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Abstract. This article presents sequential and parallel metaheuristics to solve the virtual machines
subletting problem in cloud systems, which deals with allocating virtual machine requests into pre-
booked resources from a cloud broker, maximizing the broker profit. Three metaheuristic are stud-
ied: Simulated Annealing, Genetic Algorithm, and hybrid Evolutionary Algorithm. The experimen-
tal evaluation over instances accounting for workloads and scenarios using real data from cloud
providers, indicates that the parallel hybrid Evolutionary Algorithm is the best method to solve the
problem, computing solutions with up to 368.9% profit improvement over greedy heuristics results
while accounting for accurate makespan and flowtime values.
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1. Introduction

In the last years, cloud computing (Buyya et al., 2011; Foster et al., 2008) emerged as one
of the main existing computing paradigms, mainly due to several very interesting features
it provides, including elasticity, flexibility, or large computational power, among many oth-
ers. Cloud computing has raised the interest of both academic and industrial research com-
munities, by providing a computing model which is able to cope efficiently with complex
problems involving hard computing functions and handling very large volumes of data.

Cloud computing provides a stack composed of different kinds of services to users,
including: infrastructure as a Service (IaaS), dealing with resources as servers, storage, or
networks; Platform as a Service (PaaS), which provide an operating system as well as a
set of tools and services to the user; or Software as a Service (SaaS) that allows providers
to grant customers with access to licensed software.

Many different public and private clouds have appeared in the last years (Rimal et al.,
2009). They all have distinct features, making difficult for users to find the best choices
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among the many existing offers. In this model, the cloud broker (Grozev and Buyya, 2012)
arises as an intermediary between cloud providers and users to help the latter ones in
that process. Brokers can simply find the best deals among a set of clouds for the user
requirements or even define the best possible design to deploy the users’ applications in
the cloud (Grozev and Buyya, 2012).

This paper focuses on a IaaS-level business model for cloud computing, in which the
broker sublets on-demand cloud resources to his customers at low prices. The broker is
considered here as a virtual cloud. It owns a set of reserved Virtual Machines (VMs) with
different features, and probably from distinct cloud providers, which are offered to the
customers as on-demand resources at cheaper prices than those the customer would get
from a cloud provider (Rogers and Cliff, 2012).

This business model is feasible and profitable due to the large price difference between
reserved and on-demand VMs in the cloud (Rogers and Cliff, 2012). Additionally, in the
case the broker cannot find an available RI to deploy a customer VM request without vi-
olating the contracted service level agreement, he will buy on-demand VMs in the cloud
to satisfy the demand, with the consequent profit reduction (because he will pay the cloud
provider more than what he charges to the customer for that VM). This approach is techni-
cally possible, as the technology required is similar to that of the cloud bursting technique
used in hybrid clouds (Mattess et al., 2011).

From now, we will refer the reserved VMs of the broker as reserved instances (RI) to
differentiate from the VMs the customers demand.

The considered model does not only benefit customers, but it also could benefit cloud
providers, who have more information (from the RIs by the broker) to be able to forecast
the resources that will be needed in the future.

The optimization problem of efficiently allocating the customers’ VM requests into the
available RIs arises for the broker. All VMs must be allocated into RIs that are offering
at least the same performance requested by the customer, in order to satisfy the arranged
service level agreement (SLA) for every VM. The general form of the resource allocation
problem is NP-hard (Tang et al., 2007), since it is a generalization of the multidimensional
knapsack problem (Kellerer et al., 2004), and the problem variant tackled in this article
is even more complex due to the additional constraints included to satisfy the SLA for
each assignment. Underuse of the available RIs (meaning that they are either not sublet,
or sublet to a customer requiring a VM of less capacity) must be avoided, because it will
cause a reduced revenue for the broker. In addition, overbooking should be avoided too,
because it might force the broker to reserve on-demand VMs to the cloud provider in order
to offer the promised service, despite the money loss.

In this line of work, the main contributions of the research reported in this article
are: (i) the formalization of the virtual machine mapping problem in clouds, introduced
in Iturriaga et al. (2013), Nesmachnow et al. (2013) (this paper extends those works);
(ii) the design and implementation of efficient sequential/parallel metaheuristics to solve
the problem, and ii) the evaluation of the proposed methods using a comprehensive set of
realistic benchmark instances, built by gathering data from real cloud providers.

The rest of the paper is structured as follows. Next section presents the formulation
of the optimization problem tackled in this work. A review of related work on cloud bro-



Metaheuristics for the Virtual Machine Mapping Problem in Clouds 113

Broker

RI 1 Provider: Amazon
Memory: Small
Storage:  Small
Speed:    Slow
Cores:    1

RI 2 Provider: Azure
Memory: Medium
Storage:  Large
Speed:    Medium
Cores:    2

RI 3 Provider: Amazon
Memory: Large
Storage:  Large
Speed:    Fast
Cores:    8

RI N

Provider:  ...
Memory:  ...
Storage:   ...
Speed:     ...
Cores:     ...

CUSTOMERS VMs REQUESTS

Cloud provider: Amazon Cloud provider: Azure Cloud provider:  ...

V
M

 d
em

an
d
s

A
llo

ca
ti
o
n
 o

f V
M

s 
in

to
 a

va
ila

b
le

 R
Is

V
M

s 
d
ep

lo
ym

en
t

On-demand instances

Reserved instances

Fig. 1. The problem model: the broker owns a number of reserved instances in different cloud providers to which
the on-demand VM requests from its customers are allocated.

kering is presented in Section 3. Metaheuristic algorithms and parallel metaheuristics are
briefly introduced in Section 4, just before presenting the Simulated Annealing, Genetic
Algorithm and the hybrid Evolutionary Algorithm proposed to tackle the problem in Sec-
tion 5. The experimental evaluation of the studied resolution techniques over a set of re-
alistic workloads and scenarios using real data from actual cloud providers is reported
in Section 6. Finally, the conclusions and main lines for future work are formulated in
Section 7.

