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Abstract

An Ant Colony Optimization (ACO) ap-
proach for a dynamic Traveling Salesperson
Problem (TSP) is studied in this paper. In
the dynamic version of the TSP cities can be
deleted or inserted over time. Specifically,
we consider replacing a certain number of
cities with new ones at different frequencies.
The aim of the ACO algorithm is to provide
a good solution quality averaged over time,
i.e. the average taken of the best solution in
each iteration is optimized. Several strate-
gies for pheromone modification in reaction
to changes of the problem instance are inves-
tigated. The strategies differ in their degree
of locality with respect to the position of the
inserted/deleted cities and whether they keep
a modified elitist ant or not.

1 Introduction

Evolutionary methods are in general capable of react-
ing to dynamic changes of an optimization problem.
Different ways to trim Evolutionary Algorithms (EAs)
for dynamic problems has have been proposed over the
last years (see (Branke, 1999) for a short overview). A
key aspect is whether information connected to solu-
tions found for older stages of a problem can be used
to quickly find a good solution for the problem after a
change occurred.

In this paper we explore strategies to apply Ant Colony
Optimization (ACO) for solving dynamic optimization
problems (see (Bonabeau, 1998), (Dorigo and Di Caro,
1999) for an overview of ACO). The particular test
problem we study is a dynamic Traveling Salesper-
son Problem (TSP) where instances change at certain

intervals through the deletion and insertion of cities.

This problem is general enough to be interesting as a
benchmark problem and allows modifying the degree
of change easily. As a practical application, consider
the case of a factory with a fluctuating set of active ma-
chines. In case of a failure in the production system
it is necessary to start an inspection tour immediately
to check all previously active machines. This makes it
beneficial to constantly know a short tour for the set
of active machines.

We use modified and extended strategies from a pre-
vious study done by two of the authors where the re-
action of the ant algorithms to a single change of the
problem instance was investigated (Guntsch and Mid-
dendorf, 2001). The only other dynamic optimization
problems to which ACO has been applied are routing
problems in communication networks where the traf-
fic in the network continually changes (e.g. (Di Caro
and Dorigo, 1998), (Schoonderwoerd et al., 1996)).
The ants were used to continually measure the travel
time between pairs of nodes and this information is
used to update the routing tables (which contain the
pheromone information). This allows the system to
adapt to new traffic situations but it does not provide
any means for reacting explicitly to single changes.

Dynamic optimization problems are most interesting
when changes of the problems instances occur fre-
quently and each change is not too large so that it
is likely that the new optimal solutions will be in some
sense related to the old ones. In this case a simple
restart of the algorithm which discards all old infor-
mation after a change has occurred might not be a
good strategy. Instead, maintenance of some previ-
ously determined knowledge in the form of pheromone
information should be beneficial. To this end a tradeoff
must be found between the opposing goals of preserv-
ing pheromone information and resetting enough to al-
low the ants to explore new relevant areas of the search
space in later iterations. Based on this general idea, we
propose and test three different strategies and combi-



nations thereof to make ant algorithms more suitable
for the optimization in dynamic environments. More-
over, we propose an elitist strategy for use in dynamic
environments. A standard elitist strategy for ant al-
gorithms is that an elitist ant updates the pheromone
values in every generation according to the best solu-
tion found so far. But after a change of the problem
instance the best solution found so far will usually no
longer represent a valid solution to the new instance.
Instead of simply forgetting the old best solution, we
study an alternative approach where the old best solu-
tion is adapted so that it becomes a reasonably good
solution for the new instance.

The basic structure of the ant algorithm is presented
in Section 2. In Section 3, the strategies for modifying
the pheromone information are described. The test
problems and the used parameter values are provided
in Section 4, with the results discussed in Section 5.
The paper concludes with a summary in Section 6.

2 The Ant Algorithm

In this section we describe only the general approach
of our algorithm for the TSP. The strategies added for
applying it to the dynamic TSP are presented later in
Section 3. Ant algorithms have been applied for the
(static) TSP problem by several authors (Bullnheimer
et al., 1999), (Dorigo, 1992), (Dorigo et al. 1996),
(Dorigo and Gambardella, 1995), (Dorigo and Gam-

bardella, 1997), (Stiitzle and Hoos, 1997). Our algo-

rithm for the TSP follows (Dorigo et al., 1996).

