
Metaheuristic Algorithms - Lecture

12

1

Artificial Neural Networks

 Feedforward Neural Networks

 Recurrent Neural Networks

2

Artificial Neural Networks

Artificial Neural Networks (ANNs) are black-box adaptive systems which

extract models from data through a training process

Input data
Results

Training examples (labelled data)

Neural network=

Adaptive system

consisting of many

interconnected units

Training

 ANNs are inspired by the

brain structure and

functioning

 They are very simplified

models of the brain

(Input vector) (Output vector)

Metaheuristic Algorithms - Lecture

12

3

Artificial Neural Networks

inputs

Output

w1,w2, ...: numerical weights

associated to the connections

(synaptic weights)

w1

w2

y1

y2

yn wn

bias

Metaheuristic Algorithms - Lecture

12

4

Artificial Neural Networks

ANN = set of interconnected functional units

(neurons)

Functional unit: simplified computational

model of the biological neuron (several

inputs, one output, an aggregation and an

activation function)

Notation:

input signals: y1,y2,…,yn

synaptic weights: w1,w2,…,wn

activation threshold: b (sau w0)

output: y

Rmk: All values are real

inputs

Output

w1

w2

y1

y2

yn wn

w1,w2, ...: numerical weights

associated to the connections

(synaptic weights)

b

Metaheuristic Algorithms - Lecture

12

5

Artificial Neural Networks

Components of an ANN

 Architecture:

 Topology (how are placed the functional units) and

connectivity (how are interconnected the functional units)

 Defined by an oriented graph

 Functioning:

 How the output signal is computed starting from the input

signals

 Training:

 Estimate the network parameters by using the training set

Metaheuristic Algorithms - Lecture

12

6

Artificial Neural Networks

6

Architectures

 Feedforward

 The graph does not contain cycles (usually the units are placed on

layers)

 The output vector can be computed directly from the input vector

 Recurrent:

 The graph contains cycles

 The output vector is obtained through an iterative process (simulation of

a dynamical system)

Recurrent network (fully connected)Feed-forward network

Metaheuristic Algorithms - Lecture

12

7

Artificial Neural Networks

7

Training:

 Supervised

 The training examples contain the correct answer.

 Aim: estimate the parameters which minimizes the error

(difference between actual output and correct answers)

 Unsupervised

 The training set contains only input data

 Aim: estimate the parameters such that the model captures

the statistical properties of the training data

Metaheuristic Algorithms - Lecture

12

8

Artificial Neural Networks

8

Applications:

 Classification/ Recognition problems

 Regression/ Prediction problems

 Clustering problems

 Association problems

Metaheuristic Algorithms - Lecture

12

Metaheuristic Algorithms - Lecture

12

9

Classification problems

9

Example 1: identifying the type of an iris flower

• Attributes: sepal/petal lengths, sepal/petal width

• Classes: Iris setosa, Iris versicolor, Iris virginica

Example 2: handwritten character recognition

• Attributes: various statistical and geometrical

characteristics of the corresponding image

• Classes: set of characters to be recognized

 Classification = find the relationship between some

vectors with attribute values and classes labels

(Du Trier et al; Feature extraction methods for character

Recognition. A Survey. Pattern Recognition, 1996)

Metaheuristic Algorithms - Lecture

12

10

Classification problems
Classification:

– Problem: identify the class to which a given data (described
by a set of attributes) belongs

– Prior knowledge: examples of data belonging to each class

Simple example:

linearly separable case

A more difficult example:

nonlinearly separable case

Metaheuristic Algorithms - Lecture

12

11

Approximation problems

• Estimation of a hous price knowing:

– Total surface

– Number of rooms

– Size of the back yard

– Location

=> approximation problem = find a numerical relationship

between some output and input value(s)

• Estimating the amount of resources required by a software application

or the number of users of a web service or a stock price knowing

historical values

=> prediction problem=

find a relationship between future values

and previous values

Metaheuristic Algorithms - Lecture

12

12

Approximation problems

Regression (fitting, prediction):

– Problem: estimate the value of a characteristic depending

on the values of some predicting characteristics

– Prior knowledge: pairs of corresponding values (training set)

x

y

Known values

Estimated value (for x’ which is not in the training set)

x’

Metaheuristic Algorithms - Lecture

12

13

Approximation problems

All approximation (mapping) problems can be stated as follows:

Starting from a set of data (Xi,Yi), Xi in RN and Yi din RM find a

function F:RN -> RM which minimizes the distance between the

data and the corresponding points on its graph: ||Yi-F(Xi)||
2

Questions:

• What structure (shape) should have F ?

• How can we find the parameters defining the properties of F ?

Metaheuristic Algorithms - Lecture

12

14

Approximation problems

Can be such a problem be solved by using neural networks ?

Yes, at least in theory, the neural networks are proven “universal
approximators” [Hornik, 1985]:

“ Any continuous function can be approximated by a feedforward
neural network having at least one hidden layer. The accuracy
of the approximation depends on the number of hidden units.”

• The shape of the function is influenced by the architecture of the
network and by the properties of the activation functions.

• The function parameters are in fact the weights corresponding
to the connections between neurons.

Metaheuristic Algorithms - Lecture

12

15

Neural Networks Design

Steps to follow in designing a neural network:

• Choose the architecture: number of layers, number of units on
each layer, activation functions, interconnection style

• Train the network: compute the values of the weights using the
training set and a learning algorithm.

• Validate/test the network: analyze the network behavior for data
which do not belong to the training set.