2. The Virtual Machine Mapping Problem

The Virtual Machine Mapping Problem (VMMP) in cloud infrastructures considers a set
of VMs, requested by cloud users to the broker, to be executed in the cloud. Each VM
is booked on-demand to the broker for a given time and it should start before a specific
deadline. VMs also have specific hardware demands, that the broker has to fulfill using
his own pre-booked VMs—that we call RIs—, and minimizing the economic cost, thus
maximizing his own profit. Figure 1 presents a graphical description of the problem model
considered in this article.

When some user(s) request(s) cannot be handled using the available RIs, the broker
may decide whether rejecting the requests or booking on-demand VMs in the cloud for
executing them. In our approach, the broker follows the second option. Our argument
is that even when the broker action implies a consequent profit reduction, we consider
that the reputation of the broker is of major importance to attract new customers and
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prevent existing ones from leaving. Therefore, we assume that it is a better strategy keeping
reputation to the maximum, at the cost of loosing some money in those cases. Additionally,
this consideration provides a lower bound for the broker profit, which might be increased
by rejecting the requests causing the overload.

The VMMP is formalized next. Given the following elements:

• A set of virtual machine requests VM = {v1, . . . , vn}, each one demanded to execute
for a given time T (vi).
• Each VM has specific hardware demands that must be respected, including processor

speed P(vi), memory M(vi), storage S(vi ), and number of cores nc(vi).
• Virtual machine requests arrive in batches (i.e., hourly, daily). Each VM request

has an arrival time Ai , according to a stochastic homogeneous Poisson process with
rate λ.
• The execution of any VM must start before its deadline D(vi).
• A set of cloud reserved instances the broker owns B = {b1, . . . , bm}, m≪ n, with

specific features including processor speed P(bj ) and memory M(bj ) and storage
S(bj ) capacities, according to a predefined list of instance types t (bj ) ∈ {t1, . . . , tk}.
• A cost function C for cloud RIs, and a cost function COD for on-demand instances,

with C(bj )≪ COD(bj ). The cost of both functions is given in an hourly basis. The
number and kind of RIs to book is a decision to be made by the broker. This problem
is out of scope of this paper and it will be tackled in our future work.
• A pricing function p(bj ) that defines the (hourly) price the broker charges the cus-

tomers for the RI type bj . In order to attract customers, the broker should charge for
a RI type bj a lower cost than the on-demand price for that kind of instance, i.e.,
p(bj ) < COD(bj ). Moreover, if the cheapest RI that can allocate a VM vi requested
by the user (i.e., type bk , defined with the best fit function BF(vi)) is not available,
the broker can assign vi to a higher capacity RI, but charging the same amount as
for bk . This could imply the revenue to be decreased, but it will prevent the broker
from buying a (more expensive) on-demand instance, and the customer will be, at
the same time, pleased thanks to the better performance offered.

max

j=m∑

j=1

( ∑

i:f (vi)=bj

(
p
(
BF(vi)

)
−C(bj )

)
× T (vi)

)

+
∑

h:ST(vh)>D(vh)

(
p
(
BF(vh)

)
−COD

(
BF(vh)

))
× T (vh), (1)

subject to M(vi)6 M(bj ), P (vi) 6 P(bj ), (2)

S(vi )6 S(bj ), nc(vi)6 nc(bj , ) (3)

where the BF(vk) function gives the less expensive instance capable of executing the re-
quest vk .

The VMMP in cloud platforms consists in finding a mapping function f : VM→ B for
the VM requests {v1, . . . , vn} into the available RIs {b1, . . . , bm} that maximizes the total
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broker revenue, according to the optimization problem formulated in Eq. (1), where ST(vi)

stands for the starting time of the VM request vi , regarding the computed assignment.
In the problem model, deadlines are considered as hard constraints. In case the broker

cannot accommodate a given VM request to start execution by the specified deadline, he
must either use a higher capacity RI offering more resources than those requested (but
charging the customer the cost of the requested one) or buy an on-demand instance to
fulfill the request. Both alternatives obviously account for a negative impact for the broker
in the total cost of the mapping but, at the same time, they contribute to keep/improve the
broker reputation.

The first summation in the revenue objective function accounts for the total profit of
the broker, corresponding to those VM requests executing in a suitable RI booked by the
customers. The second summation accounts for the additional cost (corresponding to on-
demand instances in the public cloud) that supposes avoiding the violation of the deadline
constraints.

In this problem formulation, data transmission for the VMs requests are not considered
in the objective function. The model assumes that data transmission costs are directly
transferred to the user, thus the broker cannot take an economic profit from it.

3. Literature Review

Despite the large number of papers existing in the literature about cloud brokering, only
very few of them tackle similar problems as the one addressed in this article.

Cloud brokering (Grozev and Buyya, 2012) typically deals with the problems of find-
ing the cloud providers whose offers better suit to a set of customer needs (both techni-
cally and in terms of cost) (Buyya et al., 2010; Sotiriadis et al., 2011, 2012; Tordsson
et al., 2012), or providing the customer with the best possible way to deploy his/her ap-
plications in the cloud (Lampe, 2011; Legillon et al., 2013). Therefore, cloud brokering
does not deal with the deployment of VMs in the servers of the cloud (Besis et al., 2014;
Buyya et al., 2011).

There are in the literature a number of methods for scheduling applications in private
resources using the cloud bursting technique (Calheiros and Buyya, 2012). These propos-
als are based on enhancing the local schedulers with the capability of using VMs from
the public cloud when additional resources are required. This is a similar concept to the
one addressed in our article, since in the case all RIs are in use and a number of users
requests cannot start before their deadline, then the broker will buy on-demand instances
from the cloud to execute those requests. However, in our work we do not address the
resource provisioning problem, since the broker always work with VMs (either reserved
or on-demand) from the public cloud.

Closer to the problem we consider, Wu et al. (2008) proposed a mechanism to encour-
age customers to provide realistic likelihood that they will purchase a given resource, at
the reward of price reductions. This mechanism allows the provider to efficiently forecast
the required resources, minimizing this way the underutilization and/or overbooking of
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the available resources, and it will benefit the customer too, who will have the service at
a lower price.

The previous approach was adopted in Rogers and Cliff (2012) for the case of a cloud
broker subletting reserved VMs to his customers. Then, the broker will use the information
given by the customers to decide whether to invest in buying more resources or not, and
what kind of resources should be bought. This technique is shown to provide up to 44%
increase in the profit of the broker.

