
Metaheuristics (2017) - lecture 4 1

Population based metaheuristics
• Particularities

• Classes of population based metaheuristics

• General structure

• Main components

• Evolutionary algorithms:

– Encoding
– Selection
– Reproduction: crossover and mutation

Metaheuristics (2017) - lecture 4 2

Population based metaheuristics

Problem solving =

• Search for the solution using a

population of candidate
solutions

• The search is guided by a
function which „measures” the
closeness to the solution

Metaheuristics (2017) - lecture 4 3

Population based metaheuristics
There are two main search

mechanisms:

• exploration = the search space is

explored by the population
elements which collect information
about the problem (it involves
cooperation between the
population elements)

• exploitation = the information
collected during exploration is
exploited and the potential
solution(s) is/are refined (it
involves competition between the
population elements)

Remark: There are many
metaheuristics based on this paradigm

Metaheuristics (2017) - lecture 4 4

Population based metaheuristics
• Evolutionary algorithms

– Genetic Algorithms
– Evolution Strategies
– Evolutionary Programming
– Genetic Programming

• Swarm intelligence algorithms
– Particle Swarm Optimization
– Ant Colony Optimization
– Artificial Bee Colony
– ... a large set of bio-inspired metaheuristics

• Other population based algorithms
– Differential Evolution
– Estimation of Distribution Algorithms

Metaheuristics (2017) - lecture 4 5

General structure

Population initialization (random or based on some specific heuristics)
Population evaluation (computation of the objective function value(s))
REPEAT
 Construct a new population of candidate solutions
 Evaluate the candidate solutions
 Select the elements of a new population
UNTIL <stopping condition>

Remark:
• The generation of new candidate solutions depend on the algorithm type
• At each cycle (generation) an entire new population is constructed and it

competes with the previous population for „survival” (this is a so-called
generational or synchronous updating strategy)

Metaheuristics (2017) - lecture 4 6

General structure
Variant: the candidate solutions are analyzed and potentially assimilated into

population just after their generation (steady state or asynchronous updating
strategy)

Population initialization: (s1,s2,...,sm)
Population evaluation (computation of the objective function value(s))
REPEAT
 FOR i =1:m
 construct a new candidate solution (s’i)
 evaluate the new candidate solution
 decide if the new candidate solution is accepted into the population
UNTIL <stopping condition>

Remark: a new candidate solution is usually accepted if it is better than the worst

element of the current population

Metaheuristics (2017) - lecture 4 7

Evolutionary computing

Evolutionary computing = design and application of techniques inspired by natural
evolution

Inspiration: evolution of species =

• The species evolve by the development of new characteristics during

reproduction caused by crossover and random mutations

• In the evolutionary process the fittest individuals survive (those which are well
adapted to the environment)

Metaheuristics (2017) - lecture 4 8

Analogy: evolution - optimization
Evolutionary process

Natural environment

Individual (chromosome)

Population of individuals

Fitness (degree of adaptation to

the environment)

Selection

Reproduction (crossover and

mutation)

Problem solving

Information about the problem

Configuration (candidate solution)

Population of candidates

Measure of the solution quality

Exploitation mechanism

Exploration mechanism

Metaheuristics (2017) - lecture 4 9

Evolutionary computing: basic notions
Chromosome = set of genes

corresponding to an individual
(potential solution for the
problem)

Population = finite set of individuals

(chromosomes, candidate
solutions)

Genotype = the pool of all genes of

an individual or population

Phenotype = the set of all features

represented by a genotype

(1,0,0,1)

{(0,0,0,0), (0,0,1,1),

(1,0,0,1),(1,0,1,0)}

{0,3,9,10}

Metaheuristics (2017) - lecture 4 10

Evolutionary computing: basic notions

Fitness = measure of the quality of
an individual (with respect to the
problem to be solved)

Generation = stage in the

evolutionary process of a
population (iteration in the
search process)

