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Artificial Neural Networks

 Feedforward Neural Networks

 Recurrent Neural Networks
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Artificial Neural Networks

Artificial Neural Networks (ANNs) are black-box adaptive systems which

extract models from data through a training process

Input data
Results

Training examples (labelled data)

Neural network= 

Adaptive system 

consisting of many 

interconnected units

Training

 ANNs are inspired by the

brain structure and

functioning

 They are very simplified

models of the brain

(Input vector) (Output vector)
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Artificial Neural Networks

inputs

Output

w1,w2, ...: numerical weights 

associated to the connections 

(synaptic weights)

w1

w2

y1

y2

yn wn

bias
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Artificial Neural Networks

ANN =  set of interconnected functional units 

(neurons) 

Functional unit: simplified computational 

model of the biological neuron (several 

inputs, one output, an aggregation and an 

activation function)

Notation:  

input signals: y1,y2,…,yn

synaptic weights: w1,w2,…,wn

activation threshold:  b (sau w0)

output: y

Rmk:  All values are real

inputs

Output

w1

w2

y1

y2

yn wn

w1,w2, ...: numerical weights 

associated to the connections 

(synaptic weights)

b
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Artificial Neural Networks

Components of an ANN

 Architecture:

 Topology (how are placed the functional units) and 

connectivity (how are interconnected the functional units)

 Defined by an oriented graph

 Functioning:

 How the output signal is computed starting from the input 

signals

 Training:

 Estimate the network parameters by using the training set
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Artificial Neural Networks

6

Architectures

 Feedforward

 The graph does not contain cycles (usually the units are placed on 

layers)

 The output vector can be computed directly from the input vector

 Recurrent:

 The graph contains cycles

 The output vector is obtained through an iterative process (simulation of 

a dynamical system)

Recurrent network (fully connected)Feed-forward network
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Artificial Neural Networks

7

Training:

 Supervised

 The training examples contain the correct answer. 

 Aim:  estimate the parameters which minimizes the error 

(difference between actual output and correct answers)

 Unsupervised

 The training set contains only input data

 Aim:  estimate the parameters such that the model captures 

the statistical properties of the training data
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Artificial Neural Networks

8

Applications:

 Classification/ Recognition problems

 Regression/ Prediction problems

 Clustering problems

 Association problems
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Classification problems

9

Example 1: identifying the type of an iris flower 

• Attributes: sepal/petal lengths, sepal/petal width

• Classes: Iris setosa, Iris versicolor, Iris virginica

Example 2: handwritten character recognition

• Attributes: various statistical and geometrical 

characteristics of the corresponding image

• Classes: set of characters to be recognized 

 Classification = find the relationship between some 

vectors with attribute values and classes labels

(Du Trier et al; Feature extraction methods for character

Recognition. A Survey. Pattern Recognition, 1996)
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Classification problems
Classification:  

– Problem: identify the class to which a given data (described 
by a set of attributes) belongs

– Prior knowledge: examples of data belonging to each class

Simple example: 

linearly separable case

A more difficult example: 

nonlinearly separable case
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Approximation problems

• Estimation of a hous price knowing:

– Total surface

– Number of rooms

– Size of the back yard

– Location

=> approximation problem = find a numerical relationship 

between some output  and input value(s) 

• Estimating the amount of resources required by a software application 

or the number of users of a web service or a stock price knowing 

historical values

=>  prediction problem=

find a relationship between future values

and previous values
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Approximation problems

Regression (fitting, prediction):

– Problem:  estimate the value of a characteristic depending 

on the values of some predicting characteristics

– Prior knowledge: pairs of corresponding values (training set)

x

y

Known values

Estimated value (for x’ which is not in the training set)

x’
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Approximation problems

All approximation (mapping) problems can be stated as follows:

Starting from a set of data (Xi,Yi),  Xi in RN and Yi din RM find a  

function F:RN -> RM which minimizes the distance between the 

data and the corresponding points on its graph:  ||Yi-F(Xi)||
2

Questions:

• What structure (shape) should have F ?

• How can we find the parameters defining the properties of F ? 
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Approximation problems

Can be such a problem be solved by using neural networks ?

