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Population based metaheuristics 
• Particularities  

 
• Classes of population based metaheuristics 

 
• General structure 

 
• Main components 

 
• Evolutionary algorithms: 

– Encoding 
– Selection 
– Reproduction:  crossover and mutation 

 
 



Metaheuristics (2017) - lecture 4 2 

Population based metaheuristics 
 

Problem solving =  
 
• Search for the solution using a 

population of candidate 
solutions 
 

• The search is guided by a 
function which „measures” the 
closeness to the solution 
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Population based metaheuristics 
There are two main search 

mechanisms: 
 
• exploration = the search space is 

explored by the population 
elements which collect information 
about the problem (it involves 
cooperation between the 
population elements) 

• exploitation = the information 
collected during exploration is 
exploited and the potential 
solution(s) is/are refined (it 
involves competition between the 
population elements) 

Remark:  There are many 
metaheuristics based on this paradigm 
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Population based metaheuristics 
• Evolutionary algorithms 

– Genetic Algorithms 
– Evolution Strategies 
– Evolutionary Programming 
– Genetic Programming 

• Swarm intelligence algorithms 
– Particle Swarm Optimization 
– Ant Colony Optimization 
– Artificial Bee Colony 
– ...  a large set of bio-inspired metaheuristics 

• Other population based algorithms 
– Differential Evolution 
– Estimation of Distribution Algorithms 
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General structure 
 
Population initialization (random or based on some specific heuristics) 
Population evaluation (computation of the objective function value(s)) 
REPEAT 
     Construct  a new population of candidate solutions  
     Evaluate  the candidate solutions 
     Select the elements of a new population 
UNTIL <stopping condition> 
 
Remark:   
• The generation of new candidate solutions depend on the algorithm type 
• At each cycle (generation) an entire new population is constructed and it 

competes with the previous population for „survival” (this is a so-called 
generational or synchronous updating strategy) 
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General structure 
Variant:  the candidate solutions are analyzed and potentially assimilated into 

population just after their generation (steady state or asynchronous updating 
strategy)  

Population initialization: (s1,s2,...,sm)  
Population evaluation (computation of the objective function value(s)) 
REPEAT 
     FOR i =1:m  
          construct a new candidate solution  (s’i ) 
          evaluate the new candidate solution 
          decide if the new candidate solution is accepted into the population 
UNTIL <stopping condition> 
 
Remark: a new candidate solution is usually accepted if it is better than the worst 

element of the current population 
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Evolutionary computing 
 

Evolutionary computing = design and application of techniques inspired by natural 
evolution 

 
Inspiration:  evolution of species =  
 
• The species evolve by the development of new characteristics during 

reproduction caused by crossover and random mutations  
 

• In the evolutionary process the fittest individuals survive (those which are well 
adapted to the environment) 
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Analogy: evolution - optimization 
Evolutionary process 
 
Natural environment 
 
Individual (chromosome) 
 
Population of individuals 
 
Fitness (degree of adaptation to 

the environment) 
 
Selection 
 
Reproduction (crossover and 

mutation) 

Problem solving 
 
Information about the problem 
 
Configuration (candidate solution) 
 
Population of candidates 
 
Measure of the solution quality 
 
Exploitation mechanism 
 
Exploration mechanism 
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Evolutionary computing: basic notions 
Chromosome = set of genes 

corresponding to an individual 
(potential solution for the 
problem) 

 
Population = finite set of individuals  

(chromosomes, candidate 
solutions) 

 
Genotype = the pool of all genes of 

an individual or population 
 
Phenotype = the set of all features 

represented by a genotype 
 

(1,0,0,1) 
 
 
 
{(0,0,0,0), (0,0,1,1), 

(1,0,0,1),(1,0,1,0)} 
 
 
 
 
{0,3,9,10} 
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Evolutionary computing: basic notions 

Fitness = measure of the quality of 
an individual (with respect to the 
problem to be solved) 

 
Generation = stage in the 

evolutionary process of a 
population (iteration in the 
search process) 

 
Reproduction = generation of new 

individuals (offsprings) starting 
from the current population 
(parents) by 

 -  crossover 
     -  mutation 
 

= find the binary string which 
maximizes the number of  ones 

(1,0,0,1)   2 
 
 
 
 
Crossover: 
(1,0,0,1)   (1,0,1,1) 
(0,0,1,1)   (0,0,0,1) 
Mutation: 
(1,0,1,1)  (1,1,1,1) 
 

Ex: ONEMAX problem 



Metaheuristics (2017) - lecture 4 11 

Evolutionary computing: applications 
Scheduling:  vehicle routing problems, timetabling, routing in 

telecommunication networks    
 
Design:  digital circuits, filters, neural networks 
 
Modelling:  predictive models in economy, finances, medicine etc.  
 