Reproduction = generation of new

individuals (offsprings) starting
from the current population
(parents) by

 - crossover
 - mutation

= find the binary string which
maximizes the number of ones

(1,0,0,1)  2

Crossover:
(1,0,0,1)  (1,0,1,1)
(0,0,1,1)  (0,0,0,1)
Mutation:
(1,0,1,1)  (1,1,1,1)

Ex: ONEMAX problem

Metaheuristics (2017) - lecture 4 11

Evolutionary computing: applications
Scheduling: vehicle routing problems, timetabling, routing in

telecommunication networks

Design: digital circuits, filters, neural networks

Modelling: predictive models in economy, finances, medicine etc.

Data mining: design of classification systems in engineering, biology,

medicine etc.

Metaheuristics (2017) - lecture 4 12

Designing an Evolutionary
Algorithm

Components:

Problem

Encoding

Evaluation

Crossover

Mutation

Selection

Metaheuristics (2017) - lecture 4 13

Structure of an EA

Population initialization
Population evaluation
REPEAT
 Parents selection
 Offspring generation by
 Crossover
 Mutation
 Offspring evaluation
 Survivors selection
UNTIL <stopping condition>

Metaheuristics (2017) - lecture 4 14

Directions in Evolutionary Computing
Genetic Algorithms (Holland, 1962-

1967):
 Encoding: binary
 Crossover: main operator
 Mutation: secondary operator
 Applications: combinatorial

optimization

Genetic Programming (Koza, 1990):
 Encoding: tree-like structures
 Crossover: main operator
 Mutation: secondary operator
 Applications: programs evolution

Evolution Strategies
(Rechenberg,Schwefel 1965):

 Encoding: real
 Mutation: main operator
 Recombination: secondary operator
 Applications: continuous optimization

Evolutionary Programming (L. Fogel,
D. Fogel, 1960-1970):

 Encoding: real / state digrams
 Mutation: the only operator
 Applications: continuous

optimization

Metaheuristics (2017) - lecture 4 15

Encoding

• Is a key element when in the design of an evolutionary algorithm
• The encoding method is related to the problem to be solved

Variants:

• Binary encoding (the classical variant for genetic algorithms - GA)

• Real encoding (appropriate for continuous optimization, used in

Evolution Strategies - ES)

• Specific encoding (e.g. permutation, tree, graph etc – used in
Evolutionary Programming and Genetic Programming)

Metaheuristics (2017) - lecture 4 16

Binary encoding
Chromosome = binary sequence
Search space: {0,1}n, n is given by the problem size

Examples:
1. ONEMAX: find the binary sequence (x1,…,xn) which maximizes

the function f(x1,…,xn)=x1+…+xn

2. Knapsack: there is a set of n objects of weights (w1,…,wn) and
values (v1,…,vn) and a knapsack of capacity C; find a subset of
objects which can be included in the knapsack without
overpassing its capacity and such that the total value of selected
objects is maximal

 Encoding: (s1,…,sn)
 si=0 object i is not selected
 si=1 object i is selected

Metaheuristics (2017) - lecture 4 17

Binary encoding
3. Optimization of a function defined on a continuous domain.

f:[a1,b1]x...x[an,bn]  R

X=(x1,…,xn)  V=(v1,…,vn)  U=(u1,…un)
  Y=(y1,…,yr, yr+1,…y2r,… ,ynr)

vi=(xi-ai)/(bi-ai) (vi belongs to [0,1])

ui=[vi*(2r-1)] (ui is a natural number from {0,… 2r-1} => it can be

represented in base 2 on r positions)

(yr(i-1)+1,…yri) = binary representation of ui

Metaheuristics (2017) - lecture 4 18

Binary encoding
Remark. The binary encoding has the disadvantage that close

values can correspond to binary sequences with a large
Hamming distance (ex. 7=(0111)2, 8=(1000)2)

Solution: use of the Gray code (successive values have binary

sequences which are different in only one position)

