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Trajectory based Search Algorithms 

(II) 
 • Simulated Annealing (SA) 

 
• Tabu Search (TS) 

 
• Variable Neighborhood Search (VNS) 

 
• Guided Local Search 

 
• Greedy Randomized Adaptive Search Procedure 

(GRASP) 
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Simulated Annealing 
Idea:    
      -  accept, with some probability, also perturbations which lead to 

an increase of the objective function (in the case of minimization 
problems) 

Inspiration: 
 - SA algorithms are inspired by the process of restructuring the 

internal configuration in a solid which is annealed (e.g. 
crystallization process): 

• The solid is heated (up to the melting point):  its particles 
are randomly distributed.  

 
• The material is the slowly cooled down:  its particles are 

reorganized in order to reach a low energy state  
 

Contributors: Metropolis(1953), Kirkpatrick, Gelatt, Vecchi 
(1983), Cerny (1985) 
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Simulated Annealing 
Analogy:    
       

Minimization problem: 
 
Objective function 
 
Configuration (candidate solution) 
 
Perturbation of the current 

configuration 
Parameter which controls the 

optimization process 
       

Physical process: 
 
• System energy  

 
• System state 

 
• Change of the system state 

 
• Temperature    
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Simulated Annealing 
Some physics:   
• Each state of the system has a corresponding probability    

 
• The probability corresponding to a given state depends on the 

energy of the state and on the system temperature (Boltzmann 
distribution) 
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Simulated Annealing 
Some physics:   
• Large values of T (T goes to infinity): the argument of exp is 

almost 0 => the states have all the same probability 
 

• Small values of T (T goes to 0): only the states with non-zero 
energy will have non-zero probabilities 
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Simulated Annealing 
How can be used these results from physics to solve an optimization 

problem ? 
 
• It would be enough to generate configurations according to the 

Boltzmann distribution for smaller and smaller values of the 
temperature.  
 

• Problem: it is difficult to compute the partition function Z(T) (it 
means to compute a sum over all possible configurations in the 
search space which is practically impossible for real-world 
problems – it would correspond to an exhaustive search) 

• Solution:  the distribution is approximated by simulating the 
evolution of a stochastic process (Markov chain) having as 
stationary distribution the Boltzmann distribution => Metropolis 
algorithm  
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Simulated Annealing 
Metropolis algorithm (1953)  
 
Init S(0) 
k=0  
REPEAT 
 S’=perturb(S(k)) 
 IF  f(S’)<f(S(k))  
  THEN S(k+1)=S’// (unconditionally) 
  ELSE S(k+1)=S’//with probab.min{1,exp(-(f(S’)-f(S(k)))/T)} 
 k=k+1 
UNTIL “a stopping condition is satisfied” 
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Simulated Annealing 
Properties of the Metropolis algorithm  
 
• Another acceptance probability:  
                  P(S(k+1)=S’) = 1/(1+exp((f(S’)-f(S(k))/T)) 
 
• Implementation issue: assigning a value with a given probability is 

based on generating a random value in (0,1) 
  u=Random(0,1) 
      IF u<P(S(k+1)=S’) THEN S(k+1)=S’ 
                        ELSE S(k+1)=S(k) //unchanged 
• Large values for T -> high acceptance probability for any 

configuration (pure random search) 
        Small values for T -> High acceptance probabilities only for the 

states with low energy values  (greedy search - similar to a gradient 
descent method)   
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Simulated Annealing 
Properties of the Metropolis algorithm 
• The perturbation rules used to generate new configurations 

depend on the problem to be solved 

Optimization in continuous 
domains 

S’=S+z 
z=(z1,…,zn) 
zi : generated according to the 

distribution: 
 
• N(0,T) 

 
• Cauchy(T)  (Fast SA) 

 
• etc 

Combinatorial optimization 
 
The new configuration is selected 

deterministically or randomly 
from the neighborhood of the 
current configuration  

 
Example:  
• TSP: 2-opt transformation 
• Knapsack: add/remove an 

object (0->1, 1->0) 
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Simulated Annealing 
Simulated Annealing = repeated application of the Metropolis 

algorithm for decreasing values of the temperature 
 
General structure 
Init S(0), T(0) 
i=0  
REPEAT 
    apply Metropolis  (for kmax iterations) 
    compute T(i+1) 
    i=i+1 
UNTIL T(i)<eps 
 
