
Jason Brownlee

Clever Algorithms
Nature-Inspired Programming Recipes

ii

Jason Brownlee, PhD

Jason Brownlee studied Applied Science at Swinburne University in
Melbourne, Australia, going on to complete a Masters in Information
Technology focusing on Niching Genetic Algorithms, and a PhD in the field
of Artificial Immune Systems. Jason has worked for a number of years as a
Consultant and Software Engineer for a range of Corporate and Government
organizations. When not writing books, Jason likes to compete in Machine
Learning competitions.

Cover Image

© Copyright 2011 Jason Brownlee. All Reserved.

Clever Algorithms: Nature-Inspired Programming Recipes

© Copyright 2011 Jason Brownlee. Some Rights Reserved.

Revision 2. 16 June 2012
ISBN: 978-1-4467-8506-5

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 2.5 Australia License.
The full terms of the license are located online at
http://creativecommons.org/licenses/by-nc-sa/2.5/au/legalcode

Webpage

Source code and additional resources can be downloaded from the books
companion website online at http://www.CleverAlgorithms.com

http://creativecommons.org/licenses/by-nc-sa/2.5/au/legalcode
http://www.CleverAlgorithms.com

Contents

Foreword vii

Preface ix

I Background 1

1 Introduction 3

1.1 What is AI . 3

1.2 Problem Domains . 10

1.3 Unconventional Optimization 13

1.4 Book Organization . 17

1.5 How to Read this Book 20

1.6 Further Reading . 21

1.7 Bibliography . 22

II Algorithms 27

2 Stochastic Algorithms 29

2.1 Overview . 29

2.2 Random Search . 30

2.3 Adaptive Random Search 34

2.4 Stochastic Hill Climbing 40

2.5 Iterated Local Search . 44

2.6 Guided Local Search . 50

2.7 Variable Neighborhood Search 57

2.8 Greedy Randomized Adaptive Search 63

2.9 Scatter Search . 69

2.10 Tabu Search . 76

2.11 Reactive Tabu Search 82

iii

iv Contents

3 Evolutionary Algorithms 91
3.1 Overview . 91
3.2 Genetic Algorithm . 96
3.3 Genetic Programming 103
3.4 Evolution Strategies . 113
3.5 Differential Evolution 119
3.6 Evolutionary Programming 125
3.7 Grammatical Evolution 131
3.8 Gene Expression Programming 139
3.9 Learning Classifier System 146
3.10 Non-dominated Sorting Genetic Algorithm 157
3.11 Strength Pareto Evolutionary Algorithm 165

4 Physical Algorithms 173
4.1 Overview . 173
4.2 Simulated Annealing . 175
4.3 Extremal Optimization 181
4.4 Harmony Search . 188
4.5 Cultural Algorithm . 194
4.6 Memetic Algorithm . 200

5 Probabilistic Algorithms 207
5.1 Overview . 207
5.2 Population-Based Incremental Learning 211
5.3 Univariate Marginal Distribution Algorithm 216
5.4 Compact Genetic Algorithm 220
5.5 Bayesian Optimization Algorithm 224
5.6 Cross-Entropy Method 232

6 Swarm Algorithms 237
6.1 Overview . 237
6.2 Particle Swarm Optimization 241
6.3 Ant System . 247
6.4 Ant Colony System . 254
6.5 Bees Algorithm . 261
6.6 Bacterial Foraging Optimization Algorithm 266

7 Immune Algorithms 275
7.1 Overview . 275
7.2 Clonal Selection Algorithm 280
7.3 Negative Selection Algorithm 288
7.4 Artificial Immune Recognition System 295
7.5 Immune Network Algorithm 304
7.6 Dendritic Cell Algorithm 312

v

8 Neural Algorithms 319
8.1 Overview . 319
8.2 Perceptron . 323
8.3 Back-propagation . 328
8.4 Hopfield Network . 336
8.5 Learning Vector Quantization 342
8.6 Self-Organizing Map . 348

III Extensions 357

9 Advanced Topics 359
9.1 Programming Paradigms 360
9.2 Devising New Algorithms 370
9.3 Testing Algorithms . 382
9.4 Visualizing Algorithms 389
9.5 Problem Solving Strategies 402
9.6 Benchmarking Algorithms 417

IV Appendix 427

A Ruby: Quick-Start Guide 429
A.1 Overview . 429
A.2 Language Basics . 429
A.3 Ruby Idioms . 433
A.4 Bibliography . 435

Errata 437

Index 439

vi Contents

Foreword

I am delighted to write this foreword. This book, a reference where
one can look up the details of most any algorithm to find a clear
unambiguous description, has long been needed and here it finally is.
A concise reference that has taken many hours to write but which has
the capacity to save vast amounts of time previously spent digging out
original papers.

I have known the author for several years and have had experience
of his amazing capacity for work and the sheer quality of his output, so
this book comes as no surprise to me. But I hope it will be a surprise
and delight to you, the reader for whom it has been written.

But useful as this book is, it is only a beginning. There are so many
algorithms that no one author could hope to cover them all. So if you
know of an algorithm that is not yet here, how about contributing it
using the same clear and lucid style?

Professor Tim Hendtlass
Complex Intelligent Systems Laboratory

Faculty of Information and Communication Technologies
Swinburne University of Technology

Melbourne, Australia
2010

vii

viii Foreword

Preface

About the book

The need for this project was born of frustration while working to-
wards my PhD. I was investigating optimization algorithms and was
implementing a large number of them for a software platform called
the Optimization Algorithm Toolkit (OAT)1. Each algorithm required
considerable effort to locate the relevant source material (from books,
papers, articles, and existing implementations), decipher and interpret
the technique, and finally attempt to piece together a working imple-
mentation.

Taking a broader perspective, I realized that the communication of
algorithmic techniques in the field of Artificial Intelligence was clearly a
difficult and outstanding open problem. Generally, algorithm descrip-
tions are:

• Incomplete: many techniques are ambiguously described, partially
described, or not described at all.

• Inconsistent : a given technique may be described using a variety
of formal and semi-formal methods that vary across different tech-
niques, limiting the transferability of background skills an audience
requires to read a technique (such as mathematics, pseudocode,
program code, and narratives). An inconsistent representation for
techniques means that the skills used to understand and internal-
ize one technique may not be transferable to realizing different
techniques or even extensions of the same technique.

• Distributed : the description of data structures, operations, and
parameterization of a given technique may span a collection of
papers, articles, books, and source code published over a number
of years, the access to which may be restricted and difficult to
obtain.

1OAT located at http://optalgtoolkit.sourceforge.net

ix

http://optalgtoolkit.sourceforge.net

x Preface

For the practitioner, a badly described algorithm may be simply
frustrating, where the gaps in available information are filled with
intuition and ‘best guess’. At the other end of the spectrum, a badly
described algorithm may be an example of bad science and the failure of
the scientific method, where the inability to understand and implement
a technique may prevent the replication of results, the application, or
the investigation and extension of a technique.

The software I produced provided a first step solution to this problem:
a set of working algorithms implemented in a (somewhat) consistent way
and downloaded from a single location (features likely provided by any
library of artificial intelligence techniques). The next logical step needed
to address this problem is to develop a methodology that anybody can
follow. The strategy to address the open problem of poor algorithm
communication is to present complete algorithm descriptions (rather
than just implementations) in a consistent manner, and in a centralized
location. This book is the outcome of developing such a strategy that not
only provides a methodology for standardized algorithm descriptions, but
provides a large corpus of complete and consistent algorithm descriptions
in a single centralized location.

The algorithms described in this work are practical, interesting, and
fun, and the goal of this project was to promote these features by making
algorithms from the field more accessible, usable, and understandable.
This project was developed over a number years through a lot of writing,
discussion, and revision. This book has been released under a permissive
license that encourages the reader to explore new and creative ways of
further communicating its message and content.

I hope that this project has succeeded in some small way and that you
too can enjoy applying, learning, and playing with Clever Algorithms.

Jason Brownlee

Melbourne, Australia
2011

Acknowledgments

This book could not have been completed without the commitment,
passion, and hard work from a large group of editors and supporters.

A special thanks to Steve Dower for his incredible attention to detail
in providing technical and copy edits for large portions of this book,
and for his enthusiasm for the subject area. Also, a special thanks to
Daniel Angus for the discussions around the genesis of the project, his
continued support with the idea of an ‘algorithms atlas’ and for his
attention to detail in providing technical and copy edits for key chapters.

In no particular order, thanks to: Juan Ojeda, Martin Goddard,
David Howden, Sean Luke, David Zappia, Jeremy Wazny, Andrew Mur-
ray, John Wise, Patrick Boehnke, Martin-Louis Bright, Leif Wickland,
Andrew Myers, Paul Chinnery, Donald Doherty, Brook Tamir, Zach
Scott, Diego Noble, Jason Davies, Mark Chenoweth, Markus Stokmaier,
Stefan Pauleweit, Lai Yu-Hsuan, and Stephan Williams.

Thanks to the hundreds of machine learning enthusiasts who voted
on potential covers and helped shape what this book became. You know
who you are!

Finally, I would like to thank my beautiful wife Ying Liu for her
unrelenting support and patience throughout the project.

xi

xii Acknowledgments

Part I

Background

1

Chapter 1

Introduction

Welcome to Clever Algorithms! This is a handbook of recipes for com-
putational problem solving techniques from the fields of Computational
Intelligence, Biologically Inspired Computation, and Metaheuristics.
Clever Algorithms are interesting, practical, and fun to learn about and
implement. Research scientists may be interested in browsing algorithm
inspirations in search of an interesting system or process analogs to
investigate. Developers and software engineers may compare various
problem solving algorithms and technique-specific guidelines. Practition-
ers, students, and interested amateurs may implement state-of-the-art
algorithms to address business or scientific needs, or simply play with
the fascinating systems they represent.

This introductory chapter provides relevant background information
on Artificial Intelligence and Algorithms. The core of the book provides
a large corpus of algorithms presented in a complete and consistent
manner. The final chapter covers some advanced topics to consider
once a number of algorithms have been mastered. This book has been
designed as a reference text, where specific techniques are looked up, or
where the algorithms across whole fields of study can be browsed, rather
than being read cover-to-cover. This book is an algorithm handbook
and a technique guidebook, and I hope you find something useful.

1.1 What is AI

1.1.1 Artificial Intelligence

The field of classical Artificial Intelligence (AI) coalesced in the 1950s
drawing on an understanding of the brain from neuroscience, the new
mathematics of information theory, control theory referred to as cyber-
netics, and the dawn of the digital computer. AI is a cross-disciplinary

3

4 Chapter 1. Introduction

field of research that is generally concerned with developing and in-
vestigating systems that operate or act intelligently. It is considered
a discipline in the field of computer science given the strong focus on
computation.

Russell and Norvig provide a perspective that defines Artificial Intel-
ligence in four categories: 1) systems that think like humans, 2) systems
that act like humans, 3) systems that think rationally, 4) systems that
act rationally [43]. In their definition, acting like a human suggests that
a system can do some specific things humans can do, this includes fields
such as the Turing test, natural language processing, automated reason-
ing, knowledge representation, machine learning, computer vision, and
robotics. Thinking like a human suggests systems that model the cogni-
tive information processing properties of humans, for example a general
problem solver and systems that build internal models of their world.
Thinking rationally suggests laws of rationalism and structured thought,
such as syllogisms and formal logic. Finally, acting rationally suggests
systems that do rational things such as expected utility maximization
and rational agents.

Luger and Stubblefield suggest that AI is a sub-field of computer
science concerned with the automation of intelligence, and like other
sub-fields of computer science has both theoretical concerns (how and
why do the systems work?) and application concerns (where and when
can the systems be used?) [34]. They suggest a strong empirical focus to
research, because although there may be a strong desire for mathematical
analysis, the systems themselves defy analysis given their complexity.
The machines and software investigated in AI are not black boxes,
rather analysis proceeds by observing the systems interactions with their
environments, followed by an internal assessment of the system to relate
its structure back to its behavior.

Artificial Intelligence is therefore concerned with investigating mech-
anisms that underlie intelligence and intelligence behavior. The tradi-
tional approach toward designing and investigating AI (the so-called
‘good old fashioned’ AI) has been to employ a symbolic basis for these
mechanisms. A newer approach historically referred to as scruffy artifi-
cial intelligence or soft computing does not necessarily use a symbolic
basis, instead patterning these mechanisms after biological or natural
processes. This represents a modern paradigm shift in interest from sym-
bolic knowledge representations, to inference strategies for adaptation
and learning, and has been referred to as neat versus scruffy approaches
to AI. The neat philosophy is concerned with formal symbolic models
of intelligence that can explain why they work, whereas the scruffy
philosophy is concerned with intelligent strategies that explain how they
work [44].

1.1. What is AI 5

Neat AI

The traditional stream of AI concerns a top down perspective of problem
solving, generally involving symbolic representations and logic processes
that most importantly can explain why the systems work. The successes
of this prescriptive stream include a multitude of specialist approaches
such as rule-based expert systems, automatic theorem provers, and oper-
ations research techniques that underly modern planning and scheduling
software. Although traditional approaches have resulted in significant
success they have their limits, most notably scalability. Increases in
problem size result in an unmanageable increase in the complexity of
such problems meaning that although traditional techniques can guar-
antee an optimal, precise, or true solution, the computational execution
time or computing memory required can be intractable.

Scruffy AI

There have been a number of thrusts in the field of AI toward less crisp
techniques that are able to locate approximate, imprecise, or partially-
true solutions to problems with a reasonable cost of resources. Such
approaches are typically descriptive rather than prescriptive, describing
a process for achieving a solution (how), but not explaining why they
work (like the neater approaches).

Scruffy AI approaches are defined as relatively simple procedures that
result in complex emergent and self-organizing behavior that can defy
traditional reductionist analyses, the effects of which can be exploited
for quickly locating approximate solutions to intractable problems. A
common characteristic of such techniques is the incorporation of random-
ness in their processes resulting in robust probabilistic and stochastic
decision making contrasted to the sometimes more fragile determinism
of the crisp approaches. Another important common attribute is the
adoption of an inductive rather than deductive approach to problem solv-
ing, generalizing solutions or decisions from sets of specific observations
made by the system.

1.1.2 Natural Computation

An important perspective on scruffy Artificial Intelligence is the moti-
vation and inspiration for the core information processing strategy of
a given technique. Computers can only do what they are instructed,
therefore a consideration is to distill information processing from other
fields of study, such as the physical world and biology. The study of
biologically motivated computation is called Biologically Inspired Com-
puting [16], and is one of three related fields of Natural Computing
[22, 23, 39]. Natural Computing is an interdisciplinary field concerned

6 Chapter 1. Introduction

with the relationship of computation and biology, which in addition to
Biologically Inspired Computing is also comprised of Computationally
Motivated Biology and Computing with Biology [36, 40].

Biologically Inspired Computation

Biologically Inspired Computation is computation inspired by biological
metaphor, also referred to as Biomimicry, and Biomemetics in other
engineering disciplines [6, 17]. The intent of this field is to devise math-
ematical and engineering tools to generate solutions to computation
problems. The field involves using procedures for finding solutions ab-
stracted from the natural world for addressing computationally phrased
problems.

Computationally Motivated Biology

Computationally Motivated Biology involves investigating biology using
computers. The intent of this area is to use information sciences and
simulation to model biological systems in digital computers with the
aim to replicate and better understand behaviors in biological systems.
The field facilitates the ability to better understand life-as-it-is and
investigate life-as-it-could-be. Typically, work in this sub-field is not
concerned with the construction of mathematical and engineering tools,
rather it is focused on simulating natural phenomena. Common examples
include Artificial Life, Fractal Geometry (L-systems, Iterative Function
Systems, Particle Systems, Brownian motion), and Cellular Automata.
A related field is that of Computational Biology generally concerned with
modeling biological systems and the application of statistical methods
such as in the sub-field of Bioinformatics.

Computation with Biology

Computation with Biology is the investigation of substrates other than
silicon in which to implement computation [1]. Common examples
include molecular or DNA Computing and Quantum Computing.

1.1.3 Computational Intelligence

Computational Intelligence is a modern name for the sub-field of AI
concerned with sub-symbolic (also called messy, scruffy, and soft) tech-
niques. Computational Intelligence describes techniques that focus on
strategy and outcome. The field broadly covers sub-disciplines that
focus on adaptive and intelligence systems, not limited to: Evolutionary
Computation, Swarm Intelligence (Particle Swarm and Ant Colony Op-
timization), Fuzzy Systems, Artificial Immune Systems, and Artificial

1.1. What is AI 7

Neural Networks [20, 41]. This section provides a brief summary of the
each of the five primary areas of study.

