
An Ant Colony Optimization Approah to Dynami TSP
Mihael Guntsh1, Martin Middendorf2, Hartmut Shmek3Institute AIFBUniversity of KarlsruheD-76128 Karlsruhe, Germanyf1mgu,2mmi,3hshg�aifb.uni-karlsruhe.deAbstratAn Ant Colony Optimization (ACO) ap-proah for a dynami Traveling SalespersonProblem (TSP) is studied in this paper. Inthe dynami version of the TSP ities an bedeleted or inserted over time. Spei�ally,we onsider replaing a ertain number ofities with new ones at di�erent frequenies.The aim of the ACO algorithm is to providea good solution quality averaged over time,i.e. the average taken of the best solution ineah iteration is optimized. Several strate-gies for pheromone modi�ation in reationto hanges of the problem instane are inves-tigated. The strategies di�er in their degreeof loality with respet to the position of theinserted/deleted ities and whether they keepa modi�ed elitist ant or not.1 IntrodutionEvolutionary methods are in general apable of reat-ing to dynami hanges of an optimization problem.Di�erent ways to trim Evolutionary Algorithms (EAs)for dynami problems has have been proposed over thelast years (see (Branke, 1999) for a short overview). Akey aspet is whether information onneted to solu-tions found for older stages of a problem an be usedto quikly �nd a good solution for the problem after ahange ourred.In this paper we explore strategies to apply Ant ColonyOptimization (ACO) for solving dynami optimizationproblems (see (Bonabeau, 1998), (Dorigo and Di Caro,1999) for an overview of ACO). The partiular testproblem we study is a dynami Traveling Salesper-son Problem (TSP) where instanes hange at ertainintervals through the deletion and insertion of ities.

This problem is general enough to be interesting as abenhmark problem and allows modifying the degreeof hange easily. As a pratial appliation, onsiderthe ase of a fatory with a utuating set of ative ma-hines. In ase of a failure in the prodution systemit is neessary to start an inspetion tour immediatelyto hek all previously ative mahines. This makes itbene�ial to onstantly know a short tour for the setof ative mahines.We use modi�ed and extended strategies from a pre-vious study done by two of the authors where the re-ation of the ant algorithms to a single hange of theproblem instane was investigated (Guntsh and Mid-dendorf, 2001). The only other dynami optimizationproblems to whih ACO has been applied are routingproblems in ommuniation networks where the traf-� in the network ontinually hanges (e.g. (Di Caroand Dorigo, 1998), (Shoonderwoerd et al., 1996)).The ants were used to ontinually measure the traveltime between pairs of nodes and this information isused to update the routing tables (whih ontain thepheromone information). This allows the system toadapt to new traÆ situations but it does not provideany means for reating expliitly to single hanges.Dynami optimization problems are most interestingwhen hanges of the problems instanes our fre-quently and eah hange is not too large so that itis likely that the new optimal solutions will be in somesense related to the old ones. In this ase a simplerestart of the algorithm whih disards all old infor-mation after a hange has ourred might not be agood strategy. Instead, maintenane of some previ-ously determined knowledge in the form of pheromoneinformation should be bene�ial. To this end a tradeo�must be found between the opposing goals of preserv-ing pheromone information and resetting enough to al-low the ants to explore new relevant areas of the searhspae in later iterations. Based on this general idea, wepropose and test three di�erent strategies and ombi-



nations thereof to make ant algorithms more suitablefor the optimization in dynami environments. More-over, we propose an elitist strategy for use in dynamienvironments. A standard elitist strategy for ant al-gorithms is that an elitist ant updates the pheromonevalues in every generation aording to the best solu-tion found so far. But after a hange of the probleminstane the best solution found so far will usually nolonger represent a valid solution to the new instane.Instead of simply forgetting the old best solution, westudy an alternative approah where the old best solu-tion is adapted so that it beomes a reasonably goodsolution for the new instane.The basi struture of the ant algorithm is presentedin Setion 2. In Setion 3, the strategies for modifyingthe pheromone information are desribed. The testproblems and the used parameter values are providedin Setion 4, with the results disussed in Setion 5.The paper onludes with a summary in Setion 6.2 The