Problem:  How to choose the cooling scheme ? 
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Simulated Annealing 
Cooling schemes: 
 
T(k)=T(0)/(k+1) 
 
T(k)=T(0)/ln(k+c) 
 
T(k)=aT(k-1)  (a<1, ex: a=0.995) 
 
Remark. T(0) should be chosen such that during the first iterations 

almost all new configurations are accepted (this ensures a good 
exploration of the search space) 
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Simulated Annealing 
Convergence properties: 
If the following properties are satisfied: 
 
• Pg(S(k+1)=x’|S(k)=x)>0 for any x and x’ (the transition 

probability between any two configurations is non-zero)  
 

• Pa(S(k+1)=x’|S(k)=x)=min{1,exp(-(f(x’)-f(x))/T)} (Metropolis 
acceptance probability) 
 

• T(k)=C/lg(k+c) (logarithmic cooling schedule) 
 

then P(|f(S(k))-f(S*)|<Ɛ) -> 1 when k goes to infinity (for any small Ɛ)  
(x(k) is convergent in probability to the global minimum S*) 
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Simulated Annealing 
Variant: another acceptance probability (Tsallis) 
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Simulated Annealing 
Example: Travelling Salesman Problem (TSP)   
           (TSPLib:  http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95) 
 
Test instance: eil51  – 51 towns 
 
Parameters:   
•  5000 iterations;  T is changed at each 100 iterations 
• T(k)=T(0)/(1+log(k)) 
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Simulated Annealing 
Example: TSP  
Test instance: eil51 (TSPlib) 
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Tabu Search 
Creator: Fred Glover (1986) 
 
Applicability : mainly combinatorial optimization problems 
Particularity: 
• It is an iterative local search technique based on the exploration of the 

neighborhood of the current element (the neighborhood is defined as the set 
of all configurations which can be reached from the current configuration by 
applying once the search operator); the search operators are specific to the 
problem  

• Examples of neighbourhoods of a configuration S:  
– TSP:   configurations which can be obtained by applying 2-opt transformation to S;  
– Knapsack problem: binary vectors which are at a Hamming distance equal to 1 from S 
– Assignment problem (bin pack): move from one bin to another one 

• It uses a list of prohibited configurations (called tabu list) which contains the 
configurations which are not acceptable in the following iterations (usually 
the tabu list is implemented as a circular list) 
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Tabu Search 
General Structure: 
S = initial configuration 
S*=S 
T = [S]  
REPEAT 

– S’ = the best element from the neighborhood N(S) 
which does not belong to T  

– If f(S’)<f(S*) then S*=S’  
– S=S’  // change accepted even if not better 
– Include S in T  (if T is too large remove its oldest 

element) 
UNTIL <stopping condition> 

 
Remarks: 
1. If the neighbourhood is too large then it is possible to evaluate only a 

sample from the neighbourhood.   
2. TS explicitly uses the search history since the tabu list can be interpreted 

as a short term memory  (to escape from local optima and to explore the 
search space) 
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Tabu Search 
Remark:   
• storing complete candidate solutions in the tabu list could be inefficient 
• features of the candidate solutions could be stored instead 

 
Examples of features: 
• Permutation-type encodings (e.g. TSP):  interchange of two elements (e.g. 

(i,j) is a feature which denote that si was swapped with si).  
• Binary encodings (e.g. knapsack problem): change of a component (e.g. 

(i,0) is a feature denoting that si is 0 and (i,1) is a feature denoting that si is 
1). 

Remarks:   
• using features instead of full configurations could introduce some excessive 

constraints (some good configurations are excluded) 
• to avoid such situations is used a so-called aspiration rule:  configurations 

better than the best discovered  up to the current step are accepted even if 
they have prohibited features 
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Tabu Search 
Intensification: 
 
Aim: exploitation of promising regions (i.e. penalize configurations 

which are far away from the current one) 
 
Implementation: 
• Count the number of iterations when a component or feature 

remains unchanged – the good components are those with large 
values of the corresponding counter (this means that they are 
preserved in the competition between the current and new 
configurations) 

• Restart the search process from the best configuration by keeping 
the good components/ features fixed (the neighbourhood is 
constructed only by changing the other components) 
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Tabu Search 
Diversification: 
 
Aim: exploration of the unvisited regions (i.e. penalize configurations 

which are close to the current one) 
 