Evolutionary Computation

A paradigm that is concerned with the investigation of systems inspired
by the neo-Darwinian theory of evolution by means of natural selection
(natural selection theory and an understanding of genetics). Popular
evolutionary algorithms include the Genetic Algorithm, Evolution Strat-
egy, Genetic and Evolutionary Programming, and Differential Evolution
[4, 5]. The evolutionary process is considered an adaptive strategy and
is typically applied to search and optimization domains [26, 28].

Swarm Intelligence

A paradigm that considers collective intelligence as a behavior that
emerges through the interaction and cooperation of large numbers
of lesser intelligent agents. The paradigm consists of two dominant
sub-fields 1) Ant Colony Optimization that investigates probabilistic
algorithms inspired by the foraging behavior of ants [10, 18], and 2)
Particle Swarm Optimization that investigates probabilistic algorithms
inspired by the flocking and foraging behavior of birds and fish [30].
Like evolutionary computation, swarm intelligence-based techniques are
considered adaptive strategies and are typically applied to search and
optimization domains.

Artificial Neural Networks

Neural Networks are a paradigm that is concerned with the investigation
of architectures and learning strategies inspired by the modeling of
neurons in the brain [8]. Learning strategies are typically divided into
supervised and unsupervised which manage environmental feedback
in different ways. Neural network learning processes are considered
adaptive learning and are typically applied to function approximation
and pattern recognition domains.

Fuzzy Intelligence

Fuzzy Intelligence is a paradigm that is concerned with the investigation
of fuzzy logic, which is a form of logic that is not constrained to true
and false determinations like propositional logic, but rather functions
which define approximate truth, or degrees of truth [52]. Fuzzy logic
and fuzzy systems are a logic system used as a reasoning strategy and
are typically applied to expert system and control system domains.

8 Chapter 1. Introduction

Artificial Immune Systems

A collection of approaches inspired by the structure and function of the
acquired immune system of vertebrates. Popular approaches include
clonal selection, negative selection, the dendritic cell algorithm, and
immune network algorithms. The immune-inspired adaptive processes
vary in strategy and show similarities to the fields of Evolutionary
Computation and Artificial Neural Networks, and are typically used for
optimization and pattern recognition domains [15].

1.1.4 Metaheuristics

Another popular name for the strategy-outcome perspective of scruffy AI
is metaheuristics. In this context, heuristic is an algorithm that locates
‘good enough’ solutions to a problem without concern for whether the
solution can be proven to be correct or optimal [37]. Heuristic methods
trade-off concerns such as precision, quality, and accuracy in favor of
computational effort (space and time efficiency). The greedy search
procedure that only takes cost-improving steps is an example of heuristic
method.

Like heuristics, metaheuristics may be considered a general algorith-
mic framework that can be applied to different optimization problems
with relative few modifications to adapt them to a specific problem
[25, 46]. The difference is that metaheuristics are intended to extend the
capabilities of heuristics by combining one or more heuristic methods
(referred to as procedures) using a higher-level strategy (hence ‘meta’).
A procedure in a metaheuristic is considered black-box in that little (if
any) prior knowledge is known about it by the metaheuristic, and as
such it may be replaced with a different procedure. Procedures may
be as simple as the manipulation of a representation, or as complex
as another complete metaheuristic. Some examples of metaheuristics
include iterated local search, tabu search, the genetic algorithm, ant
colony optimization, and simulated annealing.

Blum and Roli outline nine properties of metaheuristics [9], as follows:

• Metaheuristics are strategies that “guide” the search process.

• The goal is to efficiently explore the search space in order to find
(near-)optimal solutions.

• Techniques which constitute metaheuristic algorithms range from
simple local search procedures to complex learning processes.

• Metaheuristic algorithms are approximate and usually non-deterministic.

• They may incorporate mechanisms to avoid getting trapped in
confined areas of the search space.

1.1. What is AI 9

• The basic concepts of metaheuristics permit an abstract level
description.

• Metaheuristics are not problem-specific.

• Metaheuristics may make use of domain-specific knowledge in the
form of heuristics that are controlled by the upper level strategy.

• Today’s more advanced metaheuristics use search experience (em-
bodied in some form of memory) to guide the search.

Hyperheuristics are yet another extension that focuses on heuristics
that modify their parameters (online or offline) to improve the efficacy
of solution, or the efficiency of the computation. Hyperheuristics provide
high-level strategies that may employ machine learning and adapt their
search behavior by modifying the application of the sub-procedures or
even which procedures are used (operating on the space of heuristics
which in turn operate within the problem domain) [12, 13].

1.1.5 Clever Algorithms

This book is concerned with ‘clever algorithms’, which are algorithms
drawn from many sub-fields of artificial intelligence not limited to
the scruffy fields of biologically inspired computation, computational
intelligence and metaheuristics. The term ‘clever algorithms ’ is intended
to unify a collection of interesting and useful computational tools under
a consistent and accessible banner. An alternative name (Inspired
Algorithms) was considered, although ultimately rejected given that not
all of the algorithms to be described in the project have an inspiration
(specifically a biological or physical inspiration) for their computational
strategy. The set of algorithms described in this book may generally be
referred to as ‘unconventional optimization algorithms’ (for example,
see [14]), as optimization is the main form of computation provided by
the listed approaches. A technically more appropriate name for these
approaches is stochastic global optimization (for example, see [49] and
[35]).

Algorithms were selected in order to provide a rich and interesting
coverage of the fields of Biologically Inspired Computation, Metaheuris-
tics and Computational Intelligence. Rather than a coverage of just
the state-of-the-art and popular methods, the algorithms presented also
include historic and newly described methods. The final selection was
designed to provoke curiosity and encourage exploration and a wider
view of the field.

10 Chapter 1. Introduction

1.2 Problem Domains

Algorithms from the fields of Computational Intelligence, Biologically
Inspired Computing, and Metaheuristics are applied to difficult problems,
to which more traditional approaches may not be suited. Michalewicz
and Fogel propose five reasons why problems may be difficult [37] (page
11):

• The number of possible solutions in the search space is so large as
to forbid an exhaustive search for the best answer.

• The problem is so complicated, that just to facilitate any answer
at all, we have to use such simplified models of the problem that
any result is essentially useless.

• The evaluation function that describes the quality of any proposed
solution is noisy or varies with time, thereby requiring not just a
single solution but an entire series of solutions.

• The possible solutions are so heavily constrained that constructing
even one feasible answer is difficult, let alone searching for an
optimal solution.

• The person solving the problem is inadequately prepared or imag-
ines some psychological barrier that prevents them from discovering
a solution.

This section introduces two problem formalisms that embody many
of the most difficult problems faced by Artificial and Computational
Intelligence. They are: Function Optimization and Function Approx-
imation. Each class of problem is described in terms of its general
properties, a formalism, and a set of specialized sub-problems. These
problem classes provide a tangible framing of the algorithmic techniques
described throughout the work.

1.2.1 Function Optimization

Real-world optimization problems and generalizations thereof can be
drawn from most fields of science, engineering, and information technol-
ogy (for a sample [2, 48]). Importantly, function optimization problems
have had a long tradition in the fields of Artificial Intelligence in mo-
tivating basic research into new problem solving techniques, and for
investigating and verifying systemic behavior against benchmark prob-
lem instances.

1.2. Problem Domains 11

Problem Description

Mathematically, optimization is defined as the search for a combina-
tion of parameters commonly referred to as decision variables (x =
{x1, x2, x3, . . . xn}) which minimize or maximize some ordinal quantity
(c) (typically a scalar called a score or cost) assigned by an objec-
tive function or cost function (f), under a set of constraints (g =
{g1, g2, g3, . . . gn}). For example, a general minimization case would be
as follows: f(x′) ≤ f(x),∀xi ∈ x. Constraints may provide boundaries
on decision variables (for example in a real-value hypercube <n), or may
generally define regions of feasibility and in-feasibility in the decision
variable space. In applied mathematics the field may be referred to as
Mathematical Programming. More generally the field may be referred
to as Global or Function Optimization given the focus on the objective
function. For more general information on optimization refer to Horst
et al. [29].

Sub-Fields of Study

The study of optimization is comprised of many specialized sub-fields,
based on an overlapping taxonomy that focuses on the principle con-
cerns in the general formalism. For example, with regard to the decision
variables, one may consider univariate and multivariate optimization
problems. The type of decision variables promotes specialities for con-
tinuous, discrete, and permutations of variables. Dependencies between
decision variables under a cost function define the fields of Linear Pro-
gramming, Quadratic Programming, and Nonlinear Programming. A
large class of optimization problems can be reduced to discrete sets
and are considered in the field of Combinatorial Optimization, to which
many theoretical properties are known, most importantly that many
interesting and relevant problems cannot be solved by an approach with
polynomial time complexity (so-called NP, for example see Papadim-
itriou and Steiglitz [38]).

The evaluation of variables against a cost function, collectively may
be considered a response surface. The shape of such a response surface
may be convex, which is a class of functions to which many important
theoretical findings have been made, not limited to the fact that location
of the local optimal configuration also means the global optimal con-
figuration of decision variables has been located [11]. Many interesting
and real-world optimization problems produce cost surfaces that are
non-convex or so called multi-modal1 (rather than unimodal) suggesting
that there are multiple peaks and valleys. Further, many real-world

1Taken from statistics referring to the centers of mass in distributions, although
in optimization it refers to ‘regions of interest’ in the search space, in particular
valleys in minimization, and peaks in maximization cost surfaces.

12 Chapter 1. Introduction

optimization problems with continuous decision variables cannot be
differentiated given their complexity or limited information availability,
meaning that derivative-based gradient descent methods (that are well
understood) are not applicable, necessitating the use of so-called ‘direct
search’ (sample or pattern-based) methods [33]. Real-world objective
function evaluation may be noisy, discontinuous, and/or dynamic, and
the constraints of real-world problem solving may require an approx-
imate solution in limited time or resources, motivating the need for
heuristic approaches.

1.2.2 Function Approximation

Real-world Function Approximation problems are among the most com-
putationally difficult considered in the broader field of Artificial Intelli-
gence for reasons including: incomplete information, high-dimensionality,
noise in the sample observations, and non-linearities in the target func-
tion. This section considers the Function Approximation formalism and
related specializations as a general motivating problem to contrast and
compare with Function Optimization.

Problem Description

Function Approximation is the problem of finding a function (f) that
approximates a target function (g), where typically the approximated
function is selected based on a sample of observations (x, also referred to
as the training set) taken from the unknown target function. In machine
learning, the function approximation formalism is used to describe
general problem types commonly referred to as pattern recognition,
such as classification, clustering, and curve fitting (called a decision
or discrimination function). Such general problem types are described
in terms of approximating an unknown Probability Density Function
(PDF), which underlies the relationships in the problem space, and is
represented in the sample data. This perspective of such problems is
commonly referred to as statistical machine learning and/or density
estimation [8, 24].

Sub-Fields of Study

The function approximation formalism can be used to phrase some of the
hardest problems faced by Computer Science, and Artificial Intelligence
in particular, such as natural language processing and computer vision.
The general process focuses on 1) the collection and preparation of the
observations from the target function, 2) the selection and/or preparation
of a model of the target function, and 3) the application and ongoing

1.3. Unconventional Optimization 13

refinement of the prepared model. Some important problem-based
sub-fields include:

• Feature Selection where a feature is considered an aggregation
of one-or-more attributes, where only those features that have
meaning in the context of the target function are necessary to the
modeling function [27, 32].

• Classification where observations are inherently organized into
labelled groups (classes) and a supervised process models an un-
derlying discrimination function to classify unobserved samples.

• Clustering where observations may be organized into groups based
on underlying common features, although the groups are unlabeled
requiring a process to model an underlying discrimination function
without corrective feedback.

• Curve or Surface Fitting where a model is prepared that provides a
‘best-fit’ (called a regression) for a set of observations that may be
used for interpolation over known observations and extrapolation
for observations outside what has been modeled.

The field of Function Optimization is related to Function Approx-
imation, as many-sub-problems of Function Approximation may be
defined as optimization problems. Many of the technique paradigms
used for function approximation are differentiated based on the rep-
resentation and the optimization process used to minimize error or
maximize effectiveness on a given approximation problem. The difficulty
of Function Approximation problems center around 1) the nature of the
unknown relationships between attributes and features, 2) the number
(dimensionality) of attributes and features, and 3) general concerns of
noise in such relationships and the dynamic availability of samples from
the target function. Additional difficulties include the incorporation of
prior knowledge (such as imbalance in samples, incomplete information
and the variable reliability of data), and problems of invariant features
(such as transformation, translation, rotation, scaling, and skewing of
features).

1.3 Unconventional Optimization

Not all algorithms described in this book are for optimization, although
those that are may be referred to as ‘unconventional’ to differentiate
them from the more traditional approaches. Examples of traditional
approaches include (but are not not limited) mathematical optimization
algorithms (such as Newton’s method and Gradient Descent that use
derivatives to locate a local minimum) and direct search methods (such

14 Chapter 1. Introduction

as the Simplex method and the Nelder-Mead method that use a search
pattern to locate optima). Unconventional optimization algorithms are
designed for the more difficult problem instances, the attributes of which
were introduced in Section 1.2.1. This section introduces some common
attributes of this class of algorithm.

1.3.1 Black Box Algorithms

Black Box optimization algorithms are those that exploit little, if any,
information from a problem domain in order to devise a solution. They
are generalized problem solving procedures that may be applied to a
range of problems with very little modification [19]. Domain specific
knowledge refers to known relationships between solution representations
and the objective cost function. Generally speaking, the less domain
specific information incorporated into a technique, the more flexible
the technique, although the less efficient it will be for a given problem.
For example, ‘random search’ is the most general black box approach
and is also the most flexible requiring only the generation of random
solutions for a given problem. Random search allows resampling of
the domain which gives it a worst case behavior that is worse than
enumerating the entire search domain. In practice, the more prior
knowledge available about a problem, the more information that can
be exploited by a technique in order to efficiently locate a solution for
the problem, heuristically or otherwise. Therefore, black box methods
are those methods suitable for those problems where little information
from the problem domain is available to be used by a problem solving
approach.

1.3.2 No-Free-Lunch

The No-Free-Lunch Theorem of search and optimization by Wolpert
and Macready proposes that all black box optimization algorithms
are the same for searching for the extremum of a cost function when
averaged over all possible functions [50, 51]. The theorem has caused
a lot of pessimism and misunderstanding, particularly in relation to
the evaluation and comparison of Metaheuristic and Computational
Intelligence algorithms.

The implication of the theorem is that searching for the ‘best’ general-
purpose black box optimization algorithm is irresponsible as no such
procedure is theoretically possible. No-Free-Lunch applies to stochastic
and deterministic optimization algorithms as well as to algorithms that
learn and adjust their search strategy over time. It is independent of
the performance measure used and the representation selected. Wolpert
and Macready’s original paper was produced at a time when grandiose
generalizations were being made as to algorithm, representation, or

1.3. Unconventional Optimization 15

configuration superiority. The practical impact of the theory is to
encourage practitioners to bound claims of applicability for search and
optimization algorithms. Wolpert and Macready encouraged effort
be put into devising practical problem classes and into the matching
of suitable algorithms to problem classes. Further, they compelled
practitioners to exploit domain knowledge in optimization algorithm
application, which is now an axiom in the field.

1.3.3 Stochastic Optimization

Stochastic optimization algorithms are those that use randomness to
elicit non-deterministic behaviors, contrasted to purely deterministic
procedures. Most algorithms from the fields of Computational Intelli-
gence, Biologically Inspired Computation, and Metaheuristics may be
considered to belong the field of Stochastic Optimization. Algorithms
that exploit randomness are not random in behavior, rather they sample
a problem space in a biased manner, focusing on areas of interest and
neglecting less interesting areas [45]. A class of techniques that focus on
the stochastic sampling of a domain, called Markov Chain Monte Carlo
(MCMC) algorithms, provide good average performance, and generally
offer a low chance of the worst case performance. Such approaches are
suited to problems with many coupled degrees of freedom, for example
large, high-dimensional spaces. MCMC approaches involve stochastically
sampling from a target distribution function similar to Monte Carlo
simulation methods using a process that resembles a biased Markov
chain.

• Monte Carlo methods are used for selecting a statistical sample
to approximate a given target probability density function and
are traditionally used in statistical physics. Samples are drawn
sequentially and the process may include criteria for rejecting sam-
ples and biasing the sampling locations within high-dimensional
spaces.

• Markov Chain processes provide a probabilistic model for state
transitions or moves within a discrete domain called a walk or a
chain of steps. A Markov system is only dependent on the current
position in the domain in order to probabilistically determine the
next step in the walk.