Yes, at least in theory, the neural networks are proven  “universal 
approximators” [Hornik, 1985]:

“ Any continuous function can be approximated by a feedforward 
neural network having at least one hidden layer. The accuracy 
of the approximation depends on the number of hidden units.”

• The shape of the function is influenced by the architecture of the 
network and by the properties of the activation functions.

• The function parameters are in fact the weights corresponding 
to the connections between neurons. 
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Neural Networks Design

Steps to follow in designing a neural network:

• Choose the architecture: number of layers, number of units on 
each layer, activation functions, interconnection style

• Train the network: compute the values of the weights using the 
training set and a learning algorithm. 

• Validate/test the network: analyze the network behavior for data 
which do not belong to the training set. 
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Functional units (neurons)

Functional unit: several inputs, one output

Notations:

• input signals: y1,y2,…,yn

• synaptic weights: w1,w2,…,wn 

(they model the synaptic permeability)  

• threshold (bias): b (or theta)

(it models the activation threshold of the 

neuron)

• Output: y

• All these values are usually real 

numbers 

inputs

output

Weights assigned to 

the connections

w1

w2

y1

y2

yn wn
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Functional units (neurons)

Output signal generation:

• The input signals are “combined” by using the connection weights 

and the threshold 

– The obtained value corresponds to the local potential of the 

neuron

– This “combination” is obtained by applying a so-called 

aggregation function

• The output signal is constructed by applying an activation function

– It corresponds to the pulse signals propagated along the axon

Input signals

(y1,…,yn)

Neuron’s state

(u)

Output signal 

(y)

Aggregation 

function
Activation

function
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Functional units (neurons)

Aggregation functions:
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Functional units (neurons)

Activation functions:
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Heaviside

Saturated linear

linear

Rectified linear – used in deep networks
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Functional units (neurons)

Sigmoidal aggregation functions
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Functional units (neurons)
• What can do a single neuron ?

• It can solve simple problems (linearly 

separable problems)

OR
0     1

0

1

0 1

1      1 y=H(w1x1+w2x2-b)

Ex:    w1=w2=1, w0=0.5

x1

x2

w1

w2

y

b

-1
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Functional units (neurons)
• What can do a single neuron ?

• It can solve simple problems (linearly 

separable problems)

OR
0     1

0

1

0 1

1      1 y=H(w1x1+w2x2-w0)

Ex:    w1=w2=1, w0=0.5

x1

x2

w1

w2

y

w0

-1

AND
0     1

0

1

0 0

0 1

y=H(w1x1+w2x2-w0)

Ex:    w1=w2=1, w0=1.5
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Functional units (neurons)

Representation of boolean functions:  f:{0,1}2->{0,1}

Linearly separable 

problem: one layer 

network

Nonlinearly separable 

problem: multilayer 

network

OR

XOR
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Architecture and notations
Feedforward network with K layers

0 1 k

Input 

layer
Hidden layers Output layer

Y0=X

… … K
W1 W2 Wk

Wk+1 WK

X1

Y1

F1

Xk

Yk

Fk

XK

YK

FK

X = input vector, Y= output vector,  F=vectorial activation function 
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Functioning
Computation of the output vector

)()(

)))(...((

1

1111
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YWFXFY

XWFWFWFY

FORWARD Algorithm (propagation of the input signal toward the 

output layer)

Y[0]:=X (X is the input signal)

FOR k:=1,K DO

X[k]:=W[k]Y[k-1]

Y[k]:=F(X[k])

ENDFOR 

Rmk: Y[K] is the output of the network
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A particular case

One hidden layer

Adaptive parameters:  W1, W2
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Remark: 

Traditionally only 1 or 2 hidden layers are used

Lately, architectures involving many hidden layers became more popular (Deep 

Neural Networks) – the are used mainly for image and language processing

(http://deeplearning.net)
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Learning process

Learning based on minimizing a error function

• Training set:  {(x1,d1), …, (xL,dL)}

• Error function (mean squared error):
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• Aim of learning process:  find W which minimizes the error function 

• Minimization method:  gradient method
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Learning process 

Gradient based adjustement

ij

ijij
w

twE
twtw






))((
)()1( 

2

1

2

1

1

0

0

0

12
2

1
)(   

   











































L

l

N

i

N

k

N

j

jkjik

l

i xwfwfd
L

WE

xk

yk

xi

yi

El(W)

