be possible to
improve the program’s outputs.

In order to check that the original system’s semantics are
not disturbed, the genetic improvement process relies on a
set of test cases, obtained from running the original system.
Notice we can always do this [5]. Even where the existing
system lacks a formal specification, its existing behavior is
its own de facto specification. The answer given by the new
code can be compared with that given by the original code
(which is assumed to be correct). Thus, the original code is
a test oracle. The system may also have additional automated
oracles, which are able to check an output’s validity and/or
quality. These can also be used to test the functional behavior
of the genetically improved program (see Fig. 1).

Genetic improvement has many potential applications. An
existing program can be ported from one platform and lan-
guage to another [2], thereby helping to manage software
multiplicity [6]. Genetic improvement also allows programs

Manuscript received October 31, 2012; revised March 3, 2013 and June 4,
2013; accepted June 10, 2013. Date of publication February 6, 2014; date of
current version January 28, 2015. This work was supported by the Engineering
and Physical Sciences Research Council Grant EP/I033688/1.

The authors are with the Department of Computer Science, Univer-
sity College, London WC1E 6BT, U.K. (email: W. Langdon@cs.ucl.ac.uk;
mark.harman@ucl.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2013.2281544

Fig. 1. Major components of GISMOE approach. (left) System to be im-
proved and its test suite. (right) Genetic programming optimizes modifications,
which originate from a grammar that describes the original system line by
line. Each generation mutation and crossover create new modifications. Each
modification’s fitness is evaluated by applying it to the grammar and then
reversing the grammar to get a new variant of the system. Each modified
system is tested on a randomized subset of the test suite and its answers and
resource consumption compared to that of the original system. Modifications
responsible for better systems procreate into the next generation.

to be automatically sped up [4] or consume less power, while
still performing the useful functions offered by the original.

The goal of genetic improvement research is to automate
as much of the improvement process as possible. Thus, new
implementations can be discovered by an evolutionary process,
rather than being hand-crafted by human programmers, in the
currently familiar (yet time-consuming, tedious, and expen-
sive) method. Ultimately, genetic improvement looks forward
to a world in which our successors regard human programmers
as a quaint anachronism of the past in much the same way
that we now regard the human computers of our nineteenth
and twentieth century forbearers.

Genetic programming provides a way to automate one of the
most expensive and time-consuming aspects of the software
engineering process: the production of the code itself. How-
ever, achieving genetic improvement for real world programs
presents many challenges. The size and complexity of the
programs to be evolved are considerably more demanding than
those previously attempted.

We report the results of applying genetic improvement to
a real-world system. Our genetic improvement of software
for multiple objective exploration (GISMOE) approach re-
duces the search space for genetic improvement and manages
the scalability of testing for functional and non-functional
properties. We report the results of applying genetic im-
provement to Bowtie2 [7], a widely-used DNA sequencing

1089-778X c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LANGDON AND HARMAN: OPTIMIZING EXISTING SOFTWARE WITH GENETIC PROGRAMMING 119

Fig. 2. (a) Initial approaches considered whole program equally (shaded).
They update code (dark shading), which may be throughout the single source
file. (b) Bug fixing. Genetic programming is directed to parts of code needing
fixing (shaded) and the bugfix (star) is small. (c) GISMOE: Evolution is
directed to used and heavily used code (light shaded, shaded, heavily shaded)
several lines of code may be updated (stars).

system, consisting of 50 000 lines of C++ code for which we
evolved 20 000 Line of code (LoC) (excluding headers and
conditionally compiled debug code). In fact, by also excluding
code that is not executed we focus the search on 2744 LoC.
We used test cases from the 1000 genomes project [8]. In
this case, the test cases are backed up by the Smith-Waterman
score (as an automated test oracle, see Section IV-A).

Our primary finding is that genetic improvement can find
new evolved versions of Bowtie2 that are, on an average,
70 times faster than the original (and produce on average
slightly improved answers) when applied to DNA sequences
from the 1000 genomes project. This is an important finding
because genetic improvement (as opposed to automatic bugfix-
ing) has previously only been applied to laboratory programs
(of up to about 100 Lines of code). This previous work
demonstrated proof of concept, but not the practical scalability
required for realistic program improvements on real-world sys-
tems containing many thousands of LoC. Bridging this divide
entails catering to all of the complexity and scale of real world
systems.

Genetic programming (GP) has been used to fix bugs in real
world programs of a similar scale to Bowtie2. However, this
is the first improvement that has been applied to a real-world
system. Though both genetic improvement and bug fixing have
used GP as an underlying technique, the two applications of
GP are different and pose different technical challenges as a
result.

The difference in previous approaches to GP for software
engineering is illustrated in Fig. 2, which consists of three
lines. In each line, the icons denote the files that comprise a
program or system. The first line depicts a program consisting
of a single file containing a single procedure. The second and
third lines depict entire systems (comprized of several files,
each of which may have many procedures and functions).

Previous work on genetic improvement [2], [4] is depicted
in the first line. This applies genetic operators to the entire
program to improve it with respect to non-functional properties

while maintaining [2] (or gracefully reducing [4]) functional
properties. Initial foundational proof-of-concept work on GP
for bug fixing [5] also applied genetic operators to small
laboratory programs and so this initial work is also depicted
in the first line of Fig. 2.

Subsequent work on bug fixing [9] extended this initial
work to whole systems, using fault localization techniques to
identify the parts of the system that might require changing.
This demonstration of scalability of bug fixing is depicted in
line two of Fig. 2; though the whole system is executed, the
GP search is concentrated on only that small part to which the
bug is localized. This localization is depicted by the horizontal
shaded lines. Only a specific location (depicted by the star) is
actually modified by the genetic operators to fix the bug.

Here, we extend genetic improvement [2], [4] from proof-
of-concept to real-world applicability. In order to do this we
apply GP to multiple points in a system (of multiple files),
guided by a sensitivity analysis that identifies parts of the
system that are most relevant to the non-functional property
of interest. (In our case, the most frequently executed code.)
This modus of operation is depicted in the last line of Fig. 2;
the whole system is executed and the GP search is directed
to multiple parts of the system (shaded). Although multiple
parts of the system may be modified by GP to improve the
performance of the overall system, the final number of lines
changed may be modest (stars).

The primary contribution of this paper is to demonstrate that
genetic improvement, previously only applied to laboratory
programs, can scale to real-world systems of tens of thousands
of LoC. We show that genetic improvement can produce
dramatically faster versions of the program, for well-defined
and useful subsets of the input domain and without loss of
semantics. (Indeed, even with some modest improvement in
semantics). In order to achieve this overall goal we introduce
a number of techniques and approaches that may prove to
be useful contributions for the future development of genetic
improvement.

1) Semantic Improvement: We show that the presence
of an automated test oracle opens up the possibility
that genetic improvement might improve not only non-
functional properties, but also a system’s behavior (e.g.,
its accuracy), rather than merely seeking to maintain
faithful semantics.

2) Sensitivity Analysis: We introduce a pre-analysis phase
that tests the sensitivity of the program to the non-
functional property we seek to improve (in this case
execution time). As expected, improvements are most
often found in the identified resource hungry code. We
show how our grammar-based GP approach suits this
sensitivity analysis, because it can identify the parts of
the system to be evolved and those that are to remain
untouched. This reduces the search space that genetic
improvement has to consider.

3) Output Bins: We introduce an approach that caters
to disparity between test cases by binning test cases
according to the amount of output they produce. This
allows a more uniform sampling, rather than merely
sampling over the happenstance of test data availability.

120 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 1, FEBRUARY 2015

Our output–bin approach is also used to assess the
algorithmic complexity of the non-functional properties
as they are empirically observed at each line of the
program (see Section III-A).

4) Operator Choice: We demonstrate that our simple
genetic operators, extending those used in automated bug
fixing work, can also apply to genetic improvement.

5) Grammatical Representation: We introduce an
adapted form of our grammar-based representation [10]
to help guide the GP search.

6) Local Search: We show how a local search post process-
ing phase can be used to address the potential (observed
widely in many GP applications) for the solutions to
become bloated. The local optimization is sufficient to
reduce the modification required to a surprisingly small
(and thus manageable) set of cut–and–paste operations
(see Section III-F).

Section II presents an overview of the real-world system,
Bowtie2, to which we apply genetic improvement, motivating
our selection of this system. Section III outlines the GISMOE
approach we use for genetic improvement, which is applied to
Bowtie2 in Section IV using DNA data from the 1000 genomes
project as test cases and the Smith-Waterman algorithm as
an automated test oracle. The improvements we find using
our approach are described (and investigated on held-out data
sets) in Section V. Section VI describes related work and the
relationship of our contributions to it. Section VII considers
where else our approach might be successfully applied, while
Section VIII concludes the paper.

II. REAL WORLD SYSTEM GENETICALLY IMPROVED:
BOWTIE2

The exponential growth in DNA sequence data and the
ever-changing analysis requirements for computer systems that
operate on this data have led to many systems being created
for DNA matching and analysis. Naturally, since genetic
improvement techniques are in their infancy, these systems
have been entirely hand-coded. In October 2012, Wikipedia
alone listed more than 140 bioinformatics tools that perform
some aspect of sequence analysis either on protein databases
or DNA sequences. The production of so many tools requires
a large amount of human effort, making this a natural target
application domain upon which to evaluate an automated
genetic improvement approach.

One of the most popular tools for querying next genera-
tion DNA sequences is the Bowtie system1 Bowtie is very
fast. However, its speed comes at the cost of some loss
of functionality. Although derived from the Bowtie system,
the Bowtie2 system [7] was written over 50 main system
modules and 67 header files (plus documentation, scripts and
support modules). These were downloaded from sourceforge.
Although the system comprises more than one hundred source
files, the final modification (see Fig. 15) changes only three
of them. The Bowtie2 development effort is an attempt to
emulate Bowtie, while retaining the speed of the original

1As of Oct 2012, according to Google Scholar, Bowtie had been cited 1706
times.

