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ABSTRACT 
Network virtualization is being regarded as a promising 
technology to create an ecosystem for cloud computing 
applications. One critical issue in network virtualization 
technology is power-efficient virtual network embedding (PE-
VNE), which deals with the physical resource allocation to virtual 
nodes and links of a virtual network while minimizing the energy 
consumption in the cloud data center. When the node and link 
constraints (including CPU, memory, network bandwidth, and 
network delay) are both taken into account, the VN embedding 
problem is NP-hard, even in the offline case. This paper aims to 
investigate the ability of the Ant-Colony-Optimization (ACO) 
technique in handling PE-VNE problem. We propose an ACO-
based heuristic PE-VNE algorithm, called E-ACO. E-ACO 
minimizes the energy consumption by considering the embedding 
power consumption in the node mapping phase and by making an 
implicit coordination between the node and link mapping phases. 
Extensive simulations are conducted to evaluate the performance 
of the proposed algorithm and investigate different energy-aware 
link embedding algorithms on the ability of E-ACO.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and SearchHeuristic methods; I.2.4 [Computer 
Communication Networks]: Distributed SystemsDistributed 
applications 

General Terms 
Algorithms, Experimentation, Performance, Design 

Keywords 
Cloud data center, Virtual network embedding, Ant colony 
optimization, Optimization, Energy consumption, Mixed integer 
programming. 

1. INTRODUCTION 
Network virtualization is being regarded as a promising 
technology to create an ecosystem for cloud computing 
applications[1][3][4]. Some network virtualization approaches 
such as in [2][3][4] have been proposed as a basis for enforcing 
QoS policies and performance guarantees in cloud data centers. 
One of the key issues in the network virtualization technology is 
the virtual network embedding (VNE), which deals with the 
mapping/embedding of VN requests onto specific physical nodes 
and paths/flows of the physical network. Significant studies have 
been carried out on a set of variants of cost-aware VNE problems 
(see [8]-[9] and references therein). These cost-aware VNE 
algorithms were designed for the scenarios of peak load instead of 
for the scenarios of current traffic load. They aimed to improve 
the Cloud Infrastructure Provider (InP) long-term revenue, 
expressed in form of VNs’ resource demands including CPU and 
link bandwidth and so on. 

The current link utilization in backbone networks of large Internet 
Service Providers (ISPs) is estimated at 30%-40% [6]. ISP’s 
overprovisioning link bandwidth aims for peak traffic load or link 
failure. Such overprovision may  lead to low energy efficiency. 
ISPs are now facing the challenge of minimizing the 
power/energy consumption [7]. In last years, efforts in the 
research community and the industries have been devoted to 
reduce the energy expenditure at both of the server and network 
levels. More recently, motivated by the fact that 
turning/powering/switching off unused devices can save energy in 
the context of the Internet [10], some efforts such as in [11]- [14] 
were devoted to deal with the power-efficient VNE (PE-VNE) 
problem. When the node and link constraints (including CPU, 
memory, network bandwidth, and network delay) are both taken 
into account, the VN embedding problem is NP-hard, even in the 
offline case [5]. Some authors such as in [11][13] formulated the 
VNE problem as mixed-integer programs and designed the 
CPLEX[25]/GLPK[24]-based exact PE-VNE algorithms. As the 
size of the network increases, the PE-VNE problem becomes 
more difficult due to the amount of nodes and links in both 
physical and virtual networks.  

Meta-heuristic techniques have been applied successfully to 
design heuristic cost-aware VNE algorithms. The simulation 
results in both [15] and [16] demonstrated the better performance 
of metaheuristics-based VNE algorithms in terms of the InP’s 
long-term revenue and embedding cost. This paper aims to 
investigate the ability of Ant-Colony-Optimization (ACO) 
technique in handling the PE-VNE problem and investigate the 
impacts of different energy-aware link embedding algorithms on 
the performance of the ACO-based PE-VNE algorithm in the 
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following context (denoted as no-cycle undirected context in the 
rest of the paper): 

� The physical network is modeled as a weighted 
undirected graph. 

� There exists no cycle in the physical path/flow which 
hosts a virtual link. The cycle existence means the 
physical resource waste. 