Metaheuristic Algorithms - Lecture

12

16

Functional units (neurons)

Functional unit: several inputs, one output

Notations:

• input signals: y1,y2,…,yn

• synaptic weights: w1,w2,…,wn

(they model the synaptic permeability)

• threshold (bias): b (or theta)

(it models the activation threshold of the

neuron)

• Output: y

• All these values are usually real

numbers

inputs

output

Weights assigned to

the connections

w1

w2

y1

y2

yn wn

Metaheuristic Algorithms - Lecture

12

17

Functional units (neurons)

Output signal generation:

• The input signals are “combined” by using the connection weights

and the threshold

– The obtained value corresponds to the local potential of the

neuron

– This “combination” is obtained by applying a so-called

aggregation function

• The output signal is constructed by applying an activation function

– It corresponds to the pulse signals propagated along the axon

Input signals

(y1,…,yn)

Neuron’s state

(u)

Output signal

(y)

Aggregation

function
Activation

function

Metaheuristic Algorithms - Lecture

12

18

Functional units (neurons)

Aggregation functions:

...

)(

1,11

2

1

0

1

ji

n

ji

ijj

n

j

j

n

j

w

j

j

n

j

jj

n

j

j

yywywuyu

ywuwywu

j

Weighted sum Euclidean distance

Remark: in the case of the weighted sum the threshold can be

interpreted as a synaptic weight which corresponds to a virtual unit

which always produces the value -1

j

n

j

j ywu

0

Multiplicative neuron High order connections

Metaheuristic Algorithms - Lecture

12

19

Functional units (neurons)

Activation functions:

},0max{)(

)(

11

11

11

)(

01

00
)()(

01

01
)sgn()(

uuf

uuf

u

uu

u

uf

u

u
uHuf

u

u
uuf

 signum

Heaviside

Saturated linear

linear

Rectified linear – used in deep networks

Metaheuristic Algorithms - Lecture

12

20

Functional units (neurons)

Sigmoidal aggregation functions

)exp(1

1
)(

1)2exp(

1)2exp(
)tanh()(

u
uf

u

u
uuf

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

-6 -4 -2 2 4 6

-1

-0.5

0.5

1
(Hyperbolic tangent)

(Logistic)

Metaheuristic Algorithms - Lecture

12

21

Functional units (neurons)
• What can do a single neuron ?

• It can solve simple problems (linearly

separable problems)

OR
0 1

0

1

0 1

1 1 y=H(w1x1+w2x2-b)

Ex: w1=w2=1, w0=0.5

x1

x2

w1

w2

y

b

-1

Metaheuristic Algorithms - Lecture

12

22

Functional units (neurons)
• What can do a single neuron ?

• It can solve simple problems (linearly

separable problems)

OR
0 1

0

1

0 1

1 1 y=H(w1x1+w2x2-w0)

Ex: w1=w2=1, w0=0.5

x1

x2

w1

w2

y

w0

-1

AND
0 1

0

1

0 0

0 1

y=H(w1x1+w2x2-w0)

Ex: w1=w2=1, w0=1.5

Metaheuristic Algorithms - Lecture

12

23

Functional units (neurons)

Representation of boolean functions: f:{0,1}2->{0,1}

Linearly separable

problem: one layer

network

Nonlinearly separable

problem: multilayer

network

OR

XOR

Metaheuristic Algorithms - Lecture

12

24

Architecture and notations
Feedforward network with K layers

0 1 k

Input

layer
Hidden layers Output layer

Y0=X

… … K
W1 W2 Wk

Wk+1 WK

X1

Y1

F1

Xk

Yk

Fk

XK

YK

FK

X = input vector, Y= output vector, F=vectorial activation function

Metaheuristic Algorithms - Lecture

12

25

Functioning
Computation of the output vector

)()(

)))(...((

1

1111

kkkkk

KKKKK

YWFXFY

XWFWFWFY

FORWARD Algorithm (propagation of the input signal toward the

output layer)

Y[0]:=X (X is the input signal)

FOR k:=1,K DO

X[k]:=W[k]Y[k-1]

Y[k]:=F(X[k])

ENDFOR

Rmk: Y[K] is the output of the network

Metaheuristic Algorithms - Lecture

12

26

A particular case

One hidden layer

Adaptive parameters: W1, W2

kjkj

ikik

N

k

N

j

jkjiki

ww

ww

xwfwfy

)1(

)2(

1

0

0

0

)1(

1

)2(

2

;

 :notationsimpler A

Remark:

Traditionally only 1 or 2 hidden layers are used

Lately, architectures involving many hidden layers became more popular (Deep

Neural Networks) – the are used mainly for image and language processing

(http://deeplearning.net)

Metaheuristic Algorithms - Lecture

12

27

Learning process

Learning based on minimizing a error function

• Training set: {(x1,d1), …, (xL,dL)}

• Error function (mean squared error):

2

1

2

1

1

0

0

0

12
2

1
)(

L

l

N

i

N

k

N

j

jkjik

l

i xwfwfd
L

WE

• Aim of learning process: find W which minimizes the error function

• Minimization method: gradient method

Metaheuristic Algorithms - Lecture

12

28

Learning process

Gradient based adjustement

ij

ijij
w

twE
twtw

))((
)()1(

2

1

2

1

1

0

0

0

12
2

1
)(

L

l

N

i

N

k

N

j

jkjik

l

i xwfwfd
L

WE

xk

yk

xi

yi

El(W)

Learning rate

Metaheuristic Algorithms - Lecture

12

29

Learning process
• Partial derivatives computation

2

1

2

1

1

0

0

0

12
2

1
)(

L

l

N

i

N

k

N

j

jkjik

l

i xwfwfd
L

WE

xk

yk

xi

yi

2

1

2
1

0

0

0

12

2

1

'

1

'

1

'

2

2

1

'

2

2

1
)(

)()()()(
)(

)()(
)(

N

i

N

k

N

j

jkjik

l

il

j

l

kj

N

i

l

iikkjkii

l

i

N

i

ik

kj

l

k

l

ikii

l

i

ik

l

xwfwfdWE

xxwxfxxfxfydw
w

WE

yyxfyd
w

WE

Metaheuristic Algorithms - Lecture

12

30

Learning process
• Partial derivatives computation

2

1

2
1

0

0

0

12

2

1

'

1

'

1

'

2

2

1

'