 
Implementation: 
• Compute the frequency of values used for each component. The 

values with low frequencies are considered under explored  
• Restart the search process from configurations which contain 

under explored values or change the fitness function by penalizing 
the very frequent values of the components in order to stimulate 
the search in new (or less explored) regions 
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Variable Neighborhood Search 
VNS - Variable Neighborhood Search [Mladenovic, P. Hansen, 1997] 
 

Idea:  they use a set of neighborhoods V1, V2,...,Vkmax which is 
explored in an incremental way;  in each neighborhood the search 
is done using a local search method 
 
Remark: the neihborhood set for a configuration x is established 
depending on the problem to be solved but such that if k1<k2 then 
the elements of Vk1(x)  can be obtained from x using fewer 
operations than are necessary to construct the elements of Vk2(x) 
(Vk1(x) can be included in Vk2(x) but it is not necessary) 
 
Example: for the traveling salesman problem Vk (x) can contain the 
configurations (routes) obtained from  x by applying k swaps of 
some randomly selected nodes 



Metaheuristic Algorithms - Lecture 3 22 

Variable Neighborhood Search 
VNS - Variable Neighborhood Search [Mladenovic, P. Hansen, 1997] 
 
General structure 
Initialize S (randomly in the search space) 
k=1 
WHILE k<=kmax DO 
    select S’ randomly from Vk(S); 
    construct S’’ from S’ by applying a local search method 
    IF f(S’’)<f(S) THEN S=S’’; k:=1 
                   ELSE k:=k+1 

 
Remark:  the local search corresponding to a given value of k is NOT 
limited  to Vk(S) 

shaking 

Local search 

Accept the 
change or move 
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Guided Local Search 
Creators: Voudouris&Tsang, 1999 
 
Idea:   
• the objective function is dynamically  modified in order to allow the escape 

from the local optima regions (the penalized values become less desirable) 
• the change is based on the inclusion of some penalty terms corresponding 

to features of the candidate solutions which should be avoided (e.g. in the 
case of TSP such a feature could be an edge linking two locations)  
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Guided Local Search 
General structure: 
 
S=initial configuration 
Repeat 
    s=LocalSearch(S,f) 
    for <all features i with maximal gain U(s,i)  
         (which could be obtained by penalization)>  
       pi=pi+1 
    endfor 
    f=Update(f,p) 
until <stopping condition> 
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GRASP 
GRASP = Greedy Randomized Adaptive Search Procedure [Feo & 
Resende, 1995] 
 
Idea: GRASP focuses on constructed good initial configurations by ensuring a 
compromise between exploration and exploitation 
 
Particularities: 
• It is an heuristic which construct the initial configuration component by 

component 
– For TSP:  a location or and edge is added at each step 
– For knapsack problem: one object is selected and added at each step 

 
• The key element is the choice of the component to be included in the 

candidate solution: GRASP uses a non-uniform random selection in a 
ranked list (good elements have higher probability to be selected) 
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GRASP 
Particularities 
 
• The list size can change in time (adaptive character) between two extreme 

cases: 
– Size = 1 ->  greedy choice (at each step the best component is selected) 
– Size = maximal number of possible values (if the selection is uniform this 

leads to purely random search) 
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GRASP 
Overall structure 
 

[Resende& Ribeiro, Greedy randomized adaptive search procedures,  
Handbook in Metaheuristics, 2002] 
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Summary 
Building blocks of trajectory based search methods 
• Initialization – a candidate solution is constructed component by component 

(random vs greedy)  
• Generation of a new candidate 

– By construction (typical for the initialization stage) 
– By perturbation – based on selection (random vs elitist) from a 

neighborhood of the current configuration  
• The neighborhood can be fixed or variable (VNS) 
• The perturbation can be small (local search) or large (ILS) 

• Acceptance of a new candidate 
– Only if it is better than the current element (Hill climbing/ descent) 
– Accept worse elements (in order to avoid stagnation or cycling) 

• With a probability depending on the quality loss and on some control 
parameter (SA) 

• If better elements have been already analyzed and they are prohibited (TS) 
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Summary 
Building blocks of trajectory based search methods 
 
• Stopping condition 

– Quality –based: a configuration of acceptable quality has been identified 
 
– Behaviour-based:  no improvement during the last iterations 
 
– Resource-based:  a given number of iterations or objective function evaluations 

have been done 
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Next lecture 
 

• Population-based metaheuristics 
 

 
– Main particularities 

 
– General structure 

 
– Main components 

 
– Evolutionary algorithms 
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