In this article, we investigate how the broker can optimally manage his VMs for the
optimum profit and maximum QoS, allowing the use of on-demand instances to satisfy
the needs of users that cannot be satisfied with the current resources, despite the money
loss.

4. Metaheuristics

This section describes metaheuristic techniques for optimization and the algorithms ap-
plied in this work to solve the VMMP.

4.1. Metaheuristics

Nowadays, many problems arising in real-world applications are intrinsically complex.
In practice, many optimization problems are NP-hard, thus traditional exact techniques
(backtracking, dynamic programming, enumeration algorithms, etc.), are not useful for
solving them, as they demand very large execution times when solving realistic problem
instances. Metaheuristics are soft computing methods that allow computing sub-optimal
(even optimal) solutions, for hard-to-solve problems in reasonable execution times (Blum
and Roli, 2003; Talbi, 2009; Nesmachnow, 2014).

Several classification criteria have been proposed for metaheuristics in the related liter-
ature. One of the most used classifications take into account the number of tentative solu-
tions handled, and two categories are recognized: trajectory-based and population-based.
Trajectory-based metaheuristics work with a single solution, which is iteratively modified
in each step, to be replaced by another (often the best) solution found in its neighborhood.
Population-based metaheuristics work with a set of multiple candidate solutions, which
are modified and/or combined following some common guidelines, and some of them are
replaced by newly generated solutions (often by the best ones).

In this article we apply both sequential and parallel versions for a trajectory-based
metaheuristic (Simulated Annealing) and two population-based methods (Evolutionary
Algorithm and an Hybrid Algorithm) to solve VMMP. The main features of the meta-
heuristic methods applied in this work are described in the following subsections.

4.2. Simulated Annealing

Simulated Annealing (SA) is a metaheuristic technique inspired on the annealing pro-
cess of metals. It was the first metaheuristic proposed (thirty years ago), although



Metaheuristics for the Virtual Machine Mapping Problem in Clouds 117

the term “metaheuristic” was not yet defined by that time (Kirkpatrick et al., 1983;
Černý, 1985). SA is a local search optimization method based on a Metropolis-Hastings
(Markov chain/Monte Carlo) algorithm to find the lowest energy (most stable) orientation
for an n-body system. By applying such analogy, SA defines a generalization of the Monte
Carlo approach to solve combinatorial optimization problems.

SA maintains a current solution for the problem (analogous to the current state of a
physical system) with an associated objective function (analogous to the energy function)
whose global minimum (analogous to the ground state) is searched. SA employs a temper-
ature T to control the probability of accepting/moving to a solution that does not improve
the objective function value. The rationale behind this decision is to try to escape from
local optima. There is no obvious physical analogy for the temperature T (as such a free
parameter does not exist in the combinatorial optimization problem), and so defining an
appropriate annealing schema for avoiding local optima is usually a crafty task.

The parameters for the SA method, which are often empirically determined, are the
initial temperature, the number of iterations performed at each step (the Markov chain
length), and the temperature decreasing schema.

SA is a trajectory-oriented technique: it maintains only one sub-optimal solution for
the problem and explores the search space via certain local search transition operators.
Using such operators, it is possible to explore multiple points in the neighborhood of the
current solution when solving a particular problem.

4.3. Evolutionary Algorithms

EAs are non-deterministic methods that simulate the evolution of species in nature, which
have been successfully applied for solving optimization problems underlying many com-
plex real-life applications in the last twenty years (Bäck et al., 1997).

An EA is an iterative technique (each iteration is called a generation) that applies
stochastic operators on a population of individuals, which encode tentative solutions of
the problem. The objective is to improve their fitness, a measure related to the objective
function. An evaluation function associates a fitness value to every individual, indicating
its suitability to the problem.

The initial population is generated at random or by using a specific heuristic for the
problem. Iteratively, the probabilistic application of variation operators like the recombi-

nations of individuals or random changes (mutations) in their contents, are guided by a
selection-of-the-best technique to tentative solutions of higher quality.

The stopping criterion usually involves a fixed number of generations or execution
time, a quality threshold on the best fitness value, or the detection of a stagnation situation.
Specific policies are used for the selection of individuals to recombine and to determine
which new individuals replace the older ones in each new generation. The EA returns the
best solution found, regarding the fitness function values.

Genetic Algorithms (GA) (Goldberg, 1989) are the most popular variant for an EA.
A GA uses the recombination or crossover as the main operator in the search, and the
mutation is used as a secondary operator, applied with a very low probability in order to
provide diversity to the population.
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4.4. Hybrid EAs

In its broadest sense, hybridization refers to the inclusion of problem-dependent knowl-
edge in a general search algorithm (Bäck et al., 1997).

One possibility is to construct strong hybrid algorithms, where problem knowledge
is included as a problem-dependent representation and/or special operators. The other
possibility is to combine two or more methods to solve the same problem, constructing
weak hybrids and trying to take advantage of their salient features to improve the efficiency
or accuracy of the new algorithm.

The hybrid algorithm defines a new search pattern by determining when each compo-
nent is executed, and how the internal states of each component report the results to the
other component. Usually, by exchanging a small set of partial solutions or some statistical
values, it is possible to combine algorithms in an efficient manner (Talbi, 2002).

In this article, we designed the hybrid EA+SA algorithm by combining EA and SA,
following a weak hybridization approach: the EA uses the SA as an inner variation oper-
ator. The main idea is that the EA provides an explorative behavior to locate promising
regions of the search space, and the SA operator allows exploiting and improving accurate
solutions found, by searching in the neighborhood of (already found) good solutions.

We designed the hybrid EA+SA algorithm after observing in initial experiments that
both standard methods, SA and GA, were able to find accurate solutions for different prob-
lem dimensions. Thus, we aim at developing a more accurate optimization technique for
the VMMP, by combining the main features of SA and GA.

4.5. Parallel Metaheuristics

Parallel models for metaheuristics have been conceived to enhance and speed up the
search (Alba et al., 2013). By splitting the search into several processing elements, paral-
lel metaheuristics allow reaching high quality results in a reasonable execution time even
for hard-to-solve optimization problems.

