
Metaheuristic Algorithms - Lecture 6 1

Evolutionary Programming and
Genetic Programming

Motto:

"How can computers learn to solve problems without being
explicitly programmed? In other words, how can computers be
made to do what is needed to be done, without being told
exactly how to do it?"

 Attributed to Arthur Samuel (1959)



Metaheuristic Algorithms - Lecture 6 2

Evolutionary Programming
The origins:

L. Fogel (1960) – development of methods, inspired by the natural
evolution, which generate , in an automatic way, systems with
some intelligent behavior;

D. Fogel (1990) – in the last two decades the evolutionary
programming became more oriented toward solving problems
(optimization and design) than simulating generic intelligent
behaviours

Particularities
• Various encoding variants (e.g. real vectors, state diagrams,

neural networks structures)
• Based only on mutation, no recombination
• Current variants: self-adaptive



Metaheuristic Algorithms - Lecture 6 3

Evolutionary Programming
First (traditional) direction :

- Evolve systems (e.g. finite state machine)  with prediction ability
- The fitness of such a structure is measured by analyzing the behavior

of the system = prediction ability
- The fitness is a quality measure related to the behaviour of the system

Finite State Machines (FSM):

FSM = (S, I, O, T,s0)
S – set of states
I – input alphabet
O – output alphabet
T:SxI->SxO - transition rules
s0 – initial state



Metaheuristic Algorithms - Lecture 6 4

Evolutionary Programming
A simple test problem:

design a FSM to check if a binary string has an even or an odd
number of elements equal to 1 (parity problem)

- S={even,odd}
- I={0,1}
- O={0,1}

FSM output:
final state = 0 (the sequence has an even number of components

equal to 1)

final state = 1 (the sequence has an odd number of components
equal to 1)



Metaheuristic Algorithms - Lecture 6 5

Evolutionary Programming
State diagram = labeled directed graph

even odd

1/1

1/00/0

0/1

EP Design:
- choose: S, I, O

Population initialization: generate random
FSMs

- Generate labels for nodes
- Generate arcs
- Generate labels
Mutation:
- Mutation of the output symbol
- Redirect an arc (mutate the target

node)
- Add/eliminate nodes
- Change the initial state



Metaheuristic Algorithms - Lecture 6 6

Evolutionary Programming
Mutation example: change the target node of an arc

even odd

1/1

1/00/0

0/1

even odd

1/1

1/0

0/0

0/1



Metaheuristic Algorithms - Lecture 6 7

Evolutionary Programming
Encoding particularities: the population contains labeled graphs
Types of representation: explicit / implicit

Variants of explicit representation:
• Fixed number of nodes + fixed number of edges => only the edge

weights are adaptable
– Array of fixed length containing the weight values = linearized

version of the weight matrix
• Fixed number of nodes + variable number of edges

– Array of weight values (there is used one special value
corresponding to removed edges)

• Variable number of nodes => both the presence indicators of nodes as
well as the edge weights can be changed
– Binary array containing the presence indicators of the nodes
– List of the edge weights



Metaheuristic Algorithms - Lecture 6 8

Evolutionary Programming
Mutation:
• Change of the edge weights (by replacing with randomly selected

values – for discrete weights, by random additive perturbation – for real
weights)

• Complementing some randomly selected values from the vector
containing the presence indicators for nodes => add/remove nodes

Remark: each  mutation type is applied with a given probability, e.g.:
• p1: edge weight changing
• p2: edge addition
• p3: edge removal
• p4: node addition
• p5: node removal

( the probabilities sum to 1: p1+p2+p3+p4+p5=1)



Metaheuristic Algorithms - Lecture 6 9

Evolutionary Programming
Crossover:

• For fixed structure graphs => linear structure => standard
crossover operators can be applied

• For graphs with arbitrary structure:
– Interchange two subgraphs  (exchange the set of edges

which correspond to a subset of nodes)
Rmk: implicit representations are characterized by evolving synthetic descriptions
of the structures.
Example:
• representation: (number of nodes, connectivity degree, distribution probability
for weights)
• evaluation:  a particular instance is generation based on the description



Metaheuristic Algorithms - Lecture 6 10

Evolutionary Programming
Evaluation of a configuration:

- simulation for a test set
- the fitness is considered to be proportional with the success
rate

Current status in the field
• it has been redirected to the evolutionary design of

computational structures (e.g. neural networks)



Metaheuristic Algorithms - Lecture 6 11

Evolutionary Programming
Second (current) direction: it is related to optimization methods

similar to evolution strategies

- there is only a mutation operator (no recombination)
- the mutation is based on random perturbation of the current
configuration (x’=x+N(0,s))
- s is inversely correlated with the fitness value (high fitness
leads to small s, low fitness leads to large values for s)

- starting from a population with m elements, by mutation are
constructed m children and the survivors are selected from the
2m elements by tournament or by truncation.