Learning rate



Metaheuristic Algorithms - Lecture 

12

29

Learning process 
• Partial derivatives computation
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Learning process 
• Partial derivatives computation
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Remark: 

The derivatives of sigmoidal activation functions have particular 

properties:

Logistic: f’(x)=f(x)(1-f(x))=y(1-y)

Tanh: f’(x)=1-f2(x)=1-y2
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The BackPropagation Algorithm

Main idea:

For each example in the training 

set:

- compute the output signal 

- compute the error 

corresponding to the output 

level

- propagate the error back into 

the network and store the 

corresponding delta values 

for each layer

- adjust each weight by using 

the error signal and input 

signal for each layer
Computation of the output signal (FORWARD)

Computation of the error signal (BACKWARD)
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The BackPropagation Algorithm

General structure

Random initialization of weights

REPEAT

FOR l=1,L  DO

FORWARD stage

BACKWARD stage

weights adjustement

ENDFOR

Error (re)computation

UNTIL <stopping condition>

Rmk.

• The weights adjustment 

depends on the learning rate

• The error computation needs 

the recomputation of the output 

signal for the new values of the 

weights

• The stopping condition depends 

on the value of the error and on 

the number of epochs

• This is a so-called serial 

(incremental) variant: the 

adjustment is applied separately 

for each example from the 

training set

ep
o
ch
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The BackPropagation Algorithm

ENDFOR   

:  ,:       

/* Stept Adjustemen *      /
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Details (serial variant)
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The BackPropagation Algorithm
Details (serial variant)

* OR   UNTIL

1:   

)2/(:   

ENDFOR   

 )(:       

/* summation Error  *     /
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/* Step FORWARD *      /

DO ,1: FOR  

0:  
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E* denotes the expected training accuracy

pmax denots the maximal number of epochs
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The BackPropagation Algorithm

Batch variant

Random initialization of weights

REPEAT

initialize the variables which will 

contain the adjustments

FOR l=1,L  DO

FORWARD stage

BACKWARD stage

cumulate the adjustments

ENDFOR

Apply the cumulated adjustments

Error (re)computation

UNTIL <stopping condition>

Rmk.

• The incremental variant can be 

sensitive to the presentation 

order of the training examples

• The batch variant is not 

sensitive to this order and is 

more robust to the errors in the 

training examples

• It is the starting algorithm for 

more elaborated variants, e.g. 

momentum variant

ep
o
ch
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The BackPropagation Algorithm
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Details (batch variant)
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The BackPropagation Algorithm

* OR   UNTIL

1:   

)2/(:   

ENDFOR   
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Variants

Different variants of BackPropagation can be designed by changing:

 Error function

 Minimization method

 Learning rate choice

 Weights initialization
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Variants
Error function:

 MSE (mean squared error function) is appropriate in the case of 
approximation problems

 For classification problems a better error function is the cross-
entropy error:

 Particular case: two classes (one output neuron):

– dl is from {0,1} (0 corresponds to class 0 and 1 corresponds to 
class 1)

– yl is from (0,1) and can be interpreted as the probability of class 
1 
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Rmk: the partial derivatives change, thus the adjustment terms 

will be different
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Variants
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Entropy based error:  

 Different values of the partial derivatives

 In the case of logistic activation functions the error signal will be:



Metaheuristic Algorithms - Lecture 

12

41

Variants

Minimization method:

 The gradient method is a simple but not very efficient method

 More sophisticated and faster  methods can be used instead:

 Conjugate gradient methods

 Newton’s method and its variants

 Particularities of these methods:

 Faster convergence (e.g. the conjugate gradient converges in n 

steps for a quadratic error function)

 Needs the computation of the hessian matrix (matrix with 

second order derivatives) : second order methods
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Variants
Example:  Newton’s method
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Variants

Advantage:

• Does not need the computation of the hessian
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Particular case:  Levenberg-Marquardt

• This is the Newton method adapted for the case when the 

objective function is a sum of squares (as MSE is)

Used in order to deal with 

singular matrices
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Problems in BackPropagation
 Low convergence rate (the error decreases too slow)

 Oscillations (the error value oscillates instead of continuously 
decreasing)

