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Evolution Strategies
• Particularities

• General structure

• Recombination

• Mutation

• Selection

• Adaptive and self-adaptive variants
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Particularities
Evolution strategies: evolutionary techniques used in solving

continuous optimization problems

History: the first strategy has been developed in 1964 by Bienert,
Rechenberg si Schwefel (students at the Technical University of
Berlin) in order to design a flexible pipe

Main ideas [Beyer &Schwefel – ES: A Comprehensive Introduction,
2002]:

• Use one candidate (containing several variables) which is
iteratively evolved

• Change all variables at a time, mostly slightly and at random.
• If the new set of variables does not diminish the goodness of the

device, keep it, otherwise return to the old status.
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Particularities

Data encoding: real (the individuals are vectors of float values
belonging to the definition domain of the objective function)

Main operator: mutation (based on parameterized random
perturbation)

Secondary operator: recombination

Particularity: self adaptation of the mutation control parameters
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General structure
Structure of the algorithm
Population initialization
Population evaluation

REPEAT
construct offspring by
recombination

change the offspring by mutation
offspring evaluation
survivors selection

UNTIL <stopping condition>

Problem (minimization):

Find x* in DRn such that

f(x*)<f(x) for all x in D

The population consists of
elements from D (vectors with
real components)

Rmk. A configuration is better if
the value of f is smaller. Resource related

criteria
(e.g.: generations
number, nfe)

Criteria related to the
convergence
(e.g.: value of f)
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Recombination
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Aim: construct an offspring starting from a set of parents

Intermediate (convex): the offspring
is a linear (convex) combination
of the parents
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Discrete: the offspring consists of
components randomly taken
from the parents
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Recombination
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Geometrical recombination:

Heuristic recombination:
y=xi+u(xi-xk)  with xi an element at least as good as xk

u – random value from (0,1)

Remark: introduced by Z. Michalewicz for solving constrained
optimization problems with constraints involving the product of
components (e.g. x1x2…xn > c)
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Recombination
Simulated Binary Crossover (SBX)
• It is a recombination variant (for real encoded data) which simulates the

behavior of one cut point crossover used in the case of binary encoding
• It produces two children c1 and c2 starting from two parents p1 and p2
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Rmk: β is a random value generated

according to the distribution given
by:
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Rmk: n can be any natural value; high values
of n lead to children which are close to the
parents
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Mutation
Basic idea: perturb each element in the population by adding a random

vector
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Particularity: this mutation favors the small changes of the current
element, unlike the mutation typical to genetic algorithms which
does not differentiate small perturbations from large perturbations
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Mutation
Variants:
• The components of the random vector are independent random

variables having the same distribution (E(zizj)=E(zi)E(zj)=0).

Examples:
a)  each component is a random value uniformly distributed in [-s,s]
b)  each component has the normal (Gaussian) distribution N(0,s)

Rmk. The covariance matrix is a diagonal matrix C=diag(s2,s2,…,s2)
with s the only control parameter of the mutation
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Mutation
Variants:
• The components of the random vector are independent random

variables having different distributions (E(zizj)= E(zi)E(zj)= 0)
Examples:

a)  the component zi of the perturbation vector has the uniform
distribution  on [-si,si]

b)  each component of the perturbation vector has the distribution
N(0, si)

Rmk. The covariance matrix is a diagonal matrix:
C=diag(s2

1,s2
2,…,s2

n) and the control parameters of mutation are
s1,s2,…,sn
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Mutation
Variants:
• The components are dependent random variables

Example:
a)  the vector z has the distribution N(0,C)

Rmk. There are  n(n+1)/2 control parameters of the mutation:
s1,s2,…,sn - mutation steps
a1,a2,…,ak - rotation angles (k=n(n-1)/2)

cij = ½ • ( si
2 - sj

2 ) • tan(2 ai)
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Mutation

Variants involving various numbers of parameters

[Hansen, PPSN 2006]
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Control parameters
Problem: choice of the control

parameters

Example: perturbation of type N(0,s)
– s large -> large perturbation
– s small -> small perturbation

Solutions:
– Adaptive heuristic methods

(example: rule 1/5)
– Self-adaptation (change of

parameters by recombination and
mutation)
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Adaptation
1/5 rule.
This is an heuristic rules developed for ES having independent

perturbations characterized by a single parameter, s.