Ant AlgorithmIn this setion we desribe only the general approahof our algorithm for the TSP. The strategies added forapplying it to the dynami TSP are presented later inSetion 3. Ant algorithms have been applied for the(stati) TSP problem by several authors (Bullnheimeret al., 1999), (Dorigo, 1992), (Dorigo et al. 1996),(Dorigo and Gambardella, 1995), (Dorigo and Gam-bardella, 1997), (St�utzle and Hoos, 1997). Our algo-rithm for the TSP follows (Dorigo et al., 1996).In every iteration eah of m ants onstruts one tourthrough all the given n ities. Starting at a randomity an ant builds up a solution iteratively by alwaysseleting the next ity based on heuristi informationas well as pheromone information. Pheromone infor-mation serves as a form of memory by indiating whihhoies were good in the past. The heuristi informa-tion, denoted by �ij , and the pheromone information,denoted by �ij , are indiators of how good it seemsto move from ity i to ity j. The heuristi value is�ij = 1=dij where dij is the distane between ity iand ity j.With probability q0, where 0 � q0 < 1 is a parameterof the algorithm, an ant at ity i hooses the next ityj from the set S of ities that have not been visitedso far whih maximizes [�ij ℄� [�ij ℄� , where � and �are onstants that determine the relative inuene ofthe heuristi values and the pheromone values on thedeision of the ant. With probability 1 � q0 the nextity is hosen aording to the probability distributionover S determined by

pij = [�ij ℄� [�ij ℄�Ph2S [�ih℄� [�ih℄�Before doing a global pheromone update some of theold pheromone is evaporated on all edges aordingto �ij 7! (1 � �) � �ij where parameter � determinesthe evaporation rate. For pheromone update the antthat found the best solution in that generation up-dates pheromone along its solution, i.e. for every ityi some amount of pheromone is added to element (i; j)of the pheromone matrix when j is the suessor of iin the tour. Observe that pheromone is added to ex-atly two edges inident to a node i. The amount ofpheromone added is �=4, that is �ij 7! �ij + 14�. Wealso apply an elitist strategy where one elitist ant up-dates pheromone along the best solution that has beenfound so far.For initialization we set �ij = 1=(n� 1) for every edge(i; j). Observe, that for every ity i the sum of thepheromone values on all inident edges is one, whihis not hanged by the pheromone update.3 Reating to a ChangeThe ant algorithm that was desribed in the last se-tion an not handle the dynami TSP. When a hangeof the problem instane ourred it is neessary to ini-tialize the pheromone information for the new ities.Moreover, it might also be important to modify thepheromone information for the old ities that werenot deleted. We desribe three strategies and om-binations thereof for resetting part of the pheromoneinformation in reation to a hange of the probleminstane. Resetting information is ahieved by equal-izing the pheromone values to some degree, whih ef-fetively redues the inuene of experiene on the de-isions an ant makes to build a solution.Strategies for the modi�ation of pheromone informa-tion have been proposed before to ounterat stagna-tion of ant algorithms. In (Gambardella et al., 1999)it was proposed to reinitialize the whole pheromonematrix while (St�utzle and Hoos, 1997) suggested to in-rease the pheromone values proportionately to theirdi�erene to the maximum pheromone value. Similarto these approahes we use a global pheromone modi-�ation strategy whih reinitializes all the pheromonevalues by the same degree. However, this method,whih we all Restart-Strategy, is limited beause itdoes not take into aount where the hange of theproblem instane atually ourred. Usually, the mostextensive resetting of pheromone values should be per-formed in the lose viinity of the inserted/deleted



ities. A more loally oriented update strategy is the\�-Strategy" whih uses heuristi based information,distanes between ities in this ase, to deide to whatdegree equalization is done on the pheromone valueson all edges inident to a ity j. The \� -Strategy" usespheromone based information, i.e. the pheromone val-ues on the edges, to de�ne another onept of \dis-tane" between ities. Equalization of pheromone val-ues is then again performed to a higher degree on theedges of \loser" ities.All three strategies work by distributing a reset-valuei 2 [0 : 1℄ to eah ity i whih determines the amountof reinitialization the pheromone values on edges ini-dent to i aording to the equation�ij 7! (1� i)�ij + i 1n� 1 (1)In ase of a problem with symmetri �-values like Eu-lidean TSP, the average of the