2

2

1
)(

)()()()(
)(

)()(
)(

N

i

N

k

N

j

jkjik

l

il

j

l

kj

N

i

l

iikkjkii

l

i

N

i

ik

kj

l

k

l

ikii

l

i

ik

l

xwfwfdWE

xxwxfxxfxfydw
w

WE

yyxfyd
w

WE

Remark:

The derivatives of sigmoidal activation functions have particular

properties:

Logistic: f’(x)=f(x)(1-f(x))=y(1-y)

Tanh: f’(x)=1-f2(x)=1-y2

Metaheuristic Algorithms - Lecture

12

31

The BackPropagation Algorithm

Main idea:

For each example in the training

set:

- compute the output signal

- compute the error

corresponding to the output

level

- propagate the error back into

the network and store the

corresponding delta values

for each layer

- adjust each weight by using

the error signal and input

signal for each layer
Computation of the output signal (FORWARD)

Computation of the error signal (BACKWARD)

Metaheuristic Algorithms - Lecture

12

32

The BackPropagation Algorithm

General structure

Random initialization of weights

REPEAT

FOR l=1,L DO

FORWARD stage

BACKWARD stage

weights adjustement

ENDFOR

Error (re)computation

UNTIL <stopping condition>

Rmk.

• The weights adjustment

depends on the learning rate

• The error computation needs

the recomputation of the output

signal for the new values of the

weights

• The stopping condition depends

on the value of the error and on

the number of epochs

• This is a so-called serial

(incremental) variant: the

adjustment is applied separately

for each example from the

training set

ep
o
ch

Metaheuristic Algorithms - Lecture

12

33

The BackPropagation Algorithm

ENDFOR

: ,:

/* Stept Adjustemen * /

)(:),)((:

/* Step BACKWARD * /

)(: ,:),(: ,:

/* Step FORWARD * /

DO ,1: FOR

REPEAT

0:

)1,1(:),1,1(:

2

1

'

1

'

2

2

1

0

1

0

0

l

k

l

iikik

l

j

l

kkjkj

N

i

l

iik

l

k

l

k

l

i

l

i

l

i

l

i

l

i

l

i

N

k

l

kik

l

i

l

k

l

k

N

j

l

jkj

l

k

ikkj

ywwxww

wxfydxf

xfyywxxfyxwx

Ll

p

randwrandw

Details (serial variant)

Metaheuristic Algorithms - Lecture

12

34

The BackPropagation Algorithm
Details (serial variant)

* OR UNTIL

1:

)2/(:

ENDFOR

)(:

/* summation Error * /

)(: ,:),(: ,:

/* Step FORWARD * /

DO ,1: FOR

0:

/*n computatioError * /

max

1

2

2

1

0

1

0

0

EEpp

pp

LEE

ydEE

xfyywxxfyxwx

Ll

E

L

l

l

i

l

i

l

i

l

i

N

k

l

kik

l

i

l

k

l

k

N

j

l

jkj

l

k

E* denotes the expected training accuracy

pmax denots the maximal number of epochs

Metaheuristic Algorithms - Lecture

12

35

The BackPropagation Algorithm

Batch variant

Random initialization of weights

REPEAT

initialize the variables which will

contain the adjustments

FOR l=1,L DO

FORWARD stage

BACKWARD stage

cumulate the adjustments

ENDFOR

Apply the cumulated adjustments

Error (re)computation

UNTIL <stopping condition>

Rmk.

• The incremental variant can be

sensitive to the presentation

order of the training examples

• The batch variant is not

sensitive to this order and is

more robust to the errors in the

training examples

• It is the starting algorithm for

more elaborated variants, e.g.

momentum variant

ep
o
ch

Metaheuristic Algorithms - Lecture

12

36

The BackPropagation Algorithm

21

2211

2

1

'

1

'

2

2

1

0

1

0

0

21

: ,:

ENDFOR

: ,:

/* step Adjustment * /

)(:),)((:

/*step BACKWARD * /

)(: ,:),(: ,:

/* step FORWARD * /

DO ,1: FOR

00

REPEAT

0:

0..0,1..0,2..1),1,1(:),1,1(:

ikikikkjkjkj

l

k

l

iikik

l

j

l

kkjkj

N

i

l

iik

l

k

l

k

l

i

l

i

l

i

l

i

l

i

l

i

N

k

l

kik

l

i

l

k

l

k

N

j

l

jkj

l

k

ikkj

ikkj

wwww

yx

wxfydxf

xfyywxxfyxwx

Ll

:,Δ:Δ

p

NjNkNirandwrandw

Details (batch variant)

Metaheuristic Algorithms - Lecture

12

37

The BackPropagation Algorithm

* OR UNTIL

1:

)2/(:

ENDFOR

)(:

/* summation Error * /

)(: ,:),(: ,:

/* Step FORWARD * /

DO ,1: FOR

0:

/*n computatioError * /

max

1

2

2

1

0

1

0

0

EEpp

pp

LEE

ydEE

xfyywxxfyxwx

Ll

E

L

l

l

i

l

i

l

i

l

i

N

k

l

kik

l

i

l

k

l

k

N

j

l

jkj

l

k

Metaheuristic Algorithms - Lecture

12

38

Variants

Different variants of BackPropagation can be designed by changing:

 Error function

 Minimization method

 Learning rate choice

 Weights initialization

Metaheuristic Algorithms - Lecture

12

39

Variants
Error function:

 MSE (mean squared error function) is appropriate in the case of
approximation problems

 For classification problems a better error function is the cross-
entropy error:

 Particular case: two classes (one output neuron):

– dl is from {0,1} (0 corresponds to class 0 and 1 corresponds to
class 1)

– yl is from (0,1) and can be interpreted as the probability of class
1

L

l

llll ydydWCE

1

))1ln()1(ln()(

Rmk: the partial derivatives change, thus the adjustment terms

will be different

Metaheuristic Algorithms - Lecture

12

40

Variants

)1()1(

)1(
)1(

)1()1(
)()

1

1
()2('

