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tAn Ant Colony Optimization (ACO) ap-proa
h for a dynami
 Traveling SalespersonProblem (TSP) is studied in this paper. Inthe dynami
 version of the TSP 
ities 
an bedeleted or inserted over time. Spe
i�
ally,we 
onsider repla
ing a 
ertain number of
ities with new ones at di�erent frequen
ies.The aim of the ACO algorithm is to providea good solution quality averaged over time,i.e. the average taken of the best solution inea
h iteration is optimized. Several strate-gies for pheromone modi�
ation in rea
tionto 
hanges of the problem instan
e are inves-tigated. The strategies di�er in their degreeof lo
ality with respe
t to the position of theinserted/deleted 
ities and whether they keepa modi�ed elitist ant or not.1 Introdu
tionEvolutionary methods are in general 
apable of rea
t-ing to dynami
 
hanges of an optimization problem.Di�erent ways to trim Evolutionary Algorithms (EAs)for dynami
 problems has have been proposed over thelast years (see (Branke, 1999) for a short overview). Akey aspe
t is whether information 
onne
ted to solu-tions found for older stages of a problem 
an be usedto qui
kly �nd a good solution for the problem after a
hange o

urred.In this paper we explore strategies to apply Ant ColonyOptimization (ACO) for solving dynami
 optimizationproblems (see (Bonabeau, 1998), (Dorigo and Di Caro,1999) for an overview of ACO). The parti
ular testproblem we study is a dynami
 Traveling Salesper-son Problem (TSP) where instan
es 
hange at 
ertainintervals through the deletion and insertion of 
ities.

This problem is general enough to be interesting as aben
hmark problem and allows modifying the degreeof 
hange easily. As a pra
ti
al appli
ation, 
onsiderthe 
ase of a fa
tory with a 
u
tuating set of a
tive ma-
hines. In 
ase of a failure in the produ
tion systemit is ne
essary to start an inspe
tion tour immediatelyto 
he
k all previously a
tive ma
hines. This makes itbene�
ial to 
onstantly know a short tour for the setof a
tive ma
hines.We use modi�ed and extended strategies from a pre-vious study done by two of the authors where the re-a
tion of the ant algorithms to a single 
hange of theproblem instan
e was investigated (Gunts
h and Mid-dendorf, 2001). The only other dynami
 optimizationproblems to whi
h ACO has been applied are routingproblems in 
ommuni
ation networks where the traf-�
 in the network 
ontinually 
hanges (e.g. (Di Caroand Dorigo, 1998), (S
hoonderwoerd et al., 1996)).The ants were used to 
ontinually measure the traveltime between pairs of nodes and this information isused to update the routing tables (whi
h 
ontain thepheromone information). This allows the system toadapt to new traÆ
 situations but it does not provideany means for rea
ting expli
itly to single 
hanges.Dynami
 optimization problems are most interestingwhen 
hanges of the problems instan
es o

ur fre-quently and ea
h 
hange is not too large so that itis likely that the new optimal solutions will be in somesense related to the old ones. In this 
ase a simplerestart of the algorithm whi
h dis
ards all old infor-mation after a 
hange has o

urred might not be agood strategy. Instead, maintenan
e of some previ-ously determined knowledge in the form of pheromoneinformation should be bene�
ial. To this end a tradeo�must be found between the opposing goals of preserv-ing pheromone information and resetting enough to al-low the ants to explore new relevant areas of the sear
hspa
e in later iterations. Based on this general idea, wepropose and test three di�erent strategies and 
ombi-



nations thereof to make ant algorithms more suitablefor the optimization in dynami
 environments. More-over, we propose an elitist strategy for use in dynami
environments. A standard elitist strategy for ant al-gorithms is that an elitist ant updates the pheromonevalues in every generation a