We summarize the main contributions in our work as follows: 

� We propose a simple but effective ACO-based heuristic 
PE-VNE algorithm, called E-ACO. The key component 
in E-ACO is the adaptive node mapping algorithm. E-
ACO can seamlessly apply any link mapping algorithm. 
It minimizes the VNE energy consumption without 
sacrificing InP’s long-term revenue, compared to the 
existing heuristic PE-VNE algorithms. That is, E-ACO 
not only performs well in the peak-load situations in 
terms of InP’s long-term revenue, but also performs 
well in the light-load situations in terms of InP’s energy 
consumption. These features are achieved by 
considering power consumption in the node mapping 
phase and making an implicit coordination between the 
node and link mapping phases.  

� We propose two CPLEX-based exact energy-aware link 
mapping (ELM) algorithms in the no-cycle undirected 
context. One is for the path-unsplittable situations and 
the other is for path-splittable situations. A virtual link 
can be either path-unsplittable or path-splittable. Path-
splitting (allowing virtual link over multiple substrate 
paths) is beneficial to the bandwidth efficient utilization 
and also is beneficial to increase robustness to physical 
failures. However, it causes additional troubles, such as 
network management and dealing with out-of-order 
packets. For description convenience, we denote as 
path-unsplittable PE-VNE problem and path-splittable 
PE-VNE problem, respectively. We formulate the ELM 
problem in each kind of situations as a mixed integer 
program (MIP), denoted as US-ELM-MIP and S-ELM-
MIP, respectively. To the best of our knowledge, we are 
the first to make MIP formulations in the no-cycle 
undirected context.  

� We carry out extensive simulations to evaluate the 
performance of E-ACO. The simulation results in the 
static and dynamic networks demonstrate that the 
proposed algorithms perform better, compared to the 
existing heuristic PE-VNE algorithms. 

 

The rest of the paper is organized as follows. Section 2 presents 
some related work. In Section 3 we first present the PE-VNE 
problem. Then we present the formulations of US-ELM-MIP and 
S-ELM-MIP. Section 4 describes the E-ACO algorithm and its 
performance is evaluated in Section 5. Section 6 presents the 
conclusions. 

2. RELATED WORK  
This section focuses on the existing work in relation to the PE-
VNE problem and meta-heuristic technique based VNE 
algorithms. 

PE-VNE algorithms. The authors in [13] and [14], respectively, 
proposed a generalized power consumption (GPC) model, which 
captured the fixed and variable power consumption of physical 
nodes and network equipments. The power consumption models 
considered in [11][12] were both a special case of the GPC model 
[14]. The authors in [11] formulated the path-unsplittable PE-
VNE problem as a MIP, which was unsolvable by GPLK [24]. 
They then proposed a two-stage algorithm, denoted as EA-VNE 
in the rest of this paper. The authors in [12] proposed a CLPEX-
based exact algorithm to handle the path-splittable PE-VNE 
problem. The authors in [11][12][13] all formulated the PE-VNE 
problem as a MIP in the situations where the physical network is 
modeled as a weighted directed graph. The authors in [14] also 
considered the path-splittable PE-VNE problem but formulated a 
MIP in the situation where the physical network is modeled as a 
weighted undirected graph. Through linear relaxation, the authors 
in [14] proposed a two-stage heuristic algorithm. Note that the 
MIP formulation proposed in [14] allows a cycle to exist in a 
physical flow hosting a virtual link. 

Metaheuristics-based VNE algorithms. Metaheuristic techniques, 
see [16] and the references therein, have been explored to handle 
the cost-aware VNE problem. The authors in [18] proposed an 
ACO-based cost-aware VNE algorithm, which has a low 
performance [19]. E-ACO proposed in this paper applies a novel 
node mapping algorithm, which maps virtual nodes in an adaptive 
way in the dynamic network. E-ACO then can perform well in the 
scenarios of both on-peak and off-peak loads. 

3. PE-VNE PROBLEM AND MIP 
FORMULATIONS OF ENERGY-AWARE 
LINK MAPPLING ALGORITHMS 
This section first describes the network model and the PE-VNE 
problem. Then we describe the S-ELM-MIP and US-ELM-MIP 
formulations.  

3.1 Network Model and Problem Description 
Both the physical network and the virtual network are modeled as 
a weighted undirected graph and are denoted 

by ( , )S S
SG N E and  ,V V

VG N E , respectively. Here 

/S VN N  is the set of physical/virtual nodes and SE /
VE is the 

set of physical/virtual links. The system resources of a physical 
node include memory, processing power, storage space and so on. 
Without loss of generality, this paper only considers the 

processing power. That is, each physical node S Sn N is 

associated with CPU resources ( )Sc n  and geographical 

location ( )Sl n . All the work presented in this paper can be 

applied directly to the situations where physical nodes have other 
resource demands besides CPU demand. When other physical 
resources are to be considered, we need to only add some 
constraints to the corresponding algorithms. 