Bowtie system. However, though Bowtie2 is much faster than
BLAST, it is, nevertheless, slower than Bowtie.

The 1000 genomes project [8] uses Solexa and other scan-
ners to generate vast numbers of DNA sequences, in order to
map human genetic variation. These data are publicly available
and can be obtained via FTP 2. For experimenting with genetic
improvement applied to real world programs it is important to
have a realistic pool of test data.

The properties of Bowtie2 and the test data make this an
ideal target for the application and evaluation of our approach.
More specifically:

1) The code is available, supporting full replication by
subsequent authors.

2) There are realistic test cases available.
3) Test cases come from a non-trivial application (the

analysis of human genetic variation, particularly with
regard to disease factors and medical applications) that
generate much interest. They are therefore more likely
to involve real-world challenges than the artificially
constructed code examples used so far.

4) Bowtie2 is much larger (being at least two orders of
magnitude larger) than previously studied systems in
work on genetic improvement.

5) Bowtie2 it is not merely larger, but also more complex
than any previously studied systems for which results
are reported for genetic improvement. Its scale crosses
complexity boundaries not previously encountered. It
includes many software engineering and programming
features that any practical genetic improvement ap-
proach would need to address, yet which have been
left unaddressed in previous work. Such features include
modularization (functions and procedures), distinctions
between main and support code (libraries, test harnesses
etc.), separation into files, use of complex data struc-
tures, file access, preprocessing and macro calls.

Previous work on genetic improvement has demonstrated
the possibility of using genetic programming to improve a pro-
gram’s non-functional properties and this has been very impor-
tant. However, it is insufficient on its own. The development
of techniques that apply to programs like Bowtie2 provide
evidence that genetic improvement can be applied to programs
used in demanding, complex, real-world applications.

III. GISMOE APPROACH

This section outlines our GISMOE framework [1] and how
its principle components are instantiated to achieve genetic
improvement for the Bowtie2 System.

A. O–Bins: Output Bins for Test Cases

We use output bins (O–Bins) to partition the available test
cases. Our motivation for this is that testing practitioners
intuitively have a concept of the difficulty of a test case. In
many cases this is related to the amount of output that the
test case causes the program to create. That is, tests that cause
the generation of a lot of output are, in some sense, more
difficult than those that cause comparatively little output to

2See, for example, ftp.1000genomes.ebi.ac.uk

LANGDON AND HARMAN: OPTIMIZING EXISTING SOFTWARE WITH GENETIC PROGRAMMING 121

be produced. However, testers might have other appropriate
measures. These might be easily measurable (e.g., run time) or
require the code to be instrumented (e.g., length or complexity
of execution path, such as number of branches). Alternatively,
the testers may have their own subjective way of partitioning
test cases to give a spread of difficulty.

O–Bins play a role in the assessment of both functional and
non-functional properties of the code. For the functional prop-
erties, we use F different O–bins. Test cases (n per bin) are
sampled uniformly from these F O–bins (rather than uniformly
over all available test cases). The binning process ensures that
we sample demanding test cases for fitness evaluation as well
as less demanding ones, even though we only sample n×F test
cases for fitness at each new generation. For the assessment
of the non-functional properties, we also use O–bins to ensure
that tests are sampled uniformly over their perceived difficulty
(rather than merely over their availability). This use of O–bins
is explained in more detail in Sections III-C and III-D.

B. Determining Functional Correctness

The functional properties of a system are typically assessed
by GP using a test-based approach. However, testing suffers
from the oracle problem. That is, we need an automated oracle
that will determine whether a given output observed is correct.
Fortunately, one of the advantages of genetic improvement is
that the original program can serve as an oracle. That is, it
can be used as an automated system that provides a reasonable
output for a given input. This has been the basis of previous
approaches to both genetic improvement and bug fixing [1],
[2], [4], [9].

However, using the original program as an oracle has its
drawbacks. The original program may be buggy, in which case
the improved program may merely faithfully replicate buggy
behavior. The original may also be either partially defined or
non-deterministic, in which case it will not provide a reliable
oracle for every possible input.

It is therefore always advisable to supplement the original
program with an automated oracle (or partial oracle) if one is
available. The use of partially automated oracles (other than
the original program) also brings with it additional advantages:
the genetically improved program may improve the functional
properties of the system as well as its non-functional prop-
erties. Our approach to functional faithfulness is therefore to
use the original program as one source of oracle information,
but to additionally seek other partial oracles in order to check
the output produced by the genetically improved system.

C. Sensitivity Analysis for Non-Functional Properties

In order to evolve systems to better meet non-functional
requirements, we first apply a form of sensitivity analysis
to determine the parts of the system that have the greatest
effect on the non-functional property of interest. The parts of
the system with greatest impact will have the highest priority
during GISMOE’s evolutionary phase.

Depending upon the requirements, there are a number
of techniques that can be used to measure non-functional
properties of software. Some of these can be fairly direct. On

a server there is usually accounting information (e.g., number
of page faults or number of pages of RAM in use), which
can be harnessed as part of a fitness function. Similarly, the
operating system might keep track of bytes sent/received via
a wireless port. In other cases, the accounting information
may not be available or may be too inaccurate and so the
experimenter may have to devise their own measures. It is not
common to keep track of the power consumed by individual
software components. However, White et al. [4] demonstrated
how simulators can do this, and that they can be incorporated
into a GP fitness measure.

In this paper, the non-functional property of concern is
the execution time of the system. As might be expected,
typically, which lines are used and how many times they are
executed varies a great deal. We use execution frequency as
an indication of those lines of code that are likely to have the
strongest influence on our non-functional property of interest.
We weight lines of code both in proportion to how much they
are used and also how this use scales with the difficulty of the
problem.

We use a non-linear weighting in order to try to ensure
that GP samples critical parts of the system to be improved
more heavily. The determination of what makes parts of
systems critical depends both on the domain and upon the
non-functional properties to be improved. Hence, it must be
defined for each kind of system to be improved. If such
domain knowledge is unavailable or there is no meaningful
characterization of difficulty of the non-functional properties,
then this aspect of our weighting scheme can simply be
ignored. However, where there is domain information, it makes
sense to ensure that it plays a role in the determination of
weights.

We are interested in assessing the way in which the non-
functional values observed vary with test case difficulty. The
test cases are therefore partitioned into N O–bins. Conceptu-
ally, we plot the variation of the non-functional property (on
the vertical axis) against the test case bin-number (ordered
by output size on the horizontal axis). Using this plot we
determine the algorithmic complexity of the non-functional
property for each line of code.

We assess the algorithmic complexity of this conceptual
plot allocating a score of 10 for any complexity up to linear,
100 for quadratic, and 1000 for cubic and higher complexity.
We combine this algorithmic complexity measurement with a
scalar measurement that is simply a measure of the number of
times that the line is executed on average by a set of test cases,
sampled uniformly from the O–Bins. The overall measurement
of the sensitivity of a line of code is the maximum of the scalar
and algorithmic complexity measurement obtained for the line.
To prevent search concentrating overmuch, during a GP run
each line of code that is mutated has its weight reset to one.
Thus, encouraging GP to move on to also consider other lines.

D. Testing for Fitness According to both Functional and
Non-Functional Properties

1) Compilation: To reduce compilation time, an instru-
mented version of the system is compiled without optimiza-
tion, with the gcc -Wfatal-errors option and using

122 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 1, FEBRUARY 2015

precompiled header files. Initially, compilation time will be
light because there will be few changes, but this will increase
as more files are touched and recompilations requires a larger
build. For example, in our experiments with Bowtie2, compi-
lation time was observed to grow by an order of magnitude
during the genetic improvement process (from below a second
at the start, up to about 10 s by the end).

2) Randomized Test Suite Sub-Sampling: We give each
evolved version several tests. To make them independent and
so prevent an error on an earlier test affecting later tests,
each evolved version is run on each test case separately
(see Table II).

There are many test cases available for most programs we
might wish to genetically improve. We therefore adapt our
sampling approach [2], [11]. That is, at each generation, we
select a single test case from each of F O–bins to form a test
suite for that generation. At each generation the set of test
cases to be used is reselected to ensure diversity of testing
(To avoid retesting, we do not use elitism).

E. Handling Infinite Loops

Since we allow for and while loops to be changed by
the genetic improvement process, it is quite possible that
the modified code could enter an indefinite loop. We do not
want non-termination of a genetically improved variant to
lead to non-termination of our whole genetic improvement
system. Several approaches have been suggested to handle
this problem. For example, Maxwell [12] suggests a way to
allow fitness comparison as programs run, while Teller [13]
suggests using an anytime algorithm whereby answers, and
hence fitness, can be extracted from an executing program,
rather than waiting for it to terminate.

We use the operating system to time out and abort any
evolved version that takes more than a predefined cut-off exe-
cution schedule. As the Bowtie2 documentation says “Bowtie2
is not particularly designed with –all mode in mind, and when
aligning reads to long, repetitive genomes this mode can be
very, very slow.” Hence, some test cases (especially those with
more than 100 matches, see Section IV-B) need longer time
outs than others. Pragmatically, we impose a CPU limit of
twenty seconds on the first four test cases and one minute on
the last test case.

F. Representation of the System to be Evolved

The existing program is used as the template for its own
upgrade. The template (actually a special one-sentence BNF
grammar) is created automatically from the program’s source
code. While evolution has great freedom to change the code,
it is constrained by the template. For example, the tem-
plate ensures classes, types, functions, and data structures
are retained. Similarly, evolution cannot change the program’s
block structure. So, for example, in C++, opening and closing
brackets have to remain in the same place but lines between
them can be changed. Thus, for example, each function’s name
and arguments cannot be changed but their contents can be
rewritten and indeed so too can the code that calls them.
Similarly, variables retain their names and types but evolution
can use them, change their use or indeed ignore them totally.