ording to the best solu-tion found so far. But after a 
hange of the probleminstan
e the best solution found so far will usually nolonger represent a valid solution to the new instan
e.Instead of simply forgetting the old best solution, westudy an alternative approa
h where the old best solu-tion is adapted so that it be
omes a reasonably goodsolution for the new instan
e.The basi
 stru
ture of the ant algorithm is presentedin Se
tion 2. In Se
tion 3, the strategies for modifyingthe pheromone information are des
ribed. The testproblems and the used parameter values are providedin Se
tion 4, with the results dis
ussed in Se
tion 5.The paper 
on
ludes with a summary in Se
tion 6.2 The Ant AlgorithmIn this se
tion we des
ribe only the general approa
hof our algorithm for the TSP. The strategies added forapplying it to the dynami
 TSP are presented later inSe
tion 3. Ant algorithms have been applied for the(stati
) TSP problem by several authors (Bullnheimeret al., 1999), (Dorigo, 1992), (Dorigo et al. 1996),(Dorigo and Gambardella, 1995), (Dorigo and Gam-bardella, 1997), (St�utzle and Hoos, 1997). Our algo-rithm for the TSP follows (Dorigo et al., 1996).In every iteration ea
h of m ants 
onstru
ts one tourthrough all the given n 
ities. Starting at a random
ity an ant builds up a solution iteratively by alwayssele
ting the next 
ity based on heuristi
 informationas well as pheromone information. Pheromone infor-mation serves as a form of memory by indi
ating whi
h
hoi
es were good in the past. The heuristi
 informa-tion, denoted by �ij , and the pheromone information,denoted by �ij , are indi
ators of how good it seemsto move from 
ity i to 
ity j. The heuristi
 value is�ij = 1=dij where dij is the distan
e between 
ity iand 
ity j.With probability q0, where 0 � q0 < 1 is a parameterof the algorithm, an ant at 
ity i 
hooses the next 
ityj from the set S of 
ities that have not been visitedso far whi
h maximizes [�ij ℄� [�ij ℄� , where � and �are 
onstants that determine the relative in
uen
e ofthe heuristi
 values and the pheromone values on thede
ision of the ant. With probability 1 � q0 the next
ity is 
hosen a

ording to the probability distributionover S determined by

pij = [�ij ℄� [�ij ℄�Ph2S [�ih℄� [�ih℄�Before doing a global pheromone update some of theold pheromone is evaporated on all edges a

ordingto �ij 7! (1 � �) � �ij where parameter � determinesthe evaporation rate. For pheromone update the antthat found the best solution in that generation up-dates pheromone along its solution, i.e. for every 
ityi some amount of pheromone is added to element (i; j)of the pheromone matrix when j is the su

essor of iin the tour. Observe that pheromone is added to ex-a
tly two edges in
ident to a node i. The amount ofpheromone added is �=4, that is �ij 7! �ij + 14�. Wealso apply an elitist strategy where one elitist ant up-dates pheromone along the best solution that has beenfound so far.For initialization we set �ij = 1=(n� 1) for every edge(i; j). Observe, that for every 
ity i the sum of thepheromone values on all in
ident edges is one, whi
his not 
hanged by the pheromone update.3 Rea
ting to a ChangeThe ant algorithm that was des
ribed in the last se
-tion 
an not handle the dynami
 TSP. When a 
hangeof the problem instan
e o

urred it is ne
essary to ini-tialize the pheromone information for the new 
ities.Moreover, it might also be important to modify thepheromone information for the old 
ities that werenot deleted. We des
ribe three strategies and 
om-binations thereof for resetting part of the pheromoneinformation in rea
tion to a 
hange of the probleminstan
e. Resetting information is a
hieved by equal-izing the pheromone values to some degree, whi
h ef-fe
tively redu
es the in
uen
e of experien
e on the de-
isions an ant makes to build a solution.Strategies for the modi�
ation of pheromone informa-tion have been proposed before to 
ountera
t stagna-tion of ant algorithms. In (Gambardella et al., 1999)it was proposed to reinitialize the whole pheromonematrix while (St�utzle and Hoos, 1997) suggested to in-
rease the pheromone values proportionately to theirdi�eren
e to the maximum pheromone value. Similarto these approa
hes we use a global pheromone modi-�
ation strategy whi
h reinitializes all the pheromonevalues by the same degree. However, this method,whi
h we 
all Restart-Strategy, is limited be
ause itdoes not take into a

ount where the 
hange of theproblem instan
e a
tually o

urred. Usually, the mostextensive resetting of pheromone values should be per-formed in the 
lose vi
inity of the inserted/deleted