reset-values (i+j)=2is used instead of i in equation 1 for modifying thepheromone value on the edge onneting ities i andj. An inserted ity i always reeives an unmodi�ablereset-value of i = 1, resulting in all inident edgesto i having the initial pheromone value of 1=(n � 1).We will now desribe in more detail how the di�erentstrategies assign the values i.3.1 Basi StrategiesThe Restart-Strategy assigns eah ity i the strategy-spei� parameter �R 2 [0; 1℄ as its reset-value, i.e.i = �R:In the �-Strategy, eah ity i is given a value iproportionate to its distane from the nearest in-serted/deleted ity j. This distane d�ij is derived from�ij in suh a way that a high �ij implies a high d�ij andthat saling the heuristi �-values has no e�et:d�ij = 1� �avg�E � �ijwith �avg = 1n(n�1)Pni=1Pk 6=i �ik and the strategy-spei� parameter �E 2 [0;1) saling the width of thedistane-one. A ity i then reeives i = maxf0; d�ijg(see the example in Figure 1).The � -Strategy uses a distane measure based onpheromone information to alulate the reset-values.The pheromone-distane d�ik between two ities i and kis basially de�ned as the maximum over all paths Pikfrom i to k of the produt of pheromone-values on theedges in Pik . To prevent any inompatibility due to thesize of absolute values, the pheromone-values on the
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Figure 1: �-Strategy: TSP test instane with bestfound solution; ontures show di�erent level of reset-values - highest reset ours near inserted/deleted ity.edges are saled by the maximum possible pheromonevalue on an edge �max 1. Formally,d�ik = maxPik Y(x;y)2Pik �xy�max :For the ase of insertion, we set the pheromone valueof the edges from the inserted ity to the two los-est ities, i.e. those with the highest value for �ij , to�max during the appliation of this strategy, sine thenew ity does not yet have any utilisable pheromoneinformation. With J being the set of all ities thatare inserted or deleted during the same hange, onlythe maximum value maxj2J d�ij is reored for eah ityi. When multiplied with a strategy-spei� parameter�T 2 [0;1), with the result limited to 1 for applia-tion of equation 1, this gives the reset-value for ity i:i = minf1; �T � d�ijg.3.2 Combined StrategiesA ombination of the global Restart-Strategy with oneof the two more loally ating �- or � -Strategies ouldbe advantageous in a situation where strong loal re-setting near the inserted/deleted ities is neessary toinorporate a hange while a lower global resetting isneeded to maintain the exibility for the algorithmto hange the best tour found more strongly if ben-e�ial. This ombination an be realized by havingeah of the two strategies involved distribute reset-values aording to their respetive sheme and then1�max is 0.5 for symmetri and 1.0 for asymmetri TSP.
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Figure 2: TSP test instane with k = 25 deleted andinserted ities determined with p = 2.hoosing for eah ity i the maximum of the two reset-values determined by the two strategies. Formally, ifthe �rst strategy distributes i;1 and the seond i;2,then i = maxfi;1; i;2g.3.3 Keeping the Elitist AntWhenever a hange to the instane that the algorithmis running on ours, the elitist ant, whih enforesthe best solution found so far, no longer represents avalid solution. Consequently, it must be dropped and anew elitist ant is determined after the �rst iteration ofants has worked on the hanged instane. The possibleloss of information from dropping the old best solutionan be alleviated somewhat by modifying the formerbest tour so that it one again yields a valid and pre-sumably good solution to the hanged instane. Weuse two greedy heuristis for performing this modi�-ation: i) all ities that were deleted from the instaneare also deleted from the old best tour, e�etively on-neting their respetive predeessors and suessors,ii) the ities that were added are inserted individuallyinto the tour at the plae where they ause the min-imum inrease in length. The tour derived from thisproess is the new tour of the elitist ant. We all thismethod KeepElitist. Clearly, this modi�ation an beombined with the strategies explained above.4 Test SetupFor our tests we hose subproblems of the EulideanTSP instane rd400 from the (TSP-Library, 2001).Spei�ally, 200 random ities were taken away fromthe 400 making up the problem instane to form a