Fig. 3. Fraction of Bowtie2 variants which compile by distance replacement
C++ line is moved. 82% of cases where code is moved ≤ 100 lines compile.
When lines are only moved within the same source file (dashed line) on
average three times as many variants compile since there are fewer out of
scope errors. Data binned in units of 100 lines.

We use a specialized BNF grammar to ensure that the
evolved code has no parse errors. However, GP can generate
code with other language errors (e.g., referring to a nonexistent
variable). These are trapped by the compiler, causing the
modified code to fail at the compilation stage. Our experience
is that almost all such compilation errors involve variables
being out of scope. Earlier experimentation confirmed this to
be the case.

Such scoping issues might be tackled by a detailed type
analysis. However, increasing the fraction of shorter distance
moves by restricting moves to be within the same source file
has proved to be a simple and effective way of increasing
the fraction of evolved versions that compile (see Fig. 3 and
Section III-I).

Although we have not found them to be needed here, there
are a number of sand boxing [10] and virtualization techniques
to ensure C programs do not cause damage.

BNF rules that correspond to single lines of source code
are modified so that they now invoke another rule with
the same name but with a leading underscore inserted.
(For example, for the Bowtie2 program, the original rule
<bowtie_main_46> in Fig. 4 was modified so that it
invokes the new rule <_bowtie_main_46>.) GP can
replace this (the underscore rule) with another rule also
starting with an underscore and the resulting program will be
syntactically valid.

For example <_bowtie_main_46> ("in. open
(file);") could be copied to replace <_bowtie_
main_51> ("args.push_back(string(argv[0])
);"). This gives two calls to open file but now
args.push_back is never called. The second call of
in.open finds that stream in is already open and does
nothing. The resultant code is syntactically valid and, in
this case, compiles. In some test cases (e.g., where the first
command line argument is not "-A", see line 43, Fig. 4) the
variant runs despite the missing call to args.push_back
and generates identical output to the released code. Such test
cases do not reach the site of the modified code and so it

LANGDON AND HARMAN: OPTIMIZING EXISTING SOFTWARE WITH GENETIC PROGRAMMING 123

Fig. 4. Fragment of BNF grammar used by GP. Most rules are fixed but <IF_, <_, WHILE_ etc. can be manipulated using rules of the same type to
produce variants of Bowtie2. Log_count64++ etc. are automatically added to instrument Bowtie2. Lines beginning with # are comments.

cannot propagate its effects and so, in such cases, the variant
is equivalent to the original code.

The conditional parts of if, else, and while as well as
the initial, test, and increment parts of for(;;) loops are
extracted into new rules (with rule names beginning <IF_,
<ELSE_, <WHILE_, <for1_, <for2_, and <for3_)
(see examples in Fig. 4). GP is free to exchange these with
other rules of the same type, to generate a syntactically valid
program.

We limit GP to evolving code in the main modules. That is,
evolution cannot modify the include files. As in our previous
work [10], we used the gcc compiler’s -E option to strip
comments, to ensure compile time configuration, (using the
release configuration), and to perform macro expansion on the
source code.

Human written code is highly repetitive; whole source lines
of code occur more than once. For example, Gabel and Su [14]
recently found that almost all small code fragments have been
written before, somewhere by someone (i.e., not necessarily
in the same application). Previous studies, see, [15], have
reported Zipf’s law in programmers’ use of language tokens,
e.g., () and if in Java, which are enforced by the compiler.

Excluding white space, Fig. 5 plots the number of times
lines of C++ code in Bowtie2 that are exactly repeated. It
is no surprise to discover lines composed of a single } or a
single ; occur many times (actually 2310 and 1255 times). But
many more interesting lines are also repeated. For example,
the eighth most commonly repeated line is a non-trivial line
of 56 characters including branches, variables, and constants.
This is longer than most of the 5848 (29%) lines that are
unique (their median length is 28 characters).

While Gabel and Su investigated code repetition across
an entire suite of programs and systems, we present in

Fig. 5. Distribution of repeated Bowtie2 C++ code, after macro expansion,
follows approximately Zipf’s law, which predicts a straight line with slope
of -1.

Fig. 5, results for code repetition within one single C++
system, Bowtie2. We suspect that the results we observed and
those reported for much larger corpuses [14] reflect a wider
trend.

It is also well known that crossover can produce large
amounts of repeats, both in natural DNA and in linear and
tree genetic programming.

Genetic improvement should take these observations about
code repetition into account. Therefore, instead of allowing
GP complete freedom to invent any syntactically valid code,
we insist it reuse code that has already been written by the

124 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 1, FEBRUARY 2015

creator of the program to be genetically improved. Evolution
thus proceeds by cut and paste. Cutting, i.e., removing lines
of code, and pasting means to make a copy of a line of code
in another place.

We were surprised that such a simple approach to mod-
ification could yield dramatic genetic improvements (but see
also [9]). We believe that this is a potentially important finding
of our work.

Our approach is similar to the plastic surgery approach of
Weimer et al. [9] in which code is scavenged from other parts
of the program under evolution. However, while Weimer et al.
consider code at the statement level, we will deal with lines
of C++ code. The creation of a grammar describing the
existing source code (Fig. 4 contains an example grammar)
identifies seven different types of source code fragment (see
Section III-F). As long as we only cut and paste source code
fragments of the same type, the new code will be syntactically
correct at this lexical level (there are some examples in the next
section).

G. Representation of Genetically Improved Variant

In earlier work on genetic improvement [2], [4], the entire
program was evolved. This was feasible because there was
only a small program [4] or part of a program [2] to be
evolved. However, in order for genetic improvement to scale it
must cater for programs of several orders of magnitude larger
than have previously been considered. We therefore adapt an
approach recently used to scale up bug fixing [9]. We represent
a GP individual as an ordered list of changes [16] that are to
be made to the BNF grammar. To delete a line of code, the GP
individual gives the name of the line’s BNF rule. To replace a
line, the name of the corresponding BNF rule is given together
with the name of the line of code which is to replace it. An
insert operation is essentially the same, except we add + to
the text, so we know to add a copy of the line of code and
not to remove the original line of code.

Here are some examples of the application of this approach
to the Bowtie2 system:

<for3_sa_rescomb_111><for3_sa_rescomb_69>

This GP individual causes the increment part of the for
loop on line 111 of source file sa_rescomb.cpp to be
replaced by the increment part from the for loop on line 69.

<_aligner_swsse_ee_u8_804>

This individual causes line 804 of aligner_swsse_
ee_u8.cpp to be deleted.

<_aligner_result_47>+<_aligner_result_114>

This individual inserts a copy of line 114 in front of line 47
in file aligner_result.cpp.

The first generation is the initial random population. In it
all GP individuals contain exactly one change. In the second
generation we start to see individuals that make two or more
changes. These individuals are simply one line of text with a
space between each of their constituent mutations. Mutations
are applied in order. However, we can readily spot mutations
which replace the same line of code. In this case only the

last one need be applied. In fact, we use genetic repair, so
where conflict arises an individual’s genome only contains the
relevant, i.e., the last, mutation. Notice we can easily keep
track of which source files have been changed and use a Unix
make file to ensure only the modified files are recompiled.

All this manipulation is done in plain text, unlike other
work, based on CIL, which operates on abstract syntax trees
(AST) [9]. Our grammatical representation of the program to
be improved makes this practical, even though it operates at a
lexical level. Even for the largest set of genetic changes and
even prior to the final local search bloat-removal phase, the
time required to make the changes is typically less than that
required to compile the resulting modified system.

H. Selection

Up to half the current population can be selected. Those
below the cut point, as well as variants that failed to compile
or that never exceeded the released code in any way, are not
transmitted to be parents of the next generation. As will be
mentioned in Section III-J, if fewer than half the population
are selected, two new children per missing member are created
from scratch. That is, they are effectively reinitialized. The
new individuals are created in the same way as the initial
population was created in generation zero.

I. Mutation

An individual is mutated by appending a new grammar
modification to the list that denotes an individual (see Sec-
tion III-G). The additional line to mutate is chosen from all
lines executed at least once by the test cases selected from
the O–Bins for sensitivity analysis. The line to be mutated
is chosen with a probability that is defined by its sensitivity
analysis weight.

One of the three types of mutation (deletion, replacement,
and insertion) is chosen (with equal probability). Note that
these are the only permitted changes, in particular, totally
new code cannot be introduced. However, it makes no sense
to delete one of the trivial lines (i.e., lines just containing a
single disabled assert or ;). Trivial lines can, with equal
probability, be used either as the point to insert new code or be
replaced with a non-trivial source line. The new code is chosen
uniformly at random from non-trivial lines of the same type
(captured by our grammatical representation approach) in the
same source file that were executed at least once (the types
were described in Section III-F above).

We avoid the generation of no operation and duplicate code.
That is, a child is rejected if either it makes no change (i.e.,
replacing self with self) or where the corresponding sequence
of changes already exists (both can be spotted efficiently since
changes are essentially cut-and-paste operations). If a child is
rejected in this way, then the parent is mutated again until a
non-duplicate is created.

J. Crossover

We anticipate that many changes are somewhat independent;
a genetically improved program can be found by combining
multiple changes. This is the role of crossover. In our case,

LANGDON AND HARMAN: OPTIMIZING EXISTING SOFTWARE WITH GENETIC PROGRAMMING 125

Fig. 6. Increase in mean number of mutations as evolution improves
Bowtie2. Note many members of population (10) reinitialized near generations
65 and 167, causing long mutation lists to be replaced by new (much shorter)
individuals.

crossover simply concatenates two individuals. The first par-
ent is selected from the current population according to its
fitness. The second is drawn uniformly from the members of
the current population which compiled (i.e., have a fitness
value). Naturally, such a crossover leads to rapid growth in
chromosome length (bloat [17]). See Fig. 6 for an example
of the increase in genotype length, which we observed in our
experiments with Bowtie2.