ities. A more lo
ally oriented update strategy is the\�-Strategy" whi
h uses heuristi
 based information,distan
es between 
ities in this 
ase, to de
ide to whatdegree equalization is done on the pheromone valueson all edges in
ident to a 
ity j. The \� -Strategy" usespheromone based information, i.e. the pheromone val-ues on the edges, to de�ne another 
on
ept of \dis-tan
e" between 
ities. Equalization of pheromone val-ues is then again performed to a higher degree on theedges of \
loser" 
ities.All three strategies work by distributing a reset-value
i 2 [0 : 1℄ to ea
h 
ity i whi
h determines the amountof reinitialization the pheromone values on edges in
i-dent to i a

ording to the equation�ij 7! (1� 
i)�ij + 
i 1n� 1 (1)In 
ase of a problem with symmetri
 �-values like Eu-
lidean TSP, the average of the reset-values (
i+
j)=2is used instead of 
i in equation 1 for modifying thepheromone value on the edge 
onne
ting 
ities i andj. An inserted 
ity i always re
eives an unmodi�ablereset-value of 
i = 1, resulting in all in
ident edgesto i having the initial pheromone value of 1=(n � 1).We will now des
ribe in more detail how the di�erentstrategies assign the values 
i.3.1 Basi
 StrategiesThe Restart-Strategy assigns ea
h 
ity i the strategy-spe
i�
 parameter �R 2 [0; 1℄ as its reset-value, i.e.
i = �R:In the �-Strategy, ea
h 
ity i is given a value 
iproportionate to its distan
e from the nearest in-serted/deleted 
ity j. This distan
e d�ij is derived from�ij in su
h a way that a high �ij implies a high d�ij andthat s
aling the heuristi
 �-values has no e�e
t:d�ij = 1� �avg�E � �ijwith �avg = 1n(n�1)Pni=1Pk 6=i �ik and the strategy-spe
i�
 parameter �E 2 [0;1) s
aling the width of thedistan
e-
one. A 
ity i then re
eives 
i = maxf0; d�ijg(see the example in Figure 1).The � -Strategy uses a distan
e measure based onpheromone information to 
al
ulate the reset-values.The pheromone-distan
e d�ik between two 
ities i and kis basi
ally de�ned as the maximum over all paths Pikfrom i to k of the produ
t of pheromone-values on theedges in Pik . To prevent any in
ompatibility due to thesize of absolute values, the pheromone-values on the
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Figure 1: �-Strategy: TSP test instan
e with bestfound solution; 
ontures show di�erent level of reset-values - highest reset o

urs near inserted/deleted 
ity.edges are s
aled by the maximum possible pheromonevalue on an edge �max 1. Formally,d�ik = maxPik Y(x;y)2Pik �xy�max :For the 
ase of insertion, we set the pheromone valueof the edges from the inserted 
ity to the two 
los-est 
ities, i.e. those with the highest value for �ij , to�max during the appli
ation of this strategy, sin
e thenew 
ity does not yet have any utilisable pheromoneinformation. With J being the set of all 
ities thatare inserted or deleted during the same 
hange, onlythe maximum value maxj2J d�ij is re
ored for ea
h 
ityi. When multiplied with a strategy-spe
i�
 parameter�T 2 [0;1), with the result limited to 1 for appli
a-tion of equation 1, this gives the reset-value for 
ity i:
i = minf1; �T � d�ijg.3.2 Combined StrategiesA 
ombination of the global Restart-Strategy with oneof the two more lo
ally a
ting �- or � -Strategies 
ouldbe advantageous in a situation where strong lo
al re-setting near the inserted/deleted 
ities is ne
essary toin
orporate a 
hange while a lower global resetting isneeded to maintain the 
exibility for the algorithmto 
hange the best tour found more strongly if ben-e�
ial. This 
ombination 
an be realized by havingea
h of the two strategies involved distribute reset-values a

ording to their respe
tive s
heme and then1�max is 0.5 for symmetri
 and 1.0 for asymmetri
 TSP.
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Figure 2: TSP test instan
e with k = 25 deleted andinserted 
ities determined with p = 2.
hoosing for ea
h 
ity i the maximum of the two reset-values determined by the two strategies. Formally, ifthe �rst strategy distributes 
i;1 and the se
ond 
i;2,then 
i = maxf
i;1; 
i;2g.3.3 Keeping the Elitist AntWhenever a 
hange to the instan
e that the algorithmis running on o