Each physical edge ( , )S Se v w E between physical nodes (v,w) 

is associated with bandwidth capacity. All the physical resources 
(i.e. bandwidth and CPU) in SG are limited. Usually, a virtual 

node’s (denoted as Vn ) QoS (Quality of Service) requirements 

include the CPU demand ( )Vc n and a preferred value 
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Vnd expressing how far this virtual node can be placed from the 

specified location ( )Vl n . The QoS requirements of a virtual 

link ( , )V Ve v w E between virtual nodes (v,w) include the 

bandwidth requirement ( )Vb e . Embedding for a VN request is 

defined as a mapping from VG to SG  with the following 

constraints:  

� Each virtual node is mapped to a physical node in a one-
to-one manner, and the virtual node QoS requirements are 
satisfied.  

� Each virtual link ( , )Ve v w is mapped to a physical path 

(an unsplittable model) or a flow (a splittable model) in 

SG between physical nodes which host v and w, 

respectively. At each physical edge ( , )S Se v w E , the 

total physical bandwidth consumed by VG must be less 

than the available bandwidth of this physical edge.  

The available CPU capacity ( )S
NA n of a physical node Sn is 

defined as
 

( ) ( ) ( )
V S

S S V
N

n n

A n c n c n
 

   . Here  Sn  

denotes the set of the virtual nodes, which are hosted on the 

physical node Sn . The available bandwidth ( ( , ))S
EA e v w of a 

physical edge ( , )Se v w is defined as ( ( , ))Sb e v w minus the total 

bandwidth used by virtual links that pass through ( , )Se v w . 

Figure 1(c) illustrates the embedding of two VN requests (in 
Figure 1(a)) on the physical network (in Figure 1(b)).  

 

 

 

4 5

 
 

(a)Two VN 
requests 

(b)Physical network (c) Physical network with 
two embedded VNs 

Figure 1. An example of two VN requests’ embedding 

 

Table 1 gives the definition of the variables, used in the 
following. As in [14], we assume that:  

① Whenever a physical edge is turned off, energy is saved in the 

pair of interfaces/ports on its endpoints (also turned off). 

②  A physical node is turned off only when all the network ports 

are turned off, namely all the physical edges connected to this 
node are turned off.  

③  If a physical node is unused, then it is simply turned off and 

then has a zero power consumption.  

Assume that the kth VN (denoted as VkG ) is served by InP from 

time 
Vk

start
Gt and leaves at time 

Vk Vk

start d
G Gt T . Each virtual link 

( , )Vk Vk Vk
i i ie s t is considered as a commodity from source physical 

node kis to destination physical node kit , 

  1 ... ,   , ,   ,Vk S Vk Vk Vk
ki ki i ii E s t N s t N    . Then, the 

energy consumption ( )u VkE G for serving the kth VkG in unit time 

is defined as 

   

 
 

1 2
( , )

3 3

1 ... 

                          ( ) ( )

S

vw
S S S

ki ki

Vk

v e
v v vw

v N e v w E

s tVk Vk
i i

i E

P y P x

P c s P c t

 
 



   

  

 


 （1）

Here, 1
vP , 2

SeP and 3
uP are constants. 3

uP represents the power 

consumption of unit CPU utilization of physical node u in unit 
time.  

 

Table 1  Variable definition 

Term Definition 

v  A binary variable. sv N . Denote whether a physical 

node is active or not before embedding VkG : 1 means 

active; otherwise 0. 

vw
 

A binary variable. Denote whether a physical edge is 
active or not before embedding VkG : 1 represents active; 

otherwise 0. ( , )s se v w E  

ki
vwf

 

A flow variable denoting the total amount of loads on 

the physical edge ( , )se v w  for the ith virtual link of  

VkG .   1 ... Vki E .
 

ki
vwg

 

A binary variable. Its value is 1 if ( , )se v w  is on the 

path hosting the ith virtual link of VkG .  Otherwise, it is 

set to 0.  1 ... Vki E .   

vz
 A binary variable. Sv N . Its value is 1 if physical 

node v is on the paths/flows hosting virtual links. 
Otherwise, it is set to 0.  

vwx
 

A binary variable. , Sv w N . After embedding VkG , its 

value is 1 if ( , )Se v w  is active; otherwise, it is set to 0. 

vy  A binary variable. Sv N . After embedding VkG , its 

value is 1 if the physical node v is active; otherwise it is 
set to 0. 