The main models for parallelizing trajectory-based metaheuristics are:

• Parallel multi-start model: launches several instances of the method, which may
be heterogeneous/homogeneous, independent/cooperative, start from the same or
different solution(s), and configured with the same or different parameters.
• Parallel moves model: distributes the current solution to several processes, each one

explores by applying a search based on its candidate solution and the results are
returned to the main process.
• Move acceleration model: evaluates several moves in a parallel centralized way, by

parallelizing the objective function using an aggregation approach.

The main models for parallelizing population-based metaheuristics take into account
the criterion used to organize the population:

• Master-slave model: follows a functional decomposition using a hierarchic structure:
a master process performs the evolutionary search, and controls a group of slave



Metaheuristics for the Virtual Machine Mapping Problem in Clouds 119

(a) Parallel multi-start with cooperation

(b) Distributed subpopulations

Fig. 2. Parallel models for metaheuristics applied to solve the VMMP.

processes that evaluate the objective function, which often requires larger computing
time than the search operators.
• Distributed subpopulations model: splits the population in subpopulations, each one

running a sequential metaheuristic. The solutions only can interact within their sub-
population. A migration operator exchanges some selected solutions among subpop-
ulations, introducing a new source of diversity.
• Cellular model: uses an underlying spatial structure for the population, usually a

two-dimensional grid. Interactions are restricted to neighboring solutions, and char-
acteristics gradually propagate through the grid. This feature is useful to provide
diversity in the population, often improving the search.

The strategies applied for the parallel metaheuristic algorithms implemented in this
work to solve VMMP are: (i) a parallel multi-start with cooperation model for SA
(Fig. 2(a)), and (ii) a distributed subpopulations model for the GA and the hybrid EA+SA
(Fig. 2(b)).
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5. Metaheuristics for VMMP

This section introduces the proposed metaheuristic algorithms for tackling VMMP.

5.1. Simulated Annealing

The SA algorithm is based on a movement operator that works over random VM requests
that generate low profit for the broker, according to the schema presented in Algorithm 1.

The SA algorithm starts by generating an initial solution using the randomized Cheap-
est Instance (rCI) heuristic (Nesmachnow et al., 2013), which randomly assigns the VM
requests to the cheapest RI which is able to fulfill the request requirements (line 1). After
that, the cycle that performs the search is started. First, a subset µ (cardinality n

10
) of VM

requests is randomly chosen to perform the search (line 3), and the VM request with the
worst profit vW is selected from that subset (line 4). Then, the movement operator in the
SA algorithm tries to reschedule vW to execute by an on-demand VM, in case this choice
improves the broker profit (line 5). Otherwise, a randomly selected subset B ′ ⊆ B (cardi-
nality m

2
) of RI is explored (line 7). The bbest ∈ B ′ RI which improves the most the profit

of vworst is selected (line 8), and vW is rescheduled to bbest at the latter feasible time at
which it satisfies the deadline of vW (line 9). Only in the parallel version, the cooperation
takes place by exchanging solutions when the collaboration criterion is met (lines 12–18).

The searching cycle is repeated until the stopping criterion is met.

Algorithm 1 Sequential/parallel SA for VMMP.
1: s← generate initial solution using rCI
2: while not stopping criterion do

{apply movement}
3: �← select µ random VM requests
4: vW ← worst profit VM request in �

5: s̃← reschedule vW to on-demand VM on s

6: if profit(s̃) < profit(s) then

7: B̃← select subset in B

8: bbest← RI ∈ B ′ which improves the most the profit of vW

9: s̃← reschedule vW to bbest in s (at the latter feasible time satisfying vW deadline)
10: end if

11: s← s̃

{only in parallel SA: collaboration}
12: if collaboration criterion then

13: send s to adjacent SA
14: receive ŝ from adjacent SA
15: if profit(ŝ) > profit(s) then

16: s← ŝ

17: end if

18: end if

19: end while

20: return s
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Algorithm 2 Sequential/parallel EA for VMMP.
1: P← generate initial population
2: while not stopping criterion do

{individual deme evolution}
3: �← select µ parent solutions from P

4: 8← mate selected parents in ω, generate λ offspring
5: 8̂← mutate children in 8

{only in sequential/parallel EA+SA}
6: 8̂← improve s ∈ 8̃ using SA algorithm
7: P← select new population from {µ∪ 8̂}

{only in parallel EA: deme collaboration}
8: if migration criterion then

9: ν← select solutions to be migrated from P

10: send ν to next adjacent deme
11: ω← receive solutions from previous deme
12: P← select new population from {P ∪ ω}

13: end if

14: end while

15: return best solution ever found

5.2. Genetic Algorithm

The proposed GA follows the schema presented in Algorithm 2 for an EA applied to the
VMMP. We refer to it generically as “schema for an EA”, because the same general schema
is applied in both GA and EA+SA, but the latter method incorporates a SA-based operator
in the search.

The GA algorithm starts by generating an initial population (line 1) using a randomized
Cheapest Instance (rCI) heuristic. rCI randomly assigns the VM requests to the cheapest
RI which is able to fulfill the request requirements (Nesmachnow et al., 2013).

Problem encoding. Each individual in the population is represented in memory us-
ing a fixed-size VM-oriented encoding, which allows an efficient implementation of the
variation operators.

Crossover. A special version of the well known two-point crossover (Goldberg, 1989)
is used in the proposed GA. The set of VM requests is randomly split by using two cutting
points, thus producing three subsets. The RI assigned to each request in each of those
subsets is exchanged between the two mated parents. When exchanging the RIs of a VM
request between parents, the request is scheduled in the destination RI at the latter feasible
time at which it satisfies its deadline.

Mutation. The mutation operator works as follows. When mutating an individual in the
population, each VM request (v ∈ VM) in the solution is randomly changed with a given
low probability (p 6 0.1). If v is chosen to be mutated, it is rescheduled to be executed by
a randomly selected RI (b ∈B). If the selected RI b fulfills the hardware requirements of
the VM request v, a relative position in the scheduling queue of b is randomly selected.
If the rescheduled starting time of v satisfies its deadline requirement, then the request
is rescheduled. Otherwise, if the selected rescheduling is not feasible, the mutation is
discarded.
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Fig. 3. Diagram of the parallel hybrid EA+SA algorithm.