urs, the elitist ant, whi
h enfor
esthe best solution found so far, no longer represents avalid solution. Consequently, it must be dropped and anew elitist ant is determined after the �rst iteration ofants has worked on the 
hanged instan
e. The possibleloss of information from dropping the old best solution
an be alleviated somewhat by modifying the formerbest tour so that it on
e again yields a valid and pre-sumably good solution to the 
hanged instan
e. Weuse two greedy heuristi
s for performing this modi�-
ation: i) all 
ities that were deleted from the instan
eare also deleted from the old best tour, e�e
tively 
on-ne
ting their respe
tive prede
essors and su

essors,ii) the 
ities that were added are inserted individuallyinto the tour at the pla
e where they 
ause the min-imum in
rease in length. The tour derived from thispro
ess is the new tour of the elitist ant. We 
all thismethod KeepElitist. Clearly, this modi�
ation 
an be
ombined with the strategies explained above.4 Test SetupFor our tests we 
hose subproblems of the Eu
lideanTSP instan
e rd400 from the (TSP-Library, 2001).Spe
i�
ally, 200 random 
ities were taken away fromthe 400 making up the problem instan
e to form a

spare pool of 
ities before the start of the algorithm,leaving the instan
e with 200 
ities. During the run ofthe algorithm the a
tual problem instan
e was 
hangedevery t iterations by ex
hanging k 
ities between thea
tual instan
e and the spare pool, i.e. k 
ities weredeleted from the a
tual instan
e and the same num-ber of 
ities from the spare pool were inserted. Whende
iding whi
h 
ities to delete, the �rst 
ity j was 
ho-sen at random and all other 
ities i a

ording to aprobability distribution de�ned by �pij , with p beinga parameter that determines the relative in
uen
e ofthe distan
es between i and j. The 
ities that wereinserted were 
hosen analogously from the spare pool.An example is shown in Figure 2.We tested all 
ombinations of parameter values k 2f1; 5; 25g, t 2 f50; 200; 750g, and p 2 f0:0; 2:0g. Notethat for k = 1, the parameter p has no e�e
t as onlyone 
ity is removed/inserted. For ea
h 
on�guration(k; t; p), 10 test runs of 8999 iterations were done (initeration 9000, the next 
hange would o

ur for alltested t), ea
h starting with a di�erent random subsetof 200 
ities. All results that were used as a basis for
omparison are averages over these 10 runs. Only theresults during iterations 3000-8999 were used to mea-sure the performan
e of the applied strategies, sin
ethe behaviour of the ant algorithm during the �rst it-erations is not representative for the latter stages.The parameter values for the ant algorithm used in thetests were m = 10 ants, � = 1, � = 5, q0 = 0:9, and� = 0:05. The heuristi
 weight of � = 5 has been usedby several authors (e.g. (Bullnheimer at al. 1999),(St�utzle and Hoos, 1997)) for TSP.We tested the parameters �R 2 f0:25; 0:5; 0:75; 1:0gfor the Restart-Strategy, �E 2 f0:5; 1:0; 2:0; 5:0g forthe �-Strategy, and �T 2 f0:5; 1:0; 1:5; 2:0g for the � -Strategy. A parameter value of 0.0, whi
h is equivalentfor all strategies and 
orresponds to not applying thestrategy at all, was also tested. Furthermore, we 
om-bined the Restart-Strategy with �R 2 f0:25; 0:5g withthe �- and � -Strategy using their respe
tive parameter-values above to determine if su
h a 
ombination 
anyield better results than the \pure" strategies by itself.Finally, all of the above settings were tested with andwithout keeping a modi�ed elite ant as des
ribed inSe
tion 3.3 after the ex
hange of 
ities.Besides the best solutions found by the ant algorithmwe also re
orded the normalized entropy E 2 [0; 1℄of the pheromone matrix in every iteration, whi
h isde�ned as E = 1n logn nXi=1 nXj=1��ij log(�ij)
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Figure 3: Relative performan
e of Restart-, �- and � -strategy for p = 0 (left) and p = 2 (right) and di�erentvalues of k and t: loss in quality of the best found solution averaged over iterations 3000-8999 
ompared to thebest performing variant.Normalized entropy has been used previously in(Gunts
h and Middendorf, 2001) to help understandthe 
urrent state of the ant algorithm for a given iter-ation.5 Empiri
al EvaluationA 
omparison of the Restart-, �- and � -Strategies forthe respe
tive parameter values des
ribed in Se
tion 4is shown Figure 3. Judging from \average darkness",the best overall strategy is the the �-Strategy with aparameter �E = 2:0, espe
ially for a high degree ofproximity for the 
ities inserted and removed. The � -Strategy with �T = 1:0 provides good to very goodsolutions when 
hanges o