In every iteration each of m ants constructs one tour
through all the given n cities. Starting at a random
city an ant builds up a solution iteratively by always
selecting the next city based on heuristic information
as well as pheromone information. Pheromone infor-
mation serves as a form of memory by indicating which
choices were good in the past. The heuristic informa-
tion, denoted by 7;;, and the pheromone information,
denoted by 7;;, are indicators of how good it seems
to move from city i to city j. The heuristic value is
n;; = 1/d;; where d;; is the distance between city i
and city j.

With probability g, where 0 < g9 < 1 is a parameter
of the algorithm, an ant at city i chooses the next city
j from the set S of cities that have not been visited
so far which maximizes [r;;]" [;;]°, where o and
are constants that determine the relative influence of
the heuristic values and the pheromone values on the
decision of the ant. With probability 1 — gy the next
city is chosen according to the probability distribution
over S determined by

(73] [n35)”
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Before doing a global pheromone update some of the
old pheromone is evaporated on all edges according
to 7;; — (1 — p) - 7;; where parameter p determines
the evaporation rate. For pheromone update the ant
that found the best solution in that generation up-
dates pheromone along its solution, i.e. for every city
i some amount of pheromone is added to element (i, j)
of the pheromone matrix when j is the successor of i
in the tour. Observe that pheromone is added to ex-
actly two edges incident to a node i. The amount of
pheromone added is p/4, that is 7;; — 7;; + 3p. We
also apply an elitist strategy where one elitist ant up-
dates pheromone along the best solution that has been
found so far.

Dij =

For initialization we set 7;; = 1/(n — 1) for every edge
(i,7). Observe, that for every city ¢ the sum of the
pheromone values on all incident edges is one, which
is not changed by the pheromone update.

3 Reacting to a Change

The ant algorithm that was described in the last sec-
tion can not handle the dynamic TSP. When a change
of the problem instance occurred it is necessary to ini-
tialize the pheromone information for the new cities.
Moreover, it might also be important to modify the
pheromone information for the old cities that were
not deleted. We describe three strategies and com-
binations thereof for resetting part of the pheromone
information in reaction to a change of the problem
instance. Resetting information is achieved by equal-
izing the pheromone values to some degree, which ef-
fectively reduces the influence of experience on the de-
cisions an ant makes to build a solution.

Strategies for the modification of pheromone informa-
tion have been proposed before to counteract stagna-
tion of ant algorithms. In (Gambardella et al., 1999)
it was proposed to reinitialize the whole pheromone
matrix while (Stiitzle and Hoos, 1997) suggested to in-
crease the pheromone values proportionately to their
difference to the maximum pheromone value. Similar
to these approaches we use a global pheromone modi-
fication strategy which reinitializes all the pheromone
values by the same degree. However, this method,
which we call Restart-Strategy, is limited because it
does not take into account where the change of the
problem instance actually occurred. Usually, the most
extensive resetting of pheromone values should be per-
formed in the close vicinity of the inserted/deleted



cities. A more locally oriented update strategy is the
“n-Strategy” which uses heuristic based information,
distances between cities in this case, to decide to what
degree equalization is done on the pheromone values
on all edges incident to a city j. The “r-Strategy” uses
pheromone based information, i.e. the pheromone val-
ues on the edges, to define another concept of “dis-
tance” between cities. Equalization of pheromone val-
ues is then again performed to a higher degree on the
edges of “closer” cities.

All three strategies work by distributing a reset-value
vi € [0 : 1] to each city i which determines the amount
of reinitialization the pheromone values on edges inci-
dent to i according to the equation

rij o (1~ )75 + v (1)
In case of a problem with symmetric 5-values like Eu-
clidean TSP, the average of the reset-values (y; ++;)/2
is used instead of 7; in equation 1 for modifying the
pheromone value on the edge connecting cities ¢ and
j. An inserted city ¢ always receives an unmodifiable
reset-value of «; = 1, resulting in all incident edges
to i having the initial pheromone value of 1/(n — 1).
We will now describe in more detail how the different
strategies assign the values ~;.