spare pool of ities before the start of the algorithm,leaving the instane with 200 ities. During the run ofthe algorithm the atual problem instane was hangedevery t iterations by exhanging k ities between theatual instane and the spare pool, i.e. k ities weredeleted from the atual instane and the same num-ber of ities from the spare pool were inserted. Whendeiding whih ities to delete, the �rst ity j was ho-sen at random and all other ities i aording to aprobability distribution de�ned by �pij , with p beinga parameter that determines the relative inuene ofthe distanes between i and j. The ities that wereinserted were hosen analogously from the spare pool.An example is shown in Figure 2.We tested all ombinations of parameter values k 2f1; 5; 25g, t 2 f50; 200; 750g, and p 2 f0:0; 2:0g. Notethat for k = 1, the parameter p has no e�et as onlyone ity is removed/inserted. For eah on�guration(k; t; p), 10 test runs of 8999 iterations were done (initeration 9000, the next hange would our for alltested t), eah starting with a di�erent random subsetof 200 ities. All results that were used as a basis foromparison are averages over these 10 runs. Only theresults during iterations 3000-8999 were used to mea-sure the performane of the applied strategies, sinethe behaviour of the ant algorithm during the �rst it-erations is not representative for the latter stages.The parameter values for the ant algorithm used in thetests were m = 10 ants, � = 1, � = 5, q0 = 0:9, and� = 0:05. The heuristi weight of � = 5 has been usedby several authors (e.g. (Bullnheimer at al. 1999),(St�utzle and Hoos, 1997)) for TSP.We tested the parameters �R 2 f0:25; 0:5; 0:75; 1:0gfor the Restart-Strategy, �E 2 f0:5; 1:0; 2:0; 5:0g forthe �-Strategy, and �T 2 f0:5; 1:0; 1:5; 2:0g for the � -Strategy. A parameter value of 0.0, whih is equivalentfor all strategies and orresponds to not applying thestrategy at all, was also tested. Furthermore, we om-bined the Restart-Strategy with �R 2 f0:25; 0:5g withthe �- and � -Strategy using their respetive parameter-values above to determine if suh a ombination anyield better results than the \pure" strategies by itself.Finally, all of the above settings were tested with andwithout keeping a modi�ed elite ant as desribed inSetion 3.3 after the exhange of ities.Besides the best solutions found by the ant algorithmwe also reorded the normalized entropy E 2 [0; 1℄of the pheromone matrix in every iteration, whih isde�ned as E = 1n logn nXi=1 nXj=1��ij log(�ij)
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Figure 3: Relative performane of Restart-, �- and � -strategy for p = 0 (left) and p = 2 (right) and di�erentvalues of k and t: loss in quality of the best found solution averaged over iterations 3000-8999 ompared to thebest performing variant.Normalized entropy has been used previously in(Guntsh and Middendorf, 2001) to help understandthe urrent state of the ant algorithm for a given iter-ation.5 Empirial EvaluationA omparison of the Restart-, �- and � -Strategies forthe respetive parameter values desribed in Setion 4is shown Figure 3. Judging from \average darkness",the best overall strategy is the the �-Strategy with aparameter �E = 2:0, espeially for a high degree ofproximity for the ities inserted and removed. The � -Strategy with �T = 1:0 provides good to very goodsolutions when hanges our quikly, i.e. for t = 50.The Restart-Strategy, when given enough time andnot onfronted with hanges that are too severe, isalso able to ahieve good solutions for �R = 0:75. Aomplete restart, i.e. using the Restart-Strategy with�R = 1:0, is only omparable to the other strategies forthe ases where many ities are exhanged, even beat-ing some of the other strategies when they do not resetenough information. This would likely inrease if evenmore ities were transferred as the hanged problemswould beome almost independent of one another.As for the inuene of the proximity-value p, is seemsthat the di�erene in the solution-quality ahieved bythe individual strategies beomes less for p = 2 om-pared to p = 0. For the loal strategies, a stronger

proximity of the exhanged ities is bene�ial beausea luster of ities being inserted or deleted will ause adistribution of reset-values that is not as muh depen-dent on the number of ities omprising the luster ason their position in the graph or their degree of onne-tivity in the pheromone matrix. Therefore, althoughthe transfer of ities might be large, the loal on�ne-ment of this hange makes it easier to inorporate forthe loal strategies. The Restart-Strategy, however,also bene�ts from a higher degree of proximity. This isprobably again due to the \bad" pheromone informa-tion being more entralized than for the ase of equaldistribution, and therefore easier to deal with for theant algorithm.Figure 4 shows a more detailed view of the