
Metaheuristic Algorithms - Lecture 3 1

Trajectory based Search Algorithms

(II)
 • Simulated Annealing (SA)

• Tabu Search (TS)

• Variable Neighborhood Search (VNS)

• Guided Local Search

• Greedy Randomized Adaptive Search Procedure

(GRASP)

Metaheuristic Algorithms - Lecture 3 2

Simulated Annealing
Idea:
 - accept, with some probability, also perturbations which lead to

an increase of the objective function (in the case of minimization
problems)

Inspiration:
 - SA algorithms are inspired by the process of restructuring the

internal configuration in a solid which is annealed (e.g.
crystallization process):

• The solid is heated (up to the melting point): its particles
are randomly distributed.

• The material is the slowly cooled down: its particles are

reorganized in order to reach a low energy state

Contributors: Metropolis(1953), Kirkpatrick, Gelatt, Vecchi
(1983), Cerny (1985)

Metaheuristic Algorithms - Lecture 3 3

Simulated Annealing
Analogy:

Minimization problem:

Objective function

Configuration (candidate solution)

Perturbation of the current

configuration
Parameter which controls the

optimization process

Physical process:

• System energy

• System state

• Change of the system state

• Temperature

Metaheuristic Algorithms - Lecture 3 4

Simulated Annealing
Some physics:
• Each state of the system has a corresponding probability

• The probability corresponding to a given state depends on the

energy of the state and on the system temperature (Boltzmann
distribution)

∑
∈

−=

−=

S

))(exp()(

))(exp(
)(

1)(

s B

B
T

Tk
sETZ

Tk
sE

TZ
sP

E(s) = energy of state s

T = temperature

Z(T)=partition function
 (normalization factor)

kB = Boltzmann constant

Metaheuristic Algorithms - Lecture 3 5

Simulated Annealing
Some physics:
• Large values of T (T goes to infinity): the argument of exp is

almost 0 => the states have all the same probability

• Small values of T (T goes to 0): only the states with non-zero
energy will have non-zero probabilities

∑
∈

−=

−=

S

))(exp()(

))(exp(
)(

1)(

s B

B
T

Tk
sETZ

Tk
sE

TZ
sP

E(s) = energy of state s

T = temperature

Z(T)=partition function
 (normalization factor)

kB = Boltzmann constant

Metaheuristic Algorithms - Lecture 3 6

Simulated Annealing
How can be used these results from physics to solve an optimization

problem ?

• It would be enough to generate configurations according to the

Boltzmann distribution for smaller and smaller values of the
temperature.

• Problem: it is difficult to compute the partition function Z(T) (it
means to compute a sum over all possible configurations in the
search space which is practically impossible for real-world
problems – it would correspond to an exhaustive search)

• Solution: the distribution is approximated by simulating the
evolution of a stochastic process (Markov chain) having as
stationary distribution the Boltzmann distribution => Metropolis
algorithm

Metaheuristic Algorithms - Lecture 3 7

Simulated Annealing
Metropolis algorithm (1953)

Init S(0)
k=0
REPEAT
 S’=perturb(S(k))
 IF f(S’)<f(S(k))
 THEN S(k+1)=S’// (unconditionally)
 ELSE S(k+1)=S’//with probab.min{1,exp(-(f(S’)-f(S(k)))/T)}
 k=k+1
UNTIL “a stopping condition is satisfied”

Metaheuristic Algorithms - Lecture 3 8

Simulated Annealing
Properties of the Metropolis algorithm

• Another acceptance probability:
 P(S(k+1)=S’) = 1/(1+exp((f(S’)-f(S(k))/T))

• Implementation issue: assigning a value with a given probability is

based on generating a random value in (0,1)
 u=Random(0,1)
 IF u<P(S(k+1)=S’) THEN S(k+1)=S’
 ELSE S(k+1)=S(k) //unchanged
• Large values for T -> high acceptance probability for any

configuration (pure random search)
 Small values for T -> High acceptance probabilities only for the

states with low energy values (greedy search - similar to a gradient
descent method)