2

llll

ll
ll

llll

l

l

l

l
l

dyyd

yy
yy

dyyd
xf

y

d

y

d

Entropy based error:

 Different values of the partial derivatives

 In the case of logistic activation functions the error signal will be:

Metaheuristic Algorithms - Lecture

12

41

Variants

Minimization method:

 The gradient method is a simple but not very efficient method

 More sophisticated and faster methods can be used instead:

 Conjugate gradient methods

 Newton’s method and its variants

 Particularities of these methods:

 Faster convergence (e.g. the conjugate gradient converges in n

steps for a quadratic error function)

 Needs the computation of the hessian matrix (matrix with

second order derivatives) : second order methods

Metaheuristic Algorithms - Lecture

12

42

Variants
Example: Newton’s method

))(())(()()1(

:is wof estimation new theThus

0))(()())(())((

:ofsolution thebe willminimum

 the respect towith expansion sTaylor' thederivatingBy

))((
))((

))())((())((
2

1
))(()))((())(()(

p)epoch toingcorrespondn (estimatio)(in expansion sTaylor'By

 weightsall of vector theis ,:

1 pwEpwHpwpw

pwEpwpwHwpwH

w

ww

pwE
pwH

pwwpwHpwwpwwpwEpwEwE

pw

RwRRE

ji
ij

TT

nn

Metaheuristic Algorithms - Lecture

12

43

Variants

Advantage:

• Does not need the computation of the hessian

j

i
ij

T
p

T

L

l

T
Ll

w

wE
wJ

wewJ

pwepwJIpwJpwJpwpw

wEwEwewEwE

)(
)(

)(ofjacobian)(

))(())(()))(())((()()1(

))(),...,(()(),()(

1

1

1

Particular case: Levenberg-Marquardt

• This is the Newton method adapted for the case when the

objective function is a sum of squares (as MSE is)

Used in order to deal with

singular matrices

Metaheuristic Algorithms - Lecture

12

44

Problems in BackPropagation
 Low convergence rate (the error decreases too slow)

 Oscillations (the error value oscillates instead of continuously
decreasing)

 Local minima problem (the learning process is stuck in a local
minima of the error function)

 Stagnation (the learning process stagnates even if it is not a
local minima)

 Overtraining and limited generalization

Metaheuristic Algorithms - Lecture

12

45

Problems in BackPropagation
Problem 1: The error decreases too slow or the error value

oscillates instead of continuously decreasing

Causes:

• Inappropriate value of the learning rate (too small values lead to

slow convergence while too large values lead to oscillations)

– Solution: adaptive learning rate

• Slow minimization method (the gradient method needs small

learning rates in order to converge)

Solutions:

- heuristic modification of the standard BP (e.g. momentum)

- other minimization methods (Newton, conjugate gradient)

Metaheuristic Algorithms - Lecture

12

46

Problems in BackPropagation
Adaptive learning rate:

• If the error is increasing then the learning rate should be decreased

• If the error significantly decreases then the learning rate can be

increased

• In all other situations the learning rate is kept unchanged

)1()()1()1()()1()1(

21),1()()1()1()(

10),1()()1()1()(

pppEpEpE

bpbppEpE

apappEpE

Example: γ=0.05

Metaheuristic Algorithms - Lecture

12

47

Problems in BackPropagation

Momentum variant:

 Increase the convergence speed by introducing some kind of

“inertia” in the weights adjustment: the weight changes

corresponding to the current epoch includes the adjustments from

the previous epoch

)()1()1(pwypw ijjiij

Momentum coefficient: α in [0.1,0.9]

Metaheuristic Algorithms - Lecture

12

48

Problems in BackPropagation
Momentum variant:

 The effect of these enhancements is that flat spots of the error

surface are traversed relatively rapidly with a few big steps, while

the step size is decreased as the surface gets rougher. This

implicit adaptation of the step size increases the learning speed

significantly.

Simple gradient

descent
Use of inertia term

Metaheuristic Algorithms - Lecture

12

49

Problems in BackPropagation

Problem 2: Local minima problem (the learning process is stuck in a

local minima of the error function)

Cause: the gradient based methods are local optimization methods

Solutions:

• Restart the training process using other randomly initialized

weights

• Introduce random perturbations into the values of weights:

 variablesrandom : , ijijijij ww

• Use a global optimization method

Metaheuristic Algorithms - Lecture

12

50

Problems in BackPropagation
Solution:

• Replacing the gradient method with a stochastic optimization

method

• This means using a random perturbation instead of an adjustment

based on the gradient computation

• Adjustment step:

)W:(W adjustment accept the THEN)()(IF

 valuesrandom

WEWE

ij

Rmk:

• The adjustments are usually based on normally distributed

random variables

• If the adjustment does not lead to a decrease of the error then it is

not accepted

Metaheuristic Algorithms - Lecture

12

51

Problems in BackPropagation

Problem 3: Stagnation (the learning process

stagnates even if it is not a local minima)

Cause: the adjustments are too small because the

arguments of the sigmoidal functions are too large

Solutions:

– Penalize the large values of the weights

(weights-decay)

– Use only the signs of derivatives not their

values

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

Very small derivates

Metaheuristic Algorithms - Lecture

12

52

Problems in BackPropagation

Penalization of large values of the weights: add a regularization

term to the error function

ji

ijr wWEWE

,

2
)()()(

The adjustment will be:

ijij
r
ij w2

)(

Metaheuristic Algorithms - Lecture

12

53

Problems in BackPropagation

Resilient BackPropagation (use only the sign of the derivative not

its value)

ab

w

pWE

w

pWE
pb

w

pWE

w

pWE
pa

p

w

pWE
p

w

pWE
p

pw

ijij
ij

ijij
ij

ij

ij
ij

ij
ij

ij

10

0
))2(())1((

 if)1(

0
))2(())1((

 if)1(

)(

0
))1((

 if)(

0
))1((

 if)(

)(

Metaheuristic Algorithms - Lecture

12

54

Problems in BackPropagation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Problem 4: Overtraining and limited generalization ability