As with mutation (see the previous section) each child’s
genotype is reduced to canonical form and a crossover will be
rejected if it is already present in either the new or the previous
generation. If, after a small number of retries, crossover cannot
find a unique individual, the new child is created by mutating
a fit member of the population.

Normally, half the new population is created by mutating
the fittest parents and half by crossing over the fittest parents
with other fit members of the population (to ease reproduction
all the key parameters of our evolutionary system are given in
Table I). However, if the number of fit parents in the current
population falls below half, mutation and crossover will not
create sufficient new children to fill the new population. In
this case, to restore diversity to the population, the missing
children are created at random (in the same way as the initial
random population).

K. Post Processing Solution Cleanup

It is common for solution programs evolved using genetic
programming to be bloated [17]. That is, some parts of the
evolved changes make little or no difference. From the point of
view of software engineering, maintenance, ease of integration
of genetic changes into human written code, etc., it is easier
to work with a minimal number of changes. It is possible for
genetic programming to minimize evolved code, but previously
we had used larger populations. Therefore, we decided to use
a simple hill climbing strategy to minimize the size of the
ordered list of changes after the end of the GP run.

Starting from the beginning of the best individual in the last
generation, each of the changes are disabled one at a time. If
removing the change makes the evolved version worse, then

the evolved change is kept. Otherwise, it is removed. The hill
climber then goes on to test the effect of removing the next
evolved change and so on, until the whole evolved version has
been so-processed.

IV. APPLYING THE GISMOE GENETIC IMPROVEMENT

APPROACH TO BOWTIE2

In this section, we explain how the GISMOE genetic improve-
ment approach we introduced in the previous section is applied
to the Bowtie2 program.

A. Determining Functional Correctness for Bowtie2

For the automated oracle, we use the Smith-Waterman
algorithm to compare the answer given by Bowtie2 with the
human genome. Unlike Bowtie2 itself (and related tools),
Smith-Waterman performs a complete comparison, rather than
using heuristics. However, Smith-Waterman can only allow us
to check the reported sequence matches for correctness, it does
not allow us to check for missing answers. Smith-Waterman
thus provides a partial oracle, that can evaluate the answers
given.

In order to use the Smith-Waterman score, we need to
allow for partial matches (indels). To do this, the reference
string against which matches are checked is extended by nine
characters at either end. The genetically improved system’s
Smith-Waterman score for a test case is the mean of the Smith-
Waterman scores over all matches it suggests for that test
case. However, if the output from the modified system is a
match that fails to lie exactly where Smith-Waterman locates
the optimum match, then the match’s score is reduced by 1.0
for each DNA string position by which its output disagrees
(subject to the match’s score not going below zero).

Bowtie2 reports many accountancy details about the
matches it finds between the test Solexa DNA sequence and
the human genome. We give credit only for the matches
themselves. Potentially, evolution can make minor saving by
mutating Bowtie2 so that it no longer generates this unwanted
output.

1) Training Data—Human Genome, Bowtie2 and the 1000
Genomes Project: The complete official release of the ref-
erence human genome (Release 37, Patch 5) was down-
loaded from the National Center for Biotechnology Informa-
tion (NCBI). The NCBI also maintains BLAST. The 64 bit
Linux version of Blast was downloaded from its FTP site
(version 2.2.25+) and this version was used in the experimental
comparisons reported below. The C implementation of the
Smith-Waterman local alignment algorithm was downloaded
from Biological Physics Department, Cologne University. The
Smith-Waterman algorithm does a complete search to find the
optimum match between two strings.

The C++ sources for the 64 bit Linux version of Bowtie2
(version 2.0.0-beta2) were downloaded from sourceforge
(50 745 lines). This version of Bowtie2 was used to create an
ASM format database holding the reference human genome
from the NCBI DNA sequences. We have evolved all new
versions of Bowtie2 by fitness testing against the complete
human genome (3.9 GB). Fitness testing might be sped up by

126 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 1, FEBRUARY 2015

TABLE I

GENETIC PROGRAMMING PARAMETERS(INCLUDING, FOR REPLICATION PURPOSES, THE SPECIFIC PARAMETERS USED FOR IMPROVING BOWTIE2 ON

1000 GENOMES PROJECT SOLEXA SHORT DNA SEQUENCES)

using only part of the database or indeed a smaller genome
from a non-human source (e.g., yeast or mycoplasma bacteria).
However, our goal was to tailor Bowtie2 to the task of
looking up human DNA sequences. Indeed, we wished to
create a version specific to real DNA sequences generated by
a particular sequencing technique, rather than synthetic data.

The 1000 genomes project [8] has sequenced, wholly or
in part, DNA from more than one thousand individuals using
a variety of next generation sequencers. Our goal is to show
the automatic generation of improved software for a particular
task, so we use data from a popular scanner make used in a
laboratory for which we have copious training data. The data
can be obtained via FTP from ftp.1000genomes.ebi.ac.uk. We
selected homogeneous data (i.e., DNA sequences with exactly
36 bases) from one well studied CEU family and the Solexa
data provided by the Broad Institute, Cambridge, MA, USA.

The Solexa scanner output includes an estimate of the
quality of each base in the sequence. It also uses “N” to
indicate any DNA base which it cannot decide which of the
four bases (A, C, G, T) it really is. The data quality is highly
variable. In one dataset, less than 1 in a 1000 sequences has
an N. In the worst training dataset, every record had at least
one (typically two or three).

2) Preparing the Training Data: The performance of
Bowtie2 depends strongly upon the number of matches it finds
between the query DNA sequence and the reference human
genome. To get a good spread of Solexa DNA sequences for
training, we started by using the released version of Bowtie2
to annotate a sample of DNA sequences with the number of
times they occur in the human genome. We randomly selected
500 of the ≈8 million DNA sequences in each of 11 Solexa
runs for a CEU female (NA12878). Then we ran the released
version of Bowtie2 against the human genome on groups of 50
randomly chosen sequences and for each counted the number
of matches it reported. (Total 11 × 10 × 50 = 5500.) Even
on a 32GB 8-core server, in five cases, Bowtie2 was aborted
(after failing to respond), leaving us with 5250 DNA Solexa
sequences. The distribution of the number of matches is plotted
in Fig. 7.

B. O–Bin Sampling as Applied to Bowtie2

We implemented the O-bin sampling described in
Section III-A as follows. In each generation, five DNA

Fig. 7. Distribution of number of matches in human genome for Solexa
DNA sequences found by Bowtie2. (Note non-linear scales. With more than
ten matches decile bins are used.)

sequences are automatically chosen uniformly at random from
the 5250 Solexa sequences described in the previous section.
They include the following:

1) A sequence which Bowtie2 cannot find in the human
genome.

2) A sequence which it matches exactly once.
3) A sequence which matches between twice and ten times.
4) A sequence which matches between 11–99 times.
5) A sequence which matches between 100–200 times.

The first two cases can be viewed as positive tests to ensure
the modified Bowtie2s still retain their essential ability to both
report the absence of matches and find them. Test cases of
type 3, 4 and 5 are designed to detect modified Bowtie2s that
are faster. Cases 3 and 4 are intermediate. They seek to guard
against chance playing too great a role in parenthood selection.
Bowtie2 run time grows cubically with number of matches.
Fig. 7 shows the number of matches (n) within the human
genome that Bowtie2 can find is essentially unlimited. Given
O(n3) run time, we cannot possibly use the sequences that
match many times in fitness testing. Instead, we imposed an
upper limit of 200 matches. Even so, the fifth test case (which
is drawn from the O–Bin containing the most demanding test
cases) frequently takes the most computational effort.

LANGDON AND HARMAN: OPTIMIZING EXISTING SOFTWARE WITH GENETIC PROGRAMMING 127

Fig. 8. Example when Bowtie2 finds many matches of the distribution of
the number of times each Bowtie2 C++ source line is used. (All 39 source
files but excluding all 67 header files.) 72% of lines are not used but 80 lines
are run more than a million times. (Note log scale.)

C. Representing Bowtie2 Source Code to be Evolved as
Grammar

Following the general GISMOE approach outlined in
Section III-F, we limit GP to evolving code in the main
modules of Bowtie2. This yields 39 modules containing about
20 000 lines of code. These were automatically translated line
for line into a BNF grammar of 19 949 rules. (See fragment
in Fig. 4.)

D. Sensitivity Analysis for Non-Functional Properties Applied
to Bowtie2

To illustrate the importance of our sensitivity analysis,
consider Fig. 8, which shows the number of times individual
lines of code were executed in an example run of Bowtie2.
Of the 13 498 executable lines that were instrumented, 9 760
(72%) were never used, 1518 (11%) were used exactly once,
846 (6%) were used more than once but less than the number
of matches (9934), 309 (2%) were used exactly 9934 times
and 929 (7%) were used more than 9934 times. In fact, 80
lines were used more than a million times, with 2 being used
more than 2 147 483 648 times.

Although Fig. 8 describes a single test case, the GISMOE
weighting scheme (described in Section III-C) is based
on a large number of test cases. In more detail, for
Bowtie2, the 5250 DNA Solexa sequences, described in
Section IV-A2, were sorted by number of matching strings
into decile O–bins. That is, ten O–bins per order of mag-
nitude. (Meaning ten O–bins for numbers between 10 and
100, ten for numbers between 100 to 1000, and so on.)
That is, the O–bins are spread evenly on a logarithmic
scale. If there were more than ten DNA sequences in an
O–bin, ten were chosen at random from it. This yielded 362
DNA sequences with a wide variety of number of matches in
the human genome.