ur qui
kly, i.e. for t = 50.The Restart-Strategy, when given enough time andnot 
onfronted with 
hanges that are too severe, isalso able to a
hieve good solutions for �R = 0:75. A
omplete restart, i.e. using the Restart-Strategy with�R = 1:0, is only 
omparable to the other strategies forthe 
ases where many 
ities are ex
hanged, even beat-ing some of the other strategies when they do not resetenough information. This would likely in
rease if evenmore 
ities were transferred as the 
hanged problemswould be
ome almost independent of one another.As for the in
uen
e of the proximity-value p, is seemsthat the di�eren
e in the solution-quality a
hieved bythe individual strategies be
omes less for p = 2 
om-pared to p = 0. For the lo
al strategies, a stronger

proximity of the ex
hanged 
ities is bene�
ial be
ausea 
luster of 
ities being inserted or deleted will 
ause adistribution of reset-values that is not as mu
h depen-dent on the number of 
ities 
omprising the 
luster ason their position in the graph or their degree of 
onne
-tivity in the pheromone matrix. Therefore, althoughthe transfer of 
ities might be large, the lo
al 
on�ne-ment of this 
hange makes it easier to in
orporate forthe lo
al strategies. The Restart-Strategy, however,also bene�ts from a higher degree of proximity. This isprobably again due to the \bad" pheromone informa-tion being more 
entralized than for the 
ase of equaldistribution, and therefore easier to deal with for theant algorithm.Figure 4 shows a more detailed view of the optimiza-tion behavior for the individual strategies and its de-penden
y on their respe
tive �-parameters (�E , �T ,�R) for the 
ase of (k; t; p) = (1; 50; 0), i.e. frequento