 

 

 Assume there are K active VNs in the interval T. For description 
convenience, we set T=t2-t1. The InP’s average energy 
consumption over T is defined in Equation (2). 
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0
( )

Vk

T

u Vk Gt
InP k K
avg

E G L
E

T





 （2）

where 

1

1 1

1 1

1 1

,                          and  

( ),        and  

( ),     and  

( ),     and  

Vk Vk

Vk Vk Vk

Vk

Vk Vk Vk Vk

Vk Vk Vk V

start d
G G

start start d
G G G

G d start start d
G G G G

d start start
G G G G

T t t T T

T t t t t T T
L

T t t t t T T

T t t t t T T

 

   


   

   
k

d









 （3）

 

Thus, for VNR1 in Figure 1(a), if {aD, bA, cE, dD, 
eE }, energy consumption of embedding two VNs can be 
reduced compared to the embedding of Figure 1(c). 

                                                                           

3.2 FORMULATIONS OF S-ELM-MIP and 
US-ELM-MIP  
The S-ELM-MIP can be formulated as a linear integer 
programs with integer constraints in the following manner.  

S-ELM-MIP 

Objective: 

minimize  

( )
S

u Vk v
v N

E G z


    （4）

Subject to: 

Capacity constraints:   

 
 1 ... 

( , ) , ,
Vk

ki ki S
vw wv E vw

i E

f f A v w x v w N
 

   
 

Flow related constraints:
 

（5）

 
 

0, 1 ... ,

                                         \ ,

S S

ki ki Vk
vw wv

w N w N

S
ki ki

f f i E

v N s t

 

   

 

 
 

（6）

 ( ), 1 ... 
ki ki

S S

ki ki Vk Vk
s w ws i

w N w N

f f b e i E
 

    
 

（7）

 ( ), 1 ... 
ki ki

S S

ki ki Vk Vk
t w wt i

w N w N

f f b e i E
 

     
 

 

Binary constraints:
 

（8）

, , S
vw wvx x v w N    （9）

, , S
vw vx y v w N  

 

（10）

, ,
S

S
w vw

v N

y x v w N


  
 

（11）

, S
v vy v N   

 

（12）

, , S
vw vwx v w N   

 

（13）

     0 0 1, 1 ... ,

                                         ,

ki ki Vk
vw wv

S

f f i E

v w N

     

 
 

（14）

 1 ... 

( ) 0 ,

                                                   ,

SVk

ki ki
v vw wv

w Ni E

S

z f f

v N

 

  
    
  
  

 

 
 

（15）

   1,  , , 1 ... ,Vk
v ki kiy v s t i E      

 

Domain constraints:

 

（16）

 0, , , 1 ... ki S Vk
vwf v w N i E    

 

（17）

 0,1 , , S
vwx v w N  

 

（18）

 0,1 , S
vy v N  

 

（19）

 0,1 , S
vz v N  

 
（20）

 

Constraint set (4) enforce the capacity bounds of physical edges. 
Constraint sets (7-9) refer to the flow conservation conditions. 
Constraint sets (6,10) state the features of a undirected graph. 
Constraint sets (11-12) state that a physical node is active if and 
only if there exists at least a physical edge connecting this 
physical node is active. Constraint sets (13-14) state that if a 
physical node/edge is active before embedding VkG , it must be 

active after embedding VkG . Constraint sets (5,15,16) make sure 

that there is no circle in any path hosting a virtual link.  

The mixed linear integer program of US-ELM-MIP is obtained by 
making some modifications to that of S-ELM-MIP: using 
Equations (22-25) to replace Equations (6-9) and using Equation 
(26) to replace Equation(18). 