An instrumented version of Bowtie2 was run on them all to
give, for each of the 362 input test cases, which lines of code
were used and how many times. Fig. 9 shows, for four example

Fig. 9. Example heavily used lines in Bowtie2, which scale differently with
number of matches found for the input Solexa DNA sequence in the human
genome. Constant +, linear (�), quadratic (�), and cubic (×). (Note log
scales.)

source lines, the relationship between the number of times
the query string matches in the reference database and the
number of times the source code is executed. The instrumented
version allows us to not only know which lines of code are
in use but also to estimate how their usage scales. We find:
1) lines that are never used; 2) lines that are used once (or a
constant number of times); 3) lines whose use varies linearly
with output size (n); 4) lines whose use varies as n2, and
5) lines whose use varies in proportion to n3. This gives us a
crude assessment of the algorithmic complexity of each line
of code.

For Bowtie2, the weights described in Section III-C are
calculated as follows: if a C++ line is used in any of the
362 instrumented runs it will be given a weight between 1
and 1000 in proportion to the number of times it is used in
that test. If it is not used at all, then GP ignores it and will
not mutate it. If it is heavily used in any test, it is given the
higher weight.

These weights are combined with the algorithmic com-
plexity assessment (which allocates weights of 10, 100, and
1000 for O(n), O(n2), and O(n3) complexity, respectively,
as described in Section III-C) by selecting the maximum of
the two scoring systems. Fig. 10 (generation 0) shows the
results of this non-functional sensitivity analysis as applied to
Bowtie2. Fig. 10 shows 2111 lines have initial weight 1, 483
have initial weight 10, 103 have initial weight 100, and 47
have initial weight 723 or more (total 2744).

E. Combining Functional and Non-Functional Fitness to
Create Overall Fitness for Bowtie2

Each genetically improved variant that compiles is com-
pared to the instrumented original on the five test cases
selected from the O–Bins (to be described in Section IV-F4,
see also Table II). Two fitness criteria are used corresponding
to the functional and non-functional criteria. Did the evolved
version run faster (which, in our case, is measured in terms of
the execution of fewer lines of code) and did it produce better
answers on average (which is measured in a domain-specific

128 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 1, FEBRUARY 2015

Fig. 10. Evolution of distribution of weights. Initial GP population (genera-
tion 0) at left. Note fall in proportion of higher weights as population evolves
to mutate highly used C++ lines and then recovery as it (partially) resets in
generations 68 and 168. (Note non-linear scales. To reduce clutter, data plotted
only every 4th generation.)

manner)? It need only do better on either criteria on any of the
five test cases to be considered a parent of the next generation.
(However, it is not considered better if it finds no answers at
all, no matter how fast it goes.) Those variants that compiled
and were judged better than the original code on the current
five test cases are sorted according to three fitness criteria. The
three fitness criteria (in order of precedence) are:

1) Number of test cases completed without run time error;
2) Mean Smith-Waterman score;
3) Lines of C++ code executed (minimized).

We order the criteria in this manner to favor functional
faithfulness (to the original) highest, then the functional in-
formation from the oracle next highest, and finally the non-
functional property we seek to improve (execution time). This
is because we seek solutions that are better according to the
non-functional criteria, but at least no worse according to the
functional criteria. Other possibilities, that are more heretical
in their approach to correctness, are discussed elsewhere [1].

F. Implementation Details

This section presents implementation details required to
make the genetic improvement process practical and which
may be required by other researchers for replication purposes.

1) Aborts, Heap Errors, Segmentation Errors, Floating
Point Exceptions, Assert Exceptions: Almost all evolved pro-
grams that compile run all of their test cases and produce
an answer on each. Only 6% fail. The most frequent causes
of run time failure are segmentation faults (≈3%) and CPU
time limit overruns (≈2%). The remaining 0.6% of runs either
abort (e.g., due to heap corruption), report a floating point error
(e.g., divide by zero) or fail one of Bowtie2’s own assert
exception checks.

2) Zombies: In Unix, a process can sometimes fail in such
a way that the operating system has difficulty cleaning up after
it and instead of terminating it Unix places it in a zombie state.
Since such zombie processes do not terminate or timeout,
a zombie could potentially hold up our GP indefinitely. We
found that zombies occur infrequently. Indeed, none were cre-
ated during the runs described in Section IV-F1. Nevertheless,

TABLE II

FITNESS SUNCTION

in order to guard against it we used a background zombie
killer.

If the machine is overladen then the failure of a process to
respond might be due to its failure to receive any computation
time. In our experiments we set this overladen threshold
to 16. This means that the machine is considered overladen
should there be 16 or more processes awaiting scheduling
all of which are able to proceed. Sixteen seemed to be a
suitably conservative value, given that our experiments ran
on a machine with eight cores. Once per minute the zombie
killer background process compares the CPU time taken by
each fitness job with that taken by it in the previous minute. If
they are identical the job is killed (provided the machine is not
overladen), freeing the GP to continue to the next fitness test.

3) Details of Compilation Failures and Aborted Runs:
Throughout the run (see Fig. 11) about 26% of compilations
fail. (All but six compilation failures are caused by moving
variables out of their scope).

4) Comparing the Original Program: As explained in
Section III-H, the instrumented (but otherwise unchanged)
Bowtie2 code is run on the test cases selected as the training
set for the current generation. (See Section III-D). This took
an average of 38 s.

G. Role of the Smith Waterman Score in the
Post Evolution Clean

To avoid excessive run time, the hill climber used to
minimize the evolved solution (see Section III-K) uses a

LANGDON AND HARMAN: OPTIMIZING EXISTING SOFTWARE WITH GENETIC PROGRAMMING 129

Fig. 11. Fraction of population which fails to compile (bottom), aborts on
one or more test cases (light) or fails to find any match in the human genome
(top). In generation 167 there are no suitable parents and the population is
reset. Data smoothed (by averaging to right over ten generations).

(fixed) subset of all the training data. One hundred dif-
ferent DNA sequences were randomly chosen from each
of the five classes described in Section III-D. (Only 41
of the 5250 Solexa training sequences match in the hu-
man genome reference sequence between 100–200 times.
So they are all used.) This gives 441 training DNA sequences
for the hill climber.

The Smith Waterman score is used to winnow the mutations
listed in each individual evolved by generic improvement. A
smaller mutation is considered worse if the following take
place.

1) It does not compile.
2) It uses more than 1% more instructions than the evolved

version.
3) If fails to find a match.
4) The Smith-Waterman score of all the matches it reports

for a DNA sequence is on average more than 1.0 lower.
5) If ten or more of the matches it finds have on average

lower Smith-Waterman scores than the evolved version.

If, according to this definition of worse, the removal of a
change from an individual fails to make the resulting version
of Bowtie2 worse, the change is considered unimportant and
it is permanently removed from the individual.

V. GENETICALLY IMPROVED BOWTIE2

Section V-A will describe the evolution of performance,
both on the per generation training sets and on a fixed sample
representing all the training data. Section V-B describes out-
of-sample performance and then Section V-C describes out-
of-sample performance of Bowtie2 when modified by the
minimized genetic change. Section V-D tries to explain the
minimized change’s impact on Bowtie2.

A. Performance During Evolution

We evolved a population of 10 Bowtie2 variants for 200
generations. Fig. 12 shows the best in the population’s fitness
at each generation. There is a dramatic improvement in speed
and a very small improvement in the mean Smith-Waterman

Fig. 12. Evolution of performance on randomly changing training cases. In
the last generation, the best uses 290 times fewer C++ statements than the
original code. In most generations, there is a small improvement in mean
Smith-Waterman score (dashed line), which is obscured by the use of a log
scale needed to clearly show instruction execution data.

score. Fig. 6 plots the evolution of genotype size. Notice
that size increases (bloat) under the action of our crossover
(see Section III-J). However, the population is reinitialized
near generations 65 and 167. That is, twice during evolution
the population contained very few good individuals and, as
described in Section III-H, the poor ones were replaced by
reinitializing them in the same way that the initial population
is created.

To show training performance in general, every ten gener-
ations, we retested the best-of-generation program on a much
bigger and fixed subset of the 5250 training Solexa DNA
sequences described in Section IV-A2. Apart from the random
number seeds, we used the same procedure as in Section IV-G
to select 441 DNA sequences. In the last generation, the best
individual used only 1/290th of the instructions used by the
instrumented Bowtie2 on the five DNA sequences used for
training in generation 200. When both were tested on the 441
DNA sequences, one at a time, the ratio was 1 to 500.

The speed (as a fraction of the number of instructions used
by the unmodified instrumented version of Bowtie2) of the
best of each generation is plotted in Fig. 13. Fig. 13 shows
the performance of the best in the population every tenth
generation. Note that the versions of Bowtie2 are run once
on the 441 test cases. (Rather than 441 times, once on each
test case.) The best of generation 135 is described in the
supplementary information.

As suggested in Section III-D, GP has been able to improve
the initialization code. Therefore, when we use the 441 DNA
sequences in a single file, improvements in the initialization
code have less proportionate effect. Nevertheless, Fig. 13
shows that in most cases the best evolved version of each
generation still uses only about a fifth of the instructions used
by the unmodified Bowtie2. Also Fig. 13 shows that in most
generations the best of the generation evolved version finds
DNA matches in the human genome, which on average, are at
least as good as the original unmodified version of Bowtie2.

130 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 1, FEBRUARY 2015

Fig. 13. Speed of best-in-population every ten generations on a fixed training
set. (Fig. 12 gives GP fitness with training set, which is changed every
generation.) Here, we run each genetically improved version of Bowtie2 on
all 441 DNA sequences together.

Fig. 14. Distribution of the number of matches in the human genome for
verification Solexa DNA sequences. Note non-linear scales. With ten or more
matches each bin contains data covering an order of magnitude. (see Fig. 7).

Again the improvement in Smith-Waterman score is small
(e.g., 0.5% in generation 200.)