MCMC techniques combine these two approaches to solve integration
and optimization problems in large dimensional spaces by generating
samples while exploring the space using a Markov chain process, rather
than sequentially or independently [3]. The step generation is configured
to bias sampling in more important regions of the domain. Three exam-
ples of MCMC techniques include the Metropolis-Hastings algorithm,

16 Chapter 1. Introduction

Simulated Annealing for global optimization, and the Gibbs sampler
which are commonly employed in the fields of physics, chemistry, statis-
tics, and economics.

1.3.4 Inductive Learning

Many unconventional optimization algorithms employ a process that
includes the iterative improvement of candidate solutions against an ob-
jective cost function. This process of adaptation is generally a method by
which the process obtains characteristics that improve the system’s (can-
didate solution) relative performance in an environment (cost function).
This adaptive behavior is commonly achieved through a ‘selectionist
process’ of repetition of the steps: generation, test, and selection. The
use of non-deterministic processes mean that the sampling of the domain
(the generation step) is typically non-parametric, although guided by
past experience.

The method of acquiring information is called inductive learning or
learning from example, where the approach uses the implicit assumption
that specific examples are representative of the broader information
content of the environment, specifically with regard to anticipated
need. Many unconventional optimization approaches maintain a single
candidate solution, a population of samples, or a compression thereof that
provides both an instantaneous representation of all of the information
acquired by the process, and the basis for generating and making future
decisions.

This method of simultaneously acquiring and improving information
from the domain and the optimization of decision making (where to
direct future effort) is called the k-armed bandit (two-armed and multi-
armed bandit) problem from the field of statistical decision making
known as game theory [7, 42]. This formalism considers the capability
of a strategy to allocate available resources proportional to the future
payoff the strategy is expected to receive. The classic example is the
2-armed bandit problem used by Goldberg to describe the behavior of
the genetic algorithm [26]. The example involves an agent that learns
which one of the two slot machines provides more return by pulling the
handle of each (sampling the domain) and biasing future handle pulls
proportional to the expected utility, based on the probabilistic experience
with the past distribution of the payoff. The formalism may also be
used to understand the properties of inductive learning demonstrated by
the adaptive behavior of most unconventional optimization algorithms.

The stochastic iterative process of generate and test can be com-
putationally wasteful, potentially re-searching areas of the problem
space already searched, and requiring many trials or samples in order
to achieve a ‘good enough’ solution. The limited use of prior knowl-
edge from the domain (black box) coupled with the stochastic sampling

1.4. Book Organization 17

process mean that the adapted solutions are created without top-down
insight or instruction can sometimes be interesting, innovative, and even
competitive with decades of human expertise [31].

1.4 Book Organization

The remainder of this book is organized into two parts: Algorithms that
describes a large number of techniques in a complete and a consistent
manner presented in a rough algorithm groups, and Extensions that
reviews more advanced topics suitable for when a number of algorithms
have been mastered.

1.4.1 Algorithms

Algorithms are presented in six groups or kingdoms distilled from the
broader fields of study each in their own chapter, as follows:

• Stochastic Algorithms that focuses on the introduction of random-
ness into heuristic methods (Chapter 2).

• Evolutionary Algorithms inspired by evolution by means of natural
selection (Chapter 3).

• Physical Algorithms inspired by physical and social systems (Chap-
ter 4).

• Probabilistic Algorithms that focuses on methods that build models
and estimate distributions in search domains (Chapter 5).

• Swarm Algorithms that focuses on methods that exploit the prop-
erties of collective intelligence (Chapter 6).

• Immune Algorithms inspired by the adaptive immune system of
vertebrates (Chapter 7).

• Neural Algorithms inspired by the plasticity and learning qualities
of the human nervous system (Chapter 8).

A given algorithm is more than just a procedure or code listing, each
approach is an island of research. The meta-information that define the
context of a technique is just as important to understanding and applica-
tion as abstract recipes and concrete implementations. A standardized
algorithm description is adopted to provide a consistent presentation of
algorithms with a mixture of softer narrative descriptions, programmatic
descriptions both abstract and concrete, and most importantly useful
sources for finding out more information about the technique.

The standardized algorithm description template covers the following
subjects:

18 Chapter 1. Introduction

• Name: The algorithm name defines the canonical name used to
refer to the technique, in addition to common aliases, abbreviations,
and acronyms. The name is used as the heading of an algorithm
description.

• Taxonomy : The algorithm taxonomy defines where a technique
fits into the field, both the specific sub-fields of Computational
Intelligence and Biologically Inspired Computation as well as the
broader field of Artificial Intelligence. The taxonomy also provides
a context for determining the relationships between algorithms.

• Inspiration: (where appropriate) The inspiration describes the
specific system or process that provoked the inception of the
algorithm. The inspiring system may non-exclusively be natural,
biological, physical, or social. The description of the inspiring
system may include relevant domain specific theory, observation,
nomenclature, and those salient attributes of the system that are
somehow abstractly or conceptually manifest in the technique.

• Metaphor : (where appropriate) The metaphor is a description of
the technique in the context of the inspiring system or a different
suitable system. The features of the technique are made apparent
through an analogous description of the features of the inspiring
system. The explanation through analogy is not expected to be
literal, rather the method is used as an allegorical communication
tool. The inspiring system is not explicitly described, this is the
role of the ‘inspiration’ topic, which represents a loose dependency
for this topic.

• Strategy : The strategy is an abstract description of the computa-
tional model. The strategy describes the information processing
actions a technique shall take in order to achieve an objective,
providing a logical separation between a computational realiza-
tion (procedure) and an analogous system (metaphor). A given
problem solving strategy may be realized as one of a number of
specific algorithms or problem solving systems.

• Procedure: The algorithmic procedure summarizes the specifics of
realizing a strategy as a systemized and parameterized computa-
tion. It outlines how the algorithm is organized in terms of the
computation, data structures, and representations.

• Heuristics : The heuristics section describes the commonsense, best
practice, and demonstrated rules for applying and configuring a
parameterized algorithm. The heuristics relate to the technical
details of the technique’s procedure and data structures for general

1.4. Book Organization 19

classes of application (neither specific implementations nor specific
problem instances).

• Code Listing : The code listing description provides a minimal but
functional version of the technique implemented with a program-
ming language. The code description can be typed into a computer
and provide a working execution of the technique. The technique
implementation also includes a minimal problem instance to which
it is applied, and both the problem and algorithm implementations
are complete enough to demonstrate the techniques procedure.
The description is presented as a programming source code listing
with a terse introductory summary.

• References: The references section includes a listing of both pri-
mary sources of information about the technique as well as useful
introductory sources for novices to gain a deeper understanding
of the theory and application of the technique. The description
consists of hand-selected reference material including books, peer
reviewed conference papers, and journal articles.

Source code examples are included in the algorithm descriptions, and
the Ruby Programming Language was selected for use throughout the
book. Ruby was selected because it supports the procedural program-
ming paradigm, adopted to ensure that examples can be easily ported
to object-oriented and other paradigms. Additionally, Ruby is an inter-
preted language, meaning the code can be directly executed without an
introduced compilation step, and it is free to download and use from the
Internet.2 Ruby is concise, expressive, and supports meta-programming
features that improve the readability of code examples.

The sample code provides a working version of a given technique for
demonstration purposes. Having a tinker with a technique can really
bring it to life and provide valuable insight into a method. The sample
code is a minimum implementation, providing plenty of opportunity to
explore, extend and optimize. All of the source code for the algorithms
presented in this book is available from the companion website, online at
http://www.CleverAlgorithms.com. All algorithm implementations
were tested with Ruby 1.8.6, 1.8.7 and 1.9.

1.4.2 Extensions

There are some some advanced topics that cannot be meaningfully
considered until one has a firm grasp of a number of algorithms, and
these are discussed at the back of the book. The Advanced Topics chapter
addresses topics such as: the use of alternative programming paradigms

2Ruby can be downloaded for free from http://www.ruby-lang.org

http://www.CleverAlgorithms.com
http://www.ruby-lang.org

20 Chapter 1. Introduction

when implementing clever algorithms, methodologies used when devising
entirely new approaches, strategies to consider when testing clever
algorithms, visualizing the behavior and results of algorithms, and
comparing algorithms based on the results they produce using statistical
methods. Like the background information provided in this chapter, the
extensions provide a gentle introduction and starting point into some
advanced topics, and references for seeking a deeper understanding.

1.5 How to Read this Book

This book is a reference text that provides a large compendium of algo-
rithm descriptions. It is a trusted handbook of practical computational
recipes to be consulted when one is confronted with difficult function
optimization and approximation problems. It is also an encompass-
ing guidebook of modern heuristic methods that may be browsed for
inspiration, exploration, and general interest.

The audience for this work may be interested in the fields of Com-
putational Intelligence, Biologically Inspired Computation, and Meta-
heuristics and may count themselves as belonging to one of the following
broader groups:

• Scientists: Research scientists concerned with theoretically or
empirically investigating algorithms, addressing questions such as:
What is the motivating system and strategy for a given technique?
What are some algorithms that may be used in a comparison within
a given subfield or across subfields?

• Engineers: Programmers and developers concerned with imple-
menting, applying, or maintaining algorithms, addressing questions
such as: What is the procedure for a given technique? What are
the best practice heuristics for employing a given technique?

• Students: Undergraduate and graduate students interested in
learning about techniques, addressing questions such as: What are
some interesting algorithms to study? How to implement a given
approach?

• Amateurs: Practitioners interested in knowing more about algo-
rithms, addressing questions such as: What classes of techniques
exist and what algorithms do they provide? How to conceptualize
the computation of a technique?

1.6. Further Reading 21

1.6 Further Reading

This book is not an introduction to Artificial Intelligence or related
sub-fields, nor is it a field guide for a specific class of algorithms. This
section provides some pointers to selected books and articles for those
readers seeking a deeper understanding of the fields of study to which
the Clever Algorithms described in this book belong.

1.6.1 Artificial Intelligence

Artificial Intelligence is large field of study and many excellent texts have
been written to introduce the subject. Russell and Novig’s “Artificial
Intelligence: A Modern Approach” is an excellent introductory text
providing a broad and deep review of what the field has to offer and is
useful for students and practitioners alike [43]. Luger and Stubblefield’s
“Artificial Intelligence: Structures and Strategies for Complex Problem
Solving” is also an excellent reference text, providing a more empirical
approach to the field [34].

1.6.2 Computational Intelligence

Introductory books for the field of Computational Intelligence gen-
erally focus on a handful of specific sub-fields and their techniques.
Engelbrecht’s “Computational Intelligence: An Introduction” provides a
modern and detailed introduction to the field covering classic subjects
such as Evolutionary Computation and Artificial Neural Networks, as
well as more recent techniques such as Swarm Intelligence and Artificial
Immune Systems [20]. Pedrycz’s slightly more dated “Computational
Intelligence: An Introduction” also provides a solid coverage of the core
of the field with some deeper insights into fuzzy logic and fuzzy systems
[41].

1.6.3 Biologically Inspired Computation

Computational methods inspired by natural and biologically systems
represent a large portion of the algorithms described in this book. The
collection of articles published in de Castro and Von Zuben’s “Recent
Developments in Biologically Inspired Computing” provides an overview
of the state of the field, and the introductory chapter on need for
such methods does an excellent job to motivate the field of study [17].
Forbes’s “Imitation of Life: How Biology Is Inspiring Computing” sets
the scene for Natural Computing and the interrelated disciplines, of
which Biologically Inspired Computing is but one useful example [22].
Finally, Benyus’s “Biomimicry: Innovation Inspired by Nature” provides
a good introduction into the broader related field of a new frontier in

22 Chapter 1. Introduction

science and technology that involves building systems inspired by an
understanding of the biological world [6].

1.6.4 Metaheuristics

The field of Metaheuristics was initially constrained to heuristics for
applying classical optimization procedures, although has expanded to
encompass a broader and diverse set of techniques. Michalewicz and
Fogel’s “How to Solve It: Modern Heuristics” provides a practical
tour of heuristic methods with a consistent set of worked examples
[37]. Glover and Kochenberger’s “Handbook of Metaheuristics” provides
a solid introduction into a broad collection of techniques and their
capabilities [25].

1.6.5 The Ruby Programming Language

The Ruby Programming Language is a multi-paradigm dynamic lan-
guage that appeared in approximately 1995. Its meta-programming
capabilities coupled with concise and readable syntax have made it a
popular language of choice for web development, scripting, and applica-
tion development. The classic reference text for the language is Thomas,
Fowler, and Hunt’s “Programming Ruby: The Pragmatic Programmers’
Guide” referred to as the ‘pickaxe book’ because of the picture of the
pickaxe on the cover [47]. An updated edition is available that covers
version 1.9 (compared to 1.8 in the cited version) that will work just
as well for use as a reference for the examples in this book. Flanagan
and Matsumoto’s “The Ruby Programming Language” also provides a
seminal reference text with contributions from Yukihiro Matsumoto,
the author of the language [21]. For more information on the Ruby
Programming Language, see the quick-start guide in Appendix A.

1.7 Bibliography

[1] S. Aaronson. NP-complete problems and physical reality. ACM
SIGACT News (COLUMN: Complexity theory), 36(1):30–52, 2005.

[2] M. M. Ali, C. Storey, and A Törn. Application of stochastic
global optimization algorithms to practical problems. Journal of
Optimization Theory and Applications, 95(3):545–563, 1997.

[3] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An
introduction to MCMC for machine learning. Machine Learning,
50:5–43, 2003.

[4] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary
Computation 1: Basic Algorithms and Operators. IoP, 2000.

1.7. Bibliography 23

[5] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary
Computation 2: Advanced Algorithms and Operations. IoP, 2000.

[6] J. M. Benyus. Biomimicry: Innovation Inspired by Nature. Quill,
1998.

[7] D. Bergemann and J. Valimaki. Bandit problems. Cowles Founda-
tion Discussion Papers 1551, Cowles Foundation, Yale University,
January 2006.

[8] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

[9] C. Blum and A. Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys
(CSUR), 35(3):268–308, 2003.

[10] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence:
From Natural to Artificial Systems. Oxford University Press US,
1999.

[11] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[12] E. K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schu-
lenburg. Handbook of Metaheuristics, chapter Hyper-heuristics: An
emerging direction in modern search technology, pages 457–474.
Kluwer, 2003.

[13] E. K. Burke, G. Kendall, and E. Soubeiga. A tabu-search hyper-
heuristic for timetabling and rostering. Journal of Heuristics,
9(6):451–470, 2003.

[14] D. Corne, M. Dorigo, and F. Glover. New Ideas in Optimization.
McGraw-Hill, 1999.

[15] L. N. de Castro and J. Timmis. Artificial Immune Systems: A New
Computational Intelligence Approach. Springer, 2002.

[16] L. N. de Castro and F. J. Von Zuben. Recent developments in
biologically inspired computing, chapter From biologically inspired
computing to natural computing. Idea Group, 2005.

[17] L. N. de Castro and F. J. Von Zuben. Recent developments in
biologically inspired computing. Idea Group Inc, 2005.

[18] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press,
2004.

24 Chapter 1. Introduction

[19] S. Droste, T. Jansen, and I. Wegener. Upper and lower bounds for
randomized search heuristics in black-box optimization. Theory of
Computing Systems, 39(4):525–544, 2006.

[20] A. P. Engelbrecht. Computational Intelligence: An Introduction.
John Wiley and Sons, second edition, 2007.

[21] D. Flanagan and Y. Matsumoto. The Ruby Programming Language.
O’Reilly Media, 2008.

[22] N. Forbes. Biologically inspired computing. Computing in Science
and Engineering, 2(6):83–87, 2000.

[23] N. Forbes. Imitation of Life: How Biology Is Inspiring Computing.
The MIT Press, 2005.

[24] K. Fukunaga. Introduction to Statistical Pattern Recognition. Aca-
demic Press, 1990.

[25] F. Glover and G. A. Kochenberger. Handbook of Metaheuristics.
Springer, 2003.

[26] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[27] I. Guyon and A. Elisseeff. An introduction to variable and feature
selection. Journal of Machine Learning Research, 3:1157–1182,
2003.

[28] J. H. Holland. Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and arti-
ficial intelligence. University of Michigan Press, 1975.

[29] R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to Global
Optimization. Kluwer Academic Publishers, 2nd edition, 2000.

[30] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence.
Morgan Kaufmann, 2001.

[31] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and
G. Lanza. Genetic Programming IV: Routine Human-Competitive
Machine Intelligence. Springer, 2003.

[32] M. Kudo and J. Sklansky. Comparison of algorithms that select
features for pattern classifiers. Pattern Recognition, 33:25–41, 2000.