 

  ( ) ( , ) , ,Vk ki ki S
i vw wv E vw

i

b e g g A v w x v w N   
 

（21）

 
 

0, 1 ... ,

                                        \ ,

S S

ki ki Vk
vw wv

w N w N

S
ki ki

g g i E

v N s t

 

   

 

 
 

（22）

 1, 1 ... 
ki ki

S S

ki ki Vk
s w ws

w N w N

g g i E
 

    
 

（23）

 1, 1 ... 
ki ki

S S

ki ki Vk
t w wt

w N w N

g g i E
 

     
 

（24）

 0, , , 1 ... ki S Vk
vwg v w N i E    

 

（25）

4. E-ACO ALGORITHM  
In this section, we propose an ACO-based approach to this PE-
VNE problem. The pseudo-code is shown in Algorithm1, which 
uses Algorithm2 to map virtual nodes. More details about E-ACO 
are given as follows.  
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Algorithm 1(E-ACO ) :  input=( VG , SG ) 

s1: Generate the initial population of ants. Initialize a certain 
number of ants by using Algorithm2 and check the 
feasibility of each ant’s virtual node mapping. 

s2: Compute pBest and initialize gBest. Compute ( )f x of 
each ant. Set pBest and gBest according to of these ants’ 
f(x). 

s3: Update the pheromone trail. Before reiterating the process 
from iteration t to t + 1, the pheromone trails of all 
physical nodes for each virtual node are first evaporated 
according to Equation (27). 

( 1) ( )uv uvt t                                                              (27)  

Here (0,1]  . Then, update the pheromone trail of each 
physical node (denoted as v) which hosts a virtual node 
(denoted as u) in pBest according to Equation (28). 

1 2

2

( 1) ( 1)uv uvt t
pBw pEn

  


    
                                (28) 

Here pBw represents the total physical bandwidth used in 
pBest. pEn is defined in Equation (4), used in 
pBest. 1 and 2  are both constant parameters.  

s4: Evolution. Update each ant solution by using Algorithm2 
and check the solution’s feasibility. We calculate the 
fitness function value of each ant and then update pBest. 
If ( ) ( )f gBest f pBest  then gBest = pBest. 

s5 Repeat s3-s4 until the maximum number of iterations is 
reached. If ( )f gBest is +∞, output there is no feasible 
solution. Otherwise, gBest is returned as the VNE solution. 

   

Each ant i is associated with a solution, which is a VN -length 

integer vector containing the virtual node mapping result, donated 

by  1 2, , ,
VN

i i i iH h h h  . Here k
ih denotes the physical node 

which hosts the thk  virtual node in the thi ant. Whenever iH is 

updated, its feasibility must be checked by using a link mapping 
algorithm to map all the virtual links in the VN. iH is called as 

being feasible if all the virtual links finds their hosted physical 
paths/flows; otherwise iH is infeasible. The fitness function 

( )f x is defined Equation (4). If iH  is infeasible, the ( )f x  

value of this ant is set to +∞. Variable pBest is defined to denote 
the local best solution, namely the solution with the best fitness 
value in the current iteration. Variable gBest is defined to denote 
the best value obtained so far.    

Each physical node j is associated with a pheromone trail for each 
virtual node i, denoted as ij . ij represents the desirability of 

assigning virtual node i to physical node j and is updated by 
Equation (27,28) in Algorithm1. The initial value of each 
pheromone trail is set to a large value (we set to 100 in our 

experiments) in order to increase the exploration space of 
solutions during the first iteration. At each iteration, every ant 
first updates the pheromone trail values in two steps (see Step 3 of 
Algorithm1): (i) Evaporate ij of all substrate nodes. (ii) Reinforce 

ij of the substrate nodes which contribute to the building of the 

local best solution (pBest). 

 

Algorithm2  : input=( VG , SG )� 

s1: Set all physical and virtual nodes untouched. 
Calculate ( )NR u , defined in Equation (29), for each 
virtual node u. L(u) denotes the virtual link set. One 
endpoint of each link in L(u) must be u. 

( )

( )

( )
( )

( ) (1 )
( ) ( )

V V

l L u

l L uw N w N

b l
c u

NR u
c w b l

  

 

  


                         (29) 

s2: Enqueue all virtual nodes into a priority queue PQ in the 
descending order of ( )NR u . 

s3: Dequeue the virtual node (denoted as u) with the 
largest ( )NR u . Construct a physical node list CL(u) for u. 
Each physical node in CL(u) must be untouched and 
satisfy the resource constraints (the rest CPU of physical 
node is larger than that of the virtual node, and the total 
outgoing available bandwidth resources of the physical 
node is larger than the total outgoing bandwidth demand 
of the virtual node u) of virtual node u. ( )NR v of each 
physical node in CL(u) is defined in Equation (30). 