 Local minima problem (the learning process is stuck in a local 
minima of the error function)

 Stagnation (the learning process stagnates even if it is not a 
local minima)

 Overtraining and limited generalization
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Problems in BackPropagation
Problem 1: The error decreases too slow or the error value 

oscillates instead of continuously decreasing

Causes:  

• Inappropriate value of the learning rate (too small values lead to 

slow convergence while too large values lead to oscillations)

– Solution: adaptive learning rate

• Slow minimization method (the gradient method needs small 

learning rates in order to converge)

Solutions:

- heuristic modification of the standard BP (e.g. momentum)

- other minimization methods (Newton, conjugate gradient)
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Problems in BackPropagation
Adaptive learning rate:

• If the error is increasing then the learning rate should be decreased

• If the error significantly decreases then the learning rate can be 

increased

• In all other situations the learning rate is kept unchanged
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Example:  γ=0.05
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Problems in BackPropagation

Momentum variant:

 Increase the convergence speed by introducing some kind of 

“inertia” in the weights adjustment: the weight changes 

corresponding to the current epoch includes the adjustments from 

the previous epoch

)()1()1( pwypw ijjiij  

Momentum coefficient: α in [0.1,0.9]



Metaheuristic Algorithms - Lecture 

12

48

Problems in BackPropagation
Momentum variant:

 The effect of these enhancements is that flat spots of the error 

surface are traversed relatively rapidly with a few big steps, while 

the step size is decreased as the surface gets rougher. This 

implicit adaptation of the step size increases the learning speed 

significantly. 

Simple gradient 

descent
Use of inertia term
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Problems in BackPropagation

Problem 2: Local minima problem (the learning process is stuck in a 

local minima of the error function)

Cause: the gradient based methods  are local optimization methods

Solutions:

• Restart the training process using other randomly initialized 

weights

• Introduce random perturbations into the values of weights:

 variablesrandom :       ,  ijijijij ww 

• Use a global optimization method
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Problems in BackPropagation
Solution:

• Replacing the gradient method with a stochastic optimization 

method

• This means using a random perturbation instead of an adjustment 

based on the gradient computation

• Adjustment step:

)W:(W adjustment accept the THEN )()( IF

 valuesrandom





WEWE

ij

Rmk:

• The adjustments are usually based on normally distributed 

random variables

• If the adjustment does not lead to a decrease of the error then it is 

not accepted
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Problems in BackPropagation

Problem 3: Stagnation (the learning process 

stagnates even if it is not a local minima)

Cause: the adjustments are too small because the 

arguments of the sigmoidal functions are too large

Solutions:

– Penalize the large values of the weights 

(weights-decay)

– Use only the signs of derivatives not their 

values 

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8
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Very small derivates
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Problems in BackPropagation

Penalization of large values of the weights: add a regularization 

term to the error function
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Problems in BackPropagation

Resilient BackPropagation (use only the sign of the derivative not 

its value)
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Problems in BackPropagation
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Problems in BackPropagation
Problem 4: Overtraining and limited generalization ability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 hidden units 20 hidden units

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7



Metaheuristic Algorithms - Lecture 

12

56

Problems in BackPropagation
Problem 4: Overtraining and limited generalization ability

Causes:

• Network architecture (e.g. number of hidden units)

– A large number of hidden units can lead to overtraining (the 
network extracts not only the useful knowledge but also the 
noise in data)

• The size of the training set

– Too few examples are not enough to train the network

• The number of epochs (accuracy on the training set)

– Too many epochs could lead to overtraining

Solutions:

• Dynamic adaptation of the architecture

• Stopping criterion based on  validation error; cross-validation
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Problems in BackPropagation
Dynamic adaptation of the architectures:

• Incremental strategy:

– Start with a small number of hidden neurons

– If the learning does not progress new neurons are introduced

• Decremental strategy:
– Start with a large number of hidden neurons

– If there are neurons with small weights (small contribution to the 

output signal) they can be eliminated
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Problems in BackPropagation
Stopping criterion based on  validation error :

• Divide the learning set in m parts: (m-1) are for training and 

another one for validation

• Repeat the weights adjustment as long as the error on the 

validation subset is decreasing (the learning is stopped when 

the error on the validation subset start increasing)

Cross-validation:

• Applies for m times the learning algorithm by successively 

changing the learning and validation sets

1: S=(S1,S2, ....,Sm)

2: S=(S1,S2, ....,Sm) 

....   

m: S=(S1,S2, ....,Sm) 
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Problems in BackPropagation

Stop the learning process when the error on the validation set start 
to increase (even if the error on the training set is still 
decreasing) :

Error on the training set

Error on the validation set
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Recurrent neural networks 

• Architectures

– Fully recurrent networks

– Partially recurrent networks

• Dynamics of recurrent networks

– Continuous time dynamics

– Discrete time dynamics

• Applications
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Recurrent neural networks 

• Architecture

– Contains feedback connections 

– Depending on the density of feedback connections there are:

• Fully recurrent networks (Hopfield model)

• Partially recurrent networks:

– With contextual units (Elman model, Jordan model)

– Cellular networks (Chua-Yang model)

• Applications

– Associative memories

– Combinatorial optimization problems 

– Prediction

– Image processing

– Dynamical systems and chaotical phenomena modelling
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Hopfield networks

Architecture:

N fully connected units

Activation function:  

Signum/Heaviside

Logistica/Tanh

Parameters:

weight matrix

Notations: xi(t) – potential (state) of the neuron  i at moment  t

yi(t)=f(xi(t)) – the output signal generated by unit i at moment t 

Ii(t) – the input signal

wij – weight of connection between j and i
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Hopfield networks
Functioning:  - the output signal is generated by the evolution of a  

dynamical system

- Hopfield networks are equivalent to dynamical systems

Network state:

- the vector of neuron’s state X(t)=(x1(t), …, xN(t))

or 

- output signals vector  Y(t)=(y1(t),…,yN(t))

Dynamics:

• Discrete time – recurrence relations (difference equations)

• Continuous time – differential equations
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Hopfield networks

Discrete time functioning: 

the network state corresponding to moment t+1 depends on the 

network state corresponding to moment t

Network’s state:   Y(t)

Variants:

• Asynchronous: only one neuron can change its state at a given time

• Synchronous: all neurons can simultaneously change their states 

Network’s answer: the stationary state of the network
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Hopfield networks

Asynchronous 

variant: 
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Choice of  i*:

- systematic scan of  {1,2,…,N}

- random (but such that during N steps each neuron     

changes its state just once)

Network simulation:

- choose an initial state (depending on the problem to be solved)

- compute the next state until the network reach a stationary state 

(the distance between two successive states is less than ε)
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Hopfield networks

Synchronous variant:

Either continuous or discrete activation functions can be used

Functioning:

Initial state

REPEAT

compute the new state starting from the current one

UNTIL < the difference between the current state and the previous 

one is small enough >

NitItywfty
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Hopfield networks

Continuous time functioning:

NitItxfwtx
dt

tdx
ij
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Network simulation: solve (numerically) the system of differential 

equations for  a given initial state xi(0)

Example: Explicit Euler method
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Stability properties
Possible behaviours of a network:

• X(t)  converged to a stationary state X* (fixed point of the network 
dynamics)

• X(t) oscillates between two or more states

• X(t) has a chaotic behavior or  ||X(t)|| becomes too large

Useful behaviors:

• The network converges to a stationary state 

– Many stationary states: associative memory

– Unique stationary state: combinatorial optimization problems

• The network has a periodic behavior

– Modelling of cycles

Obs. Most useful situation: the network converges to a stable stationary 
state
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Stability properties

Illustration:     

Formalization:  

X* is asymptotic stable (wrt the initial conditions) if it is

stable

attractive   

0*)(

)0(   )),((
)(

0





XF

XXtXF
dt

tdX

Asymptotic stable      Stable               Unstable
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Stability properties

Stability:  

X* is stable if for all  ε>0 there exists δ(ε ) > 0 such that:  

||X0-X*||< δ(ε )   implies  ||X(t;X0)-X*||< ε

Attractive:

X* is attractive if there exists δ > 0 such that:  

||X0-X*||< δ implies X(t;X0)->X*

In order to study the asymptotic stability one can use the Lyapunov 

method. 
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Stability properties

Lyapunov 
function:

0 toricepentru   ,0
))((

inferior marginita  ,:





dt

tXdV

RRV N

• If one can find a Lyapunov function for a system then its 

stationary solutions are asymptotically stable 

• The Lyapunov function is similar to the energy function in 

physics (the physical systems naturally converges to the lowest 

energy state)

• The states for which the Lyapunov function is minimum are 

stable states

• Hopfield networks satisfying some properties have Lyapunov 

functions. 

bounded
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Stability properties
Stability result for continuous neural networks

If:

- the weight matrix is symmetrical (wij=wji)

- the activation function is strictly increasing (f’(u)>0)

- the input signal is constant (I(t)=I)

Then all stationary states of the network are asymptotically stable

Associated Lyapunov function:
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Stability properties
Stability result for discrete neural networks (asynchronous case)

If:

- the weight matrix is symmetrical (wij=wji)

- the activation function is signum or Heaviside

- the input signal is constant (I(t)=I)

Then all stationary states of the network are asymptotically stable

Corresponding Lyapunov function
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Stability properties
This result means that:

• All stationary states are stable

• Each stationary state has attached an attraction region (if the 
initial state of the network is in the attraction region of a given 
stationary state then the network will converge to that stationary 
state)

Remarks:

• This property is useful for associative memories 

• For synchronous discrete dynamics this result is no more true, 
but the network converges toward either fixed points or cycles of 
period two
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Associative memories

Memory = system to store and recall the information

Address-based memory:

– Localized storage: all components bytes of a value are stored 

together at a given address

– The information can be recalled based on the address

Associative memory:

– The information is distributed and the concept of address 

does not have sense

– The recall is based on the content (one starts from a clue 

which corresponds to a partial or noisy pattern)
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Associative memories

Properties:

• Robustness

Implementation:

• Hardware:

– Electrical circuits

– Optical systems

• Software:  

– Hopfield networks simulators
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Associative memories

Software simulations of associative memories:

• The information is binary: vectors having elements from  {-1,1}

• Each component of the pattern vector corresponds to a unit in the 
networks

Example (a)

(-1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-

1,1,1,-1,-1, -1,-1,1,1,-1,-1)
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Associative memories

Associative memories design:

• Fully connected network with N signum units (N is the patterns 
size)

Patterns storage:

• Set the weights values (elements of matrix W) such that the 
patterns to be stored become fixed points (stationary states) of 
the network dynamics

Information recall:

• Initialize the state of the network with a clue (partial or noisy 
pattern) and let the network to evolve toward the corresponding 
stationary state. 
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Associative memories

Patterns to be stored:  {X1,…,XL}, Xl in {-1,1}N

Methods:

• Hebb rule

• Pseudo-inverse rule  (Diederich – Opper algorithm)

Hebb rule:

• It is based on the Hebb’s principle: “the synaptic permeability of 
two neurons which are simultaneously activated is increased”
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Associative memories

Properties of the Hebb’s rule:

• If the vectors to be stored are orthogonal (statistically uncorrelated) 
then all of them become fixed points of the network dynamics

• Once the vector X is stored the vector –X is also stored

• An improved variant: the pseudo-inverse method
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Associative memories

Pseudo-inverse method:
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• If Q is invertible then all elements of {X1,…,XL}  are fixed points of 

the network dynamics

• In order to avoid the costly operation of inversion  one can use an 

iterative algorithm for weights adjustment
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Associative memories

Diederich-Opper algorithm :

Initialize W(0) using the Hebb rule
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Associative memories

Recall process:

• Initialize the network state 

with a starting clue

• Simulate the network until 

the stationary state is 

reached. 

Stored patterns

Noisy patterns (starting clues)
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Associative memories

Storage capacity: 
– The number of patterns which can be stored and recalled 

(exactly or approximately) 

– Exact recall:  capacity=N/(4lnN)

– Approximate recall (prob(error)=0.005): capacity = 0.15*N

Spurious attractors:
– These are stationary states of the networks which were not 

explicitly stored but they are the result of the storage 
method. 

Avoiding the spurious states
– Modifying the storage method 

– Introducing random perturbations in the network’s 
dynamics
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Solving optimization problems

• First approach:  Hopfield & Tank (1985) 

– They propose the use of a Hopfield model to solve the 

traveling salesman problem. 