[33] R. M. Lewis, V. T., and M. W. Trosset. Direct search methods:
then and now. Journal of Computational and Applied Mathematics,
124:191–207, 2000.

1.7. Bibliography 25

[34] G. F. Luger and W. A. Stubblefield. Artificial Intelligence: Struc-
tures and Strategies for Complex Problem Solving. Benjamin/Cum-
mings Pub. Co., second edition, 1993.

[35] S. Luke. Essentials of Metaheuristics. Lulu, 2010. available at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[36] P. Marrow. Nature-inspired computing technology and applications.
BT Technology Journal, 18(4):13–23, 2000.

[37] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics.
Springer, 2004.

[38] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Courier Dover Publications, 1998.

[39] R. Paton. Computing With Biological Metaphors, chapter Introduc-
tion to computing with biological metaphors, pages 1–8. Chapman
& Hall, 1994.

[40] G. Paǔn. Bio-inspired computing paradigms (natural computing).
Unconventional Programming Paradigms, 3566:155–160, 2005.

[41] W. Pedrycz. Computational Intelligence: An Introduction. CRC
Press, 1997.

[42] H. Robbins. Some aspects of the sequential design of experiments.
Bull. Amer. Math. Soc., 58:527–535, 1952.

[43] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, third edition, 2009.

[44] A. Sloman. Evolving Knowledge in Natural Science and Artificial
Intelligence, chapter Must intelligent systems be scruffy? Pitman,
1990.

[45] J. C. Spall. Introduction to stochastic search and optimization:
estimation, simulation, and control. John Wiley and Sons, 2003.

[46] E. G. Talbi. Metaheuristics: From Design to Implementation. John
Wiley and Sons, 2009.

[47] D. Thomas, C. Fowler, and A. Hunt. Programming Ruby: The
Pragmatic Programmers’ Guide. Pragmatic Bookshelf, second
edition, 2004.

[48] A. Törn, M. M. Ali, and S. Viitanen. Stochastic global optimiza-
tion: Problem classes and solution techniques. Journal of Global
Optimization, 14:437–447, 1999.

26 Chapter 1. Introduction

[49] T. Weise. Global Optimization Algorithms - Theory and Application.
(Self Published), 2009-06-26 edition, 2007.

[50] D. H. Wolpert and W. G. Macready. No free lunch theorems for
search. Technical report, Santa Fe Institute, Sante Fe, NM, USA,
1995.

[51] D. H. Wolpert and W. G. Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation,
1(67):67–82, 1997.

[52] L. A. Zadeh, G. J. Klir, and B. Yuan. Fuzzy sets, fuzzy logic, and
fuzzy systems: selected papers. World Scientific, 1996.

Part II

Algorithms

27

Chapter 2

Stochastic Algorithms

2.1 Overview

This chapter describes Stochastic Algorithms.

2.1.1 Stochastic Optimization

The majority of the algorithms to be described in this book are com-
prised of probabilistic and stochastic processes. What differentiates the
‘stochastic algorithms’ in this chapter from the remaining algorithms
is the specific lack of 1) an inspiring system, and 2) a metaphorical
explanation. Both ‘inspiration’ and ‘metaphor’ refer to the descriptive
elements in the standardized algorithm description.

These described algorithms are predominately global optimization
algorithms and metaheuristics that manage the application of an em-
bedded neighborhood exploring (local) search procedure. As such, with
the exception of ‘Stochastic Hill Climbing’ and ‘Random Search’ the
algorithms may be considered extensions of the multi-start search (also
known as multi-restart search). This set of algorithms provide various
different strategies by which ‘better’ and varied starting points can
be generated and issued to a neighborhood searching technique for
refinement, a process that is repeated with potentially improving or
unexplored areas to search.

29

30 Chapter 2. Stochastic Algorithms

2.2 Random Search

Random Search, RS, Blind Random Search, Blind Search, Pure Random
Search, PRS

2.2.1 Taxonomy

Random search belongs to the fields of Stochastic Optimization and
Global Optimization. Random search is a direct search method as it
does not require derivatives to search a continuous domain. This base
approach is related to techniques that provide small improvements such
as Directed Random Search, and Adaptive Random Search (Section 2.3).

2.2.2 Strategy

The strategy of Random Search is to sample solutions from across the
entire search space using a uniform probability distribution. Each future
sample is independent of the samples that come before it.

2.2.3 Procedure

Algorithm 2.2.1 provides a pseudocode listing of the Random Search
Algorithm for minimizing a cost function.

Algorithm 2.2.1: Pseudocode for Random Search.

Input: NumIterations, ProblemSize, SearchSpace
Output: Best
Best ← ∅;1

foreach iteri ∈ NumIterations do2

candidatei ← RandomSolution(ProblemSize, SearchSpace);3

if Cost(candidatei) < Cost(Best) then4

Best ← candidatei;5

end6

end7

return Best;8

2.2.4 Heuristics

• Random search is minimal in that it only requires a candidate
solution construction routine and a candidate solution evaluation
routine, both of which may be calibrated using the approach.

2.2. Random Search 31

• The worst case performance for Random Search for locating the
optima is worse than an Enumeration of the search domain, given
that Random Search has no memory and can blindly resample.

• Random Search can return a reasonable approximation of the
optimal solution within a reasonable time under low problem
dimensionality, although the approach does not scale well with
problem size (such as the number of dimensions).

• Care must be taken with some problem domains to ensure that
random candidate solution construction is unbiased

• The results of a Random Search can be used to seed another search
technique, like a local search technique (such as the Hill Climbing
algorithm) that can be used to locate the best solution in the
neighborhood of the ‘good’ candidate solution.

2.2.5 Code Listing

Listing 2.1 provides an example of the Random Search Algorithm im-
plemented in the Ruby Programming Language. In the example, the
algorithm runs for a fixed number of iterations and returns the best can-
didate solution discovered. The example problem is an instance of a con-
tinuous function optimization that seeks min f(x) where f =

∑n
i=1 x

2
i ,

−5.0 ≤ xi ≤ 5.0 and n = 2. The optimal solution for this basin function
is (v0, . . . , vn−1) = 0.0.

1 def objective_function(vector)

2 return vector.inject(0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def search(search_space, max_iter)

12 best = nil

13 max_iter.times do |iter|

14 candidate = {}

15 candidate[:vector] = random_vector(search_space)

16 candidate[:cost] = objective_function(candidate[:vector])

17 best = candidate if best.nil? or candidate[:cost] < best[:cost]

18 puts " > iteration=#{(iter+1)}, best=#{best[:cost]}"

19 end

20 return best

21 end

22

23 if __FILE__ == $0
24 # problem configuration

32 Chapter 2. Stochastic Algorithms

25 problem_size = 2

26 search_space = Array.new(problem_size) {|i| [-5, +5]}

27 # algorithm configuration

28 max_iter = 100

29 # execute the algorithm

30 best = search(search_space, max_iter)

31 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

32 end

Listing 2.1: Random Search in Ruby

2.2.6 References

Primary Sources

There is no seminal specification of the Random Search algorithm, rather
there are discussions of the general approach and related random search
methods from the 1950s through to the 1970s. This was around the time
that pattern and direct search methods were actively researched. Brooks
is credited with the so-called ‘pure random search’ [1]. Two seminal
reviews of ‘random search methods’ of the time include: Karnopp [2]
and perhaps Kul’chitskii [3].

Learn More

For overviews of Random Search Methods see Zhigljavsky [9], Solis and
Wets [4], and also White [7] who provide an insightful review article.
Spall provides a detailed overview of the field of Stochastic Optimization,
including the Random Search method [5] (for example, see Chapter 2).
For a shorter introduction by Spall, see [6] (specifically Section 6.2).
Also see Zabinsky for another detailed review of the broader field [8].

2.2.7 Bibliography

[1] S. H. Brooks. A discussion of random methods for seeking maxima.
Operations Research, 6(2):244–251, 1958.

[2] D. C. Karnopp. Random search techniques for optimization problems.
Automatica, 1(2–3):111–121, 1963.

[3] O. Y. Kul’chitskii. Random-search algorithm for extrema in func-
tional space under conditions of partial uncertainty. Cybernetics and
Systems Analysis, 12(5):794–801, 1976.

[4] F. J. Solis and J. B. Wets. Minimization by random search techniques.
Mathematics of Operations Research, 6:19–30, 1981.

2.2. Random Search 33

[5] J. C. Spall. Introduction to stochastic search and optimization:
estimation, simulation, and control. John Wiley and Sons, 2003.

[6] J. C. Spall. Handbook of computational statistics: concepts and meth-
ods, chapter 6. Stochastic Optimization, pages 169–198. Springer,
2004.

[7] R. C. White. A survey of random methods for parameter optimiza-
tion. Simulation, 17(1):197–205, 1971.

[8] Z. B. Zabinsky. Stochastic adaptive search for global optimization.
Kluwer Academic Publishers, 2003.

[9] A. A. Zhigljavsky. Theory of Global Random Search. Kluwer Aca-
demic, 1991.

34 Chapter 2. Stochastic Algorithms

2.3 Adaptive Random Search

Adaptive Random Search, ARS, Adaptive Step Size Random Search,
ASSRS, Variable Step-Size Random Search.

2.3.1 Taxonomy

The Adaptive Random Search algorithm belongs to the general set of
approaches known as Stochastic Optimization and Global Optimization.
It is a direct search method in that it does not require derivatives to
navigate the search space. Adaptive Random Search is an extension
of the Random Search (Section 2.2) and Localized Random Search
algorithms.

2.3.2 Strategy

The Adaptive Random Search algorithm was designed to address the
limitations of the fixed step size in the Localized Random Search al-
gorithm. The strategy for Adaptive Random Search is to continually
approximate the optimal step size required to reach the global optimum
in the search space. This is achieved by trialling and adopting smaller
or larger step sizes only if they result in an improvement in the search
performance.

The Strategy of the Adaptive Step Size Random Search algorithm
(the specific technique reviewed) is to trial a larger step in each iteration
and adopt the larger step if it results in an improved result. Very large
step sizes are trialled in the same manner although with a much lower
frequency. This strategy of preferring large moves is intended to allow
the technique to escape local optima. Smaller step sizes are adopted if
no improvement is made for an extended period.

2.3.3 Procedure

Algorithm 2.3.1 provides a pseudocode listing of the Adaptive Random
Search Algorithm for minimizing a cost function based on the specifica-
tion for ‘Adaptive Step-Size Random Search’ by Schummer and Steiglitz
[6].

2.3.4 Heuristics

• Adaptive Random Search was designed for continuous function
optimization problem domains.

• Candidates with equal cost should be considered improvements
to allow the algorithm to make progress across plateaus in the
response surface.

2.3. Adaptive Random Search 35

Algorithm 2.3.1: Pseudocode for Adaptive Random Search.

Input: Itermax, Problemsize, SearchSpace, StepSizeinitfactor,

StepSizesmallfactor, StepSize
large
factor, StepSize

iter
factor,

NoChangemax
Output: S
NoChangecount ← 0;1

StepSizei ← InitializeStepSize(SearchSpace,2

StepSizeinitfactor);

S ← RandomSolution(Problemsize, SearchSpace);3

for i = 0 to Itermax do4

S1 ← TakeStep(SearchSpace, S, StepSizei);5

StepSizelargei ← 0;6

if i modStepSizeiterfactor then7

StepSizelargei ← StepSizei × StepSizelargefactor;8

else9

StepSizelargei ← StepSizei × StepSizesmallfactor;10

end11

S2 ← TakeStep(SearchSpace, S, StepSizelargei);12

if Cost(S1)≤Cost(S) —— Cost(S2)≤Cost(S) then13

if Cost(S2)<Cost(S1) then14

S ← S2;15

StepSizei ← StepSizelargei ;16

else17

S ← S1;18

end19

NoChangecount ← 0;20

else21

NoChangecount ← NoChangecount + 1;22

if NoChangecount > NoChangemax then23

NoChangecount ← 0;24

StepSizei ← StepSizei
StepSizesmall

factor

;
25

end26

end27

end28

return S;29

36 Chapter 2. Stochastic Algorithms

• Adaptive Random Search may adapt the search direction in addi-
tion to the step size.

• The step size may be adapted for all parameters, or for each
parameter individually.

2.3.5 Code Listing

Listing 2.2 provides an example of the Adaptive Random Search Al-
gorithm implemented in the Ruby Programming Language, based on
the specification for ‘Adaptive Step-Size Random Search’ by Schummer
and Steiglitz [6]. In the example, the algorithm runs for a fixed number
of iterations and returns the best candidate solution discovered. The
example problem is an instance of a continuous function optimization
that seeks min f(x) where f =

∑n
i=1 x

2
i , −5.0 < xi < 5.0 and n = 2.

The optimal solution for this basin function is (v0, . . . , vn−1) = 0.0.

1 def objective_function(vector)

2 return vector.inject(0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def rand_in_bounds(min, max)

6 return min + ((max-min) * rand())

7 end

8

9 def random_vector(minmax)

10 return Array.new(minmax.size) do |i|

11 rand_in_bounds(minmax[i][0], minmax[i][1])

12 end

13 end

14

15 def take_step(minmax, current, step_size)

16 position = Array.new(current.size)

17 position.size.times do |i|

18 min = [minmax[i][0], current[i]-step_size].max

19 max = [minmax[i][1], current[i]+step_size].min

20 position[i] = rand_in_bounds(min, max)

21 end

22 return position

23 end

24

25 def large_step_size(iter, step_size, s_factor, l_factor, iter_mult)

26 return step_size * l_factor if iter>0 and iter.modulo(iter_mult) == 0

27 return step_size * s_factor

28 end

29

30 def take_steps(bounds, current, step_size, big_stepsize)

31 step, big_step = {}, {}

32 step[:vector] = take_step(bounds, current[:vector], step_size)

33 step[:cost] = objective_function(step[:vector])

34 big_step[:vector] = take_step(bounds,current[:vector],big_stepsize)

35 big_step[:cost] = objective_function(big_step[:vector])

36 return step, big_step

2.3. Adaptive Random Search 37

37 end

38

39 def search(max_iter, bounds, init_factor, s_factor, l_factor,

iter_mult, max_no_impr)

40 step_size = (bounds[0][1]-bounds[0][0]) * init_factor

41 current, count = {}, 0

42 current[:vector] = random_vector(bounds)

43 current[:cost] = objective_function(current[:vector])

44 max_iter.times do |iter|

45 big_stepsize = large_step_size(iter, step_size, s_factor, l_factor,

iter_mult)

46 step, big_step = take_steps(bounds, current, step_size,

big_stepsize)

47 if step[:cost] <= current[:cost] or big_step[:cost] <=

current[:cost]

48 if big_step[:cost] <= step[:cost]

49 step_size, current = big_stepsize, big_step

50 else

51 current = step

52 end

53 count = 0

54 else

55 count += 1

56 count, step_size = 0, (step_size/s_factor) if count >= max_no_impr

57 end

58 puts " > iteration #{(iter+1)}, best=#{current[:cost]}"

59 end

60 return current

61 end

62

63 if __FILE__ == $0
64 # problem configuration

65 problem_size = 2

66 bounds = Array.new(problem_size) {|i| [-5, +5]}

67 # algorithm configuration

68 max_iter = 1000

69 init_factor = 0.05

70 s_factor = 1.3

71 l_factor = 3.0

72 iter_mult = 10

73 max_no_impr = 30

74 # execute the algorithm

75 best = search(max_iter, bounds, init_factor, s_factor, l_factor,

iter_mult, max_no_impr)

76 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

77 end

Listing 2.2: Adaptive Random Search in Ruby

38 Chapter 2. Stochastic Algorithms

2.3.6 References

Primary Sources

Many works in the 1960s and 1970s experimented with variable step sizes
for Random Search methods. Schummer and Steiglitz are commonly
credited the adaptive step size procedure, which they called ‘Adaptive
Step-Size Random Search’ [6]. Their approach only modifies the step
size based on an approximation of the optimal step size required to reach
the global optima. Kregting and White review adaptive random search
methods and propose an approach called ‘Adaptive Directional Random
Search’ that modifies both the algorithms step size and direction in
response to the cost function [2].

Learn More

White reviews extensions to Rastrigin’s ‘Creeping Random Search’ [4]
(fixed step size) that use probabilistic step sizes drawn stochastically
from uniform and probabilistic distributions [7]. White also reviews
works that propose dynamic control strategies for the step size, such as
Karnopp [1] who proposes increases and decreases to the step size based
on performance over very small numbers of trials. Schrack and Choit
review random search methods that modify their step size in order to
approximate optimal moves while searching, including the property of
reversal [5]. Masri et al. describe an adaptive random search strategy
that alternates between periods of fixed and variable step sizes [3].