- There are self-adaptive variants, called MetaEP; these variants
are similar to self-adaptive Evolution Strategies



Metaheuristic Algorithms - Lecture 6 12

Evolutionary Programming
MetaEP

)1.0(''

2.0)),1.0(1('

)',...,',',...,'(),...,,,...,( 1111

Nsxx

Nss

ssxxssxx

iii

ii

nnnn







Remark: currently the normal mutation used to self-adapt the control
parameters has been replaced with a log-normal distribution (as in
the case of SE)



Metaheuristic Algorithms - Lecture 6 13

Genetic Programming
Principal contributor: J. Koza (1990)

Official web site: www.genetic-programming.org

• GP is an automated method for creating a working computer
program from a high-level statement of a problem.

• GP starts from a high-level statement of “what needs to be
done” and automatically creates a computer program to solve
the problem.



Metaheuristic Algorithms - Lecture 6 14

Genetic Programming

The result is a program or an
“executable” expression

Simplest example: symbolic regression



Metaheuristic Algorithms - Lecture 6 15

Genetic Programming
Numeric regression

Input data:
- pairs of values: (arg, val)
- model which depends on

some parameters(e.g.: linear
model, quadratic model etc)

Output: values of the model
parameters

Symbolic regression

Input data:
- pairs of values : (arg, val)
- alphabets of terminals (variables,

constants) and nonterminals
(operators, functions)

Output: expression which describes
the dependence between the
output variable (predicted value)
and the input variable (predictor)



Metaheuristic Algorithms - Lecture 6 16

Genetic Programming
Numerical regression

Input data:
(1,3),(2,5),(3,7),(4,9)

Model:  f(x)=ax+b

Result:  a=2   b=1

Search in the parameter
space

Symbolic regression

Input data:
(1,3),(2,5),(3,7),(4,9)

Alphabet: +,*,-,/,constants,x

Result: 2*x+1 or x+x+1 or any other
equivalent expression

Search in the space of expressions

http://alphard.ethz.ch/gerber/approx/default.html



Metaheuristic Algorithms - Lecture 6 17

Genetic Programming
Encoding: the individuals are usually tree-like structures

Example 1: arithmetical expression
a*b+sin(c)

Components:

Nonterminals: operators and
functions

Terminals: variables, constants
(fixed or randomly generated –
called ephemeral random
constants ), 0-arity functions

+

*

a b c

sin

Prefixed form:  +*a b sin c (preorder )
Postfixed form: a b * c sin + (postorder)



Metaheuristic Algorithms - Lecture 6 18

Genetic Programming
Encoding: the individuals are usually tree-like structures

Example 2:  C code

s=0;
i=0;
while (i<n)

{ i=i+1;
s=s+i;
}

;

;

= =

s 0 i 0

while

<

i n

;

=

i i+1

s=s+i

Problem: the tree representation can be complex even for simple
programs



Metaheuristic Algorithms - Lecture 6 19

Genetic Programming

Summary: the terminals and nonterminals sets are chosen depending on the
problem to be solved



Metaheuristic Algorithms - Lecture 6 20

Genetic Programming

Overall structure of a GP
algorithm [Koza, 2003]

Remark: The evolutionary
operators (selection,
crossover, mutation) are
applied alternatively, i.e.
either crossover or
mutation is applied



Metaheuristic Algorithms - Lecture 6 21

Genetic Programming
Implementation:

- classical variant:  LISP
- lists corresponding to
prefixed description of
expressions

Difficulty: all elements
should be syntactically
correct

Generation function -
parameters

T: terminals
N: nonterminals
A: tree depth

Generate(T,N,A)
IF A=0 THEN expr:=choose(T)
ELSE
fct:=choose(N)
IF (unary(fct)) THEN

arg:=generate(T,N,A-1)
expr:=(fct,arg)

IF (binary(fct)) THEN
arg1:=generate(T,N,A-1)
arg2:=generate(T,N,A-1)
expr:=(fct,arg1,arg2)

RETURN expr



Metaheuristic Algorithms - Lecture 6 22

Genetic Programming
Other types of population elements:

• Decision trees

• If-then rules

• Neural networks

• Logical expressions

• Binary decision diagrams

• Grammars Grammatical Evolution



Metaheuristic Algorithms - Lecture 6 23

Genetic Programming

Fitness computation:

- the expression (phenotype) corresponding to each chromosome
(genotype) is evaluated for a test data set

- the fitness of a chromosome is higher if the value obtained by
evaluating the expression is close to the desired value



Metaheuristic Algorithms - Lecture 6 24

Genetic Programming
Evaluation:



Metaheuristic Algorithms - Lecture 6 25

Genetic Programming
Crossover: two parents (trees) generate two offspring (also trees) by

swapping some subtrees

+

*

a b c

sin

*

-

a b 2

*

exp

c

a*b+sin(c) (a-b)*2*exp(c)



Metaheuristic Algorithms - Lecture 6 26

Genetic Programming
Crossover: two parents (trees) generate two offspring (also trees) by

swapping some subtrees

+

exp

c

sin

*

-

a b 2

*

*

a

exp(c)+sin(c) (a-b)*(2*(a*b))

c

b



Metaheuristic Algorithms - Lecture 6 27

Genetic Programming
Crossover:
Prefixed forms of parents and children

+ * a b sin c                                   * - a b * 2 exp c
+ exp c sin c                                  * - a b * 2 * a b

Remark. It is similar to the crossover used at GAs but the size for
exchanged portions are usually different.