Data mining:  design of classification systems in engineering, biology, 

medicine etc.  
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Designing an Evolutionary 
Algorithm 

Components: 

Problem 

Encoding 

Evaluation 

Crossover 

Mutation 

Selection 
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Structure of an EA 
 
Population initialization 
Population evaluation 
REPEAT 
     Parents selection 
     Offspring generation by 
          Crossover 
          Mutation 
     Offspring evaluation 
     Survivors selection 
UNTIL <stopping condition> 
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Directions in Evolutionary Computing  
Genetic Algorithms (Holland, 1962-

1967): 
 Encoding: binary 
     Crossover:  main operator 
     Mutation: secondary operator 
     Applications: combinatorial 

optimization 

Genetic Programming (Koza, 1990): 
 Encoding: tree-like structures 
     Crossover:  main operator 
     Mutation: secondary operator  
     Applications: programs evolution 

Evolution Strategies 
(Rechenberg,Schwefel 1965): 

 Encoding: real 
     Mutation: main operator 
     Recombination:  secondary operator  
     Applications: continuous optimization 

Evolutionary Programming (L. Fogel, 
D. Fogel, 1960-1970): 

 Encoding: real / state digrams 
     Mutation: the only operator 
     Applications: continuous 

optimization 
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Encoding 
 

• Is a key element when in the design of an evolutionary algorithm 
• The encoding method is related to the problem to be solved 

 
Variants: 
 
• Binary encoding (the classical variant for genetic algorithms - GA) 

 
• Real encoding (appropriate for continuous optimization, used in 

Evolution Strategies - ES ) 
 

• Specific encoding (e.g. permutation, tree, graph etc – used in 
Evolutionary Programming and Genetic Programming) 
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Binary encoding 
Chromosome = binary sequence 
Search space:  {0,1}n,  n is given by the problem size 
 
Examples: 
1. ONEMAX:   find the binary sequence (x1,…,xn) which maximizes 

the function  f(x1,…,xn)=x1+…+xn 

2. Knapsack:  there is a set of n objects of weights (w1,…,wn) and 
values (v1,…,vn) and a knapsack of capacity C; find a subset of 
objects which can  be included in the knapsack without 
overpassing its capacity and such that the total value of selected 
objects is maximal 

        Encoding:  (s1,…,sn) 
                  si=0 object i is not selected 
                  si=1 object i is selected 
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Binary encoding 
3. Optimization of a function defined on a continuous domain. 
 
f:[a1,b1]x...x[an,bn]  R 
 
X=(x1,…,xn)    V=(v1,…,vn)  U=(u1,…un)  
                      Y=(y1,…,yr, yr+1,…y2r,… ,ynr) 
 
vi=(xi-ai)/(bi-ai)    (vi belongs to [0,1]) 
 
ui=[vi*(2r-1)]       (ui is a natural number from {0,… 2r-1} => it can be 

represented in base 2 on r positions) 
 

(yr(i-1)+1,…yri)  = binary representation of ui 
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Binary encoding 
Remark.  The binary encoding has the disadvantage that close 

values can correspond to binary sequences with a large 
Hamming distance (ex. 7=(0111)2,  8=(1000)2) 

       
 
Solution:  use of the Gray code (successive values have binary 

sequences which are different in only one position) 
 
 
(b1,…,br)   (g1,…,gr) 
g1=b1 
gi=(bi-1 + bi ) mod 2 
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Binary encoding 
Gray code: 
 
(b1,…,br)   (g1,…,gr) 
g1=b1 

gi=(bi-1 + bi )mod 2 
 
Decoding: 
 
bj=(g1+…+gj ) mod 2 
 
 
 

Nr. Binary Gray 

0 000 000 

1 001 001 

2 010 011 

3 011 010 

4 100 110 

5 101 111 

6 110 101 

7 111 100 
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Particular encoding 
It is specific to the problem to be solved 
 
Example: permutation-like encoding 
                   (s1,s2,…,sn),     si in  {1,…,n}, si<>sj for all i<>j 
 
Problem:   TSP 
                   si = index of  the town visited at step i 
 
Remarks. It ensures the fact that the constraints are satisfied.  