(b1,…,br)  (g1,…,gr)
g1=b1
gi=(bi-1 + bi) mod 2

Metaheuristics (2017) - lecture 4 19

Binary encoding
Gray code:

(b1,…,br)  (g1,…,gr)
g1=b1

gi=(bi-1 + bi)mod 2

Decoding:

bj=(g1+…+gj) mod 2

Nr. Binary Gray

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

Metaheuristics (2017) - lecture 4 20

Particular encoding
It is specific to the problem to be solved

Example: permutation-like encoding
 (s1,s2,…,sn), si in {1,…,n}, si<>sj for all i<>j

Problem: TSP
 si = index of the town visited at step i

Remarks. It ensures the fact that the constraints are satisfied.

Metaheuristics (2017) - lecture 4 21

Evaluation of the population
elements

Fitness
 - measures the quality of an individual
 - as the value of the fitness is larger the probability of the element

to survive is larger

Problem: unconstrained optimization
The fitness function is proportional with the objective function (for a

maximization problem) and inverse proportional with the objective
function (for a minimization problem)

Problem: constrained optimization
The fitness function depends both on the objective function and on the

constraints

Metaheuristics (2017) - lecture 4 22

Evaluation of the population
elements

Constraints: included in the objective function by using the penalty
method

2

1

,1 ,0)(

,1 ,0)(

)(max

kixh

kixg

xf

i

i

Dx

=≥

==
∈





<−
≥

=

>>−−= ∑∑
==

0 ,
0 ,0

)(

0,0 ,))(()()()(
21

11

2

uu
u

u

baxhbxgaxfxF
k

i
i

k

i
i

ϕ

ϕ

(no penalty if the constraint is satisfied)
(the penalty is larger if the constraint is
not satisfied)

Metaheuristics (2017) - lecture 4 23

Evaluation of the population
elements

0

max

1

1

≥−∑

∑

=

=

n

i
ii

i

n

i
is

swC

sv

1 ,0,

 daca ,

 daca ,
)(

1 11

1 1

=+>










>







−−

≤
=

∑ ∑∑

∑ ∑

= ==

= =

baba

CswCswbsva

Cswsv
sF n

i

n

i
ii

n

i
iiii

n

i

n

i
iiii

Fitness function

Rmk: the weights a and b control the relative importance of the two
componente: objective function and constraints

Example: knapsack problem

Metaheuristics (2017) - lecture 4 24

Selection
Aim:
 - decide which of the elements from the current populations will be

used to construct the offspring (parents selection)
 - decide which of the elements from the offspring population will

belong to the next generation (survivors selection)
Basic idea:
 - the elements with a high fitness have a higher chance to be

selected
Selection mechanisms:
 - proportional selection
 - rank based selection
 - tournament selection
 - truncation selection

Metaheuristics (2017) - lecture 4 25

Proportional selection
Current population: P=(x1,…,xm)

Fitness values:
 (F1,…,Fm)

Selection probabilities:
 pi=Fi/(F1+…+Fm)

Rmk. If Fi are not strictly larger

than 0 than they can be
changed as follows:

 F’i=Fi-min(Fi)+eps

Steps:

a) Compute the selection

probabilities
b) Generate random values

according to the distribution
 1 2 … m
 p1 p2 … pm

Implementation:
 (i) “Roulette Wheel”
 (ii) “Stochastic Universal

Sampling” (SUS)

Metaheuristics (2017) - lecture 4 26

Proportional Selection

Roulette Wheel
- Let us consider a roulette

divided in m sectors having
areas proportional to the
selection probabilities.

- Spin off the roulette and
the index of the sector in
front of the indicator gives
the element to be selected
from the population

Example:
 1 2 3 4
 0.2 0.4 0.3 0.1

1 2

3
4 2

1
4

3

Metaheuristics (2017) - lecture 4 27

Proportional selection

Implementation:

Roulette (p[1..m])
 i=1
 s=p[1]
 u=random(0,1)
 while s<u do
 i=i+1
 s=s+p[i]
 endwhile
 return i

Rmk.