urring small 
hanges. In parti
ular, the e�e
t onin
reasing the �-parameter-values 
an be seen. The�-Strategy only slowly be
omes worse in terms of so-lution quality, despite resetting a lot of pheromone forhigh values of �E , as is indi
ated by the entropy-
urvesin Figure 4. In 
ontrast, the � -Strategy shows a signif-i
ant loss of performan
e for �T > 1, even though theentropy 
urve indi
ates that the in
rease in reset in-formation is only moderate. For the Restart-Strategy,we see U-shaped parameter-dependen
y 
urves for re-sulting solution quality, whi
h shows that not resettingenough as well as resetting too mu
h information has
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Figure 4: Average quality of best found solution with respe
t to number of iteration after a 
hange for�-Strategy (left), � -Strategy (
enter), and Restart-Strategy (right) for di�erent parameter values �E ; �T ; �R andthe 
on�guration (k; t; p) = (1; 50; 0). The upper row shows 
urves of average solution quality for 
ertain iterationsafter a 
hange, the middle row the averaged behavior for a 
ertain parameter over a t-Interval, and the lowerrow shows the 
orresponding entropy values to the middle row.a negative e�e
t on the derived solution. As with thelo
al strategies, the biggest performan
e gain 
an beobserved when going from doing nothing, i.e. usinga parameter-value of 0.0, to doing even just a little,i.e. setting �E = 0:25, �T = 0:125, and �R = 0:125.The 
urves for the Restart-Strategy also show that thedi�eren
e from resetting almost all pheromone infor-mation to a
tually resetting all of it is enormous interms of solution quality when using this strategy.As mentioned in Se
tion 4, we also analyzed the perfor-man
e of 
ombinations of the lo
al �- and � -Strategieswith the Restart-Strategy. For some 
ases, this 
ombi-nation provided better solutions than any of the strate-
gies 
ould a
hieve by itself. An example of this is the
on�guration (k; t; p) = (1; 50; 0) shown in Figure 5,for whi
h we performed additional parameter-tests tomake a more pre
ise analysis. The 
ontour lines forthe 
ombination of the �- and Restart-Strategy showthat there are two areas in whi
h good performan
ewas a
hieved, one of them a true 
ombination with�E = 1 and �R = 0:25, and the other one, whi
h isbetter in terms of solution quality as well as larger,with �E 2 f2; 3g and �R = 0. This suggests that the�-Strategy does not bene�t mu
h, if at all, from be-ing 
ombined with Restart. For the � -Strategy on theother hand we see a promising area lo
ated arounda 
ombination of medium �T and �R values, spe
if-
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(b) � -Restart CombinationFigure 5: Combinations of the lo
al �- and � -Strategies with the Restart-Strategy for the problem-
on�guration(k; t; p) = (1; 50; 0).
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(
) Restart-StrategyFigure 6: Combination of the individual strategies with KeepElitist for the 
on�guration (k; t; p) = (1; 50; 0).i
ally for �T = 1:0 and �R 2 f0:5; 0:675g, and alsofor �T = 0:75 and �R = 0:375. Thus the 
ombina-tion of the � - and Restart-Strategy performs betterthan either strategy by itself, and also better than the�-Strategy in this 
ase, justifying its appli
ation.Finally, we 
ombined the KeepElitist method withthe individual strategies as well as the 
ombinationsof the �- and � -Strategies with the Restart-Strategy.Figure 6 shows how this modi�ed the average be-havior of the pure strategies with their respe
tivelybest �-parameter on 
on�guration (k; t; p) = (1; 50; 0).As 
an be observed, for the �- and Restart-Strategythe 
ombination on average entailed a worse solution,while for the � -Strategy the e�e
t on average was animprovement. Overall, the heuristi
 of keeping a mod-i�ed elite ant was bene�
ial only when the number of


ities k that was inserted and deleted was not too largeand when the time for adapting to the problem t wassmall. If too many 
ities were ex
hanged, then theheuristi
 would no longer provide a good solution, andthe ants would �nd a better solution in the �rst itera-tion after the 
hange. This 
ase is not dangerous, sin
ekeeping the modi�ed elitist ant would be the same asnot keeping it; only the \new" elitist ant would up-date the pheromone matrix. The se
ond 
ase in whi
hkeeping an elitist ant does not entail better solutionsis when the interval t between 
hanges is long enoughto permit the algorithm to adapt very well to the newinstan
e, and the guidan
e provided by an early goodsolution leads toward stagnation in the end. This 
aseis potentially dangerous, as the elitist ant survives the�rst generation(s) and in
uen
es the pheromone ma-



trix, thereby restri
ting the sear
h spa
e to a regionthat is perhaps not very promising.6 Con
lusionIn this paper, we studied strategies for helping antalgorithms deal with a highly dynami
 TSP. We mod-i�ed three strategies proposed for the 
ase of a single
hange of the problem instan
e. Using 
ombinationsand a heuristi
 for keeping a modi�ed elitist ant, wewere able to �nd better solutions for various problem
lasses than the pure strategies by themselves. Wehave also distinguished what type of problem 
lassesseem to favor whi
h strategy for dealing with 
hanges,and what type of parameter to use for the di�erentstrategies in su
h a 
ase.Overall, we have shown empiri
ally that the lo
alstrategies perform best when problem 
hanges o

urfrequently so that the algorithm does not have enoughtime to reset \blindly" and reoptimize the entire in-stan
e. Future work 
ould 
larify where exa
tly theboundary lies between sensible lo
al resetting andglobal resetting. Also, the state of 
onvergen
e thatthe ant algorithm has a
hieved 
ould 
odetermine theideal strength of resetting in rea
tion to a 
hange.Lastly, it might be that the strategies for resettingpheromone 
ould su

essfully be applied in a stati
environment when stagnation of the sear
h pro
ess isimminent for the entire instan
e or parts of it.Referen
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