( )

( ) ( ) ( )

( )
( )

( ) (1 )
( ) ( )

E
l L vN

N E
w CL u w CL u l L w

A l
A v

NR v
A w A l

  

  

  


              (30) 

A physical node (denoted as v) from CL(u) is selected to 
host u with the probability uvp ,defined in Equation (31)  

   
    

1 2

2 2

( )

( )

( )

uv
uv

uw
w CL u

NR v
p

NR w

 

 







                                   (31)      

Here 1 and 2 are parameters that determine the relative 
importance of pheromone trail and ( )NR u . When a 
physical node v is selected to host virtual node u, then 
both u and v are set to be touched. 

s4: Repeat Step 3 until PQ is empty. 

 

Every ant explores new solutions according to the new 
pheromone trails. The key idea behind E-ACO’s power-aware 
node mapping is this pheromone tail updating method. In the 
peak-load situations, most of the physical nodes and edges are 
active and then pEn is zero or near zero. In the light-load 
situations, pEn affects more pheromone trail. 
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4.1 Time Complexity Analysis 
Algorithm2 can be computed in polynomial time in terms of 

VkN , SN , VkE and SE . Thus, if the link embedding 

algorithm is polynomial-time, E-ACO is a polynomial-time 
algorithm.  

5. PERFORMANCE EVALUATION  
In this section, we first describe the simulation environment 
and the algorithms to be compared. Then we present the 
simulation results.   

5.1 Compared Algorithms 
The performance of cost-aware VNE algorithms has been 
compared with energy-aware VNE algorithms in [11][12]. The 
CPLEX-based exact PE-VNE algorithms in both [12] and [13] 
were designed for the situations where the physical network is 
modeled as a directed graph. In addition, the acceptance ratio of 
the PE-VNE algorithm proposed in [14] is very low (in our 
unpublished work). Thus, this section only compares the 
performance of E-ACO and EA-VNE under the following three 
energy-aware link mapping algorithms: 

� SNP algorithm. It is proposed in [14]. The key idea is 
getting k-shortest paths and on these paths searching for a 
path with the smallest number of active nodes which are 
inactive before embedding the VN. 

� S-CPLEX. Use CPLEX solver to solve the S-ELM-MIP 

� US-CPLEX. Use CPLEX solver to solve the US-ELM-
MIP. 

The parameters in E-ACO are set as follows. φ1=5000. 
φ2=500.1=2=1. =0.5. The initial value of each ij is set to 100. 

The population size is set to 5 and the number of iterations is set 

to 10 in all experiments. We set all 1
uP to 160W and set all 2

SeP  to 

1.1W, based on the experiment results in [20]-[22]. The 
parameters in EA-VNE are set as in [11].  in Equation (5) is set 

to SN +1. 

5.2 Simulation Environment 
As in the existing PE-VNE literature, we use synthetic network 
topologies to evaluate the proposed algorithm. The substrate 
network and virtual networks are generated by using the GT-ITM 
tool [23]. The substrate network is configured to have 50 nodes in 
(2525) grid, which are randomly connected with probability 0.5. 
Both physical node CPU and edge bandwidth capacities follow a 
uniform distribution from 50 to 100 units. We do two kinds of 
experiments, each having different VN configuration and 
performance metrics, described as follows. 

Experiments of static VNRs (Experiment1). This kind of 
experiments investigates the impact of consolidation in the 
scenarios where 20 VNRs arrive and leave together. Each VN has 
5 virtual nodes and the virtual node connectivity probability is 
0.5. Both all virtual node’ CPU and virtual link’s bandwidth 
requirements are distributed uniformly in (0, β). We do 
simulations by varying β from 5 to 80, respectively. Under our 
simulation configurations, each algorithm can successfully embed 
these 20 VNs when β is less than 50. When β is not less than 50, 
both EA-VNE and E-ACO can embed successfully 20VNs only 

under S-CPLEX link mapping algorithm; the acceptance ration of 
E-ACO-US-CPLEX and E-ACO-SNP are similar, but less than 
that of EA-VNE-US-CPLEX and EA-VNE-SNP. The metrics 
considered include  

(i) Num of active nodes and Num of active edges, which 
measure the number of active physical nodes and active 
physical edges, respectively, after these 20 VNRs are 
embedded.  

(ii) Power consumption. Defined in Equation (4).  

All simulation results are calculated at a confidence level of 95%. 
The confidence intervals are small and then are not displayed in 
the Figure 2-Figure 4, which depict the simulation results.  