2.3.7 Bibliography

[1] D. C. Karnopp. Random search techniques for optimization problems.
Automatica, 1(2–3):111–121, 1963.

[2] J. Kregting and R. C. White. Adaptive random search. Technical
Report TH-Report 71-E-24, Eindhoven University of Technology,
Eindhoven, Netherlands, 1971.

[3] S. F. Masri, G. A. Bekey, and F. B. Safford. Global optimization
algorithm using adaptive random search. Applied Mathematics and
Computation, 7(4):353–376, 1980.

[4] L. A. Rastrigin. The convergence of the random search method in
the extremal control of a many parameter system. Automation and
Remote Control, 24:1337–1342, 1963.

[5] G. Schrack and M. Choit. Optimized relative step size random
searches. Mathematical Programming, 10(1):230–244, 1976.

2.3. Adaptive Random Search 39

[6] M. Schumer and K. Steiglitz. Adaptive step size random search.
IEEE Transactions on Automatic Control, 13(3):270–276, 1968.

[7] R. C. White. A survey of random methods for parameter optimiza-
tion. Simulation, 17(1):197–205, 1971.

40 Chapter 2. Stochastic Algorithms

2.4 Stochastic Hill Climbing

Stochastic Hill Climbing, SHC, Random Hill Climbing, RHC, Random
Mutation Hill Climbing, RMHC.

2.4.1 Taxonomy

The Stochastic Hill Climbing algorithm is a Stochastic Optimization
algorithm and is a Local Optimization algorithm (contrasted to Global
Optimization). It is a direct search technique, as it does not require
derivatives of the search space. Stochastic Hill Climbing is an extension
of deterministic hill climbing algorithms such as Simple Hill Climbing
(first-best neighbor), Steepest-Ascent Hill Climbing (best neighbor), and
a parent of approaches such as Parallel Hill Climbing and Random-
Restart Hill Climbing.

2.4.2 Strategy

The strategy of the Stochastic Hill Climbing algorithm is iterate the
process of randomly selecting a neighbor for a candidate solution and
only accept it if it results in an improvement. The strategy was proposed
to address the limitations of deterministic hill climbing techniques that
were likely to get stuck in local optima due to their greedy acceptance
of neighboring moves.

2.4.3 Procedure

Algorithm 2.4.1 provides a pseudocode listing of the Stochastic Hill
Climbing algorithm for minimizing a cost function, specifically the
Random Mutation Hill Climbing algorithm described by Forrest and
Mitchell applied to a maximization optimization problem [3].

Algorithm 2.4.1: Pseudocode for Stochastic Hill Climbing.

Input: Itermax, ProblemSize
Output: Current
Current ← RandomSolution(ProblemSize);1

foreach iteri ∈ Itermax do2

Candidate ← RandomNeighbor(Current);3

if Cost(Candidate) ≥ Cost(Current) then4

Current ← Candidate;5

end6

end7

return Current;8

2.4. Stochastic Hill Climbing 41

2.4.4 Heuristics

• Stochastic Hill Climbing was designed to be used in discrete
domains with explicit neighbors such as combinatorial optimization
(compared to continuous function optimization).

• The algorithm’s strategy may be applied to continuous domains
by making use of a step-size to define candidate-solution neighbors
(such as Localized Random Search and Fixed Step-Size Random
Search).

• Stochastic Hill Climbing is a local search technique (compared
to global search) and may be used to refine a result after the
execution of a global search algorithm.

• Even though the technique uses a stochastic process, it can still
get stuck in local optima.

• Neighbors with better or equal cost should be accepted, allowing
the technique to navigate across plateaus in the response surface.

• The algorithm can be restarted and repeated a number of times
after it converges to provide an improved result (called Multiple
Restart Hill Climbing).

• The procedure can be applied to multiple candidate solutions
concurrently, allowing multiple algorithm runs to be performed at
the same time (called Parallel Hill Climbing).

2.4.5 Code Listing

Listing 2.3 provides an example of the Stochastic Hill Climbing algo-
rithm implemented in the Ruby Programming Language, specifically
the Random Mutation Hill Climbing algorithm described by Forrest and
Mitchell [3]. The algorithm is executed for a fixed number of iterations
and is applied to a binary string optimization problem called ‘One Max’.
The objective of this maximization problem is to prepare a string of all
‘1’ bits, where the cost function only reports the number of bits in a
given string.

1 def onemax(vector)

2 return vector.inject(0.0){|sum, v| sum + ((v=="1") ? 1 : 0)}

3 end

4

5 def random_bitstring(num_bits)

6 return Array.new(num_bits){|i| (rand<0.5) ? "1" : "0"}

7 end

8

9 def random_neighbor(bitstring)

10 mutant = Array.new(bitstring)

42 Chapter 2. Stochastic Algorithms

11 pos = rand(bitstring.size)

12 mutant[pos] = (mutant[pos]=='1') ? '0' : '1'
13 return mutant

14 end

15

16 def search(max_iterations, num_bits)

17 candidate = {}

18 candidate[:vector] = random_bitstring(num_bits)

19 candidate[:cost] = onemax(candidate[:vector])

20 max_iterations.times do |iter|

21 neighbor = {}

22 neighbor[:vector] = random_neighbor(candidate[:vector])

23 neighbor[:cost] = onemax(neighbor[:vector])

24 candidate = neighbor if neighbor[:cost] >= candidate[:cost]

25 puts " > iteration #{(iter+1)}, best=#{candidate[:cost]}"

26 break if candidate[:cost] == num_bits

27 end

28 return candidate

29 end

30

31 if __FILE__ == $0
32 # problem configuration

33 num_bits = 64

34 # algorithm configuration

35 max_iterations = 1000

36 # execute the algorithm

37 best = search(max_iterations, num_bits)

38 puts "Done. Best Solution: c=#{best[:cost]}, v=#{best[:vector].join}"

39 end

Listing 2.3: Stochastic Hill Climbing in Ruby

2.4.6 References

Primary Sources

Perhaps the most popular implementation of the Stochastic Hill Climb-
ing algorithm is by Forrest and Mitchell, who proposed the Random
Mutation Hill Climbing (RMHC) algorithm (with communication from
Richard Palmer) in a study that investigated the behavior of the ge-
netic algorithm on a deceptive class of (discrete) bit-string optimization
problems called ‘royal road’ functions [3]. The RMHC was compared to
two other hill climbing algorithms in addition to the genetic algorithm,
specifically: the Steepest-Ascent Hill Climber, and the Next-Ascent Hill
Climber. This study was then followed up by Mitchell and Holland [5].

Jules and Wattenberg were also early to consider stochastic hill
climbing as an approach to compare to the genetic algorithm [4]. Skalak
applied the RMHC algorithm to a single long bit-string that represented
a number of prototype vectors for use in classification [8].

2.4. Stochastic Hill Climbing 43

Learn More

The Stochastic Hill Climbing algorithm is related to the genetic algorithm
without crossover. Simplified version’s of the approach are investigated
for bit-string based optimization problems with the population size of
the genetic algorithm reduced to one. The general technique has been
investigated under the names Iterated Hillclimbing [6], ES(1+1,m,hc)
[7], Random Bit Climber [2], and (1+1)-Genetic Algorithm [1]. This
main difference between RMHC and ES(1+1) is that the latter uses a
fixed probability of a mutation for each discrete element of a solution
(meaning the neighborhood size is probabilistic), whereas RMHC will
only stochastically modify one element.

2.4.7 Bibliography

[1] T. Bäck. Optimal mutation rates in genetic search. In Proceedings
of the Fifth International Conference on Genetic Algorithms, pages
2–9, 1993.

[2] L. Davis. Bit-climbing, representational bias, and test suite design.
In Proceedings of the fourth international conference on genetic
algorithms, pages 18–23, 1991.

[3] S. Forrest and M. Mitchell. Relative building-block fitness and the
building-block hypothesis. In Foundations of Genetic Algorithms 2,
pages 109–126. Morgan Kaufmann, 1993.

[4] A. Juels and M. Wattenberg. Stochastic hill climbing as a base-
line method for evaluating genetic algorithms. Technical report,
University of California, Berkeley, 1994.

[5] M. Mitchell and J. H. Holland. When will a genetic algorithm
outperform hill climbing? In Proceedings of the 5th International
Conference on Genetic Algorithms. Morgan Kaufmann Publishers
Inc., 1993.

[6] H. Mühlenbein. Evolution in time and space - the parallel genetic
algorithm. In Foundations of Genetic Algorithms, 1991.

[7] H. Mühlenbein. How genetic algorithms really work: I. mutation
and hillclimbing. In Parallel Problem Solving from Nature 2, pages
15–26, 1992.

[8] D. B. Skalak. Prototype and feature selection by sampling and
random mutation hill climbing algorithms. In Proceedings of the
eleventh international conference on machine learning, pages 293–
301. Morgan Kaufmann, 1994.

44 Chapter 2. Stochastic Algorithms

2.5 Iterated Local Search

Iterated Local Search, ILS.

2.5.1 Taxonomy

Iterated Local Search is a Metaheuristic and a Global Optimization
technique. It is an extension of Multi-Restart Search and may be consid-
ered a parent of many two-phase search approaches such as the Greedy
Randomized Adaptive Search Procedure (Section 2.8) and Variable
Neighborhood Search (Section 2.7).

2.5.2 Strategy

The objective of Iterated Local Search is to improve upon stochastic
Multi-Restart Search by sampling in the broader neighborhood of can-
didate solutions and using a Local Search technique to refine solutions
to their local optima. Iterated Local Search explores a sequence of
solutions created as perturbations of the current best solution, the result
of which is refined using an embedded heuristic.

2.5.3 Procedure

Algorithm 2.5.1 provides a pseudocode listing of the Iterated Local
Search algorithm for minimizing a cost function.

Algorithm 2.5.1: Pseudocode for Iterated Local Search.

Input:
Output: Sbest
Sbest ← ConstructInitialSolution();1

Sbest ← LocalSearch();2

SearchHistory ← Sbest;3

while ¬ StopCondition() do4

Scandidate ← Perturbation(Sbest, SearchHistory);5

Scandidate ← LocalSearch(Scandidate);6

SearchHistory ← Scandidate;7

if AcceptanceCriterion(Sbest, Scandidate, SearchHistory)8

then
Sbest ← Scandidate;9

end10

end11

return Sbest;12

2.5. Iterated Local Search 45

2.5.4 Heuristics

• Iterated Local Search was designed for and has been predominately
applied to discrete domains, such as combinatorial optimization
problems.

• The perturbation of the current best solution should be in a
neighborhood beyond the reach of the embedded heuristic and
should not be easily undone.

• Perturbations that are too small make the algorithm too greedy,
perturbations that are too large make the algorithm too stochastic.

• The embedded heuristic is most commonly a problem-specific local
search technique.

• The starting point for the search may be a randomly constructed
candidate solution, or constructed using a problem-specific heuris-
tic (such as nearest neighbor).

• Perturbations can be made deterministically, although stochastic
and probabilistic (adaptive based on history) are the most common.

• The procedure may store as much or as little history as needed to
be used during perturbation and acceptance criteria. No history
represents a random walk in a larger neighborhood of the best
solution and is the most common implementation of the approach.

• The simplest and most common acceptance criteria is an improve-
ment in the cost of constructed candidate solutions.

2.5.5 Code Listing

Listing 2.4 provides an example of the Iterated Local Search algorithm
implemented in the Ruby Programming Language. The algorithm is
applied to the Berlin52 instance of the Traveling Salesman Problem
(TSP), taken from the TSPLIB. The problem seeks a permutation of
the order to visit cities (called a tour) that minimizes the total distance
traveled. The optimal tour distance for Berlin52 instance is 7542 units.

The Iterated Local Search runs for a fixed number of iterations. The
implementation is based on a common algorithm configuration for the
TSP, where a ‘double-bridge move’ (4-opt) is used as the perturbation
technique, and a stochastic 2-opt is used as the embedded Local Search
heuristic. The double-bridge move involves partitioning a permutation
into 4 pieces (a,b,c,d) and putting it back together in a specific and
jumbled ordering (a,d,c,b).

46 Chapter 2. Stochastic Algorithms

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(permutation, cities)

6 distance =0

7 permutation.each_with_index do |c1, i|

8 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def stochastic_two_opt(permutation)

24 perm = Array.new(permutation)

25 c1, c2 = rand(perm.size), rand(perm.size)

26 exclude = [c1]

27 exclude << ((c1==0) ? perm.size-1 : c1-1)

28 exclude << ((c1==perm.size-1) ? 0 : c1+1)

29 c2 = rand(perm.size) while exclude.include?(c2)

30 c1, c2 = c2, c1 if c2 < c1

31 perm[c1...c2] = perm[c1...c2].reverse

32 return perm

33 end

34

35 def local_search(best, cities, max_no_improv)

36 count = 0

37 begin

38 candidate = {:vector=>stochastic_two_opt(best[:vector])}

39 candidate[:cost] = cost(candidate[:vector], cities)

40 count = (candidate[:cost] < best[:cost]) ? 0 : count+1

41 best = candidate if candidate[:cost] < best[:cost]

42 end until count >= max_no_improv

43 return best

44 end

45

46 def double_bridge_move(perm)

47 pos1 = 1 + rand(perm.size / 4)

48 pos2 = pos1 + 1 + rand(perm.size / 4)

49 pos3 = pos2 + 1 + rand(perm.size / 4)

50 p1 = perm[0...pos1] + perm[pos3..perm.size]

51 p2 = perm[pos2...pos3] + perm[pos1...pos2]

52 return p1 + p2

53 end

54

55 def perturbation(cities, best)

2.5. Iterated Local Search 47

56 candidate = {}

57 candidate[:vector] = double_bridge_move(best[:vector])

58 candidate[:cost] = cost(candidate[:vector], cities)

59 return candidate

60 end

61

62 def search(cities, max_iterations, max_no_improv)

63 best = {}

64 best[:vector] = random_permutation(cities)

65 best[:cost] = cost(best[:vector], cities)

66 best = local_search(best, cities, max_no_improv)

67 max_iterations.times do |iter|

68 candidate = perturbation(cities, best)

69 candidate = local_search(candidate, cities, max_no_improv)

70 best = candidate if candidate[:cost] < best[:cost]

71 puts " > iteration #{(iter+1)}, best=#{best[:cost]}"

72 end

73 return best

74 end

75

76 if __FILE__ == $0
77 # problem configuration

78 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

79 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

80 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

81 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

82 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

83 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

84 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

85 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

86 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

87 # algorithm configuration

88 max_iterations = 100

89 max_no_improv = 50

90 # execute the algorithm

91 best = search(berlin52, max_iterations, max_no_improv)

92 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

93 end

Listing 2.4: Iterated Local Search in Ruby

2.5.6 References

Primary Sources

The definition and framework for Iterated Local Search was described
by Stützle in his PhD dissertation [12]. Specifically he proposed con-
strains on what constitutes an Iterated Local Search algorithm as 1)
a single chain of candidate solutions, and 2) the method used to im-
prove candidate solutions occurs within a reduced space by a black-box
heuristic. Stützle does not take credit for the approach, instead high-
lighting specific instances of Iterated Local Search from the literature,

48 Chapter 2. Stochastic Algorithms

such as ‘iterated descent’ [1], ‘large-step Markov chains’ [7], ‘iterated
Lin-Kernighan’ [3], ‘chained local optimization’ [6], as well as [2] that
introduces the principle, and [4] that summarized it (list taken from
[8]).

Learn More

Two early technical reports by Stützle that present applications of
Iterated Local Search include a report on the Quadratic Assignment
Problem [10], and another on the permutation flow shop problem [9].
Stützle and Hoos also published an early paper studying Iterated Local
Search for to the TSP [11]. Lourenco, Martin, and Stützle provide
a concise presentation of the technique, related techniques and the
framework, much as it is presented in Stützle’s dissertation [5]. The
same author’s also preset an authoritative summary of the approach
and its applications as a book chapter [8].

2.5.7 Bibliography

[1] E. B. Baum. Towards practical “neural” computation for com-
binatorial optimization problems. In AIP conference proceedings:
Neural Networks for Computing, pages 53–64, 1986.

[2] J. Baxter. Local optima avoidance in depot location. Journal of
the Operational Research Society, 32:815–819, 1981.

[3] D. S. Johnson. Local optimization and the travelling salesman
problem. In Proceedings of the 17th Colloquium on Automata,
Languages, and Programming, pages 446–461, 1990.

[4] D. S. Johnson and L. A. McGeoch. Local Search in Combinatorial
Optimization, chapter The travelling salesman problem: A case
study in local optimization, pages 215–310. John Wiley & Sons,
1997.