1. This algorithm corresponds to the

simulation of a random variable
starting from its distribution

2. One run gives the index of one
element

3. To generate simultaneously the
indices of several elements, the
SUS (Stochastic Universal
Sampling) variant can be used

Metaheuristics (2017) - lecture 4 28

Proportional selection

Stochastic Universal Sampling
Idea:

Algorithm:
SUS(p[1..m],k)
 u=random(0,1/k)
 s=0
 for i=1,m do
 c[i]=0
 s=s+p[i]
 while u<s do
 c[i]=c[i]+1
 u=u+1/k
 endwhile
 endfor
 Return c[1..m]

Rmk: k represents the number
of elements which should
be selected

c[1..m] will contain the number
of copies of each element

1 2

3
4

Metaheuristics (2017) - lecture 4 29

Proportional selection

Disadvantages:

1. If the objective function does not have positive values the fitness

values should be transformed

2. If the difference between the fitness value of the best element and
that of other elements is large then it is possible to fill the
populations with copies of the best element (this would stop the
evolutionary process)

Metaheuristics (2017) - lecture 4 30

Rank based selection

Particularities:
 the selection probabilities are computed based on the rank of

elements in an increasingly sorted list by fitness (in the case o a
maximization problem)

Steps:
 1. increasingly sort the fitness values
 2. each distinct value in the list will have a rank (the smallest fitness

value corresponds to rank 1)
 3. divide the population in classes of elements having the same rank

(e.g. k classes)
 4. compute the selection probabilities: Pi= i/(1+2+…+k)
 5. select classes using the roulette wheel or SUS methods; randomly

select an element from each class.

Metaheuristics (2017) - lecture 4 31

Tournament selection

Idea:
 an element is selected based on the result of a comparison with

other elements in the population

The following steps should be followed to select an element:

1. Randomly select k elements from the population
2. From the k selected elements choose the best one

Remark.

1. Typical case: k=2

Metaheuristics (2017) - lecture 4 32

Truncated selection

Idea:
 from the joined population of parents and offspring the k best

elements are selected

Remark.
1. This is the only completely deterministic selection
2. It is mainly used for evolution strategies

Metaheuristics (2017) - lecture 4 33

Properties of selection

Elitism:

– A selection method has the property of elitism if the best
element in population is always selected as survivor (it always
remains in the population for the next generations)

– Truncation selection is the only method satisfying always this
property

– In order to ensure the elitism the best element of the current
population can be explicitly inserted in the new population (e.g.
by replacing the worst element)

Metaheuristics (2017) - lecture 4 34

Properties of selection

Selection pressure:

– It measures the likelihood that the best element in the
population will take over the population

– A strong selection pressure generates a high exploitation and
reduces the exploration of the search space (it could lead to
local optima or stagnation)

– In the case of probabilistic selection (e.g. proportional
selection, tournament selection) the selection pressure can be
measured by using the “takeover time” = number of
generations needed to fill the entire population with copies of
the best element if only selection would be applied

Metaheuristics (2017) - lecture 4 35

Crossover

Aim: combine two or several elements in the population in order to
obtain one or several offsprings

Remark: in genetic algorithms there are usually two parents

generating two children

Variants:
 - one cut-point
 - uniform
 - convex
 - tailored for a given problem

Metaheuristics (2017) - lecture 4 36

Cut-points crossover
One cut point Two cut points

Children

Parents Parents

Children

Metaheuristics (2017) - lecture 4 37

Cut-points crossover
Remarks:

1. For each pair of selected parents the crossover is applied with a

given probability (0.2<=Pc<=0.9)

2. The cut points are randomly selected

3. Numerical experiments suggest that two cut-points crossover leads
to better results than one cut-point crossover

Metaheuristics (2017) - lecture 4 38

Uniform crossover
Particularity : the genes of offspring are randomly selected from

the genes of parents

Notations: x =(x1,…xn), y =(y1,…,yn) – parents
 x’=(x’1,…x’n), y’=(y’1,…,y’n) – offspring