Metaheuristic Algorithms - Lecture 3 9

Simulated Annealing
Properties of the Metropolis algorithm
• The perturbation rules used to generate new configurations

depend on the problem to be solved

Optimization in continuous
domains

S’=S+z
z=(z1,…,zn)
zi : generated according to the

distribution:

• N(0,T)

• Cauchy(T) (Fast SA)

• etc

Combinatorial optimization

The new configuration is selected

deterministically or randomly
from the neighborhood of the
current configuration

Example:
• TSP: 2-opt transformation
• Knapsack: add/remove an

object (0->1, 1->0)

Metaheuristic Algorithms - Lecture 3 10

Simulated Annealing
Simulated Annealing = repeated application of the Metropolis

algorithm for decreasing values of the temperature

General structure
Init S(0), T(0)
i=0
REPEAT
 apply Metropolis (for kmax iterations)
 compute T(i+1)
 i=i+1
UNTIL T(i)<eps

Problem: How to choose the cooling scheme ?

Metaheuristic Algorithms - Lecture 3 11

Simulated Annealing
Cooling schemes:

T(k)=T(0)/(k+1)

T(k)=T(0)/ln(k+c)

T(k)=aT(k-1) (a<1, ex: a=0.995)

Remark. T(0) should be chosen such that during the first iterations

almost all new configurations are accepted (this ensures a good
exploration of the search space)

Metaheuristic Algorithms - Lecture 3 12

Simulated Annealing
Convergence properties:
If the following properties are satisfied:

• Pg(S(k+1)=x’|S(k)=x)>0 for any x and x’ (the transition

probability between any two configurations is non-zero)

• Pa(S(k+1)=x’|S(k)=x)=min{1,exp(-(f(x’)-f(x))/T)} (Metropolis
acceptance probability)

• T(k)=C/lg(k+c) (logarithmic cooling schedule)

then P(|f(S(k))-f(S*)|<Ɛ) -> 1 when k goes to infinity (for any small Ɛ)
(x(k) is convergent in probability to the global minimum S*)

Metaheuristic Algorithms - Lecture 3 13

Simulated Annealing
Variant: another acceptance probability (Tsallis)

>∆>
≤∆>∆−−

≤∆
= −

110 ,0
110 ,)/)1(1(

0 ,1
)'()1/(1

f-q), (Δf
f-q), (ΔfTfq

f
xP q

a

)1,0(
)()'(

∈
−=∆

q
xfxff

Metaheuristic Algorithms - Lecture 3 14

Simulated Annealing
Example: Travelling Salesman Problem (TSP)
 (TSPLib: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95)

Test instance: eil51 – 51 towns

Parameters:
• 5000 iterations; T is changed at each 100 iterations
• T(k)=T(0)/(1+log(k))

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

Location of towns

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95

Metaheuristic Algorithms - Lecture 3 15

Simulated Annealing
Example: TSP
Test instance: eil51 (TSPlib)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

T(0)=10,cost=478.384

T(0)=1, cost=481.32

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

T(0)=5, cost=474.178

Minimal cost: 426

Metaheuristic Algorithms - Lecture 3 16

Tabu Search
Creator: Fred Glover (1986)

Applicability : mainly combinatorial optimization problems
Particularity:
• It is an iterative local search technique based on the exploration of the

neighborhood of the current element (the neighborhood is defined as the set
of all configurations which can be reached from the current configuration by
applying once the search operator); the search operators are specific to the
problem

• Examples of neighbourhoods of a configuration S:
– TSP: configurations which can be obtained by applying 2-opt transformation to S;
– Knapsack problem: binary vectors which are at a Hamming distance equal to 1 from S
– Assignment problem (bin pack): move from one bin to another one