5 hidden units 10 hidden units

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Metaheuristic Algorithms - Lecture

12

55

Problems in BackPropagation
Problem 4: Overtraining and limited generalization ability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 hidden units 20 hidden units

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Metaheuristic Algorithms - Lecture

12

56

Problems in BackPropagation
Problem 4: Overtraining and limited generalization ability

Causes:

• Network architecture (e.g. number of hidden units)

– A large number of hidden units can lead to overtraining (the
network extracts not only the useful knowledge but also the
noise in data)

• The size of the training set

– Too few examples are not enough to train the network

• The number of epochs (accuracy on the training set)

– Too many epochs could lead to overtraining

Solutions:

• Dynamic adaptation of the architecture

• Stopping criterion based on validation error; cross-validation

Metaheuristic Algorithms - Lecture

12

57

Problems in BackPropagation
Dynamic adaptation of the architectures:

• Incremental strategy:

– Start with a small number of hidden neurons

– If the learning does not progress new neurons are introduced

• Decremental strategy:
– Start with a large number of hidden neurons

– If there are neurons with small weights (small contribution to the

output signal) they can be eliminated

Metaheuristic Algorithms - Lecture

12

58

Problems in BackPropagation
Stopping criterion based on validation error :

• Divide the learning set in m parts: (m-1) are for training and

another one for validation

• Repeat the weights adjustment as long as the error on the

validation subset is decreasing (the learning is stopped when

the error on the validation subset start increasing)

Cross-validation:

• Applies for m times the learning algorithm by successively

changing the learning and validation sets

1: S=(S1,S2,,Sm)

2: S=(S1,S2,,Sm)

....

m: S=(S1,S2,,Sm)

Metaheuristic Algorithms - Lecture

12

59

Problems in BackPropagation

Stop the learning process when the error on the validation set start
to increase (even if the error on the training set is still
decreasing) :

Error on the training set

Error on the validation set

Metaheuristic Algorithms - Lecture

12

60

Recurrent neural networks

• Architectures

– Fully recurrent networks

– Partially recurrent networks

• Dynamics of recurrent networks

– Continuous time dynamics

– Discrete time dynamics

• Applications

Metaheuristic Algorithms - Lecture

12

61

Recurrent neural networks

• Architecture

– Contains feedback connections

– Depending on the density of feedback connections there are:

• Fully recurrent networks (Hopfield model)

• Partially recurrent networks:

– With contextual units (Elman model, Jordan model)

– Cellular networks (Chua-Yang model)

• Applications

– Associative memories

– Combinatorial optimization problems

– Prediction

– Image processing

– Dynamical systems and chaotical phenomena modelling

Metaheuristic Algorithms - Lecture

12

62

Hopfield networks

Architecture:

N fully connected units

Activation function:

Signum/Heaviside

Logistica/Tanh

Parameters:

weight matrix

Notations: xi(t) – potential (state) of the neuron i at moment t

yi(t)=f(xi(t)) – the output signal generated by unit i at moment t

Ii(t) – the input signal

wij – weight of connection between j and i

Metaheuristic Algorithms - Lecture

12

63

Hopfield networks
Functioning: - the output signal is generated by the evolution of a

dynamical system

- Hopfield networks are equivalent to dynamical systems

Network state:

- the vector of neuron’s state X(t)=(x1(t), …, xN(t))

or

- output signals vector Y(t)=(y1(t),…,yN(t))

Dynamics:

• Discrete time – recurrence relations (difference equations)

• Continuous time – differential equations

Metaheuristic Algorithms - Lecture

12

64

Hopfield networks

Discrete time functioning:

the network state corresponding to moment t+1 depends on the

network state corresponding to moment t

Network’s state: Y(t)

Variants:

• Asynchronous: only one neuron can change its state at a given time

• Synchronous: all neurons can simultaneously change their states

Network’s answer: the stationary state of the network

Metaheuristic Algorithms - Lecture

12

65

Hopfield networks

Asynchronous

variant:

*),()1(

)()()1(
1

iityty

tItywfty

ii

N

j

ijjii

Choice of i*:

- systematic scan of {1,2,…,N}

- random (but such that during N steps each neuron

changes its state just once)

Network simulation:

- choose an initial state (depending on the problem to be solved)

- compute the next state until the network reach a stationary state

(the distance between two successive states is less than ε)

Metaheuristic Algorithms - Lecture

12

66

Hopfield networks

Synchronous variant:

Either continuous or discrete activation functions can be used

Functioning:

Initial state

REPEAT

compute the new state starting from the current one

UNTIL < the difference between the current state and the previous

one is small enough >

NitItywfty
N

j

ijiji ,1 ,)()()1(
1

Metaheuristic Algorithms - Lecture

12

67

Hopfield networks

Continuous time functioning:

NitItxfwtx
dt

tdx
ij

N

j

iji
i ,1),())(()(

)(

1

Network simulation: solve (numerically) the system of differential

equations for a given initial state xi(0)

Example: Explicit Euler method

NiIxfwhxhx

NitItxfwhtxhhtx

NitItxfwtx
h

txhtx

i

old

j

N

j

ij

old

i

new

i

ij

N

j

ijii

ij

N

j

iji
ii

,1),)(()1(

:signalinput Constant

,1)),())((()()1()(

,1),())(()(
)()(

1

1

1

Metaheuristic Algorithms - Lecture

12

68

Stability properties
Possible behaviours of a network:

• X(t) converged to a stationary state X* (fixed point of the network
dynamics)

• X(t) oscillates between two or more states

• X(t) has a chaotic behavior or ||X(t)|| becomes too large

Useful behaviors:

• The network converges to a stationary state

– Many stationary states: associative memory

– Unique stationary state: combinatorial optimization problems

• The network has a periodic behavior

– Modelling of cycles

Obs. Most useful situation: the network converges to a stable stationary
state

Metaheuristic Algorithms - Lecture

12

69

Stability properties

Illustration:

Formalization:

X* is asymptotic stable (wrt the initial conditions) if it is

stable

attractive

0*)(

)0()),((
)(

0

XF

XXtXF
dt

tdX

Asymptotic stable Stable Unstable

Metaheuristic Algorithms - Lecture

12

70

Stability properties

Stability:

X* is stable if for all ε>0 there exists δ(ε) > 0 such that:

||X0-X*||< δ(ε) implies ||X(t;X0)-X*||< ε

Attractive:

X* is attractive if there exists δ > 0 such that:

||X0-X*||< δ implies X(t;X0)->X*

In order to study the asymptotic stability one can use the Lyapunov

method.