Only in the parallel version of GA, the migration operator is applied between the dif-
ferent demes (or subpopulations) when the migration criterion is met (lines 8–13). A de-
tailed description of the migration operator, which is the same for both GA and EA+SA,
is provided in the following subsection.

5.3. The Hybrid EA+SA Algorithm

EA+SA is a hybrid EA that incorporates an SA method as an inner operator for exploiting
solutions found in promising regions of the search space. The EA+SA algorithm follows
the general schema described in Algorithm 2, hybridizing a SA operator in order to im-
prove the offspring produced by the mating operator (line 6 in Algorithm 2).

The problem encoding, initialization, crossover and mutation operators applied in
EA+SA are the same as those used in the standard GA, which were described in the
previous subsection.

In the parallel version of EA+SA, the migration criterion is evaluated after the popu-
lation of the deme is evolved. If the migration criterion evaluates true, a set of individ-
uals ν are selected from the current deme population and sent to the next adjacent deme
(lines 9–10). In return, a set of solutions ω are received from the previous adjacent deme
and combined to the current population (lines 11–12). The evolutionary cycle is executed
until the stopping criterion is met.

Parallel model. The parallel model applied in the EA+SA algorithm arranges the
distributed subpopulations using a virtual directed-ring topology. Each subpopulation pi

(i = 1, . . . , p) collaborates during its evolution with its adjacent neighbors {pi−1,pi+1}.
This collaboration is arranged in a unidirected ring, such that subpopulation pi receives
candidate solutions from subpopulation pi−1, and sends candidate solutions to subpopu-
lation pi+1.

Figure 3 presents a diagram for the distributed subpopulations parallel model used in
the EA+SA algorithm.

5.4. Implementation Details

The three proposed metaheuristic algorithms to solve VMMP are implemented in C++
language using the MALLBA framework (Alba et al., 2007), and compiled with GNU
g++. The migration operator in the parallel versions is implemented using the MPICH-2
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library, a well-known implementation of the MPI library for parallel and distributed pro-
gramming (Gropp, 2002).

6. Experimental Analysis

This section presents the experimental evaluation of the proposed metaheuristic algo-
rithms to solve VMMP over a realistic set of problem instances.

6.1. Problem Instances

For the experimental analysis of the proposed methods, we built a set of VMMP instances
by following a specific methodology and using real data gathered from public reports,
webpages, and nowadays real cloud infrastructures.

The problem instances are defined by two data sets: (i) a workload file storing the
information about VM requests, including: memory, storage, processor speed, and number
of cores requested; and (ii) a scenario file, with the relevant data for the set of RIs from
the broker, including: available memory and storage, processor speed, number of cores,
the pre-booked cost, the on-demand cost, and the pricing values for customers. A total
number of 400 problem instances are solved in the experimental analysis, by combining
workload and scenario files with diverse characteristics and dimensions.

Regarding the workloads, we consider batches of 50, 100, 200, and 400 VM requests
arriving according to a Poisson process, each of them with a different duration (from 10
to 200 time units).

The considered scenarios build pre-booked cloud computing infrastructures with 10,
20, 30, and 50 RIs for the broker, by combining VMs from both Amazon and Azure cloud
computing services, according to the real details and data presented in Table 1 (price and
costs are in US dollars, all configuration and prices are updated as for May, 2013).

The VM configurations selected account for different configurations, including small
and average machines (instances type #1, #2, and #3), large machines (instances type
#4 and #6) and instances with large memory, CPU and/or storage (instances type #5, #7
and #8).

Table 1
VMs types considered to built the broker pre-booked cloud infrastructure.

# VM id Provider Memory Storage Processor nc Price C COD

1 m1.small Amazon 1.7 GB 160 GB 1.0 GHz 1 0.048 0.027 0.06
2 m1.medium Amazon 3.75 GB 410 GB 2.0 GHz 2 0.096 0.054 0.12
3 A2.medium Azure 3.5 GB 489 GB 1.6 GHz 2 0.096 0.09 0.12
4 m1.large Amazon 7.5 GB 850 GB 2.0 GHz 4 0.192 0.108 0.24
5 m2.xlarge Amazon 17.1 GB 420 GB 3.25 GHz 2 0.192 0.136 0.24
6 A3.large Azure 7.0 GB 999 GB 1.6 GHz 4 0.328 0.18 0.41
7 c1.xlarge Amazon 7.0 GB 1690 GB 2.5 GHz 8 0.384 0.316 0.48
8 A4.xlarge Azure 14.0 GB 2039 GB 1.6 GHz 8 0.464 0.36 0.58
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Regarding the pricing function, we consider in this article that it is 20% cheaper than
the on-demand cost value (i.e. p(bj ) = 0.8× COD(bj )). This is a reasonable value for
attracting users to the service, while obtaining reasonable profit values for the broker.

All the 400 VMMP instances used in this article to evaluate the proposed sequen-
tial/parallel metaheuristics are publicly available for downloading from the VMMP web-
site http://www.fing.edu.uy/inco/grupos/cecal/hpc/VMMP.

6.2. Experimental Platform

The experimental analysis was performed on a 24-Core AMD Opteron Magny-Cours
Processor 6172 at 2.1 GHz, with 24 GB RAM and CentOS Linux, from the HPC
facility Cluster FING, Universidad de la República, Uruguay (Cluster FING website:
http://www.fing.edu.uy/cluster.

6.3. Parameter Setting

A stopping criterion of 90 seconds of execution time is used for all the metaheuristics
studied in this article. The proposed stopping criterion is an efficient execution time for
on-line cloud planning, and it is in accordance with related works on grid/cloud planning
in the literature (Nesmachnow et al., 2010, 2012; Xhafa et al., 2008).

A configuration analysis was performed using two medium-sized VMMP instances in
order to find the best values for the crossover probability (pC ) and mutation probability
(pM ) in the GA, and the SA operator probability (pSA) in the EA+SA metaheuristic.

The studied candidate values for each parameter were: pC ∈ {0.5,0.7,0.9}, pM ∈

{0.5,0.7,0.9}, pSA ∈ {0.1,0.2,0.3}. The SA algorithm was always executed using an ex-
ponential temperature decay schema, with exponent 0.99, and a Markov chain length of 5.