• It uses a list of prohibited configurations (called tabu list) which contains the
configurations which are not acceptable in the following iterations (usually
the tabu list is implemented as a circular list)

Metaheuristic Algorithms - Lecture 3 17

Tabu Search
General Structure:
S = initial configuration
S*=S
T = [S]
REPEAT

– S’ = the best element from the neighborhood N(S)
which does not belong to T

– If f(S’)<f(S*) then S*=S’
– S=S’ // change accepted even if not better
– Include S in T (if T is too large remove its oldest

element)
UNTIL <stopping condition>

Remarks:
1. If the neighbourhood is too large then it is possible to evaluate only a

sample from the neighbourhood.
2. TS explicitly uses the search history since the tabu list can be interpreted

as a short term memory (to escape from local optima and to explore the
search space)

Metaheuristic Algorithms - Lecture 3 18

Tabu Search
Remark:
• storing complete candidate solutions in the tabu list could be inefficient
• features of the candidate solutions could be stored instead

Examples of features:
• Permutation-type encodings (e.g. TSP): interchange of two elements (e.g.

(i,j) is a feature which denote that si was swapped with si).
• Binary encodings (e.g. knapsack problem): change of a component (e.g.

(i,0) is a feature denoting that si is 0 and (i,1) is a feature denoting that si is
1).

Remarks:
• using features instead of full configurations could introduce some excessive

constraints (some good configurations are excluded)
• to avoid such situations is used a so-called aspiration rule: configurations

better than the best discovered up to the current step are accepted even if
they have prohibited features

Metaheuristic Algorithms - Lecture 3 19

Tabu Search
Intensification:

Aim: exploitation of promising regions (i.e. penalize configurations

which are far away from the current one)

Implementation:
• Count the number of iterations when a component or feature

remains unchanged – the good components are those with large
values of the corresponding counter (this means that they are
preserved in the competition between the current and new
configurations)

• Restart the search process from the best configuration by keeping
the good components/ features fixed (the neighbourhood is
constructed only by changing the other components)

Metaheuristic Algorithms - Lecture 3 20

Tabu Search
Diversification:

Aim: exploration of the unvisited regions (i.e. penalize configurations

which are close to the current one)

Implementation:
• Compute the frequency of values used for each component. The

values with low frequencies are considered under explored
• Restart the search process from configurations which contain

under explored values or change the fitness function by penalizing
the very frequent values of the components in order to stimulate
the search in new (or less explored) regions

Metaheuristic Algorithms - Lecture 3 21

Variable Neighborhood Search
VNS - Variable Neighborhood Search [Mladenovic, P. Hansen, 1997]

Idea: they use a set of neighborhoods V1, V2,...,Vkmax which is
explored in an incremental way; in each neighborhood the search
is done using a local search method

Remark: the neihborhood set for a configuration x is established
depending on the problem to be solved but such that if k1<k2 then
the elements of Vk1(x) can be obtained from x using fewer
operations than are necessary to construct the elements of Vk2(x)
(Vk1(x) can be included in Vk2(x) but it is not necessary)

Example: for the traveling salesman problem Vk (x) can contain the
configurations (routes) obtained from x by applying k swaps of
some randomly selected nodes

Metaheuristic Algorithms - Lecture 3 22

Variable Neighborhood Search
VNS - Variable Neighborhood Search [Mladenovic, P. Hansen, 1997]

General structure
Initialize S (randomly in the search space)
k=1
WHILE k<=kmax DO
 select S’ randomly from Vk(S);
 construct S’’ from S’ by applying a local search method
 IF f(S’’)<f(S) THEN S=S’’; k:=1
 ELSE k:=k+1