Metaheuristic Algorithms - Lecture

12

71

Stability properties

Lyapunov
function:

0 toricepentru ,0
))((

inferior marginita ,:

dt

tXdV

RRV N

• If one can find a Lyapunov function for a system then its

stationary solutions are asymptotically stable

• The Lyapunov function is similar to the energy function in

physics (the physical systems naturally converges to the lowest

energy state)

• The states for which the Lyapunov function is minimum are

stable states

• Hopfield networks satisfying some properties have Lyapunov

functions.

bounded

Metaheuristic Algorithms - Lecture

12

72

Stability properties
Stability result for continuous neural networks

If:

- the weight matrix is symmetrical (wij=wji)

- the activation function is strictly increasing (f’(u)>0)

- the input signal is constant (I(t)=I)

Then all stationary states of the network are asymptotically stable

Associated Lyapunov function:

N

i

xfN

i

iij

N

ji

iijN

i

dzzfIxfxfxfwxxV
1

)(

0

1

11,

1)()()()(
2

1
),...,(

Metaheuristic Algorithms - Lecture

12

73

Stability properties
Stability result for discrete neural networks (asynchronous case)

If:

- the weight matrix is symmetrical (wij=wji)

- the activation function is signum or Heaviside

- the input signal is constant (I(t)=I)

Then all stationary states of the network are asymptotically stable

Corresponding Lyapunov function

N

i

iiji

N

ji

ijN IyyywyyV
11,

1
2

1
),...,(

Metaheuristic Algorithms - Lecture

12

74

Stability properties
This result means that:

• All stationary states are stable

• Each stationary state has attached an attraction region (if the
initial state of the network is in the attraction region of a given
stationary state then the network will converge to that stationary
state)

Remarks:

• This property is useful for associative memories

• For synchronous discrete dynamics this result is no more true,
but the network converges toward either fixed points or cycles of
period two

Metaheuristic Algorithms - Lecture

12

75

Associative memories

Memory = system to store and recall the information

Address-based memory:

– Localized storage: all components bytes of a value are stored

together at a given address

– The information can be recalled based on the address

Associative memory:

– The information is distributed and the concept of address

does not have sense

– The recall is based on the content (one starts from a clue

which corresponds to a partial or noisy pattern)

Metaheuristic Algorithms - Lecture

12

76

Associative memories

Properties:

• Robustness

Implementation:

• Hardware:

– Electrical circuits

– Optical systems

• Software:

– Hopfield networks simulators

Metaheuristic Algorithms - Lecture

12

77

Associative memories

Software simulations of associative memories:

• The information is binary: vectors having elements from {-1,1}

• Each component of the pattern vector corresponds to a unit in the
networks

Example (a)

(-1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-

1,1,1,-1,-1, -1,-1,1,1,-1,-1)

Metaheuristic Algorithms - Lecture

12

78

Associative memories

Associative memories design:

• Fully connected network with N signum units (N is the patterns
size)

Patterns storage:

• Set the weights values (elements of matrix W) such that the
patterns to be stored become fixed points (stationary states) of
the network dynamics

Information recall:

• Initialize the state of the network with a clue (partial or noisy
pattern) and let the network to evolve toward the corresponding
stationary state.

Metaheuristic Algorithms - Lecture

12

79

Associative memories

Patterns to be stored: {X1,…,XL}, Xl in {-1,1}N

Methods:

• Hebb rule

• Pseudo-inverse rule (Diederich – Opper algorithm)

Hebb rule:

• It is based on the Hebb’s principle: “the synaptic permeability of
two neurons which are simultaneously activated is increased”

l
j

L

l

l
iij xx

N
w

1

1

Metaheuristic Algorithms - Lecture

12

80

Associative memories

Properties of the Hebb’s rule:

• If the vectors to be stored are orthogonal (statistically uncorrelated)
then all of them become fixed points of the network dynamics

• Once the vector X is stored the vector –X is also stored

• An improved variant: the pseudo-inverse method

l
j

L

l

l
iij xx

N
w

1

1

Orthogonal vectors

Complementary vectors

Metaheuristic Algorithms - Lecture

12

81

Associative memories

Pseudo-inverse method:

k
i

N

i

l
ilk

l
jlk

kl

l
iij

xx
N

Q

xQx
N

w

1

1

,

1

)(
1

• If Q is invertible then all elements of {X1,…,XL} are fixed points of

the network dynamics

• In order to avoid the costly operation of inversion one can use an

iterative algorithm for weights adjustment

Metaheuristic Algorithms - Lecture

12

82

Associative memories

Diederich-Opper algorithm :

Initialize W(0) using the Hebb rule

Metaheuristic Algorithms - Lecture

12

83

Associative memories

Recall process:

• Initialize the network state

with a starting clue

• Simulate the network until

the stationary state is

reached.

Stored patterns

Noisy patterns (starting clues)

Metaheuristic Algorithms - Lecture

12

84

Associative memories

Storage capacity:
– The number of patterns which can be stored and recalled

(exactly or approximately)

– Exact recall: capacity=N/(4lnN)

– Approximate recall (prob(error)=0.005): capacity = 0.15*N

Spurious attractors:
– These are stationary states of the networks which were not

explicitly stored but they are the result of the storage
method.