– The basic idea is to design a network whose energy 

function is similar to the cost function of the problem (e.g. 

the tour length) and to let the network to naturally evolve

toward the state of minimal energy; this state would 

represent the problem’s solution. 
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Solving optimization problems

A constrained optimization problem:

find (y1,…,yN) satisfying:

it minimizes a cost function C:RN->R

it satisfies some constraints as Rk (y1,…,yN) =0  with 

Rk nonnegative functions

Main steps:

• Transform the constrained optimization problem in an 
unconstrained optimization one (penalty method)

• Rewrite the cost function as a  Lyapunov function

• Identify the values of the parameteres (W and I) starting from 
the Lyapunov function 

• Simulate the network
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Solving optimization problems

Step 1: Transform the constrained optimization problem in an 

unconstrained optimization one
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The values of a and b are chosen such that they reflect the relative 

importance of the cost function and constraints
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Solving optimization problems

Step 2: Reorganizing the cost function as a Lyapunov function 
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Remark: This approach works only for cost functions and constraints 

which are linear or quadratic
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Solving optimization problems

Step 3: Identifying the network parameters:
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Solving optimization problems

Designing a neural network for TSP (n towns):

N=n*n neurons

The state of the neuron (i,j) is interpreted as follows:

1    - the town i is visited at time j

0    - otherwise

A

C

DE

B 1    2     3    4   5

A      1    0     0    0   0

B      0    0     0    0   1

C      0    0     0    1   0

D      0    0     1    0   0

E      0    1     0    0   0

AEDCB
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Solving optimization problems

Constraints:

- at a given time only one town is visited 

(each column contains exactly one 

value equal to 1)

- each town is visited only once (each 

row contains exactly one value equal to 

1)

Cost function:

the tour length = sum of distances 

between towns visited at consecutive 

time moments

1    2     3    4   5

A      1    0     0    0   0

B      0    0     0    0   1

C      0    0     0    1   0

D      0    0     1    0   0

E      0    1     0    0   0
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Solving optimization problems

Constraints and cost function:
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Cost function in the 

unconstrained case:
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Solving optimization problems

Identified parameters:
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Prediction in time series 

• Time series = sequence of values measured at successive  

moments of time

• Examples:

– Currency exchange rate evolution 

– Stock price evolution

– Biological signals (EKG)

• Aim of time series analysis: predict the future value(s) in the 

series
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Time series

The prediction (forecasting) is based on a model which describes the 

dependency between previous values and the next value in the 

series.

Order of the model

Parameters corresponding 

to external factors
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Time series

The model associated to a time series can be:

- Linear

- Nonlinear

- Deterministic

- Stochastic

Example: autoregressive model (AR(p)) 

noise = random variable from 

N(0,1)
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Time series

Neural networks. Variants:

• The order of the model is known

– Feedforward neural network with delayed input layer  

(p input units)

• The order of the model is unknown 

– Network with contextual units (Elman network)
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Networks with delayed input layer

Architecture:                           

Functioning:                           
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Networks with delayed input layer

Training:  

• Training set:  {((xl,xl-1,…,xl-p+1),xl+1)}l=1..L

• Training algorithm:  BackPropagation 

• Drawback:  needs the knowledge of p
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Elman network
Architecture:

Functioning:     

Contextual 

units

Rmk: the contextual 

units contain 

copies of the 

outputs of the 

hidden layers 

corresponding to 

the previous 

moment   
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Elman network

Training

Training set :  {(x(1),x(2)),(x(2),x(3)),…(x(t-1),x(t))}

Sets of weights:

- Adaptive:  Wx, Wc si W2

- Fixed: the weights of the connections between the hidden and the 

contextual layers. 