A total number of 30 independent executions were performed for each of the 27 pa-
rameters combinations. Finally, the Friedman Rank Sum (FRS) test was applied on the
computed results. A post-hoc analysis of the FRS results showed the most accurate sched-
ules were computed when using pC = 0.7, pM = 0.5, and pSA = 0.3.

The graphics in Fig. 4 summarize the main results of the configuration analysis, re-
porting the average profit computed by the EA+SA algorithm when using each of the
evaluated parameter settings for pC , pM , and pSA.

6.4. Results and Discussion

This subsection reports and analyzes the main results of the experimental evaluation of
the proposed metaheuristic methods to solve VMMP. The results computed using meta-
heuristics are compared against two different profit-greedy list-scheduling heuristics for
the VMMP: Shortest Resource Cheapest Instance (SRCI) and Cheapest Instance (CI), al-
ready introduced in our previous work (Nesmachnow et al., 2013).

6.4.1. Methodology and Metrics

A number of fifty independent executions were performed on each VMMP instance for
both the sequential and parallel versions of each studied metaheuristic. The experimen-
tal analysis takes into account the VMMP objective of maximizing the broker profit, but
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(a) pSA = 0.1 (b) pSA = 0.2

(c) pSA = 0.3

Fig. 4. Summary of profit results for pc , pm, and pSA parameter setting analysis.

we are also interested in standard metrics for planning and scheduling problems (i.e.,
makespan and flowtime), since obtaining short and balanced schedules implies a better
utilization of the available resources from the broker.

We also evaluate the computational efficiency of the parallel versions of the proposed
metaheuristics and the benefit of using parallelism, by performing executions using dif-
ferent number of distributed subpopulations.

In order to further analyze the planning computed by the metaheuristics, we also eval-
uate the makespan and the flowtime metrics for each planning. The makespan is a system-
related metric used to evaluate the resource utilization; it is defined as the time spent from
the moment when the first VM request begins its execution until the last VM request fin-
ishes its execution. Lower values of the makespan metric means that the RIs will be able
to attend more requests in a given period of time. The flowtime evaluates the sum of the
finishing times for all VM requests. It is an important metric from the user point-of-view,
since it reflects the response time of the system for a set of submitted requests (Leung et

al., 2004).
For each of the proposed algorithms, we define the GAP metric as the relative differ-

ence on the makespan/flowtime required by each metaheuristic planning when compared
to those computed by the CI or SCRI heuristic, according to Eq. (4) (GAP on makespan)
and Eq. (5) (GAP on flowtime). In both equations MH is one of the three metaheuristic
methods studied and H is the best heuristic (CI or SRCI) in terms of the corresponding
(makespan/flowtime) metric:
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(
GAPM

H =
makespanMH −makespanH

makespanH

)
, (4)

(
GAPF

H =
flowtimeMH − flowtimeH

flowtimeH

)
. (5)

Finally, we also analyze the average relative number of additional on-demand VMs

required by each metaheuristic. These additional VMs correspond to those requests that
cannot be executed on the specified deadline with the available resources, thus an on-
demand instance is required to be bought by the broker to execute the request.

6.4.2. Numerical Results and Analysis

Table 2 reports the best and average profit found by the studied algorithms, and the average
profit improvement over the results computed by the best known list-scheduling heuristic
for the VMMP. In fact, row “over (Nesmachnow et al., 2013)” in Table 2 indicates how
many times the corresponding algorithm outperformed the best list heuristic from our pre-
vious work (Nesmachnow et al., 2013), regarding the profit value. Row #best indicates
how many times the corresponding algorithm outperformed all the other studied algo-
rithms in this paper, regarding the profit value. Table 2 reports results for the sequential

Table 2
Profit results for the proposed metaheuristics.

n Metric Metaheuristic

Sequential (1 deme) Parallel: 8 demes Parallel: 24 demes

EA+SA GA SA EA+SA GA SA EA+SA GA SA

50 Profit (avg.) 43.76 43.52 42.65 43.78 43.63 43.05 43.78 43.68 43.08
Profit (best) 56.75 56.75 56.75 56.75 56.75 56.75 56.75 56.75 56.75
Improv. (avg.) 23.19% 22.33% 19.05% 22.28% 22.79% 20.39% 22.29% 22.95% 20.52%

Overa 90/100
90/100

87/100
90/100

90/100
89/100

90/100
90/100

89/100

# best 90 56 19 90 59 48 90 60 53

100 Profit (avg.) 72.14 71.19 68.37 72.49 71.83 70.23 72.62 72.07 70.59
Profit (best) 92.94 92.94 91.73 92.94 92.94 92.91 92.94 92.94 92.94
Improv. (avg.) 53.51% 50.71% 42.67% 54.81% 52.93% 47.36% 55.32% 53.76% 48.30%

Overa 100/100
100/100

100/100
100/100

100/100
100/100

100/100
100/100

100/100

# best 100 6 0 100 26 7 100 27 15

200 Profit (avg.) 77.52 73.53 74.37 78.90 76.43 76.81 79.21 77.05 77.48
Profit (best) 129.17 125.67 126.18 130.03 128.93 128.25 130.03 129.99 128.82
Improv. (avg.) 94.64% 72.24% 84.51% 105.86% 83.54% 93.41% 109.08% 87.09% 95.81%

Overa 93/100
90/100

93/100
95/100

92/100
93/100

95/100
92/100

93/100

# best 89 1 7 92 0 5 92 0 5

400 Profit (avg.) 51.65 31.49 55.73 56.14 43.44 61.21 57.86 46.76 62.79
Profit (best) 231.56 191.26 230.60 235.29 219.22 232.60 237.22 216.08 234.03
Improv. (avg.) 328.58% 220.14% 363.36% 355.35% 291.15% 397.88% 368.88% 311.00% 412.64%

Overa 78/100
73/100

80/100
79/100

75/100
78/100

81/100
75/100

76/100

# best 43 0 44 45 0 42 42 1 44

All Profit (avg.) 61.27 54.93 60.28 62.83 58.83 62.83 63.37 59.89 63.48
Profit (best) 231.56 191.26 230.60 235.29 219.22 232.60 237.22 216.08 234.03
Improv. (avg.) 124.98% 91.35% 127.39% 134.82% 112.60% 139.76% 139.14% 118.70% 144.32%