Metaheuristic Algorithms - Lecture 6 28

Genetic Programming
Mutation: consists of randomly changing some elements

• Change the symbol of a leaf node with another terminal symbol (in
the case of constants this mutation could be as in the case of
evolution strategies)

• Replace a leaf node with a tree (growing mutation)

• Replace the symbol corresponding to an internal node with
another nonterminal from the same class (function with the same
arity)

• Replace a subtree with a terminal node (pruning mutation)

Remark: the mutation can be implemented by a crossover with a
randomly generated element



Metaheuristic Algorithms - Lecture 6 29

Genetic Programming

Mutation: consists of randomly changing some elements

+

*

a b c

sin

+

*

2 b c

sin

+

*

a b -

sin

c 1



Metaheuristic Algorithms - Lecture 6 30

Genetic Programming
Bloat problem: the complex structures become dominant in the

population

Solutions:
• Use a threshold for the structure complexity (e.g. tree depth) and

reject all structures larger (deeper) than the threshold

• Use a penalty term depending on the structure complexity in the
fitness computation; this term will penalize the complex structures



Metaheuristic Algorithms - Lecture 6 31

Genetic Programming
GP related approaches:

• Linear Genetic Programming

• Gene Expression Programming [http://www.gene-expression-
programming.com/]

• Cartesian Genetic Programmming [http://www.cartesiangp.co.uk/]

• Multi-expression Programming [http://www.mep.cs.ubbcluj.ro/]

• Grammatical Evolution [http://www.grammatical-evolution.org/]



Metaheuristic Algorithms - Lecture 6 32

Genetic Programming
Linear Genetic Programming  [Brameier, Banzhaf, 2003]

Particularities:
- Used to generate programs as sequences of

lines (e.g. like in assembling languages)
- The operations involves registers
- Instructions: if and goto
- The commented lines correspond to

processing steps which do not influence the
final result (similar to noncoding portions of
DNA – the so-called introns)

- Crossover: uses a variant of single point
crossover adapted for chromosomes with
different lengths (the program is a
chromosome, each line is a gene)



Metaheuristic Algorithms - Lecture 6 33

Genetic Programming
GEP - Gene Expression Programming (C. Ferreira, 2001):

+

*

a b c

sin

Chromosome:
- Consists of several genes of fixed length
- Each gene has a head and a tail
- The head contains h symbols (both terminals

and nonterminals); the tail contains only
terminals; the number of elements in the tail is
h*(n-1)+1, n=the maximal arity of
functions/operators which appears in the head

Example: gene of length 13 = 6+(6*(2-1)+1)=h+(h*(n-1)+1)
+ * sin a b c b a c c b a a
- The first  6 elements correspond with the expression (breadth first

search of the tree)
- All other elements are terminals (unused in the genotype-phenotype

conversion)



Metaheuristic Algorithms - Lecture 6 34

Genetic Programming
GEP: allow to generate syntactically correct expressions by

extending the head over the symbols in the tail

+

*

a b c

sin

+

*

a b c

+

b

+ * sin a b c b a c c b a a + * + a b c b a c c b a a



Metaheuristic Algorithms - Lecture 6 35

Genetic Programming
GEP: chromosome consisting of two genes:
+ * sin a b c b a c c b a a * * / a b c b a c c b a a

The phenotype corresponding to the chromosome is obtained by
combining the components corresponding to the two genes

+

*

a b c

sin

*

*

a b c

/

b

*



Metaheuristic Algorithms - Lecture 6 36

Genetic Programming
Applications:

• Extracting models from data (e.g. predictive models)

• Extracting rules from data

• Electrical circuits design

• Robust systems synthesis

• Evolvable hardware



Metaheuristic Algorithms - Lecture 6 37

Genetic Programming

• parallel applications design

• cellular automata design

• signal/image processing filters design

• generation of multi-agent strategies

• generation of game strategies

• generation of quantum algorithms



Metaheuristic Algorithms - Lecture 6 38

Genetic Programming

See http://www.human-competitive.org/awards for  GA, ES and GP
applications in generating solutions competitive with those
obtained by human experts

Genetic Programming Software:

• Java: ECJ, TinyGP,
• Matlab: GPLab, GPTips
• C/C++: MicroGP
• Python: DEAP, PyEvolve