optimiza-tion behavior for the individual strategies and its de-pendeny on their respetive �-parameters (�E , �T ,�R) for the ase of (k; t; p) = (1; 50; 0), i.e. frequentourring small hanges. In partiular, the e�et oninreasing the �-parameter-values an be seen. The�-Strategy only slowly beomes worse in terms of so-lution quality, despite resetting a lot of pheromone forhigh values of �E , as is indiated by the entropy-urvesin Figure 4. In ontrast, the � -Strategy shows a signif-iant loss of performane for �T > 1, even though theentropy urve indiates that the inrease in reset in-formation is only moderate. For the Restart-Strategy,we see U-shaped parameter-dependeny urves for re-sulting solution quality, whih shows that not resettingenough as well as resetting too muh information has
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Figure 4: Average quality of best found solution with respet to number of iteration after a hange for�-Strategy (left), � -Strategy (enter), and Restart-Strategy (right) for di�erent parameter values �E ; �T ; �R andthe on�guration (k; t; p) = (1; 50; 0). The upper row shows urves of average solution quality for ertain iterationsafter a hange, the middle row the averaged behavior for a ertain parameter over a t-Interval, and the lowerrow shows the orresponding entropy values to the middle row.a negative e�et on the derived solution. As with theloal strategies, the biggest performane gain an beobserved when going from doing nothing, i.e. usinga parameter-value of 0.0, to doing even just a little,i.e. setting �E = 0:25, �T = 0:125, and �R = 0:125.The urves for the Restart-Strategy also show that thedi�erene from resetting almost all pheromone infor-mation to atually resetting all of it is enormous interms of solution quality when using this strategy.As mentioned in Setion 4, we also analyzed the perfor-mane of ombinations of the loal �- and � -Strategieswith the Restart-Strategy. For some ases, this ombi-nation provided better solutions than any of the strate-
gies ould ahieve by itself. An example of this is theon�guration (k; t; p) = (1; 50; 0) shown in Figure 5,for whih we performed additional parameter-tests tomake a more preise analysis. The ontour lines forthe ombination of the �- and Restart-Strategy showthat there are two areas in whih good performanewas ahieved, one of them a true ombination with�E = 1 and �R = 0:25, and the other one, whih isbetter in terms of solution quality as well as larger,with �E 2 f2; 3g and �R = 0. This suggests that the�-Strategy does not bene�t muh, if at all, from be-ing ombined with Restart. For the � -Strategy on theother hand we see a promising area loated arounda ombination of medium �T and �R values, speif-
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() Restart-StrategyFigure 6: Combination of the individual strategies with KeepElitist for the on�guration (k; t; p) = (1; 50; 0).ially for �T = 1:0 and �R 2 f0:5; 0:675g, and alsofor �T = 0:75 and �R = 0:375. Thus the ombina-tion of the � - and Restart-Strategy performs betterthan either strategy by itself, and also better than the�-Strategy in this ase, justifying its appliation.Finally, we ombined the KeepElitist method withthe individual strategies as well as the ombinationsof the �- and � -Strategies with the Restart-Strategy.Figure 6 shows how this modi�ed the average be-havior of the pure strategies with their respetivelybest �-parameter on on�guration (k; t; p) = (1; 50; 0).As an be observed, for the �- and Restart-Strategythe ombination on average entailed a worse solution,while for the � -Strategy the e�et on average was animprovement. Overall, the heuristi of keeping a mod-i�ed elite ant was bene�ial only when the number of

ities k that was inserted and deleted was not too largeand when the time for adapting to the problem t wassmall. If too many ities were exhanged, then theheuristi would no longer provide a good solution, andthe ants would �nd a better solution in the �rst itera-tion after the hange. This ase is not dangerous, sinekeeping the modi�ed elitist ant would be the same asnot keeping it; only the \new" elitist ant would up-date the pheromone matrix. The seond ase in whihkeeping an elitist ant does not entail better solutionsis when the interval t between hanges is long enoughto permit the algorithm to adapt very well to the newinstane, and the guidane provided by an early goodsolution leads toward stagnation in the end. This aseis potentially dangerous, as the elitist ant survives the�rst generation(s) and inuenes the pheromone ma-
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