Metaheuristics (2017) - lecture 4 21 

Evaluation of the population 
elements 

Fitness  
      -  measures the quality of an individual  
      -  as the value of the fitness is larger the probability of the element 

to survive is larger 
 
Problem: unconstrained optimization 
The fitness function is proportional with the objective function (for a 

maximization problem) and inverse proportional with the objective 
function (for a minimization problem)  

 
Problem:  constrained optimization 
The fitness function depends both on the objective function and on the 

constraints 
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Evaluation of the population 
elements 

Constraints: included in the objective function by using the penalty 
method  
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(the penalty is larger if the constraint is  
not satisfied ) 
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Evaluation of the population 
elements 
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Fitness function 

Rmk: the weights a and b control the relative importance of the two 
componente: objective function and constraints 

Example: knapsack problem 
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Selection 
Aim:  
    -  decide which of the elements from the current populations will be 

used to construct the offspring (parents selection)  
    -  decide which of the elements from the offspring population will 

belong to the next generation (survivors selection)  
Basic idea: 
    -  the elements with a high fitness have a higher chance to be 

selected 
Selection mechanisms:   
   -  proportional selection 
   -  rank based selection 
   -  tournament selection 
   -  truncation selection 
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Proportional selection 
Current population:  P=(x1,…,xm) 
 
Fitness values: 
         (F1,…,Fm) 
 
Selection probabilities: 
         pi=Fi/(F1+…+Fm) 
 
Rmk. If Fi are not strictly larger 

than 0 than they can be 
changed as follows: 

        F’i=Fi-min(Fi)+eps  

Steps: 
 
a) Compute the selection 

probabilities 
b) Generate random values 

according to the distribution 
              1    2   …  m 
               p1 p2   …  pm 
 

Implementation: 
   (i) “Roulette Wheel” 
   (ii) “Stochastic Universal 

Sampling” (SUS) 
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Proportional Selection 

Roulette Wheel 
- Let us consider a roulette 

divided in m sectors having 
areas proportional to the 
selection probabilities.  
 

- Spin off the roulette and 
the index of the sector in 
front of the indicator gives 
the element to be selected 
from the population 

 

Example: 
       1     2      3     4 
      0.2   0.4   0.3  0.1 

1 2 

3 
4 2 

1 
4 

3 
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Proportional selection 

Implementation: 
 
Roulette (p[1..m]) 
 i=1 
 s=p[1] 
 u=random(0,1) 
 while s<u do  
      i=i+1 
      s=s+p[i] 
    endwhile 
    return i 

 

Rmk. 
 
1. This algorithm corresponds to the 

simulation of a random variable 
starting from its distribution 

2. One run gives the index of one 
element 

3. To generate simultaneously the 
indices of several elements,  the 
SUS (Stochastic Universal 
Sampling) variant can be used 
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Proportional selection 

Stochastic Universal Sampling 
Idea: 

Algorithm: 
SUS(p[1..m],k) 
   u=random(0,1/k) 
   s=0 
   for i=1,m  do 
        c[i]=0 
        s=s+p[i] 
        while u<s do 
             c[i]=c[i]+1 
             u=u+1/k 
         endwhile 
   endfor 
   Return c[1..m] 

Rmk:  k represents the number 
of elements which should 
be selected 

c[1..m]  will contain the number 
of copies of each element 

1 2 

3 
4 
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Proportional selection 

Disadvantages: 
 
1. If the objective function does not have positive values the fitness 

values should be transformed 
 

2. If the difference between the fitness value of the best element and 
that of other elements is large then it is possible to fill the 
populations with copies of the best element (this would stop the 
evolutionary process) 
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Rank based selection 

Particularities:   
        the selection probabilities are computed based on the rank of 

elements in an increasingly sorted list by fitness (in the case o a 
maximization problem) 

 
Steps: 
  1.  increasingly sort the fitness values  
  2.  each distinct value in the list will have a rank (the smallest fitness 

value corresponds to rank 1)  
  3.  divide the population in classes of elements having the same rank 

(e.g. k classes) 
  4.  compute the selection probabilities:  Pi= i/(1+2+…+k) 
  5.  select classes using the roulette wheel or SUS methods;  randomly 

select an element from each class. 
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Tournament selection 

Idea:   
        an element is selected based on the result of a comparison with 

other elements in the population 
 
The following steps should be followed to select an element: 
 
1. Randomly select k elements from the population 
2. From the k selected elements choose the best one  

 
Remark.   
 