B. Performance Comparison on Hold Out DNA Sequences

For verification, 10 DNA scans were randomly chosen
from 2 different individuals (one male, one female, NA12891
NA12892, being the parents of NA12878) giving 20 complete
Solexa scans (a total of 176 893 951 DNA sequences). Ten
DNA sequences were chosen from each Solexa scan. The
distribution of the number of matches for these 200 DNA
sequences, which is strongly related to run time, is shown
in Fig. 14. Apart from sampling noise, it should be the same
as the whole of the Solexa scans. Notice that it contains a few
sequences, which match a very large number of times. As we
described in Section IV-A2, such sequences were deliberately
excluded from the training data, as they cause the released
version of Bowtie2 to become very slow.

The released version of Bowtie2 and the evolved version
were both tested on the 200 hold out DNA sequences. Neither

was instrumented and both were compiled with the same
compiler optimizations as are used in Bowtie2’s installation kit
(i.e., gcc -O3). The evolved version took 3.9 h. The released
code took 12.2 days. Thus, we observe that, on average, the
genetically improved program is 74 times faster on out-of-
sample data.

In 178 cases (89%) the GP version of Bowtie2 produced
identical results to the released code. In 17 of the remaining 22
cases the GP version found fewer matches (median reduction
0.8%, p = 2 10−5 sign test). In 3 cases (1.5%), the reduction in
the number of matches found was more than 40% but, in each
case, the matches had a much better mean Smith-Waterman
score. The GP version never reported more matches nor did
it ever incorrectly report zero matches. Recall that multiple
matches, particularly if low quality, are not normally useful to
biologists. In 18 cases (9%), the GP version was better (i.e.,
the matches it reported had a mean Smith-Waterman score
better than that of the released code). In 1 case, the Smith-
Waterman score was identical and in 3 (1.5%) the scores were
worse but differed only in the 4th and 6th significant decimal
place (p = 0.001 sign test). The median improvement was
0.1 (max 6.32).

C. Minimizing the Final Evolved Variant

The best-in-generation 200 evolved individual (see sup-
plementary information) makes 39 changes to the released
version of Bowtie2. Using the clean up procedure described
in Section IV-G, this was reduced to seven changes (shown in
Fig. 15). Of course other techniques, such as diffx, might also
be able to simplify it. The reduced version was compiled in
the same way as the released code (i.e., gcc -O3) and tested
on the 200 verification DNA sequences. It produced identical
output to the evolved 39 changes version and was 4% faster,
giving a speed up compared to the released code on the hold
out DNA sequences of 77 times.

D. Optimizations Provided by Bowtie2GP

The following sections try to explain the important optimiza-
tions found by GP (see Fig. 15).

1) bt2_io.cpp line 622: Source file bt2_io.cpp is
concerned with reading the indexed human genome reference
sequence from disk files (total 3.79 GB). In training
cases with the original Bowtie2, line 622 (top of Fig. 15)
is used 179 215 892 times at the start of each run (see
Fig. 9). Line 622 is a for loop: for(uint32_
t i = 0;i < offsLenSampled;i++) which genetic
programming replaces with for(uint32_t i = 0; i
< this->_nPat; i++). Since this->_nPat typic-
ally has a value of 84 (rather than offsLenSampled’s
179215892) the whole loop is iterated far fewer times.
However, the loop’s body comprises only various assert
statements. Eventually, in optimized non-instrumented
production code, they are all removed by the compiler. Thus,
while substituting this->_nPat for offsLenSampled
reduces the instrumented number of lines used in a run by
179 215 808, it has no effect on (production) run time (we
can view this as GP rediscovering a gcc -O3 optimization).

2) sa_rescomb.cpp lines 50 and 69: Bowtie2 starts from
exact matches between the DNA sequence and the human

LANGDON AND HARMAN: OPTIMIZING EXISTING SOFTWARE WITH GENETIC PROGRAMMING 131

Fig. 15. Minimized evolved solution. After unneeded changes have been removed, we are left with 7 changed lines, in three C++ source files. This version
of Bowtie2 is 77 times faster on average than the released version on short DNA sequences generated by the Broad Institute’s Solexa next generation scanner.

genome, which are given by a hashing algorithm. (These are
known as seeds). Since, in general, each seed covers only a
part of the input DNA sequence, Bowtie2 uses C++ source file
sa_rescomb.cpp to see if the matching region can be extended
to cover the whole of the input sequence.

Lines 50 and 69 of sa_rescomb.cpp (3rd and 4th rows of
Fig. 15) are both for loops in C++ method SAResolveCom-
biner::tryResolving(). In both cases, GP modifies the central
loop control part and sets it to false. This means neither
loop body is ever executed. Fig. 9 shows the unmodified
scaling characteristics of these two for loop bodies. Line 51
in sa_rescomb.cpp � is inside the line 50 for loop. It scales
as O(n2). Where n is the size of Bowtie2’s output. Line 70 ×
is inside the line 69 for loop. Unmodified, it scales as O(n3).
The line 50 for loop counts how many elements are yet to be
resolved in satup_

size_t needResolving = 0; for(size_t i=0;
i<satup_->

offs.size();i++){
if(satup_->offs[i] == 0xffffffff) {

needResolving++;
}

}

Typically replacing i < satup_->offs.size()
with 0 means instead of needResolving being set to up to
335, it remains as zero and the function immediately returns
(so line 69 is never executed and the fact that it has also been
disabled by GP never comes into play). Typically, disabling
the line 50 for loop reduces the number of lines executed by
0–20% (the order plus the interaction between mutations to
lines 69 and 50 mean the hill climbing simplification stage,
(see Section III-K), could not spot that the change to line 69
was not needed as well as the change to line 50). Exiting the
method early (i.e., just after the for loop on line 50) typically
has no effect. This is because mostly nfound (set by for
loop on line 69) is a lot smaller than needResolving
so the condition if(nfound == needResolving) is
false. (I.e., typically many elements in refscan_ are also
in satup_.) This means all the remaining code, which
might update values used outside the method, is not executed.
Also, the method’s return value is always ignored. That is,
GP avoids an expensive O(N3) nested loop. The optimizing
compiler cannot remove it because it does not know that
typically it makes no difference to the final output.

3) aligner_swsse_ee_u8.cpp line 707: aligner_swsse_
ee_u8.cpp lines 707, 766, 772 and 778 are in C++
method SwAligner::alignNucleotidesEnd2EndSseU8(). align
NucleotidesEnd2EndSseU8 uses Intel SSE instructions that
operate on 16 unsigned 8-bit values packed into a single 128-
bit register to solve the current alignment problem. All four
modified lines are in a loop which processes each character
in the reference text. This scales as O(n). However, lines 766,
772 and 778 are in a nested while loop which causes them to
be executed about four times as many times as line 707 (still
O(n) of course).

Starting with line 707, its replacement vmax = vlo; has
no effect since vmax is already assigned to vlo;. Thus
the change effectively deletes line 707. In the original code
vh = _mm_max_epu8(vh, vf); vh is used as a scratch
variable for 16 parallel SSE instructions. The instruction
on line 706 vh = _mm_max_epu8(vh, ve); sets each
element of vh to the maximum of the corresponding elements
of vh and ve. Line 707 should have set them to the maximum
of vh, ve and vf. Typically, only in 4% of cases is an element
vf bigger than both vh and ve.

4) aligner_swsse_ee_u8.cpp lines 766 and 772: As with
line 707, the replacement for line 772 makes no difference
(since it too repeats exactly an existing calculation). Hence,
line 772 _mm_store_si128(pvHStore, vh); is effec-
tively deleted. pvHStore is a pointer (type __m128i*)
to where the 16 results in vh should be stored next. It is
incremented by ROWSTRIDE (4). As the store instruction
on line 772 has been deleted, pvHStore should not be
incremented. GP achieves this by deleting line 766 (proba-
bly a human programmer would have deleted the identical
instruction on line 773, but deleting line 766 has the same
effect).

It appears the immediate effect of not saving vh comes on
lines 788 and 796 where the next value of vh should have been
loaded but instead the old one is reloaded. It appears that this
terminates the inner while loop after the next iteration. So
typically reducing the number of times the while loop loop
is used by a factor of about twelve, with almost no impact
on the output. That is, it appears GP has discovered that later
gap extensions are relatively unimportant, whereas originally
Bowtie2 spent a long time searching for them.

5) aligner_swsse_ee_u8.cpp line 778: Line 778
ve = _mm_max_epu8(ve, vh); (see line 707 above)
has the effect of updating elements in ve in the 25% of cases

132 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 1, FEBRUARY 2015

where vh is bigger than the element in ve. Thus, in three
quarters of cases removing line 778 has no effect.

The net combined effects of all seven modifications in
Fig. 15 are somewhat subtle. They are somewhat like “loop
perforation” [18]. However, loop perforation acts on complete
loop iterations, e.g., to speed convergence, rather than manip-
ulating program instructions which are repeated many times
as they lie within nested loops. Indeed, the interactions of the
modified program instructions may indirectly determine if the
loop is repeated or not.

VI. RELATED WORK

While genetic programming has been used many times in
software engineering, e.g., in project management [19] and
testing [20], we are particularly concerned with evolving code.
GP has not demonstrated an ability to write large programs
normally associated with programming. However, even modest
amounts of evolved code can be useful.