[5] H. R. Lourenco, O. Martin, and T. Stützle. A beginners intro-
duction to iterated local search. In Proceedings 4th Metaheuristics
International Conference (MIC2001), 2001.

[6] O. Martin and S. W. Otto. Combining simulated annealing with
local search heuristics. Annals of Operations Research, 63:57–75,
1996.

[7] O. Martin, S. W. Otto, and E. W. Felten. Large-step markov
chains for the traveling salesman problems. Complex Systems,
5(3):299–326, 1991.

2.5. Iterated Local Search 49

[8] H. Ramalhinho-Lourenco, O. C. Martin, and T. Stützle. Handbook
of Metaheuristics, chapter Iterated Local Search, pages 320–353.
Springer, 2003.

[9] T. Stützle. Applying iterated local search to the permutation flow
shop problem. Technical Report AIDA9804, FG Intellektik, TU
Darmstadt, 1998.

[10] T. Stützle. Iterated local search for the quadratic assignment prob-
lem. Technical Report AIDA-99-03, FG Intellektik, FB Informatik,
TU Darmstadt, 1999.

[11] T. Stützle and H. H. Hoos. Analyzing the run-time behaviour of
iterated local search for the TSP. In Proceedings III Metaheuristics
International Conference, 1999.

[12] T. G. Stützle. Local Search Algorithms for Combinatorial Problems:
Analysis, Improvements, and New Applications. PhD thesis, Darm-
stadt University of Technology, Department of Computer Science,
1998.

50 Chapter 2. Stochastic Algorithms

2.6 Guided Local Search

Guided Local Search, GLS.

2.6.1 Taxonomy

The Guided Local Search algorithm is a Metaheuristic and a Global
Optimization algorithm that makes use of an embedded Local Search
algorithm. It is an extension to Local Search algorithms such as Hill
Climbing (Section 2.4) and is similar in strategy to the Tabu Search
algorithm (Section 2.10) and the Iterated Local Search algorithm (Sec-
tion 2.5).

2.6.2 Strategy

The strategy for the Guided Local Search algorithm is to use penalties to
encourage a Local Search technique to escape local optima and discover
the global optima. A Local Search algorithm is run until it gets stuck
in a local optima. The features from the local optima are evaluated
and penalized, the results of which are used in an augmented cost
function employed by the Local Search procedure. The Local Search
is repeated a number of times using the last local optima discovered
and the augmented cost function that guides exploration away from
solutions with features present in discovered local optima.

2.6.3 Procedure

Algorithm 2.6.1 provides a pseudocode listing of the Guided Local Search
algorithm for minimization. The Local Search algorithm used by the
Guided Local Search algorithm uses an augmented cost function in the
form h(s) = g(s)+λ·

∑M
i=1 fi, where h(s) is the augmented cost function,

g(s) is the problem cost function,λ is the ‘regularization parameter’ (a
coefficient for scaling the penalties), s is a locally optimal solution of
M features, and fi is the i’th feature in locally optimal solution. The
augmented cost function is only used by the local search procedure, the
Guided Local Search algorithm uses the problem specific cost function
without augmentation.

Penalties are only updated for those features in a locally optimal
solution that maximize utility, updated by adding 1 to the penalty
for the future (a counter). The utility for a feature is calculated as

Ufeature =
Cfeature

1+Pfeature
, where Ufeature is the utility for penalizing a

feature (maximizing), Cfeature is the cost of the feature, and Pfeature
is the current penalty for the feature.

2.6. Guided Local Search 51

Algorithm 2.6.1: Pseudocode for Guided Local Search.

Input: Itermax, λ
Output: Sbest
fpenalties ← ∅;1

Sbest ← RandomSolution();2

foreach Iteri ∈ Itermax do3

Scurr ← LocalSearch(Sbest, λ, fpenalties);4

futilities ← CalculateFeatureUtilities(Scurr, fpenalties);5

fpenalties ← UpdateFeaturePenalties(Scurr, fpenalties,6

futilities);
if Cost(Scurr) ≤ Cost(Sbest) then7

Sbest ← Scurr;8

end9

end10

return Sbest;11

2.6.4 Heuristics

• The Guided Local Search procedure is independent of the Local
Search procedure embedded within it. A suitable domain-specific
search procedure should be identified and employed.

• The Guided Local Search procedure may need to be executed for
thousands to hundreds-of-thousands of iterations, each iteration of
which assumes a run of a Local Search algorithm to convergence.

• The algorithm was designed for discrete optimization problems
where a solution is comprised of independently assessable ‘features’
such as Combinatorial Optimization, although it has been applied
to continuous function optimization modeled as binary strings.

• The λ parameter is a scaling factor for feature penalization that
must be in the same proportion to the candidate solution costs
from the specific problem instance to which the algorithm is being
applied. As such, the value for λ must be meaningful when used
within the augmented cost function (such as when it is added to
a candidate solution cost in minimization and subtracted from a
cost in the case of a maximization problem).

2.6.5 Code Listing

Listing 2.5 provides an example of the Guided Local Search algorithm
implemented in the Ruby Programming Language. The algorithm is
applied to the Berlin52 instance of the Traveling Salesman Problem
(TSP), taken from the TSPLIB. The problem seeks a permutation of

52 Chapter 2. Stochastic Algorithms

the order to visit cities (called a tour) that minimizes the total distance
traveled. The optimal tour distance for Berlin52 instance is 7542 units.

The implementation of the algorithm for the TSP was based on the
configuration specified by Voudouris in [7]. A TSP-specific local search
algorithm is used called 2-opt that selects two points in a permutation
and reconnects the tour, potentially untwisting the tour at the selected
points. The stopping condition for 2-opt was configured to be a fixed
number of non-improving moves.

The equation for setting λ for TSP instances is λ = α · cost(optima)N ,
where N is the number of cities, cost(optima) is the cost of a local
optimum found by a local search, and α ∈ (0, 1] (around 0.3 for TSP
and 2-opt). The cost of a local optima was fixed to the approximated
value of 15000 for the Berlin52 instance. The utility function for features
(edges) in the TSP is Uedge =

Dedge

1+Pedge
, where Uedge is the utility for

penalizing an edge (maximizing), Dedge is the cost of the edge (distance
between cities) and Pedge is the current penalty for the edge.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def random_permutation(cities)

6 perm = Array.new(cities.size){|i| i}

7 perm.each_index do |i|

8 r = rand(perm.size-i) + i

9 perm[r], perm[i] = perm[i], perm[r]

10 end

11 return perm

12 end

13

14 def stochastic_two_opt(permutation)

15 perm = Array.new(permutation)

16 c1, c2 = rand(perm.size), rand(perm.size)

17 exclude = [c1]

18 exclude << ((c1==0) ? perm.size-1 : c1-1)

19 exclude << ((c1==perm.size-1) ? 0 : c1+1)

20 c2 = rand(perm.size) while exclude.include?(c2)

21 c1, c2 = c2, c1 if c2 < c1

22 perm[c1...c2] = perm[c1...c2].reverse

23 return perm

24 end

25

26 def augmented_cost(permutation, penalties, cities, lambda)

27 distance, augmented = 0, 0

28 permutation.each_with_index do |c1, i|

29 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

30 c1, c2 = c2, c1 if c2 < c1

31 d = euc_2d(cities[c1], cities[c2])

32 distance += d

33 augmented += d + (lambda * (penalties[c1][c2]))

34 end

35 return [distance, augmented]

2.6. Guided Local Search 53

36 end

37

38 def cost(cand, penalties, cities, lambda)

39 cost, acost = augmented_cost(cand[:vector], penalties, cities, lambda)

40 cand[:cost], cand[:aug_cost] = cost, acost

41 end

42

43 def local_search(current, cities, penalties, max_no_improv, lambda)

44 cost(current, penalties, cities, lambda)

45 count = 0

46 begin

47 candidate = {:vector=> stochastic_two_opt(current[:vector])}

48 cost(candidate, penalties, cities, lambda)

49 count = (candidate[:aug_cost] < current[:aug_cost]) ? 0 : count+1

50 current = candidate if candidate[:aug_cost] < current[:aug_cost]

51 end until count >= max_no_improv

52 return current

53 end

54

55 def calculate_feature_utilities(penal, cities, permutation)

56 utilities = Array.new(permutation.size,0)

57 permutation.each_with_index do |c1, i|

58 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

59 c1, c2 = c2, c1 if c2 < c1

60 utilities[i] = euc_2d(cities[c1], cities[c2]) / (1.0 +

penal[c1][c2])

61 end

62 return utilities

63 end

64

65 def update_penalties!(penalties, cities, permutation, utilities)

66 max = utilities.max()

67 permutation.each_with_index do |c1, i|

68 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

69 c1, c2 = c2, c1 if c2 < c1

70 penalties[c1][c2] += 1 if utilities[i] == max

71 end

72 return penalties

73 end

74

75 def search(max_iterations, cities, max_no_improv, lambda)

76 current = {:vector=>random_permutation(cities)}

77 best = nil

78 penalties = Array.new(cities.size){ Array.new(cities.size, 0) }

79 max_iterations.times do |iter|

80 current=local_search(current, cities, penalties, max_no_improv,

lambda)

81 utilities=calculate_feature_utilities(penalties,cities,current[:vector])

82 update_penalties!(penalties, cities, current[:vector], utilities)

83 best = current if best.nil? or current[:cost] < best[:cost]

84 puts " > iter=#{(iter+1)}, best=#{best[:cost]},

aug=#{best[:aug_cost]}"

85 end

86 return best

87 end

88

54 Chapter 2. Stochastic Algorithms

89 if __FILE__ == $0
90 # problem configuration

91 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

92 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

93 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

94 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

95 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

96 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

97 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

98 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

99 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

100 # algorithm configuration

101 max_iterations = 150

102 max_no_improv = 20

103 alpha = 0.3

104 local_search_optima = 12000.0

105 lambda = alpha * (local_search_optima/berlin52.size.to_f)

106 # execute the algorithm

107 best = search(max_iterations, berlin52, max_no_improv, lambda)

108 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

109 end

Listing 2.5: Guided Local Search in Ruby

2.6.6 References

Primary Sources

Guided Local Search emerged from an approach called GENET, which
is a connectionist approach to constraint satisfaction [6, 13]. Guided
Local Search was presented by Voudouris and Tsang in a series of
technical reports (that were later published) that described the technique
and provided example applications of it to constraint satisfaction [8],
combinatorial optimization [5, 10], and function optimization [9]. The
seminal work on the technique was Voudouris’ PhD dissertation [7].

Learn More

Voudouris and Tsang provide a high-level introduction to the technique
[11], and a contemporary summary of the approach in Glover and
Kochenberger’s ‘Handbook of metaheuristics’ [12] that includes a review
of the technique, application areas, and demonstration applications on a
diverse set of problem instances. Mills et al. elaborated on the approach,
devising an ‘Extended Guided Local Search’ (EGLS) technique that
added ‘aspiration criteria’ and random moves to the procedure [4], work
which culminated in Mills’ PhD dissertation [3]. Lau and Tsang further
extended the approach by integrating it with a Genetic Algorithm, called
the ‘Guided Genetic Algorithm’ (GGA) [2], that also culminated in a
PhD dissertation by Lau [1].

2.6. Guided Local Search 55

2.6.7 Bibliography

[1] L. T. Lau. Guided Genetic Algorithm. PhD thesis, Department of
Computer Science, University of Essex, 1999.

[2] T. L. Lau and E. P. K. Tsang. The guided genetic algorithm
and its application to the general assignment problems. In IEEE
10th International Conference on Tools with Artificial Intelligence
(ICTAI’98), 1998.

[3] P. Mills. Extensions to Guided Local Search. PhD thesis, Depart-
ment of Computer Science, University of Essex, 2002.

[4] P. Mills, E. Tsang, and J. Ford. Applying an extended guided local
search on the quadratic assignment problem. Annals of Operations
Research, 118:121–135, 2003.

[5] E. Tsang and C. Voudouris. Fast local search and guided local search
and their application to british telecom’s workforce scheduling
problem. Technical Report CSM-246, Department of Computer
Science University of Essex Colchester CO4 3SQ, 1995.

[6] E. P. K. Tsang and C. J. Wang. A generic neural network approach
for constraint satisfaction problems. In Taylor G, editor, Neural
network applications, pages 12–22, 1992.

[7] C. Voudouris. Guided local search for combinatorial optimisation
problems. PhD thesis, Department of Computer Science, University
of Essex, Colchester, UK, July 1997.

[8] C. Voudouris and E. Tsang. The tunneling algorithm for partial
csps and combinatorial optimization problems. Technical Report
CSM-213, Department of Computer Science, University of Essex,
Colchester, C04 3SQ, UK, 1994.

[9] C. Voudouris and E. Tsang. Function optimization using guided
local search. Technical Report CSM-249, Department of Computer
Science University of Essex Colchester, CO4 3SQ, UK, 1995.

[10] C. Voudouris and E. Tsang. Guided local search. Technical Report
CSM-247, Department of Computer Science, University of Essex,
Colchester, C04 3SQ, UK, 1995.

[11] C. Voudouris and E. P. K. Tsang. Guided local search joins the
elite in discrete optimisation. In Proceedings, DIMACS Workshop
on Constraint Programming and Large Scale Discrete Optimisation,
1998.

[12] C. Voudouris and E. P. K. Tsang. Handbook of Metaheuristics,
chapter 7: Guided Local Search, pages 185–218. Springer, 2003.

56 Chapter 2. Stochastic Algorithms

[13] C. J. Wang and E. P. K. Tsang. Solving constraint satisfaction
problems using neural networks. In Proceedings Second Interna-
tional Conference on Artificial Neural Networks, pages 295–299,
1991.

2.7. Variable Neighborhood Search 57

2.7 Variable Neighborhood Search

Variable Neighborhood Search, VNS.

2.7.1 Taxonomy

Variable Neighborhood Search is a Metaheuristic and a Global Opti-
mization technique that manages a Local Search technique. It is related
to the Iterative Local Search algorithm (Section 2.5).

2.7.2 Strategy

The strategy for the Variable Neighborhood Search involves iterative
exploration of larger and larger neighborhoods for a given local optima
until an improvement is located after which time the search across
expanding neighborhoods is repeated. The strategy is motivated by
three principles: 1) a local minimum for one neighborhood structure
may not be a local minimum for a different neighborhood structure,
2) a global minimum is a local minimum for all possible neighborhood
structures, and 3) local minima are relatively close to global minima for
many problem classes.

2.7.3 Procedure

Algorithm 2.7.1 provides a pseudocode listing of the Variable Neighbor-
hood Search algorithm for minimizing a cost function. The Pseudocode
shows that the systematic search of expanding neighborhoods for a local
optimum is abandoned when a global improvement is achieved (shown
with the Break jump).

2.7.4 Heuristics

• Approximation methods (such as stochastic hill climbing) are
suggested for use as the Local Search procedure for large problem
instances in order to reduce the running time.

• Variable Neighborhood Search has been applied to a very wide
array of combinatorial optimization problems as well as clustering
and continuous function optimization problems.

• The embedded Local Search technique should be specialized to
the problem type and instance to which the technique is being
applied.

• The Variable Neighborhood Descent (VND) can be embedded in
the Variable Neighborhood Search as a the Local Search procedure
and has been shown to be most effective.

58 Chapter 2. Stochastic Algorithms

Algorithm 2.7.1: Pseudocode for VNS.

Input: Neighborhoods
Output: Sbest
Sbest ← RandomSolution();1

while ¬ StopCondition() do2

foreach Neighborhoodi ∈ Neighborhoods do3

Neighborhoodcurr ← CalculateNeighborhood(Sbest,4

Neighborhoodi);
Scandidate ←5

RandomSolutionInNeighborhood(Neighborhoodcurr);
Scandidate ← LocalSearch(Scandidate);6

if Cost(Scandidate) < Cost(Sbest) then7

Sbest ← Scandidate;8

Break;9

end10

end11

end12

return Sbest;13

2.7.5 Code Listing

Listing 2.6 provides an example of the Variable Neighborhood Search
algorithm implemented in the Ruby Programming Language. The al-
gorithm is applied to the Berlin52 instance of the Traveling Salesman
Problem (TSP), taken from the TSPLIB. The problem seeks a permuta-
tion of the order to visit cities (called a tour) that minimizes the total
distance traveled. The optimal tour distance for Berlin52 instance is
7542 units.