Training algorithm: BackPropagation
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Cellular networks

Architecture: 

• All units have a double role: input and 
output units

• The units are placed in the nodes of a 
two dimensional grid 

• Each unit is connected only with units 
from its neighborhood (the 
neighborhoods are defined as in the 
case of Kohonen’s networks)

• Each unit is identified through its 
position p=(i,j)  in the grid

virtual cells 

(used to define 

the context for 

border cells)
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Cellular networks

Activation function: ramp

-2 -1 1 2

-1

-0.5

0.5

1

Notations:

Xp(t) – state of unit p at time t

Yp(t) - output signal

Up(t) – control signal

Ip(t) – input from the environment

apq – weight of connection between unit q and unit p

bpq - influence of control signal Uq on unit p
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Cellular networks

Functioning:

Remarks:

• The grid has a boundary of fictitious units (which usually 

generate signals equal to 0)

• Particular case:  the weights of the connections between 

neighboring units do not depend on the positions of units 

Example: if p=(i,j), q=(i-1,j), p’=(i’,j’), q’=(i’-1,j’) then

apq= ap’q’=a-1,0

Signal generated by

other units
Control

signal

Input signal
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Cellular networks
These networks are called cloning template cellular networks

Example:



Metaheuristic Algorithms - Lecture 

12

106

Cellular networks
Illustration of the cloning template elements
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Cellular networks
Software simulation = equivalent to numerical solving of a differential 

system (initial value problem)

Explicit Euler method

Applications:

• Gray level image processing

• Each pixel corresponds to a unit of the network

• The gray level is encoded by using real values from  [-1,1]
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Cellular networks
Image processing:

• Depending on the choice of templates, of control signal (u), initial 
condition (x(0)), boundary conditions (z) different image 
processing tasks can be solved:

– Edge detection in binary images

– Gap filling in binary images

– Noise elimination in binary images

– Identification of horizontal/vertical line segments
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Cellular networks
Example 1:  edge detection

z=-1,  U=input image, h=0.1
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http://www.isiweb.ee.ethz.ch/haenggi/CNN_web/CNNsim_adv.html
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Cellular networks

Example 2:  gap filling

z=-1,  

U=input image, 

h=0.1

1)  are pixels (all 1)0(,5.0
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Cellular networks

Example 3: noise removing

z=-1,  U=input image, h=0.1
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Cellular networks

Example 4: horizontal line detection

z=-1,  U=input image, h=0.1
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Other related models

Reservoir computing (www.reservoir-computing.org)

Particularities: 

• These models use a set of hidden units (called reservoir) which are 

arbitrarly connected (their connection weights are randomly set; each of 

these units realize a nonlinear transformation of the signals received 

from the input units. 

• The output values are obtained by a linear combination of the signals 

produced by the input units and by the reservoir units. 

• Only the weights of connections toward the output units are trained 
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Other related models

Reservoir computing (www.reservoir-computing.org)

Variants: 

• Temporal Recurrent Neural Network (Dominey 1995)

• Liquid State Machines (Natschläger, Maass and Markram 2002)

• Echo State Networks (Jaeger 2001)

• Decorrelation-Backpropagation Learning (Steil 2004)
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Other related models

Echo State Networks:

U(t) = input vector

X(t) = reservoir state vector

Z(t)=[U(t);X(t)]  = concatenated input and state 

vectors

Y(t) = output vector

X(t)=(1-a)X(t-1)+a tanh(Win U(t)+W X(t-1))

Y(t)=Wout Z(t)

Win ,W – random matrices (W is scaled such 

that the spectral radius has a predefined 

value); 

Wout  - set by training

M. Lukosevicius – Practical Guide to 

Applying Echo State Networks
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Other related models

Applications of reservoir computing:

- Speech recognition

- Handwritten text recognition

- Robot control

- Financial data prediction

- Real time prediction of epilepsy seizures
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Other related models

Deep learning (http://deeplearning.net/)

Particularities:

• Deep architecture = many layers (aim: hierarchical extraction of data features); 

• Unsupervised training based on Restricted Boltzmann Machines) followed by a 

fine tuning of weights using a supervised training (e.g. Backpropagation)

Remarks: 

• Boltzmann Machines = recurrent neural networks with binary stochastic units

• Restricted BM = recurrent neural networks with bidirectional connections only 

between the units belonging to different subsets of units (e.g. subsets:  visible 

units, hidden units)

• There are feed-forward deep neural networks (e.g: Convolutional Neural 

Networks)
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Other related models

Deep learning (http://deeplearning.net/)

Applications:

- Image classification, objects detection (e.g. Face recognition – Deep Face)

- Speech recognition (Google Brain, Siri)

- Semantic indexing (ex: word2vec) and automated translation

- Dream simulation (http://npcontemplation.blogspot.ca/2012/02/machine-that-

can-dream.html)