A. Current and Existing Research

Martin [21] showed that genetic programming can build
a telephone call rerouting service (home/office) from ex-
isting telephony components. Although clearly not a like-
for-like comparison, Martin claimed GP elapsed times of
about a minute, whereas a commercial study showed that
for a complex service a team of engineers required 4.5 man
years of effort to analyse, design, code, and test the service
(note the commercial study also includes non-coding business
activities whereas GP elapsed time covers only coding). More
recently, Rodriguez-Mier et al. [22] showed that GP can create
novel web services by combining human written existing web
services using the web ontology language (OWL). Notice
the power of web mashups comes from quite small amounts
of glue logic. Glue logic might also be usefully evolved to
combine other types of software: perhaps on the same server,
perhaps written in the same or different languages (e.g., PHP
and Cobol). Combinations that are rare or difficult for a human
programmer or where skills are difficult to find may turn out to
be no more difficult for a machine than a routine combination.
Similarly, once objectives can be quantified, it may be as easy
for a machine to juggle multiple objectives (perhaps a mixture
of functional and non-functional requirements) which a human
programmer would be hard pressed to meet simultaneously
and would, in practice, tackle only one at a time.

Another approach to side-stepping the scaling problem
is Yamamoto and Tschudin’s [23] fraglets approach. This
uses GP in an artificial chemistry-like approach, whereby
small fragments of existing code are combined. Yamamoto
and Tschudin [23] considered evolving network communica-
tions protocols. More recently, Weise and Tang [24] evolved
distributed algorithms (election, critical selection for mutual
exclusion distributed locking, and distributed greatest common
divisor) using a GP rule based approach.

One of the earliest attempts to evolve software considered
evolving hashing functions [25]. (See also [26], [27], and [28]).
Hashing is often used to speed up search. A hash function

takes an object (typically a string) and deterministically con-
verts it to one of the legitimate indexes into a data store.
while hashing typically takes constant time, the search in
the data store typically grows with the number of items with
the same hash index. An efficient hash function will ensure
commonly used objects hash to (relatively) unique indexes.
There are many good hash functions but how good a hash
function is in practice depends upon the distribution of objects
it has to deal with. Often this is not known in advance by the
programmer. So a generic hash function may do poorly with
specific examples. Human written hash functions may be tuned
for a certain load. Tuning usually means the hash function
is coded, tested, and recoded in response to the tests, tested
again and so on. Notice this is effectively a manual version
of the classic evolutionary algorithm: generate and test, then
regenerate and retest and so on.

Memory management is another area where traditionally
people try to write generic code by making assumptions about
typical patterns of use but a specific implementation may turn
out to be inefficient when used in unanticipated ways. Risco-
Martin et al. [29] showed grammatical evolution [30] is able
to evolve efficient heap managers for specific circumstances.
They also considered non-functional requirements, like power
consumption.

Another case where there is no universal optimal strategy
is data caching. For caching between CPU and RAM to be
effective it must be very fast. Hence, its algorithms are simple
and implemented in hardware. While both word size and
number of independent cache stores vary, even in the same
product line, the use of cache lines is very common. Both
Paterson and Livesey [31] and O’Neill and Ryan [32] evolved
software that decides which data to expel from the cache
(i.e., which cache line to flush). Both claim to do better than
the common heuristic least recently used and their evolved
code is small enough (1–3 lines typically) that it might be
implemented in hardware. O’Neill and Ryan also suggest their
solutions are more generic than those in [31].

Sipper et al. used GP to improve existing Java programs
(symbolic regression, artificial ant on the Santa Fe trail,
separating intertwined spirals, array sum, and tic-tac-toe [3]).
Their initial population is seeded with Java byte code [33]
from an existing poor program.

Weimer et al.’s work on using GP to automatically fix
bugs [9] is increasingly well known. Most of this paper is
at the level of C source code but his group has also shown
bugs can be fixed in lower levels. They have also used
GP to improve GPU shaders [34]. Rinard’s group have also
used non-evolutionary ways to make non-semantic preserving
transformations to GPU kernels [18]. Other recent work on
evolving fixes for bugs include [16], [35].

Arcuri and White [4] considered not only automatic bug
fixing [5] but also have shown GP can improve programs. They
considered several well-known software engineering bench-
marks, including triangle, sort, factorial, remainder, switch 10
and select (select is the largest at 94 LOC). They showed GP
can improve the source code and find optimizations, which
the compiler was unable to find. For example, they showed
GP reduced the number of instructions executed by factorial

LANGDON AND HARMAN: OPTIMIZING EXISTING SOFTWARE WITH GENETIC PROGRAMMING 133

(in Java) by 87.4%. They also showed GP can optimize
non-functional properties. For example, they evolved pseudo
random number generators (PRNG), which trade randomness
(as measured by information entropy) against reduction in
power consumption.

In previous work [2] we showed that non-trivial amounts
of code can be automatically created with a test based fitness
function and starting from a BNF grammar that constrains
the code to be legal, compilable, executable and terminating.
We chose the unix gzip compression utility and demonstrated
the evolution of the longest_match routine within it. GP was
asked to evolve a replacement for longest_match which ran
on different hardware (an nVidia graphics card) and slightly
different programming language (nVidia’s CUDA).

GP offers a potential way of moving existing applications to
mobile platforms [36] where, not only is the hardware radically
different, but so too are user interfaces and expectations. Com-
piler based reoptimization is not sufficient but evolutionary
computation may be able to provide the more radical changes
to the program sources needed.

The grammar approach we have described here is based
on our earlier work on mutation testing [10] where a gram-
mar is used to describe a source code and the mutations
(variations) that can be applied to it. Grammars have been
used widely in genetic programming however, except for
work on bug fixing [9] and our own, the grammars tend to
be general and try to represent any solution, rather than to
represent a substantial existing human written program and
variations from it. Grammatical evolution (GE) [30] is the
most widespread grammar based GP approach, with several
hundred papers. As yet, GE has been used only a few times
in software engineering (for compiler optimization [37] and,
as mentioned above, for memory heap management [29]).
Non-GE grammar based genetic programming approaches to
software engineering include project effort estimation [38] and
web services composition [22].

B. Less Explored areas for Evolving Software

Another potential software engineering application of GP is
to use evolutionary computation to produce diverse variants
of programs [39]. While multiplicity computing [6] currently
considers a few different versions of programs, GP can already
produce populations of variants. While some of the population
are not suitable for use, if evolution is allowed to continue
after it finds the first solution, in subsequent generations, the
population can contain hundreds of solutions [2]. Obviously,
the number of program variants could be increased still
further. Additional non-functional criteria might be introduced
into fitness selection. These criteria might ensure a certain
minimum level of variation [40] or ensure evolved version are
not too extreme. In some cases it might even be possible to
ensure every user had their own variant of the program. Uses
of diverse software might include resilience, both to attack and
faults, and for watermarking.

Software product lines present a slightly different need.
Instead of wanting different versions of the same program,
software product lines represents a way to manage functionally
different versions of a program to meet different customer

needs. This might be for customers who speak different
languages (internationalization) but also covers things like em-
bedded controllers in similar but not identical hardware. e.g., a
deluxe microwave oven may have many features not available
in the economy version; both have the same controller chip but
need different software. Current approaches mostly consider
only enabling and disabling parts of the source code but in the
future these parts might form the components of more flexible
systems glued together by evolutionary computing.

VII. DISCUSSION

In the future we intend to use GISMOE to optimize the
non-functional properties of a number of diverse programs.
We hope that GISMOE, perhaps incorporating hyperheuristics,
will form the basis for dynamically adapting computing.

We have demonstrated the GISMOE approach on C/C++
and related languages, i.e., CUDA, nevertheless GISMOE
should be applicable to improving software written in other
high level languages. Indeed similar approaches could well
work on assembler programs and even at the binary level.
Each new programming language would need a set of mutation
operators, which change the target program and yet retain a
reasonable chance that the modified code will compile and
run. We expect that initially these will be based on our cut-
and-paste operators (see Section III).

Although there has been interesting work on interactive
evolution, it appears that user fatigue will limit subjective
fitness functions to applications, which can effectively use
crowd sourcing. Therefore, GISMOE really needs a cheap
automatic way of rating the relative effectiveness of individual
members of a population of program modifications during
evolution. There may be a connection with automatic test
case generation whereby tests can be cheaply created which
target modifications created by GP. Once the population has
evolved one or more potential solutions, more expensive
testing, analysis, and proving techniques might be applied
to the final outcome. To be cheap enough during evolution,
testing will probably not use all of the available test cases.

We feel we have been fortunate in that the evolved program
gives an immediate and large payback for about one CPU core
day computation. Other applications may yield less. Still larger
applications might increase the cost, but this might be offset
by other improvements. We have used make and precompiled
headers to reduce compilation cost. These and similar incre-
mental compilation approaches are widely available.

In many cases it will be straightforward to estimate the
benefit by multiplying the improved performance by the num-
ber of users and the number of times they run the program.
However, a future benefit may be more valuable: where the
optimization enables the program to be used where initially it
would have been impracticable. For example, optimizing ex-
isting code for mobile or embedded systems or other resource
constrained platforms. It is interesting that modern just in time
compilers find the cost of monitoring/optimizing code can be
offset against the improved performance of the optimized code,
even for a single user. The GP approach is currently more
expensive than an optimizing compiler. However, it might be

134 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 1, FEBRUARY 2015

run over night while the user is sleeping (dream optimization),
and it can readily be parallelized. Also, the optimizations
GP can consider are much wider, so we may one day see
embedded JIT evolutionary optimization.

VIII. CONCLUSION

Considerable manual effort is needed to create programs.
Even identifying new operating points for tools that are
suitable for new circumstances or new user requirements is
labor intensive and few can afford to even explore more than
one possibility by hand. Automated software production offers
the prospect of exploring complete Pareto trade-off surfaces,
for example, between functionality and speed.

With this in mind, for the first time, we have evolved specific
improvements to substantial multifile C++ code using a fitness
function, which compares the output of new code with that
of the old to ensure a principled trade-off between existing
functionality and improved non-functional requirements. In
this example, we find a trade-off that improves both functional
and non-functional performance. Starting from 50 000 lines of
code, the search is progressively concentrated. It first focuses
in on 20 000 lines, then 2744 lines (see Section IV-D), then
using weights (see Section III-C) GP finds a solution of
39 changes, which can be reduced to just seven changes in
three source files (see Fig. 15). While we may not be so
fortunate with other programs, on held out test cases, the
evolved version of Bowtie2, on average, yields slightly better
answers and is more than 70 times faster.