The Variable Neighborhood Search uses a stochastic 2-opt procedure
as the embedded local search. The procedure deletes two edges and
reverses the sequence in-between the deleted edges, potentially removing
‘twists’ in the tour. The neighborhood structure used in the search is
the number of times the 2-opt procedure is performed on a permutation,
between 1 and 20 times. The stopping condition for the local search
procedure is a maximum number of iterations without improvement.
The same stop condition is employed by the higher-order Variable
Neighborhood Search procedure, although with a lower boundary on
the number of non-improving iterations.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(perm, cities)

6 distance =0

2.7. Variable Neighborhood Search 59

7 perm.each_with_index do |c1, i|

8 c2 = (i==perm.size-1) ? perm[0] : perm[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def stochastic_two_opt!(perm)

24 c1, c2 = rand(perm.size), rand(perm.size)

25 exclude = [c1]

26 exclude << ((c1==0) ? perm.size-1 : c1-1)

27 exclude << ((c1==perm.size-1) ? 0 : c1+1)

28 c2 = rand(perm.size) while exclude.include?(c2)

29 c1, c2 = c2, c1 if c2 < c1

30 perm[c1...c2] = perm[c1...c2].reverse

31 return perm

32 end

33

34 def local_search(best, cities, max_no_improv, neighborhood)

35 count = 0

36 begin

37 candidate = {}

38 candidate[:vector] = Array.new(best[:vector])

39 neighborhood.times{stochastic_two_opt!(candidate[:vector])}

40 candidate[:cost] = cost(candidate[:vector], cities)

41 if candidate[:cost] < best[:cost]

42 count, best = 0, candidate

43 else

44 count += 1

45 end

46 end until count >= max_no_improv

47 return best

48 end

49

50 def search(cities, neighborhoods, max_no_improv, max_no_improv_ls)

51 best = {}

52 best[:vector] = random_permutation(cities)

53 best[:cost] = cost(best[:vector], cities)

54 iter, count = 0, 0

55 begin

56 neighborhoods.each do |neigh|

57 candidate = {}

58 candidate[:vector] = Array.new(best[:vector])

59 neigh.times{stochastic_two_opt!(candidate[:vector])}

60 candidate[:cost] = cost(candidate[:vector], cities)

61 candidate = local_search(candidate, cities, max_no_improv_ls,

neigh)

60 Chapter 2. Stochastic Algorithms

62 puts " > iteration #{(iter+1)}, neigh=#{neigh},

best=#{best[:cost]}"

63 iter += 1

64 if(candidate[:cost] < best[:cost])

65 best, count = candidate, 0

66 puts "New best, restarting neighborhood search."

67 break

68 else

69 count += 1

70 end

71 end

72 end until count >= max_no_improv

73 return best

74 end

75

76 if __FILE__ == $0
77 # problem configuration

78 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

79 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

80 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

81 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

82 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

83 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

84 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

85 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

86 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

87 # algorithm configuration

88 max_no_improv = 50

89 max_no_improv_ls = 70

90 neighborhoods = 1...20

91 # execute the algorithm

92 best = search(berlin52, neighborhoods, max_no_improv,

max_no_improv_ls)

93 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

94 end

Listing 2.6: Variable Neighborhood Search in Ruby

2.7.6 References

Primary Sources

The seminal paper for describing Variable Neighborhood Search was
by Mladenovic and Hansen in 1997 [7], although an early abstract by
Mladenovic is sometimes cited [6]. The approach is explained in terms of
three different variations on the general theme. Variable Neighborhood
Descent (VND) refers to the use of a Local Search procedure and the
deterministic (as opposed to stochastic or probabilistic) change of neigh-
borhood size. Reduced Variable Neighborhood Search (RVNS) involves
performing a stochastic random search within a neighborhood and no
refinement via a local search technique. Basic Variable Neighborhood

2.7. Variable Neighborhood Search 61

Search is the canonical approach described by Mladenovic and Hansen
in the seminal paper.

Learn More

There are a large number of papers published on Variable Neighborhood
Search, its applications and variations. Hansen and Mladenovic provide
an overview of the approach that includes its recent history, extensions
and a detailed review of the numerous areas of application [4]. For
some additional useful overviews of the technique, its principles, and
applications, see [1–3].

There are many extensions to Variable Neighborhood Search. Some
popular examples include: Variable Neighborhood Decomposition Search
(VNDS) that involves embedding a second heuristic or metaheuristic
approach in VNS to replace the Local Search procedure [5], Skewed
Variable Neighborhood Search (SVNS) that encourages exploration of
neighborhoods far away from discovered local optima, and Parallel Vari-
able Neighborhood Search (PVNS) that either parallelizes the local
search of a neighborhood or parallelizes the searching of the neighbor-
hoods themselves.

2.7.7 Bibliography

[1] P. Hansen and N. Mladenović. Meta-heuristics, Advances and trends
in local search paradigms for optimization, chapter An introduction
to Variable neighborhood search, pages 433–458. Kluwer Academic
Publishers, 1998.

[2] P. Hansen and N. Mladenović. Variable neighborhood search: Prin-
ciples and applications. European Journal of Operational Research,
130(3):449–467, 2001.

[3] P. Hansen and N. Mladenović. Handbook of Applied Optimization,
chapter Variable neighbourhood search, pages 221–234. Oxford
University Press, 2002.

[4] P. Hansen and N. Mladenović. Handbook of Metaheuristics, chapter
6: Variable Neighborhood Search, pages 145–184. Springer, 2003.

[5] P. Hansen, N. Mladenović, and D. Perez-Britos. Variable neighbor-
hood decomposition search. Journal of Heuristics, 7(4):1381–1231,
2001.

[6] N. Mladenović. A variable neighborhood algorithm - a new meta-
heuristic for combinatorial optimization. In Abstracts of papers
presented at Optimization Days, 1995.

62 Chapter 2. Stochastic Algorithms

[7] N. Mladenović and P. Hansen. Variable neighborhood search. Com-
puters & Operations Research, 24(11):1097–1100, 1997.

2.8. Greedy Randomized Adaptive Search 63

2.8 Greedy Randomized Adaptive Search

Greedy Randomized Adaptive Search Procedure, GRASP.

2.8.1 Taxonomy

The Greedy Randomized Adaptive Search Procedure is a Metaheuristic
and Global Optimization algorithm, originally proposed for the Opera-
tions Research practitioners. The iterative application of an embedded
Local Search technique relate the approach to Iterative Local Search
(Section 2.5) and Multi-Start techniques.

2.8.2 Strategy

The objective of the Greedy Randomized Adaptive Search Procedure is
to repeatedly sample stochastically greedy solutions, and then use a local
search procedure to refine them to a local optima. The strategy of the
procedure is centered on the stochastic and greedy step-wise construction
mechanism that constrains the selection and order-of-inclusion of the
components of a solution based on the value they are expected to provide.

2.8.3 Procedure

Algorithm 2.8.1 provides a pseudocode listing of the Greedy Randomized
Adaptive Search Procedure for minimizing a cost function.

Algorithm 2.8.1: Pseudocode for the GRASP.

Input: α
Output: Sbest
Sbest ← ConstructRandomSolution();1

while ¬ StopCondition() do2

Scandidate ← GreedyRandomizedConstruction(α);3

Scandidate ← LocalSearch(Scandidate);4

if Cost(Scandidate) < Cost(Sbest) then5

Sbest ← Scandidate;6

end7

end8

return Sbest;9

Algorithm 2.8.2 provides the pseudocode the Greedy Randomized
Construction function. The function involves the step-wise construction
of a candidate solution using a stochastically greedy construction process.
The function works by building a Restricted Candidate List (RCL) that
constraints the components of a solution (features) that may be selected

64 Chapter 2. Stochastic Algorithms

from each cycle. The RCL may be constrained by an explicit size, or by
using a threshold (α ∈ [0, 1]) on the cost of adding each feature to the
current candidate solution.

Algorithm 2.8.2: Pseudocode the GreedyRandomized-

Construction function.
Input: α
Output: Scandidate
Scandidate ← ∅;1

while Scandidate 6= ProblemSize do2

Featurecosts ← ∅;3

for Featurei /∈ Scandidate do4

Featurecosts ←5

CostOfAddingFeatureToSolution(Scandidate, Featurei);
end6

RCL ← ∅;7

Fcostmin ← MinCost(Featurecosts);8

Fcostmax ← MaxCost(Featurecosts);9

for Ficost ∈ Featurecosts do10

if Ficost ≤ Fcostmin + α · (Fcostmax − Fcostmin) then11

RCL ← Featurei;12

end13

end14

Scandidate ← SelectRandomFeature(RCL);15

end16

return Scandidate;17

2.8.4 Heuristics

• The α threshold defines the amount of greediness of the construc-
tion mechanism, where values close to 0 may be too greedy, and
values close to 1 may be too generalized.

• As an alternative to using the α threshold, the RCL can be
constrained to the top n% of candidate features that may be
selected from each construction cycle.

• The technique was designed for discrete problem classes such as
combinatorial optimization problems.

2.8.5 Code Listing

Listing 2.7 provides an example of the Greedy Randomized Adaptive
Search Procedure implemented in the Ruby Programming Language.

2.8. Greedy Randomized Adaptive Search 65

The algorithm is applied to the Berlin52 instance of the Traveling
Salesman Problem (TSP), taken from the TSPLIB. The problem seeks a
permutation of the order to visit cities (called a tour) that minimizes the
total distance traveled. The optimal tour distance for Berlin52 instance
is 7542 units.

The stochastic and greedy step-wise construction of a tour involves
evaluating candidate cities by the the cost they contribute as being the
next city in the tour. The algorithm uses a stochastic 2-opt procedure
for the Local Search with a fixed number of non-improving iterations as
the stopping condition.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(perm, cities)

6 distance =0

7 perm.each_with_index do |c1, i|

8 c2 = (i==perm.size-1) ? perm[0] : perm[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def stochastic_two_opt(permutation)

15 perm = Array.new(permutation)

16 c1, c2 = rand(perm.size), rand(perm.size)

17 exclude = [c1]

18 exclude << ((c1==0) ? perm.size-1 : c1-1)

19 exclude << ((c1==perm.size-1) ? 0 : c1+1)

20 c2 = rand(perm.size) while exclude.include?(c2)

21 c1, c2 = c2, c1 if c2 < c1

22 perm[c1...c2] = perm[c1...c2].reverse

23 return perm

24 end

25

26 def local_search(best, cities, max_no_improv)

27 count = 0

28 begin

29 candidate = {:vector=>stochastic_two_opt(best[:vector])}

30 candidate[:cost] = cost(candidate[:vector], cities)

31 count = (candidate[:cost] < best[:cost]) ? 0 : count+1

32 best = candidate if candidate[:cost] < best[:cost]

33 end until count >= max_no_improv

34 return best

35 end

36

37 def construct_randomized_greedy_solution(cities, alpha)

38 candidate = {}

39 candidate[:vector] = [rand(cities.size)]

40 allCities = Array.new(cities.size) {|i| i}

41 while candidate[:vector].size < cities.size

42 candidates = allCities - candidate[:vector]

43 costs = Array.new(candidates.size) do |i|

66 Chapter 2. Stochastic Algorithms

44 euc_2d(cities[candidate[:vector].last], cities[i])

45 end

46 rcl, max, min = [], costs.max, costs.min

47 costs.each_with_index do |c,i|

48 rcl << candidates[i] if c <= (min + alpha*(max-min))

49 end

50 candidate[:vector] << rcl[rand(rcl.size)]

51 end

52 candidate[:cost] = cost(candidate[:vector], cities)

53 return candidate

54 end

55

56 def search(cities, max_iter, max_no_improv, alpha)

57 best = nil

58 max_iter.times do |iter|

59 candidate = construct_randomized_greedy_solution(cities, alpha);

60 candidate = local_search(candidate, cities, max_no_improv)

61 best = candidate if best.nil? or candidate[:cost] < best[:cost]

62 puts " > iteration #{(iter+1)}, best=#{best[:cost]}"

63 end

64 return best

65 end

66

67 if __FILE__ == $0
68 # problem configuration

69 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

70 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

71 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

72 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

73 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

74 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

75 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

76 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

77 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

78 # algorithm configuration

79 max_iter = 50

80 max_no_improv = 50

81 greediness_factor = 0.3

82 # execute the algorithm

83 best = search(berlin52, max_iter, max_no_improv, greediness_factor)

84 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

85 end

Listing 2.7: Greedy Randomized Adaptive Search Procedure in Ruby

2.8.6 References

Primary Sources

The seminal paper that introduces the general approach of stochastic
and greedy step-wise construction of candidate solutions is by Feo and
Resende [3]. The general approach was inspired by greedy heuristics by
Hart and Shogan [9]. The seminal review paper that is cited with the

2.8. Greedy Randomized Adaptive Search 67

preliminary paper is by Feo and Resende [4], and provides a coherent
description of the GRASP technique, an example, and review of early
applications. An early application was by Feo, Venkatraman and Bard
for a machine scheduling problem [7]. Other early applications to
scheduling problems include technical reports [2] (later published as [1])
and [5] (also later published as [6]).

Learn More

There are a vast number of review, application, and extension papers
for GRASP. Pitsoulis and Resende provide an extensive contemporary
overview of the field as a review chapter [11], as does Resende and
Ribeiro that includes a clear presentation of the use of the α threshold
parameter instead of a fixed size for the RCL [13]. Festa and Resende
provide an annotated bibliography as a review chapter that provides
some needed insight into large amount of study that has gone into the
approach [8]. There are numerous extensions to GRASP, not limited
to the popular Reactive GRASP for adapting α [12], the use of long
term memory to allow the technique to learn from candidate solutions
discovered in previous iterations, and parallel implementations of the
procedure such as ‘Parallel GRASP’ [10].

2.8.7 Bibliography

[1] J. F. Bard, T. A. Feo, and S. Holland. A GRASP for scheduling
printed wiring board assembly. I.I.E. Trans., 28:155–165, 1996.

[2] T. A. Feo, J. Bard, and S. Holland. A GRASP for scheduling printed
wiring board assembly. Technical Report TX 78712-1063, Opera-
tions Research Group, Department of Mechanical Engineering, The
University of Texas at Austin, 1993.

[3] T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a
computationally difficult set covering problem. Operations Research
Letters, 8:67–71, 1989.

[4] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive
search procedures. Journal of Global Optimization, 6:109–133, 1995.

[5] T. A. Feo, K. Sarathy, and J. McGahan. A GRASP for single
machine scheduling with sequence dependent setup costs and lin-
ear delay penalties. Technical Report TX 78712-1063, Operations
Research Group, Department of Mechanical Engineering, The Uni-
versity of Texas at Austin, 1994.

[6] T. A. Feo, K. Sarathy, and J. McGahan. A grasp for single machine
scheduling with sequence dependent setup costs and linear delay
penalties. Computers & Operations Research, 23(9):881–895, 1996.

68 Chapter 2. Stochastic Algorithms

[7] T. A. Feo, K. Venkatraman, and J. F. Bard. A GRASP for a diffi-
cult single machine scheduling problem. Computers & Operations
Research, 18:635–643, 1991.

[8] P. Festa and M. G. C. Resende. Essays and Surveys on Metaheuris-
tics, chapter GRASP: An annotated bibliography, pages 325–367.
Kluwer Academic Publishers, 2002.

[9] J. P. Hart and A. W. Shogan. Semi–greedy heuristics: An empirical
study. Operations Research Letters, 6:107–114, 1987.

[10] P. M. Pardalos, L. S. Pitsoulis, and M. G. C. Resende. A parallel
GRASP implementation for the quadratic assignment problems.
In Parallel Algorithms for Irregularly Structured Problems (Irregu-
lar94), pages 111–130. Kluwer Academic Publishers, 1995.

[11] L. Pitsoulis and M. G. C. Resende. Handbook of Applied Optimiza-
tion, chapter Greedy randomized adaptive search procedures, pages
168–181. Oxford University Press, 2002.

[12] M. Prais and C. C. Ribeiro. Reactive GRASP: An application
to a matrix decomposition problem in TDMA traffic assignment.
INFORMS Journal on Computing, 12:164–176, 2000.

[13] M. G. C. Resende and C. C. Ribeiro. Handbook of Metaheuristics,
chapter Greedy randomized adaptive search procedures, pages 219–
249. Kluwer Academic Publishers, 2003.

2.9. Scatter Search 69

2.9 Scatter Search

Scatter Search, SS.

2.9.1 Taxonomy

Scatter search is a Metaheuristic and a Global Optimization algorithm. It
is also sometimes associated with the field of Evolutionary Computation
given the use of a population and recombination in the structure of the
technique. Scatter Search is a sibling of Tabu Search (Section 2.10),
developed by the same author and based on similar origins.