Overa 361/400
353/400

360/400
364/400

357/400
360/400

366/400
357/400

358/400

# best 322 63 70 327 85 102 324 88 117

a (Nesmachnow et al., 2013).
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Table 3
Makespan and flowtime results for the proposed parallel metaheuristics using 24 demes.

n Metric Metaheuristic

GAPM
H GAPF

H

EA+SA GA S EA+SA GA SA

50 Average 25.98% 21.69% 27.25% 44.41% 37.82% 51.10%
Std. dev. 21.30% 17.84% 24.31% 9.72% 6.70% 12.48%

100 Average 20.87% 19.02% 21.39% 46.80% 43.58% 50.42%
Std. dev. 11.59% 10.85% 13.84% 10.66% 9.68% 14.50%

200 Average 10.28% 9.56% 10.88% 49.15% 46.27% 48.57%
Std. dev. 6.35% 6.71% 7.22% 21.41% 19.62% 22.54%

400 Average 10.76% 8.24% 11.88% 25.99% 24.60% 28.64%
Std. dev. 6.08% 5.86% 5.98% 27.70% 22.27% 25.36%

algorithms and two different parallel versions, using 8 and 24 processing cores, grouped
by the number of VM requests in the VMMP workloads (n). All averages are computed
considering the fifty independent executions performed for each metaheuristic on each
VMMP instance studied. The best results for each problem instance are emphasized in
bold font.

The numerical results in Table 2 demonstrate that the parallel versions of the proposed
metaheuristics clearly outperform the sequential ones, especially when using 24 demes
(overall) and 8 demes to solve the large dimension problem instances tackled. Regard-
ing the algorithms comparison, the parallel hybrid EA+SA was the best method among
the studied ones for all problem instances, with the exceptions of a few workloads with
400 VM requests (where the parallel SA achieved similar profit results and better average
improvements in some cases).

The parallel hybrid EA+SA outperformed the previous results computed with list
scheduling heuristics on (Nesmachnow et al., 2013) on 366 out of 400 problem instances
studied. Average improvements of up to 368.88% were obtained in the profit values, for
the problem instances with 400 requests.

The last five rows in Table 2 provide the average results of the algorithms on all prob-
lem instances studied in the experimental analysis. EA+SA found the best overall profit
values for all instances of the four different VM request sizes. It outperforms the existing
list heuristics in 91.5% of the 400 studied instances, and it is the metaheuristic outper-
forming the other studied ones in most cases (higher than three times more, in average,
than the second best algorithm), for the sequential and the two different parallel versions.
The experimental results demonstrate how useful is to combine the evolutionary search
and the SA operator in a weak hybrid method, which is able to outperform both algorithms
executing alone.

After evaluating the proposed algorithms in terms of profit, we are interested also on
analyzing the Quality of Service (QoS) of the solutions they provide. Therefore, we study
the average makespan and flowtime results for the parallel algorithms using 24 demes in
Table 3. Results are computed considering the GAP metrics as defined in Eqs. (4) and (5).
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Table 4
Load characterization of the VMMP instances regarding the number of requests over number of machines ratio.

# Machines # Requests

50 100 200 400

10 Medium Medium High High
20 Low Medium Medium High
30 Low Low Medium High
50 Low Low Low Medium

We would like to remark at this point that the makespan and flowtime metrics are in
conflict with the profit. The reason is that in order to improve profit we must assign every
VM to the smallest (i.e., the cheapest) available RI that meets its requests, even when it
implies a delay on the VM deployment due to a temporal unavailability of the desired RI.
Such delays will penalize the makespan and flowtime measurements. Taking into account
not only the profit but the QoS of the solution at the same time might be very interesting
for the broker. This would imply the use of multi-objective optimization techniques. This
is an interesting line of research that we highlight in the future works section.

The numerical results in Table 3 indicate that the algorithm providing the best
profit, namely EA+SA, is also providing highly accurate QoS values, according to both
makespan and flowtime. GA is the algorithm finding the solutions with best QoS in all
cases (but it is the worst one according to profit metric). The analysis demonstrates that
EA+SA provides accurate QoS values, close to those found by GA. The difference be-
tween these algorithms range from 5.85% (for 200 VM requests and flowtime) to 23.42%
for the 400 VM requests and makespan.

In order to provide a deeper analysis of different planning situations modeled by the
VMMP instances tackled, we characterized the instances according to the load ratio of
each workload-scenario pair. The load ratio represents the stress intensity of the cloud
infrastructure owned by the broker (i.e., how much stressed it is) in each problem scenario,
and it is defined as Rload =

#requests/#machines. In our analysis, we defined three load ratio
classes: a problem instance is considered to have low load when Rload ∈ [0,5); it has a
medium load when Rload ∈ [5,10]; and it has a high load when Rload ∈ (10,+∞). Table 4
shows all the considered problem instances characterized according to this criterion.

Although a medium load is to be expected in common situations during most of the
operational time for the cloud system, low and high loads are considered to occur in short
bursts during bounded periods of time, depending on the users activity. The previously
commented characterization is useful to analyze how much profitable the proposed sub-
letting model is during both normal and extreme conditions.

Table 5 reports the average improvement on the broker profit (against the best previ-
ously existing results; Nesmachnow et al., 2013) and the average number of additional
on-demand VMs required (#OD) for the plannings computed by the three parallel meta-
heuristics when using 24 demes. The variation of on-demand VMs (1OD) is introduced
in order to compare the number of additional on-demand VMs required by the proposed
metaheuristics with respect to the solutions found by the CI and SCRI heuristics. For each
of the parallel metaheuristics studied, the 1OD metric is defined as the difference between
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Table 5
Average number of additional on-demand VMs required and profit improvement for the proposed

metaheuristics using 24 demes.