Avoiding the spurious states
– Modifying the storage method

– Introducing random perturbations in the network’s
dynamics

Metaheuristic Algorithms - Lecture

12

85

Solving optimization problems

• First approach: Hopfield & Tank (1985)

– They propose the use of a Hopfield model to solve the

traveling salesman problem.

– The basic idea is to design a network whose energy

function is similar to the cost function of the problem (e.g.

the tour length) and to let the network to naturally evolve

toward the state of minimal energy; this state would

represent the problem’s solution.

Metaheuristic Algorithms - Lecture

12

86

Solving optimization problems

A constrained optimization problem:

find (y1,…,yN) satisfying:

it minimizes a cost function C:RN->R

it satisfies some constraints as Rk (y1,…,yN) =0 with

Rk nonnegative functions

Main steps:

• Transform the constrained optimization problem in an
unconstrained optimization one (penalty method)

• Rewrite the cost function as a Lyapunov function

• Identify the values of the parameteres (W and I) starting from
the Lyapunov function

• Simulate the network

Metaheuristic Algorithms - Lecture

12

87

Solving optimization problems

Step 1: Transform the constrained optimization problem in an

unconstrained optimization one

0,

),...,(),...,(),...,(* 1

1

11

k

N

r

k

kkNN

ba

yyRbyyaCyyC

The values of a and b are chosen such that they reflect the relative

importance of the cost function and constraints

Metaheuristic Algorithms - Lecture

12

88

Solving optimization problems

Step 2: Reorganizing the cost function as a Lyapunov function

rkyIyywyyR

yIyywyyC

N

i

i

k

i

N

ji

ji

k

ijNk

N

i

i

obj

i

N

ji

ji

obj

ijN

,1 ,
2

1
),....,(

2

1
),....,(

11,

1

11,

1

Remark: This approach works only for cost functions and constraints

which are linear or quadratic

Metaheuristic Algorithms - Lecture

12

89

Solving optimization problems

Step 3: Identifying the network parameters:

NiIbaII

Njiwbaww

k

i

r

k

k

obj

ii

k

ij

r

k

k

obj

ijij

,1 ,

,1, ,

1

1

Metaheuristic Algorithms - Lecture

12

90

Solving optimization problems

Designing a neural network for TSP (n towns):

N=n*n neurons

The state of the neuron (i,j) is interpreted as follows:

1 - the town i is visited at time j

0 - otherwise

A

C

DE

B 1 2 3 4 5

A 1 0 0 0 0

B 0 0 0 0 1

C 0 0 0 1 0

D 0 0 1 0 0

E 0 1 0 0 0

AEDCB

Metaheuristic Algorithms - Lecture

12

91

Solving optimization problems

Constraints:

- at a given time only one town is visited

(each column contains exactly one

value equal to 1)

- each town is visited only once (each

row contains exactly one value equal to

1)

Cost function:

the tour length = sum of distances

between towns visited at consecutive

time moments

1 2 3 4 5

A 1 0 0 0 0

B 0 0 0 0 1

C 0 0 0 1 0

D 0 0 1 0 0

E 0 1 0 0 0

Metaheuristic Algorithms - Lecture

12

92

Solving optimization problems

Constraints and cost function:

)()(

01

01

1,1,

1 ,1 1

2

1 1

2

1 1

jkjk

n

i

n

ikk

n

j

ijik

n

i

n

j

ij

n

j

n

i

ij

yyycYC

y

y

)11(
2

)(
2

)(*

2

1 1

2

1 1

1,1,

1 ,1 1

n

i

n

j

ij

n

j

n

i

ij

jkjk

n

i

n

ikk

n

j

ijik

yy
b

yyyc
a

YC

Cost function in the

unconstrained case:

Metaheuristic Algorithms - Lecture

12

93

Solving optimization problems

Identified parameters:

)11(
2

)(
2

)(*

2

1 1

2

1 1

1,1,

1 ,1 1

n

i

n

j

ij

n

j

n

i

ij

jkjk

n

i

n

ikk

n

j

ijik

yy
b

yyyc
a

YC

ij

n

i

n

j

ijklij

n

i

n

j

n

k

n

l

klij IyyywYV

1 11 1 1 1

,
2

1
)(

bI

w

bacw

ij

ijij

jlikjlikjljlikklij

2

0

)()(

,

1,1,,

Metaheuristic Algorithms - Lecture

12

94

Prediction in time series

• Time series = sequence of values measured at successive

moments of time

• Examples:

– Currency exchange rate evolution

– Stock price evolution

– Biological signals (EKG)

• Aim of time series analysis: predict the future value(s) in the

series

Metaheuristic Algorithms - Lecture

12

95

Time series

The prediction (forecasting) is based on a model which describes the

dependency between previous values and the next value in the

series.

Order of the model

Parameters corresponding

to external factors

Metaheuristic Algorithms - Lecture

12

96

Time series

The model associated to a time series can be:

- Linear

- Nonlinear

- Deterministic

- Stochastic

Example: autoregressive model (AR(p))

noise = random variable from

N(0,1)

Metaheuristic Algorithms - Lecture

12

97

Time series

Neural networks. Variants:

• The order of the model is known

– Feedforward neural network with delayed input layer

(p input units)

• The order of the model is unknown

– Network with contextual units (Elman network)

Metaheuristic Algorithms - Lecture

12

98

Networks with delayed input layer

Architecture:

Functioning:

Metaheuristic Algorithms - Lecture

12

99

Networks with delayed input layer

Training:

• Training set: {((xl,xl-1,…,xl-p+1),xl+1)}l=1..L

• Training algorithm: BackPropagation

• Drawback: needs the knowledge of p

Metaheuristic Algorithms - Lecture

12

100

Elman network
Architecture:

Functioning:

Contextual

units

Rmk: the contextual

units contain

copies of the

outputs of the

hidden layers

corresponding to

the previous

moment

Metaheuristic Algorithms - Lecture

12

101

Elman network

Training

Training set : {(x(1),x(2)),(x(2),x(3)),…(x(t-1),x(t))}

Sets of weights:

- Adaptive: Wx, Wc si W2

- Fixed: the weights of the connections between the hidden and the

contextual layers.