3.1 Basic Strategies

The Restart-Strategy assigns each city i the strategy-
specific parameter Ag € [0, 1] as its reset-value, i.e.
Yi = AR-

In the n-Strategy, each city 7 is given a value ~;
proportionate to its distance from the nearest in-
serted/deleted city j. This distance d?j is derived from
1ij in such a way that a high n;; implies a high dj; and
that scaling the heuristic n-values has no effect:

Navg
dl. =1- 2%

ij AE - i
with 7,0, = ﬁ >iet Yokzi ik and the strategy-
specific parameter Ag € [0, oc) scaling the width of the
distance-cone. A city i then receives v; = max{0,d};}
(see the example in Figure 1).

The 7-Strategy uses a distance measure based on
pheromone information to calculate the reset-values.
The pheromone-distance dJ,, between two cities i and k
is basically defined as the maximum over all paths Pj
from i to k of the product of pheromone-values on the
edges in P;;. To prevent any incompatibility due to the
size of absolute values, the pheromone-values on the
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Figure 1: n-Strategy: TSP test instance with best
found solution; contures show different level of reset-
values - highest reset occurs near inserted/deleted city.

edges are scaled by the maximum possible pheromone
value on an edge Ty,q, |- Formally,

Tz
dj, = max | | .
P,

" (z,y)EPix Tmaz

For the case of insertion, we set the pheromone value
of the edges from the inserted city to the two clos-
est cities, i.e. those with the highest value for 7;;, to
Tmaz during the application of this strategy, since the
new city does not yet have any utilisable pheromone
information. With J being the set of all cities that
are inserted or deleted during the same change, only
the maximum value max;e s dj; is recored for each city
i. When multiplied with a strategy-specific parameter
A1 € [0,00), with the result limited to 1 for applica-
tion of equation 1, this gives the reset-value for city i:
vi = min{1, Ay - df; }.

3.2 Combined Strategies

A combination of the global Restart-Strategy with one
of the two more locally acting - or 7-Strategies could
be advantageous in a situation where strong local re-
setting near the inserted/deleted cities is necessary to
incorporate a change while a lower global resetting is
needed to maintain the flexibility for the algorithm
to change the best tour found more strongly if ben-
eficial. This combination can be realized by having
each of the two strategies involved distribute reset-
values according to their respective scheme and then

Y rmaz is 0.5 for symmetric and 1.0 for asymmetric TSP.
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Figure 2: TSP test instance with k& = 25 deleted and
inserted cities determined with p = 2.

choosing for each city i the maximum of the two reset-
values determined by the two strategies. Formally, if
the first strategy distributes «;; and the second 7; s,

then v; = max{~;1,7i2}

3.3 Keeping the Elitist Ant

Whenever a change to the instance that the algorithm
is running on occurs, the elitist ant, which enforces
the best solution found so far, no longer represents a
valid solution. Consequently, it must be dropped and a
new elitist ant is determined after the first iteration of
ants has worked on the changed instance. The possible
loss of information from dropping the old best solution
can be alleviated somewhat by modifying the former
best tour so that it once again yields a valid and pre-
sumably good solution to the changed instance. We
use two greedy heuristics for performing this modifi-
cation: i) all cities that were deleted from the instance
are also deleted from the old best tour, effectively con-
necting their respective predecessors and successors,
ii) the cities that were added are inserted individually
into the tour at the place where they cause the min-
imum increase in length. The tour derived from this
process is the new tour of the elitist ant. We call this
method KeepkElitist. Clearly, this modification can be
combined with the strategies explained above.

4 Test Setup

For our tests we chose subproblems of the Euclidean
TSP instance rd400 from the (TSP-Library, 2001).
Specifically, 200 random cities were taken away from
the 400 making up the problem instance to form a

spare pool of cities before the start of the algorithm,
leaving the instance with 200 cities. During the run of
the algorithm the actual problem instance was changed
every t iterations by exchanging k cities between the
actual instance and the spare pool, i.e. k cities were
deleted from the actual instance and the same num-
ber of cities from the spare pool were inserted. When
deciding which cities to delete, the first city j was cho-
sen at random and all other cities ¢ according to a
probability distribution defined by nfi, with p being
a parameter that determines the relative influence of
the distances between ¢ and j. The cities that were
inserted were chosen analogously from the spare pool.
An example is shown in Figure 2.