Experiments of on-line VNRs (Experiment2). Due to the large 
amount time in solving US-ELM-MIP and S-ELM-MIP, we only 
compare E-ACO-SPN and EA-VNE-SPN in dynamic scenarios, 
in which the VNs come and leave dynamically. The number of 
virtual nodes in a VNR is chosen uniformly between 2 to 5 and 
the virtual node connectivity probability is 0.5. CPU and 
bandwidth requirements are distributed uniformly in (0, 20) and 
(0,50) respectively. The VNR arrival rate is 4 VNRs per 100 time 
units. The lifetimes of the VNRs follow an exponential 
distribution. We do simulations by setting the VN lifetime to 500 
(simulating a dynamic network with light load) and 1000 
(simulating a dynamic network with high load) time units. Each 
simulation lasts 50000 time units and is repeated 10 times. The 
average value of these repetitions is presented as the simulation 
results in the corresponding figures. The metrics considered 
include  

(i)  Average Num of active nodes and Average Num of active 
edges, which measure the number of active physical nodes 
and the number of active physical edges of an interval T 
(set to 1000 time units), respectively.  

(ii) Acceptance ratio, which measures the percentage of total 
VNRs accepted by an algorithm.  

Figure 5-Figure 8 illustrate the results of Average Num of active 
nodes and Average Num of active edges. Table 2 depicts 
Acceptance ratio.  

 

5.3 Evaluation Results 
From the simulation results, we observe that: 

� Combining power consumption information in the node 
mapping and making coordination between the power-
aware node and power-aware link mapping phases can 
effectively reduce the VN embedding power consumption 
and increase the VN acceptance ratio. Figure2-Figure.8 
show that EA-VNE-* performs worst in term of power 
consumption. Here, * denote S-CPLEX, US-CPLEX and 
SNP. The reason is that E-ACO-* considers power 
consumption in the node mapping phase. Then, when β is 
less than 50, E-ACO-* perform better in terms of power 
consumption. We also observe that E-ACO-US-CPLEX 
and E-ACO-U-CPLEX may not work better than E-ACO-
SNP in the light-load situations (β is less than 50). This 
indicates the importance of combining power consumption 
information in the node mapping phase. Since the node 
mapping of EA-VNE-* ignores the power consumption 
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information, the effect of the link mapping algorithm on 
the algorithm performance is very obvious, illustrated in 
Figure 4.  

� Num of active physical nodes/edges or Power consumption 
can not completely be used to evaluate the performance of 
an algorithm. In Experiment1, when β is 80, EA-VNE-
SNP works better than E-ACO-SNP in the three metrics, 
namely Num of active physical nodes/edges or Power 
consumption. However, in the scenarios of β=80, EA-
VNE-SNP only successfully embeds about 10 VNs. But E-
ACO-SNP successfully embeds about 13 VNs.             

Note that the low power consumption of EA-VNE-US-
CPLEX when β is more than 50 is due to its low 
acceptance ratio.  

� Running time. We compute the time of each algorithm in 
embedding the first VN in Experiment1. EA-VNE works 
about 8-9 times faster about than E-ACO under the same 
link mapping algorithm.  
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Figure 2 Effect of  on active physical node number 
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Figure 3 Effect of  on active physical edge number 
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Figure 4 Effect of  on energy consumption 
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Figure 5 Average number of active nodes when VN average 
lifetime is 500 time units 
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Figure 6 Average number of active edges when VN average 
lifetime is 500 time units 
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Figure 7  Average number of active nodes when VN average 
lifetime is 1000 time units 
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Figure8 Average number of active edges when VN average 
lifetime is 1000 time units 

 

Table 2 Acceptance Ratio in Experiment2 

Acceptance   
Ratio 

Lifetime 

E-ACO-SNP EA-VNE-SNP 

500 time units 100% 100% 

1000 time units 99.5% 82.6% 

 

6. CONCLUSIONS 
This paper proposes a simple but effective ant-colony-
optimization-based heuristic PE-VNE algorithm to trade off 
solution optimality with computation time. The proposed 
algorithm minimizes the energy consumption by considering the 
embedding power consumption in the node mapping phase and by 
making an implicit coordination between the node and link 
mapping phases. Extensive simulation results validate the E-ACO 
ability in minimizing the energy consumption without sacrificing 
the InP’s long-term revenue, compared to the existing PE-VNE 
heuristic algorithms.  
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