Remark: the local search corresponding to a given value of k is NOT
limited to Vk(S)

shaking

Local search

Accept the
change or move

Metaheuristic Algorithms - Lecture 3 23

Guided Local Search
Creators: Voudouris&Tsang, 1999

Idea:
• the objective function is dynamically modified in order to allow the escape

from the local optima regions (the penalized values become less desirable)
• the change is based on the inclusion of some penalty terms corresponding

to features of the candidate solutions which should be avoided (e.g. in the
case of TSP such a feature could be an edge linking two locations)

impact)penalty theof (controlfactor tion regulariza
 parameter penalty

in not is feature the0
in is feature the1

)(

)()()(
1

mod

=
=

−
−

=

+= ∑
=

λ

λ

i

i

i

m

i
i

p
Sthi

Sthi
SI

SIpSfSf

Metaheuristic Algorithms - Lecture 3 24

Guided Local Search
General structure:

S=initial configuration
Repeat
 s=LocalSearch(S,f)
 for <all features i with maximal gain U(s,i)
 (which could be obtained by penalization)>
 pi=pi+1
 endfor
 f=Update(f,p)
until <stopping condition>

impact)penalty theof (control
factor tionregulariza

 parameter penalty
 innot is feature the0

 in is feature the1
)(

)()()(
1

mod

=
=

−
−

=

+= ∑
=

λ

λ

i

i

i

m

i
i

p
Sthi

Sthi
SI

SIpSfSf

ip
ic

p
csIisU

i

i

i

i
i

 feature ofpenalty
 feature ofcost

1
)(),(

=
=

+
=

Metaheuristic Algorithms - Lecture 3 25

GRASP
GRASP = Greedy Randomized Adaptive Search Procedure [Feo &
Resende, 1995]

Idea: GRASP focuses on constructed good initial configurations by ensuring a
compromise between exploration and exploitation

Particularities:
• It is an heuristic which construct the initial configuration component by

component
– For TSP: a location or and edge is added at each step
– For knapsack problem: one object is selected and added at each step

• The key element is the choice of the component to be included in the

candidate solution: GRASP uses a non-uniform random selection in a
ranked list (good elements have higher probability to be selected)

Metaheuristic Algorithms - Lecture 3 26

GRASP
Particularities

• The list size can change in time (adaptive character) between two extreme

cases:
– Size = 1 -> greedy choice (at each step the best component is selected)
– Size = maximal number of possible values (if the selection is uniform this

leads to purely random search)

Metaheuristic Algorithms - Lecture 3 27

GRASP
Overall structure

[Resende& Ribeiro, Greedy randomized adaptive search procedures,
Handbook in Metaheuristics, 2002]

Metaheuristic Algorithms - Lecture 3 28

Summary
Building blocks of trajectory based search methods
• Initialization – a candidate solution is constructed component by component

(random vs greedy)
• Generation of a new candidate

– By construction (typical for the initialization stage)
– By perturbation – based on selection (random vs elitist) from a

neighborhood of the current configuration
• The neighborhood can be fixed or variable (VNS)
• The perturbation can be small (local search) or large (ILS)

• Acceptance of a new candidate
– Only if it is better than the current element (Hill climbing/ descent)
– Accept worse elements (in order to avoid stagnation or cycling)

• With a probability depending on the quality loss and on some control
parameter (SA)

• If better elements have been already analyzed and they are prohibited (TS)

Metaheuristic Algorithms - Lecture 3 29

Summary
Building blocks of trajectory based search methods

• Stopping condition

– Quality –based: a configuration of acceptable quality has been identified

– Behaviour-based: no improvement during the last iterations

– Resource-based: a given number of iterations or objective function evaluations

have been done

Metaheuristic Algorithms - Lecture 3 30

Next lecture

• Population-based metaheuristics

– Main particularities

– General structure

– Main components

– Evolutionary algorithms

	�Trajectory based Search Algorithms (II)�
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Tabu Search
	Tabu Search
	Tabu Search
	Tabu Search
	Tabu Search
	Variable Neighborhood Search
	Variable Neighborhood Search
	Guided Local Search
	Guided Local Search
	GRASP
	GRASP
	GRASP
	Summary
	Summary
	Next lecture