Load Parallel metaheuristic (24 demes)

EA+SA GA SA

Profit improv. 1OD #OD Profit improv. 1OD #OD Profit improv. 1OD #OD

Low 41.67% −1.02 0.06 29.37% −0.98 0.10 34.35% −1.01 0.07

Medium 58.63% −8.06 12.60 54.63% −3.78 16.89 56.03% −5.61 15.06

High 412.28% 61.69 199.51 354.19% 60.27 198.09 460.29% 58.39 196.21

Table 6
Summary of the parallel EA+SA results using 24 demes: average and best profit, profit improvement and

makespan gap over the best heuristic, and average ratio of additional on-demand VMs required.

n Profit Profit improv. Makespan Additional on-demand VMs

Best Avg. # Best Avg. GAPM
CI GAPM

SRCI Avg. ratio

50 56.75 43.76
90/100 22.29% 4.11% 24.81% 0.66%

100 92.94 72.62
100/100 55.32% 10.61% 15.54% 7.35%

200 130.03 79.21
95/100 109.08% 6.35% 7.47% 14.68%

400 237.22 57.86
81/100 368.88% 8.79% 7.03% 45.37%

the number of additional on-demand VMs required by that metaheuristic and the heuristic
which used the lowest number of them in its solution.

The results on Table 5 show how the average number of on-demand VMs required
quickly increases with the VM requests load for the three studied algorithms. Indeed, for
the highest load instances, it can be seen that the metaheuristics find solutions with higher
number of on-demand VMs than the previously existing methods. However, the profit
improvement values of the solutions provided by the metaheuristics are much higher that
those provided by the algorithms in Nesmachnow et al. (2013), raising up to 460.29%. As
it happenedwith the number of additional on-demandVMs, there is a quick increase on the
profit improvement when the load increases. For both the low and medium load instances,
the three metaheuristics find solutions with lower number of additional on-demand VMs
than the heuristics.

We would like to recall that using additional on-demand VMs implies a decrease on
the broker profit, because it will have to pay for these on-demand VMs to deploy the
corresponding virtual machine on time. Therefore, this will positively impact on the QoS
offered, because the VM will be deployed immediately, without any delay.

Previous results show that the parallel hybrid EA+SA algorithm is the best of the
studied methods, outperforming the remaining ones in most of the studied problem in-
stances. Table 6 presents a summary of the results computed by the EA+SA algorithm.
In average, it improves the profit computed by the best heuristic in all of the evaluated
instances: with average values ranging from 22.29% up to 368.88%. The average profit
improvement steadily increases with the problem dimension, computing the best profit
improvements when tackling the higher dimension instances. When comparing with the
other metaheuristics, the EA+SA algorithm is able to compute the best profit results for
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Table 7
Average profit improvement of EA+SA over the best heuristic, for 1, 8, and 24 demes.

n Average profit improvement

1 deme 8 demes 24 demes

50 23.19% 23.28% 23.29%

100 53.51% 54.81% 55.32%

200 94.64% 105.86% 109.08%

400 328.58% 355.35% 368.88%

366 of the 400 problem instances; computing the best profit for at least 80 of the 100
problem instances for each dimension.

In terms of makespan, Table 6 shows that EA+SA provides slightly worse results than
the heuristics (between 4.11% and 24.81%). The reason is that a more efficient use of the
available RIs resources increases the number of requests assigned to each resource, which
impacts negatively in the makespan of the schedule.

We also investigated the benefits of the parallel model in the EA+SA algorithm in
order to compute more accurate solutions when additional computing resources are avail-
able. Table 7 presents the average profit improvement (with respect to the best compared
heuristic in every case) computed by the EA+SA algorithm when using 1, 8, and 24 dis-
tributed demes.

The experimental analysis shows that increasing the number of demes of the EA+SA
algorithms, and therefore the number of evaluations performed, allows to improve the
accuracy of the algorithm, enhancing the average profit. This accuracy improvement in-
creases with the dimension of the problem instances, obtaining the best improvementwhen
tackling the largest problem instances. The improvement for the 24 demes algorithm with
respect to the one using 1 deme ranges from 0.1% for the smallest instances to 40.3% for
the largest ones.

7. Conclusions and Future Work

This article presents three new parallel metaheuristics for the problem of virtual machines
mapping in the cloud. The problem arises for the cloud broker that sublets reserved in-
stances on a number of clouds as on-demand ones to his customers at lower prices than
those offered by public cloud providers (we consider 20% cheaper prices in this work). The
problem was recently proposed in Nesmachnow et al. (2013) and Iturriaga et al. (2013).
This paper is an extension of those works.

The new proposed algorithms are shown to clearly outperform the best existing results
in the literature (Nesmachnow et al., 2013) in an affordable amount of time. The profit
of the broker is increased by up to 44.32% in average for all the studied instances when
using the proposed techniques, which only require 90 seconds execution time. Additional
scalability tests showed that the profit improves when increasing the computational effort
(by using more computing elements in parallel), on all problem instances.
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The solutions provided by the algorithms were further analyzed in terms of their Qual-
ity of Service (QoS). It was not considered in the optimization process, and indeed it is in
conflict with the profit optimization, but it is certainly a feature to take into consideration
in our solutions. The results pointed out EA+SA, the proposed hybrid method, as the best
algorithm in terms of profit, while providing solutions of high QoS, comparable to the
best ones. The proposed metaheuristics clearly outperformed the best previous existing
results in terms of profit (up to 412% improvement), at the cost of slightly worse QoS
values (10% in average).

The main lines for future work include to further analyze the behavior and dynamics
of the new techniques (e.g., convergence and diversity properties), as well as to investigate
other more accurate methods. Additionally, designing and solving a multi-objective ver-
sion of the problem, accounting for profit and QoS maximization will be very interesting
for the broker. Finally, designing a reliable forecasting technique to predict the resources
the broker will need in the future is another important line of future research.
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Šiame straipsnyje pristatomos nuosekliosios ir lygiagrečiosios metaeuristikos virtualiųjų mašinų
subnuomos debesų sistemose uždaviniui spręsti, kuris susijęs su virtualiųjų mašinų prašymų pasky-
rimu iš debesų tarpininko užsakytiems resursams maksimizuojant tarpininko pelną. Trys metaeuri-
stikos yra tiriamos: atkaitinimo modeliavimas, genetinis algoritmas ir hibridinis evoliucinis algorit-
mas. Eksperimentinis įvertinimas naudojant realius darbų srautų ir scenarijų pavyzdžių duomenis

iš debesų paslaugų teikėjų rodo, kad lygiagretusis hibridinis evoliucinis algoritmas yra labiausiai

tinkamas šiam uždaviniui spręsti.