We tested all combinations of parameter values k €
{1,5,25}, t € {50,200,750}, and p € {0.0,2.0}. Note
that for £ = 1, the parameter p has no effect as only
one city is removed/inserted. For each configuration
(k,t,p), 10 test runs of 8999 iterations were done (in
iteration 9000, the next change would occur for all
tested t), each starting with a different random subset
of 200 cities. All results that were used as a basis for
comparison are averages over these 10 runs. Only the
results during iterations 3000-8999 were used to mea-
sure the performance of the applied strategies, since
the behaviour of the ant algorithm during the first it-
erations is not representative for the latter stages.

The parameter values for the ant algorithm used in the
tests were m = 10 ants, @« = 1, f = 5, go = 0.9, and
p = 0.05. The heuristic weight of § = 5 has been used
by several authors (e.g. (Bullnheimer at al. 1999),
(Stiitzle and Hoos, 1997)) for TSP.

We tested the parameters A\p € {0.25,0.5,0.75,1.0}
for the Restart-Strategy, Ag € {0.5,1.0,2.0,5.0} for
the n-Strategy, and Ay € {0.5,1.0,1.5,2.0} for the 7-
Strategy. A parameter value of 0.0, which is equivalent
for all strategies and corresponds to not applying the
strategy at all, was also tested. Furthermore, we com-
bined the Restart-Strategy with Ag € {0.25,0.5} with
the n- and 7-Strategy using their respective parameter-
values above to determine if such a combination can
yield better results than the “pure” strategies by itself.
Finally, all of the above settings were tested with and
without keeping a modified elite ant as described in
Section 3.3 after the exchange of cities.

Besides the best solutions found by the ant algorithm
we also recorded the normalized entropy E € [0,1]
of the pheromone matrix in every iteration, which is

defined as

1 n n
E= nlogn Z Z i lOg(TU)

i=1 j=1
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Figure 3: Relative performance of Restart-, n- and 7-strategy for p = 0 (left) and p = 2 (right) and different
values of k£ and ¢: loss in quality of the best found solution averaged over iterations 3000-8999 compared to the

best performing variant.

Normalized entropy has been used previously in
(Guntsch and Middendorf, 2001) to help understand
the current state of the ant algorithm for a given iter-
ation.

5 Empirical Evaluation

A comparison of the Restart-, n- and 7-Strategies for
the respective parameter values described in Section 4
is shown Figure 3. Judging from “average darkness”,
the best overall strategy is the the n-Strategy with a
parameter A\ = 2.0, especially for a high degree of
proximity for the cities inserted and removed. The 7-
Strategy with Az = 1.0 provides good to very good
solutions when changes occur quickly, i.e. for ¢ = 50.
The Restart-Strategy, when given enough time and
not confronted with changes that are too severe, is
also able to achieve good solutions for Ag = 0.75. A
complete restart, i.e. using the Restart-Strategy with
Ar = 1.0, is only comparable to the other strategies for
the cases where many cities are exchanged, even beat-
ing some of the other strategies when they do not reset
enough information. This would likely increase if even
more cities were transferred as the changed problems
would become almost independent of one another.

As for the influence of the proximity-value p, is seems
that the difference in the solution-quality achieved by
the individual strategies becomes less for p = 2 com-
pared to p = 0. For the local strategies, a stronger

proximity of the exchanged cities is beneficial because
a cluster of cities being inserted or deleted will cause a
distribution of reset-values that is not as much depen-
dent on the number of cities comprising the cluster as
on their position in the graph or their degree of connec-
tivity in the pheromone matrix. Therefore, although
the transfer of cities might be large, the local confine-
ment of this change makes it easier to incorporate for
the local strategies. The Restart-Strategy, however,
also benefits from a higher degree of proximity. This is
probably again due to the “bad” pheromone informa-
tion being more centralized than for the case of equal
distribution, and therefore easier to deal with for the
ant algorithm.

Figure 4 shows a more detailed view of the optimiza-
tion behavior for the individual strategies and its de-
pendency on their respective A-parameters (Ag, Ar,
Ar) for the case of (k,t,p) = (1,50,0), i.e. frequent
occurring small changes. In particular, the effect on
increasing the A-parameter-values can be seen. The
n-Strategy only slowly becomes worse in terms of so-
lution quality, despite resetting a lot of pheromone for
high values of Ag, as is indicated by the entropy-curves
in Figure 4. In contrast, the 7-Strategy shows a signif-
icant loss of performance for Ay > 1, even though the
entropy curve indicates that the increase in reset in-
formation is only moderate. For the Restart-Strategy,
we see U-shaped parameter-dependency curves for re-
sulting solution quality, which shows that not resetting
enough as well as resetting too much information has
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Figure 4: Average quality of best found solution with respect to number of iteration after a change forn-
Strategy (left), T-Strategy (center), and Restart-Strategy (right) for different parameter values Ag, Ay, Agp and

the configuration (k,¢,p) =

(1,50, 0). The upper row shows curves of average solution quality for certain iterations

after a change, the middle row the averaged behavior for a certain parameter over a t-Interval, and the lower
row shows the corresponding entropy values to the middle row.