Training algorithm: BackPropagation

Metaheuristic Algorithms - Lecture

12

102

Cellular networks

Architecture:

• All units have a double role: input and
output units

• The units are placed in the nodes of a
two dimensional grid

• Each unit is connected only with units
from its neighborhood (the
neighborhoods are defined as in the
case of Kohonen’s networks)

• Each unit is identified through its
position p=(i,j) in the grid

virtual cells

(used to define

the context for

border cells)

Metaheuristic Algorithms - Lecture

12

103

Cellular networks

Activation function: ramp

-2 -1 1 2

-1

-0.5

0.5

1

Notations:

Xp(t) – state of unit p at time t

Yp(t) - output signal

Up(t) – control signal

Ip(t) – input from the environment

apq – weight of connection between unit q and unit p

bpq - influence of control signal Uq on unit p

Metaheuristic Algorithms - Lecture

12

104

Cellular networks

Functioning:

Remarks:

• The grid has a boundary of fictitious units (which usually

generate signals equal to 0)

• Particular case: the weights of the connections between

neighboring units do not depend on the positions of units

Example: if p=(i,j), q=(i-1,j), p’=(i’,j’), q’=(i’-1,j’) then

apq= ap’q’=a-1,0

Signal generated by

other units
Control

signal

Input signal

Metaheuristic Algorithms - Lecture

12

105

Cellular networks
These networks are called cloning template cellular networks

Example:

Metaheuristic Algorithms - Lecture

12

106

Cellular networks
Illustration of the cloning template elements

Metaheuristic Algorithms - Lecture

12

107

Cellular networks
Software simulation = equivalent to numerical solving of a differential

system (initial value problem)

Explicit Euler method

Applications:

• Gray level image processing

• Each pixel corresponds to a unit of the network

• The gray level is encoded by using real values from [-1,1]

Metaheuristic Algorithms - Lecture

12

108

Cellular networks
Image processing:

• Depending on the choice of templates, of control signal (u), initial
condition (x(0)), boundary conditions (z) different image
processing tasks can be solved:

– Edge detection in binary images

– Gap filling in binary images

– Noise elimination in binary images

– Identification of horizontal/vertical line segments

Metaheuristic Algorithms - Lecture

12

109

Cellular networks
Example 1: edge detection

z=-1, U=input image, h=0.1

UXI

BA

)0(,1

010

121

010

 ,

000

030

000

http://www.isiweb.ee.ethz.ch/haenggi/CNN_web/CNNsim_adv.html

Metaheuristic Algorithms - Lecture

12

110

Cellular networks

Example 2: gap filling

z=-1,

U=input image,

h=0.1

1) are pixels (all 1)0(,5.0

000

040

000

 ,

010

15.11

010

ijxI

BA

Metaheuristic Algorithms - Lecture

12

111

Cellular networks

Example 3: noise removing

z=-1, U=input image, h=0.1

UXI

BA

)0(,0

000

000

000

 ,

010

121

010

Metaheuristic Algorithms - Lecture

12

112

Cellular networks

Example 4: horizontal line detection

z=-1, U=input image, h=0.1

UXI

BA

)0(,1

000

111

000

 ,

000

020

000

Metaheuristic Algorithms - Lecture

12

113

Other related models

Reservoir computing (www.reservoir-computing.org)

Particularities:

• These models use a set of hidden units (called reservoir) which are

arbitrarly connected (their connection weights are randomly set; each of

these units realize a nonlinear transformation of the signals received

from the input units.

• The output values are obtained by a linear combination of the signals

produced by the input units and by the reservoir units.

• Only the weights of connections toward the output units are trained

Metaheuristic Algorithms - Lecture

12

114

Other related models

Reservoir computing (www.reservoir-computing.org)

Variants:

• Temporal Recurrent Neural Network (Dominey 1995)

• Liquid State Machines (Natschläger, Maass and Markram 2002)

• Echo State Networks (Jaeger 2001)

• Decorrelation-Backpropagation Learning (Steil 2004)

Metaheuristic Algorithms - Lecture

12

115

Other related models

Echo State Networks:

U(t) = input vector

X(t) = reservoir state vector

Z(t)=[U(t);X(t)] = concatenated input and state

vectors

Y(t) = output vector

X(t)=(1-a)X(t-1)+a tanh(Win U(t)+W X(t-1))

Y(t)=Wout Z(t)

Win ,W – random matrices (W is scaled such

that the spectral radius has a predefined

value);

Wout - set by training

M. Lukosevicius – Practical Guide to

Applying Echo State Networks

Metaheuristic Algorithms - Lecture

12

116

Other related models

Applications of reservoir computing:

- Speech recognition

- Handwritten text recognition

- Robot control

- Financial data prediction

- Real time prediction of epilepsy seizures

Metaheuristic Algorithms - Lecture

12

117

Other related models

Deep learning (http://deeplearning.net/)

Particularities:

• Deep architecture = many layers (aim: hierarchical extraction of data features);

• Unsupervised training based on Restricted Boltzmann Machines) followed by a

fine tuning of weights using a supervised training (e.g. Backpropagation)

Remarks:

• Boltzmann Machines = recurrent neural networks with binary stochastic units

• Restricted BM = recurrent neural networks with bidirectional connections only

between the units belonging to different subsets of units (e.g. subsets: visible

units, hidden units)

• There are feed-forward deep neural networks (e.g: Convolutional Neural

Networks)

Metaheuristic Algorithms - Lecture

12

118

Other related models

Deep learning (http://deeplearning.net/)

Applications:

- Image classification, objects detection (e.g. Face recognition – Deep Face)

- Speech recognition (Google Brain, Siri)

- Semantic indexing (ex: word2vec) and automated translation

- Dream simulation (http://npcontemplation.blogspot.ca/2012/02/machine-that-

can-dream.html)