Idea: s is adjusted by using the success ratio of the mutation

The success ratio:
ps= number of mutations leading to better configurations /

total number of mutations

Rmk. 1. The success ratio is estimated by using the results of at least
n mutations (n is the problem size)

2. This rule has been initially proposed for trajectory based ES
(just one element in population)
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Adaptation
1/5 Rule.
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Some theoretical studies conducted for some particular objective
functions (e.g. sphere function) led to the remark that c should
satisfy 0.8 <= c<1 (e.g.: c=0.817)

Remarks:
• This rule was proposed for ESs involving just one candidate; it

cannot be directly extended in the case of populations of
candidates
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Self-adaptation
Self-adaptation
Idea:
• Extend the elements of the population with components

corresponding to the control parameters
• Apply specific recombination and mutation operators also to control

parameters
• Thus the values of control parameters leading to competitive

individuals will have higher chance to survive
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(depending on the
perturbation used in mutation:
- 1 parameter
- n parameters
- n(n+1)/2 parameters
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Self-adaptation
Steps:
• Adjust the control parameters (by applying specific operators)
• Change the decision variables (using the modified control

parameters)
Example: the case of independent perturbations with different

distributions
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 Variables with lognormal distribution
- ensure that  si>0
- it is symmetric around 1

Remark:
• The recommended recombination for the control parameters is the

intermediate recombination
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Other adaptation variants
Variant proposed by Michalewicz (1996):
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• ai and bi are the bounds of the interval corresponding to
component xi

• u is a random value in (0,1)
• t is the iteration counter
• T is the maximal number of iterations
Rmk: the use of the maximal number of iterations to control the

amount of iterations is used in many metaheuristics
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Other adaptation variants
CMA – ES (Covariance Matrix Adaptation –ES)  [Hansen, 1996]
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Survivors selection
Variants:

),( 

)(  

From the set of μ parents construct λ> μ offspring and starting
from these select the best μ survivors (the number of
offspring should be larger than the number of parents)

From the set of μ parents construct λ offspring and from the
joined population of parents and offspring select the best
μ survivors (truncation selection). This is an elitist selection
(it preserves the best element in the population)

Remark: if the number of parents is  rho the usual notations are:

)/(   ),/( 
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Survivors selection

Particular cases:

(1+1) – from one parent generate one offspring and chose the

best one

(1,/+λ) – from one parent generate several offspring and choose
the best element

(μ+1) – from a set of μ construct an offspring and insert it into
population if it is better than the worst element in the
population
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Survivors selection
The variant (μ+1) corresponds to the so called steady state

(asynchronous) strategy

Generational strategy:
- At each generation is

constructed a new
population of offspring

- The selection is applied to
the offspring or to the
joined population

- This is a synchronous
process

Steady state strategy:
- At each iteration only one

offspring is generated; it is
assimilated into population if
it is good enough

- This is an asynchronous
process
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Each element has a limited life time (k generations)
The recombination is based on  parents

Fast evolution strategies:
The perturbation is based on the Cauchy distribution

Normal
(dotted line)

Cauchy

Simulation:
• Ratio of two random variables with

standard normal distribution
(N(0,1))

• Rejection method:  u/v
where u and v are uniformly distributed

in [-1,1] and u2+v2<=1
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Analysis of the behavior of ES

Evaluation criteria:

Effectiveness:
- Value of the objective function

after a given number of
evaluations (nfe)

Success ratio:
- The number of runs in which

the algorithm reaches the goal
divided by the total number of
runs.

Efficiency:
- The number of evaluation

functions necessary such that
the objective function reaches
a given value (a desired
accuracy)
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Summary

Encoding Real vectors

Recombination Discrete or intermediate

Mutation Random additive perturbation
(uniform, Gaussian, Cauchy)

Parents selection Uniformly random

Survivors selection (,) or (+)

Particularity Self-adaptive mutation
parameters