=
=

=





=

 if ,
 if ,

p-1y probabilit with,
py probabilit with,

'

'
'

'

iii

iii
i

i

i
i

yxx
xxy

y

y
x

x

Metaheuristics (2017) - lecture 4 39

Convex crossover
Specific: is used for vectors of real values

Notations: x =(x1,…xn), y =(y1,…,yn) – parents
 x’=(x’1,…x’n), y’=(y’1,…,y’n) – offsprings

iii

iii

xaayy
yaaxx

)1(

)1(
'

'

−+=

−+=

Remark.
• It can be extended in the case of an arbitrary number of parents -

only one offspring is generated

• The coefficient a can be randomly selected from (0,1)
• More general variants:

– The coefficient can be chosen from the interval (-p,p+1)
– A different random value can be chosen for each component

iiiii

iiiii

xbyby
yaxax

)1(

)1(
'

'

−+=

−+=

Metaheuristics (2017) - lecture 4 40

Crossover for permutation – like
elements

Aim: include heuristic schemes which are particular

Example: TSP (a tour is given by the order of visiting the towns)

Parents: A B C D E F G Cutpoint: 3
 A B E G D C F

Offspring: A B C E G D F
 A B E C D F G

Metaheuristics (2017) - lecture 4 41

Mutation
Aim: it allows to introduce new genes in the gene pool (which are

not in the current genotype)

Remark: the mutation depends on the encoding variant

Binary encoding: the mutation consists of complementing some

randomly selected genes

Real encoding: random perturbation

Specific encoding: perturbation based on particular heuristics

Variants:
1. Local (at chromosome level)
2. Global (at gene pool level)

Metaheuristics (2017) - lecture 4 42

Mutation
Chromosome level

Steps:

1. Select chromosomes to be mutated (using a small mutation

probability)

2. For each selected chromosome select a random gene which
is mutated

Remark:
The mutation probability is correlated with the population size (e.g.

Pm=1/m)

Metaheuristics (2017) - lecture 4 43

Mutation
Pool gene level

Assumptions: all chromosomes are concatenated, thus they form a

long binary sequence

Mutation: All genes are visited and for each one is decided (based

on a mutation probability) if it is mutated or not

Remark:
1. This variant allows to change several genes of the same

chromosome

Metaheuristics (2017) - lecture 4 44

Control parameters
The behavior of evolutionary algorithms is influenced by the

parameters which control the structure of the population and
the evolutionary mechanisms

Control parameters:
• Population size
• Parameters involved in the stopping condition: maximal number

of generations, maximal number of objective function
evaluations, maximal number of stagnation steps etc

• Parameters involved in selection:
– Sample size in the case of tournament selection

• Parameters involved in crossover:
– Crossover probability

• Parameters involved in mutation:
– Mutation probability
– Parameters which correspond to the probability distributions used in

random perturbation

	Population based metaheuristics
	Population based metaheuristics
	Population based metaheuristics
	Population based metaheuristics
	General structure
	General structure
	Evolutionary computing
	Analogy: evolution - optimization
	Evolutionary computing: basic notions
	Evolutionary computing: basic notions
	Evolutionary computing: applications
	Designing an Evolutionary Algorithm
	Structure of an EA
	Directions in Evolutionary Computing
	Encoding
	Binary encoding
	Binary encoding
	Binary encoding
	Binary encoding
	Particular encoding
	Evaluation of the population elements
	Evaluation of the population elements
	Evaluation of the population elements
	Selection
	Proportional selection
	Proportional Selection
	Proportional selection
	Proportional selection
	Proportional selection
	Rank based selection
	Tournament selection
	Truncated selection
	Properties of selection
	Properties of selection
	Crossover
	Cut-points crossover
	Cut-points crossover
	Uniform crossover
	Convex crossover
	Crossover for permutation – like elements
	Mutation
	Mutation
	Mutation
	Control parameters