ACKNOWLEDGMENT

The authors would like to thank B. Langmead, S. Forrest,
M. Gabel, P. Devanbu, J. Dolado, A. Arcuri, M. O’Neill,
D. R. White, G. Wilson, and W. Weimer.

REFERENCES

[1] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and
J. A. Clark, “The GISMOE challenge: Constructing the Pareto program
surface using genetic programming to find better programs,” in Proc.
27th IEEE/ACM Int. Conf. ASE, Sep. 2012, pp. 1–14.

[2] W. B. Langdon and M. Harman, “Evolving a CUDA kernel from an
nVidia template,” in Proc. IEEE World Congr. Comput. Intell., Jul. 2010,
pp. 2376–2383.

[3] M. Orlov and M. Sipper, “Flight of the FINCH through the Java
wilderness,” IEEE Trans. Evol. Comput., vol. 15, no. 2, pp. 166–182,
Apr. 2011.

[4] D. R. White, A. Arcuri, and J. A. Clark, “Evolutionary improvement
of programs,” IEEE Trans. Evol. Comput., vol. 15, no. 4, pp. 515–538,
Aug. 2011.

[5] A. Arcuri and X. Yao, “A novel co-evolutionary approach to automatic
software bug fixing,” in Proc. IEEE World Congr. Comput. Intell., Jun.
2008, pp. 162–168.

[6] C. Cadar, P. Pietzuch, and A. L. Wolf, “Multiplicity computing: A
vision of software engineering for next-generation computing platform
applications,” in Proc. FSE/SDP Workshop Future Software Eng. Res.,
Nov. 2010, pp. 81–86.

[7] B. Langmead and S. L Salzberg, “Fast gapped-read alignment with
Bowtie 2,” Nature Methods, vol. 9, no. 4, pp. 357–359, 2012.

[8] D. Altshuler, R. M. Durbin, G. R. Abecasis, D. R. Bentley,
A. Chakravarti, A. G. Clark, et al., “A map of human genome vari-
ation from population-scale sequencing,” Nature, vol. 467, no. 7319,
pp. 1061–1073, Oct. 2010.

[9] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Trans. Softw. Eng.,
vol. 38, no. 1, pp. 54–72, Jan.-Feb. 2012.

[10] W. B. Langdon, M. Harman, and Y. Jia, “Efficient multi-objective higher
order mutation testing with genetic programming,” J. Syst. Softw., vol.
83, no. 12, pp. 2416–2430, Dec. 2010.

[11] W. B. Langdon, “A many threaded CUDA interpreter for genetic
programming,” in Proc. 13th EuroGP, Apr. 2010, pp. 146–158.

[12] S. R. Maxwell, III, “Experiments with a coroutine model for genetic
programming,” in Proc. IEEE World Congr. Comput. Intell., Jun. 1994,
pp. 413–417.

[13] A. Teller, “Genetic programming, indexed memory, the halting problem,
and other curiosities,” in Proc. 7th Annu. FL Artif. Intell. Res. Symp.,
May 1994, pp. 270–274.

[14] M. Gabel and Z. Su, “A study of the uniqueness of source code,” in
Proc. 18th ACM SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2010,
pp. 147–156.

[15] H. Zhang, “Exploring regularity in source code: Software science and
Zipf’s law,” in Proc. 15th WCRE, Oct. 2008, pp. 101–110.

[16] T. Ackling, B. Alexander, and I. Grunert, “Evolving patches for software
repair,” in Proc. 13th Annu. Conf. Genetic Evol. Comput., Jul. 2011,
pp. 1427–1434.

[17] W. B. Langdon, T. Soule, R. Poli, and J. A. Foster, “The evolution of
size and shape,” in Advances in Genetic Programming 3. Cambridge,
MA, USA: MIT Press, Jun. 1999.

[18] S. S.-Douskos, S. Misailovic, H. Hoffmann, and M. C.
Rinard, “Managing performance vs. accuracy trade-offs
with loop perforation,” in Proc. SIGSOFT FSE, Sep. 2011,
pp. 124–134.

[19] J. J. Dolado, “A validation of the component-based method for soft-
ware size estimation,” IEEE Trans. Softw. Eng., vol. 26, no. 10,
pp. 1006–1021, Oct. 2000.

[20] M. C. F. P. Emer and S. R. Vergilio, “GPTesT: A testing tool based on
genetic programming,” in Proc. GECCO, Jul. 2002, pp. 1343–1350.

[21] P. Martin, “Genetic programming for service creation in intelligent
networks,” in Proc. EuroGP, Apr. 2000, pp. 106–120.

[22] P. R.-Mier, M. Mucientes, M. Lama, and M. I. Couto, “Composition of
web services through genetic programming,” Evol. Intell., vol. 3, nos.
3–4, pp. 171–186, 2010.

[23] L. Yamamoto and C. F. Tschudin, “Experiments on the automatic
evolution of protocols using genetic programming,” in Proc. Autonom.
Commun. 2nd Int. IFIP Workshop WAC, Oct. 2005, pp. 13–28.

[24] T. Weise and K. Tang, “Evolving distributed algorithms with genetic
programming,” IEEE Trans. Evol. Comput., vol. 16, no. 2, pp. 242–265,
Apr. 2012.

[25] D. Hussain and S. Malliaris, “Evolutionary techniques applied to hash-
ing: An efficient data retrieval method,” in Proc. GECCO, Jul. 2000,
p. 760.

[26] P. Berarducci, D. Jordan, D. Martin, and J. Seitzer, “GEVOSH: Using
grammatical evolution to generate hashing functions,” in Proc. 15th
MAICS, Apr. 2004, pp. 31–39.

[27] C. Estebanez, J. C. H.-Castro, A. Ribagorda, and P. Isasi, “Evolving
hash functions by means of genetic programming,” in Proc. GECCO,
vol. 2, Jul. 2006, pp. 1861–1862.

[28] J. Karasek, R. Burget, and O. Morsky, “Towards an automatic design
of non-cryptographic hash function,” in Proc. 34th Int. Conf. TSP, Aug.
2011, pp. 19–23.

[29] J. L. R.-Martin, D. Atienza, J. M. Colmenar, and O. Garnica, “A
parallel evolutionary algorithm to optimize dynamic memory man-
agers in embedded systems,” Parallel Comput., vol. 36, nos. 10-11,
pp. 572–590, 2010.

[30] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Trans. Evol.
Comput., vol. 5, no. 4, pp. 349–358, Aug. 2001.

[31] N. Paterson and M. Livesey, “Evolving caching algorithms in C by
genetic programming,” in Proc. 2nd Annu. Conf. Genetic Program., Jul.
1997, pp. 262–267.

[32] M. O’Neill and C. Ryan, “Automatic generation of caching algo-
rithms,” in Proc. Evol. Algorithms Eng. Comput. Sci., Jun. 1999,
pp. 127–134.

[33] E. Lukschandl, M. Holmlund, and E. Moden, “Automatic evolution of
Java bytecode: First experience with the Java virtual machine,” in Proc.
1st Eur. Workshop Genetic Programming, Apr. 1998, pp. 14–16.

[34] P. S.-Amorn, N. Modly, W. Weimer, and J. Lawrence, “Genetic pro-
gramming for shader simplification,” ACM Trans. Graph. , vol. 30, no.
6, article no. 152, Dec. 2011.

[35] J. L. Wilkerson, D. R. Tauritz, and J. M. Bridges, “Multi-objective
coevolutionary automated software correction,” in Proc. 14th Int. Conf.
Genetic Evol. Comput. Conf., Jul. 2012, pp. 1229–1236.

[36] A. Cotillon, P. Valencia, and R. Jurdak, “Android genetic programming
framework,” in Proc. 15th EuroGP, Apr. 2012, pp. 13–24.

LANGDON AND HARMAN: OPTIMIZING EXISTING SOFTWARE WITH GENETIC PROGRAMMING 135

[37] H. Leather, E. Bonilla, and M. O’Boyle, “Automatic feature generation
for machine learning based optimizing compilation,” in Proc. Int. Symp.
Code Generat. Optimiz., Mar. 2009, pp. 81–91.

[38] Y. Shan, R. I. McKay, C. J. Lokan, and D. L. Essam, “Software
project effort estimation using genetic programming,” in Proc. IEEE
Int. Conf. Commun. Circuits Syst. West Sino Exposit., vol. 2, 2002,
pp. 1108–1112.

[39] R. Feldt, “Generating diverse software versions with genetic program-
ming: An experimental study,” IEE Proc. Softw. Eng., vol. 145, no. 6,
pp. 228–236, Dec. 1998.

[40] J. R. Koza, F. H. Bennett, III, and O. Stiffelman, “Genetic programming
as a Darwinian invention machine,” in Proc. EuroGP, May. 1999,
pp. 93–108.

William B. Langdon received the Ph.D. degree
in genetic programming from University College
London (UCL), London, U.K., which was sponsored
by National Grid plc., London, U.K.

He is currently a Senior Research Fellow with
UCL.

Mark Harman is currently a Professor of soft-
ware engineering with the Department of Computer
Science, University College London, London, U.K.,
where he directs the CREST centre. He is widely
known for his work on source code analysis and test-
ing, and was instrumental in the founding of the field
of search based software engineering (SBSE), an
area of research to which this paper seeks to make a
contribution. He is collaborating with W. B. Langdon
in the Engineering and Physical Sciences Research
Council-funded GISMO and Dynamic Adaptive Au-

tomated Software Engineering (DAASE) projects, which partly supported the
work presented in this paper.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