a negative effect on the derived solution. As with the
local strategies, the biggest performance gain can be
observed when going from doing nothing, i.e. using
a parameter-value of 0.0, to doing even just a little,
i.e. setting A\p = 0.25, Ay = 0.125, and A = 0.125.
The curves for the Restart-Strategy also show that the
difference from resetting almost all pheromone infor-
mation to actually resetting all of it is enormous in
terms of solution quality when using this strategy.

As mentioned in Section 4, we also analyzed the perfor-
mance of combinations of the local 5- and 7-Strategies
with the Restart-Strategy. For some cases, this combi-
nation provided better solutions than any of the strate-

gies could achieve by itself. An example of this is the
configuration (k,¢,p) = (1,50,0) shown in Figure 5,
for which we performed additional parameter-tests to
make a more precise analysis. The contour lines for
the combination of the - and Restart-Strategy show
that there are two areas in which good performance
was achieved, one of them a true combination with
Ag = 1 and A = 0.25, and the other one, which is
better in terms of solution quality as well as larger,
with Ap € {2,3} and Ag = 0. This suggests that the
n-Strategy does not benefit much, if at all, from be-
ing combined with Restart. For the 7-Strategy on the
other hand we see a promising area located around
a combination of medium Ay and Ag values, specif-
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ically for Ay = 1.0 and A € {0.5,0.675}, and also
for Ay = 0.75 and Ag = 0.375. Thus the combina-
tion of the 7- and Restart-Strategy performs better
than either strategy by itself, and also better than the
n-Strategy in this case, justifying its application.

Finally, we combined the KeepElitist method with
the individual strategies as well as the combinations
of the n- and 7-Strategies with the Restart-Strategy.
Figure 6 shows how this modified the average be-
havior of the pure strategies with their respectively
best A-parameter on configuration (k,t,p) = (1,50, 0).
As can be observed, for the - and Restart-Strategy
the combination on average entailed a worse solution,
while for the 7-Strategy the effect on average was an
improvement. Overall, the heuristic of keeping a mod-
ified elite ant was beneficial only when the number of

cities k that was inserted and deleted was not too large
and when the time for adapting to the problem t was
small. If too many cities were exchanged, then the
heuristic would no longer provide a good solution, and
the ants would find a better solution in the first itera-
tion after the change. This case is not dangerous, since
keeping the modified elitist ant would be the same as
not keeping it; only the “new” elitist ant would up-
date the pheromone matrix. The second case in which
keeping an elitist ant does not entail better solutions
is when the interval ¢ between changes is long enough
to permit the algorithm to adapt very well to the new
instance, and the guidance provided by an early good
solution leads toward stagnation in the end. This case
is potentially dangerous, as the elitist ant survives the
first generation(s) and influences the pheromone ma-



trix, thereby restricting the search space to a region
that is perhaps not very promising.

6 Conclusion

In this paper, we studied strategies for helping ant
algorithms deal with a highly dynamic TSP. We mod-
ified three strategies proposed for the case of a single
change of the problem instance. Using combinations
and a heuristic for keeping a modified elitist ant, we
were able to find better solutions for various problem
classes than the pure strategies by themselves. We
have also distinguished what type of problem classes
seem to favor which strategy for dealing with changes,
and what type of parameter to use for the different
strategies in such a case.

Overall, we have shown empirically that the local
strategies perform best when problem changes occur
frequently so that the algorithm does not have enough
time to reset “blindly” and reoptimize the entire in-
stance. Future work could clarify where exactly the
boundary lies between sensible local resetting and
global resetting. Also, the state of convergence that
the ant algorithm has achieved could codetermine the
ideal strength of resetting in reaction to a change.
Lastly, it might be that the strategies for resetting
pheromone could successfully be applied in a static
environment when stagnation of the search process is
imminent for the entire instance or parts of it.
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