1. Typical case:  k=2 
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Truncated selection 

Idea:   
       from the joined population of parents and offspring the k best 

elements are selected 
 
Remark. 
1. This is the only completely deterministic selection 
2. It is mainly used for evolution strategies 
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Properties of selection 

Elitism: 
 

– A selection method has the property of elitism if the best 
element in population is always selected as survivor (it always 
remains in the population for the next generations)  

– Truncation selection is the only method satisfying always this 
property 

– In order to ensure the elitism the best element of the current  
population can be explicitly inserted in the new population (e.g. 
by replacing the worst element)  
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Properties of selection 

Selection pressure:  
  

– It measures the likelihood that the best element in the 
population will take over the population  

– A strong selection pressure generates a high exploitation and 
reduces the exploration of the search space (it could lead to 
local optima or stagnation) 

– In the case of probabilistic selection (e.g. proportional 
selection, tournament selection) the selection pressure can be 
measured by using the “takeover time” = number of 
generations needed to fill the entire population with copies of 
the best element if only selection would be applied  
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Crossover 

Aim: combine two or several elements in the population in order to 
obtain one or several offsprings 

 
Remark:  in genetic algorithms there are usually two parents 

generating two children 
 
Variants: 
  - one cut-point 
  - uniform 
  - convex 
  - tailored for a given problem 
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Cut-points crossover 
One cut point Two cut points 

Children 

Parents Parents 

Children 
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Cut-points crossover 
Remarks: 
 
1. For each pair of selected parents the crossover is applied with a 

given probability (0.2<=Pc<=0.9) 
 

2. The cut points are randomly selected  
 

3. Numerical experiments suggest that two cut-points crossover leads 
to better results than one cut-point crossover 
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Uniform crossover 
Particularity :   the genes of offspring are randomly selected from 

the genes of parents 
 
Notations:   x =(x1,…xn),   y =(y1,…,yn) – parents 
                   x’=(x’1,…x’n), y’=(y’1,…,y’n) – offspring 
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Convex crossover 
Specific:   is used for vectors of real values 
 
Notations:   x =(x1,…xn),   y =(y1,…,yn) – parents 
              x’=(x’1,…x’n), y’=(y’1,…,y’n) – offsprings 
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Remark.    
• It can be extended in the case of an arbitrary number of parents  - 

only one offspring is generated 
 

• The coefficient a can be randomly selected from (0,1) 
• More general variants: 

– The coefficient can be chosen from the interval (-p,p+1) 
– A different random value can be chosen for each component 
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Crossover for permutation – like 
elements 

Aim:  include heuristic schemes which are particular 
 
Example: TSP (a tour is given by the order of visiting the towns) 
 
Parents:   A  B  C  D  E  F G Cutpoint:  3 
                 A  B  E  G  D  C  F 
 
Offspring:  A  B  C  E  G  D  F 
                  A  B  E  C  D  F  G  
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Mutation 
Aim:  it allows to introduce new genes in the gene pool (which are 

not in the current genotype) 
 
Remark:  the mutation depends on the encoding variant 
 
Binary encoding:   the mutation consists of complementing some 

randomly selected genes 
 
Real encoding: random perturbation 
 
Specific encoding: perturbation based on particular heuristics 
 
Variants: 
1. Local (at chromosome level) 
2. Global (at gene pool level) 
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Mutation 
Chromosome level 
 
Steps: 
 
1. Select chromosomes to be mutated (using a small mutation 

probability) 
 

2. For each selected chromosome select a random gene which 
is mutated 
 

Remark: 
The mutation probability is correlated with the population size (e.g. 

Pm=1/m) 
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Mutation 
Pool gene level 
 
Assumptions: all chromosomes are concatenated, thus they form a 

long binary sequence   
 
Mutation: All genes are visited and for each one is decided (based 

on a mutation probability) if it is mutated or not 
 
Remark:   
1. This variant allows to change several genes of the same 

chromosome 
 



Metaheuristics (2017) - lecture 4 44 

Control parameters 
The behavior of evolutionary algorithms is influenced by the 

parameters which control the structure of the population and 
the evolutionary mechanisms 

 
Control parameters: 
• Population size 
• Parameters involved in the stopping condition: maximal number 

of generations, maximal number of objective function 
evaluations, maximal  number of stagnation steps etc  

• Parameters involved in selection: 
– Sample size in the case of tournament selection 

• Parameters involved in crossover: 
– Crossover probability 

• Parameters involved in mutation: 
– Mutation probability 
– Parameters which correspond to the probability distributions used in 

random perturbation 
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