2.9.2 Strategy

The objective of Scatter Search is to maintain a set of diverse and high-
quality candidate solutions. The principle of the approach is that useful
information about the global optima is stored in a diverse and elite set of
solutions (the reference set) and that recombining samples from the set
can exploit this information. The strategy involves an iterative process,
where a population of diverse and high-quality candidate solutions that
are partitioned into subsets and linearly recombined to create weighted
centroids of sample-based neighborhoods. The results of recombination
are refined using an embedded heuristic and assessed in the context of
the reference set as to whether or not they are retained.

2.9.3 Procedure

Algorithm 2.9.1 provides a pseudocode listing of the Scatter Search
algorithm for minimizing a cost function. The procedure is based on the
abstract form presented by Glover as a template for the general class of
technique [3], with influences from an application of the technique to
function optimization by Glover [3].

2.9.4 Heuristics

• Scatter search is suitable for both discrete domains such as com-
binatorial optimization as well as continuous domains such as
non-linear programming (continuous function optimization).

• Small set sizes are preferred for the ReferenceSet, such as 10 or
20 members.

• Subset sizes can be 2, 3, 4 or more members that are all recombined
to produce viable candidate solutions within the neighborhood of
the members of the subset.

70 Chapter 2. Stochastic Algorithms

Algorithm 2.9.1: Pseudocode for Scatter Search.

Input: DiverseSetsize, ReferenceSetsize
Output: ReferenceSet
InitialSet ← ConstructInitialSolution(DiverseSetsize);1

RefinedSet ← ∅;2

for Si ∈ InitialSet do3

RefinedSet ← LocalSearch(Si);4

end5

ReferenceSet ←6

SelectInitialReferenceSet(ReferenceSetsize);
while ¬ StopCondition() do7

Subsets ← SelectSubset(ReferenceSet);8

CandidateSet ← ∅;9

for Subseti ∈ Subsets do10

RecombinedCandidates ← RecombineMembers(Subseti);11

for Si ∈ RecombinedCandidates do12

CandidateSet ← LocalSearch(Si);13

end14

end15

ReferenceSet ← Select(ReferenceSet, CandidateSet,16

ReferenceSetsize);
end17

return ReferenceSet;18

• Each subset should comprise at least one member added to the
set in the previous algorithm iteration.

• The Local Search procedure should be a problem-specific improve-
ment heuristic.

• The selection of members for the ReferenceSet at the end of
each iteration favors solutions with higher quality and may also
promote diversity.

• The ReferenceSet may be updated at the end of an iteration, or
dynamically as candidates are created (a so-called steady-state
population in some evolutionary computation literature).

• A lack of changes to the ReferenceSet may be used as a signal
to stop the current search, and potentially restart the search with
a newly initialized ReferenceSet.

2.9. Scatter Search 71

2.9.5 Code Listing

Listing 2.8 provides an example of the Scatter Search algorithm imple-
mented in the Ruby Programming Language. The example problem is
an instance of a continuous function optimization that seeks min f(x)
where f =

∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0 and n = 3. The optimal solution

for this basin function is (v1, . . . , vn) = 0.0.

The algorithm is an implementation of Scatter Search as described in
an application of the technique to unconstrained non-linear optimization
by Glover [6]. The seeds for initial solutions are generated as random
vectors, as opposed to stratified samples. The example was further
simplified by not including a restart strategy, and the exclusion of
diversity maintenance in the ReferenceSet. A stochastic local search
algorithm is used as the embedded heuristic that uses a stochastic step
size in the range of half a percent of the search space.

1 def objective_function(vector)

2 return vector.inject(0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def rand_in_bounds(min, max)

6 return min + ((max-min) * rand())

7 end

8

9 def random_vector(minmax)

10 return Array.new(minmax.size) do |i|

11 rand_in_bounds(minmax[i][0], minmax[i][1])

12 end

13 end

14

15 def take_step(minmax, current, step_size)

16 position = Array.new(current.size)

17 position.size.times do |i|

18 min = [minmax[i][0], current[i]-step_size].max

19 max = [minmax[i][1], current[i]+step_size].min

20 position[i] = rand_in_bounds(min, max)

21 end

22 return position

23 end

24

25 def local_search(best, bounds, max_no_improv, step_size)

26 count = 0

27 begin

28 candidate = {:vector=>take_step(bounds, best[:vector], step_size)}

29 candidate[:cost] = objective_function(candidate[:vector])

30 count = (candidate[:cost] < best[:cost]) ? 0 : count+1

31 best = candidate if candidate[:cost] < best[:cost]

32 end until count >= max_no_improv

33 return best

34 end

35

36 def construct_initial_set(bounds, set_size, max_no_improv, step_size)

37 diverse_set = []

72 Chapter 2. Stochastic Algorithms

38 begin

39 cand = {:vector=>random_vector(bounds)}

40 cand[:cost] = objective_function(cand[:vector])

41 cand = local_search(cand, bounds, max_no_improv, step_size)

42 diverse_set << cand if !diverse_set.any? {|x|

x[:vector]==cand[:vector]}

43 end until diverse_set.size == set_size

44 return diverse_set

45 end

46

47 def euclidean_distance(c1, c2)

48 sum = 0.0

49 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

50 return Math.sqrt(sum)

51 end

52

53 def distance(v, set)

54 return set.inject(0){|s,x| s + euclidean_distance(v, x[:vector])}

55 end

56

57 def diversify(diverse_set, num_elite, ref_set_size)

58 diverse_set.sort!{|x,y| x[:cost] <=> y[:cost]}

59 ref_set = Array.new(num_elite){|i| diverse_set[i]}

60 remainder = diverse_set - ref_set

61 remainder.each{|c| c[:dist] = distance(c[:vector], ref_set)}

62 remainder.sort!{|x,y| y[:dist]<=>x[:dist]}

63 ref_set = ref_set + remainder.first(ref_set_size-ref_set.size)

64 return [ref_set, ref_set[0]]

65 end

66

67 def select_subsets(ref_set)

68 additions = ref_set.select{|c| c[:new]}

69 remainder = ref_set - additions

70 remainder = additions if remainder.nil? or remainder.empty?

71 subsets = []

72 additions.each do |a|

73 remainder.each{|r| subsets << [a,r] if a!=r &&

!subsets.include?([r,a])}

74 end

75 return subsets

76 end

77

78 def recombine(subset, minmax)

79 a, b = subset

80 d = Array.new(a[:vector].size) {|i|(b[:vector][i]-a[:vector][i])/2.0}

81 children = []

82 subset.each do |p|

83 direction, r = ((rand<0.5) ? +1.0 : -1.0), rand

84 child = {:vector=>Array.new(minmax.size)}

85 child[:vector].each_index do |i|

86 child[:vector][i] = p[:vector][i] + (direction * r * d[i])

87 child[:vector][i]=minmax[i][0] if child[:vector][i]<minmax[i][0]

88 child[:vector][i]=minmax[i][1] if child[:vector][i]>minmax[i][1]

89 end

90 child[:cost] = objective_function(child[:vector])

91 children << child

2.9. Scatter Search 73

92 end

93 return children

94 end

95

96 def explore_subsets(bounds, ref_set, max_no_improv, step_size)

97 was_change = false

98 subsets = select_subsets(ref_set)

99 ref_set.each{|c| c[:new] = false}

100 subsets.each do |subset|

101 candidates = recombine(subset, bounds)

102 improved = Array.new(candidates.size) do |i|

103 local_search(candidates[i], bounds, max_no_improv, step_size)

104 end

105 improved.each do |c|

106 if !ref_set.any? {|x| x[:vector]==c[:vector]}

107 c[:new] = true

108 ref_set.sort!{|x,y| x[:cost] <=> y[:cost]}

109 if c[:cost] < ref_set.last[:cost]

110 ref_set.delete(ref_set.last)

111 ref_set << c

112 puts " >> added, cost=#{c[:cost]}"

113 was_change = true

114 end

115 end

116 end

117 end

118 return was_change

119 end

120

121 def search(bounds, max_iter, ref_set_size, div_set_size, max_no_improv,

step_size, max_elite)

122 diverse_set = construct_initial_set(bounds, div_set_size,

max_no_improv, step_size)

123 ref_set, best = diversify(diverse_set, max_elite, ref_set_size)

124 ref_set.each{|c| c[:new] = true}

125 max_iter.times do |iter|

126 was_change = explore_subsets(bounds, ref_set, max_no_improv,

step_size)

127 ref_set.sort!{|x,y| x[:cost] <=> y[:cost]}

128 best = ref_set.first if ref_set.first[:cost] < best[:cost]

129 puts " > iter=#{(iter+1)}, best=#{best[:cost]}"

130 break if !was_change

131 end

132 return best

133 end

134

135 if __FILE__ == $0
136 # problem configuration

137 problem_size = 3

138 bounds = Array.new(problem_size) {|i| [-5, +5]}

139 # algorithm configuration

140 max_iter = 100

141 step_size = (bounds[0][1]-bounds[0][0])*0.005

142 max_no_improv = 30

143 ref_set_size = 10

144 diverse_set_size = 20

74 Chapter 2. Stochastic Algorithms

145 no_elite = 5

146 # execute the algorithm

147 best = search(bounds, max_iter, ref_set_size, diverse_set_size,

max_no_improv, step_size, no_elite)

148 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

149 end

Listing 2.8: Scatter Search in Ruby

2.9.6 References

Primary Sources

A form of the Scatter Search algorithm was proposed by Glover for
integer programming [1], based on Glover’s earlier work on surrogate
constraints. The approach remained idle until it was revisited by Glover
and combined with Tabu Search [2]. The modern canonical reference of
the approach was proposed by Glover who provides an abstract template
of the procedure that may be specialized for a given application domain
[3].

Learn More

The primary reference for the approach is the book by Laguna and Mart́ı
that reviews the principles of the approach in detail and presents tutorials
on applications of the approach on standard problems using the C
programming language [7]. There are many review articles and chapters
on Scatter Search that may be used to supplement an understanding of
the approach, such as a detailed review chapter by Glover [4], a review of
the fundamentals of the approach and its relationship to an abstraction
called ‘path linking’ by Glover, Laguna, and Mart́ı [5], and a modern
overview of the technique by Mart́ı, Laguna, and Glover [8].

2.9.7 Bibliography

[1] F. Glover. Heuristics for integer programming using surrogate con-
straints. Decision Sciences, 8(1):156–166, 1977.

[2] F. Glover. Tabu search for nonlinear and parametric optimization
(with links to genetic algorithms). Discrete Applied Mathematics,
49:231–255, 1994.

[3] F. Glover. Artificial Evolution, chapter A Template For Scatter
Search And Path Relinking, page 13. Sprinter, 1998.

[4] F. Glover. New Ideas in Optimization, chapter Scatter search and
path relinking, pages 297–316. McGraw-Hill Ltd., 1999.

2.9. Scatter Search 75

[5] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search
and path relinking. Control and Cybernetics, 39(3):653–684, 2000.

[6] F. Glover, M. Laguna, and R. Mart́ı. Advances in Evolutionary
Computation: Theory and Applications, chapter Scatter Search,
pages 519–537. Springer-Verlag, 2003.

[7] M. Laguna and R. Mart́ı. Scatter search: methodology and imple-
mentations in C. Kluwer Academic Publishers, 2003.

[8] R. Mart́ı, M. Laguna, and F. Glover. Principles of scatter search.
European Journal of Operational Research, 169(1):359–372, 2006.

76 Chapter 2. Stochastic Algorithms

2.10 Tabu Search

Tabu Search, TS, Taboo Search.

2.10.1 Taxonomy

Tabu Search is a Global Optimization algorithm and a Metaheuristic or
Meta-strategy for controlling an embedded heuristic technique. Tabu
Search is a parent for a large family of derivative approaches that
introduce memory structures in Metaheuristics, such as Reactive Tabu
Search (Section 2.11) and Parallel Tabu Search.

2.10.2 Strategy

The objective for the Tabu Search algorithm is to constrain an embedded
heuristic from returning to recently visited areas of the search space,
referred to as cycling. The strategy of the approach is to maintain a
short term memory of the specific changes of recent moves within the
search space and preventing future moves from undoing those changes.
Additional intermediate-term memory structures may be introduced
to bias moves toward promising areas of the search space, as well as
longer-term memory structures that promote a general diversity in the
search across the search space.

2.10.3 Procedure

Algorithm 2.10.1 provides a pseudocode listing of the Tabu Search
algorithm for minimizing a cost function. The listing shows the simple
Tabu Search algorithm with short term memory, without intermediate
and long term memory management.

2.10.4 Heuristics

• Tabu search was designed to manage an embedded hill climbing
heuristic, although may be adapted to manage any neighborhood
exploration heuristic.

• Tabu search was designed for, and has predominately been applied
to discrete domains such as combinatorial optimization problems.

• Candidates for neighboring moves can be generated determinis-
tically for the entire neighborhood or the neighborhood can be
stochastically sampled to a fixed size, trading off efficiency for
accuracy.

2.10. Tabu Search 77

Algorithm 2.10.1: Pseudocode for Tabu Search.

Input: TabuListsize
Output: Sbest
Sbest ← ConstructInitialSolution();1

TabuList ← ∅;2

while ¬ StopCondition() do3

CandidateList ← ∅;4

for Scandidate ∈ Sbestneighborhood do5

if ¬ ContainsAnyFeatures(Scandidate, TabuList) then6

CandidateList ← Scandidate;7

end8

end9

Scandidate ← LocateBestCandidate(CandidateList);10

if Cost(Scandidate) ≤ Cost(Sbest) then11

Sbest ← Scandidate;12

TabuList ← FeatureDifferences(Scandidate, Sbest);13

while TabuList > TabuListsize do14

DeleteFeature(TabuList);15

end16

end17

end18

return Sbest;19

• Intermediate-term memory structures can be introduced (comple-
menting the short-term memory) to focus the search on promising
areas of the search space (intensification), called aspiration criteria.

• Long-term memory structures can be introduced (complement-
ing the short-term memory) to encourage useful exploration of
the broader search space, called diversification. Strategies may
include generating solutions with rarely used components and bi-
asing the generation away from the most commonly used solution
components.

2.10.5 Code Listing

Listing 2.9 provides an example of the Tabu Search algorithm imple-
mented in the Ruby Programming Language. The algorithm is applied
to the Berlin52 instance of the Traveling Salesman Problem (TSP),
taken from the TSPLIB. The problem seeks a permutation of the order
to visit cities (called a tour) that minimizes the total distance traveled.
The optimal tour distance for Berli52 instance is 7542 units.

The algorithm is an implementation of the simple Tabu Search

78 Chapter 2. Stochastic Algorithms

with a short term memory structure that executes for a fixed number
of iterations. The starting point for the search is prepared using a
random permutation that is refined using a stochastic 2-opt Local Search
procedure. The stochastic 2-opt procedure is used as the embedded hill
climbing heuristic with a fixed sized candidate list. The two edges that
are deleted in each 2-opt move are stored on the tabu list. This general
approach is similar to that used by Knox in his work on Tabu Search
for symmetrical TSP [12] and Fiechter for the Parallel Tabu Search for
the TSP [2].

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(perm, cities)

6 distance = 0

7 perm.each_with_index do |c1, i|

8 c2 = (i==perm.size-1) ? perm[0] : perm[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def stochastic_two_opt(parent)

24 perm = Array.new(parent)

25 c1, c2 = rand(perm.size), rand(perm.size)

26 exclude = [c1]

27 exclude << ((c1==0) ? perm.size-1 : c1-1)

28 exclude << ((c1==perm.size-1) ? 0 : c1+1)

29 c2 = rand(perm.size) while exclude.include?(c2)

30 c1, c2 = c2, c1 if c2 < c1

31 perm[c1...c2] = perm[c1...c2].reverse

32 return perm, [[parent[c1-1], parent[c1]], [parent[c2-1], parent[c2]]]

33 end

34

35 def is_tabu?(permutation, tabu_list)

36 permutation.each_with_index do |c1, i|

37 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

38 tabu_list.each do |forbidden_edge|

39 return true if forbidden_edge == [c1, c2]

40 end

41 end

42 return false

43 end

44

2.10. Tabu Search 79

45 def generate_candidate(best, tabu_list, cities)

46 perm, edges = nil, nil

47 begin

48 perm, edges = stochastic_two_opt(best[:vector])

49 end while is_tabu?(perm, tabu_list)

50 candidate = {:vector=>perm}

51 candidate[:cost] = cost(candidate[:vector], cities)

52 return candidate, edges

53 end

54

55 def search(cities, tabu_list_size, candidate_list_size, max_iter)

56 current = {:vector=>random_permutation(cities)}

57 current[:cost] = cost(current[:vector], cities)

58 best = current

59 tabu_list = Array.new(tabu_list_size)

60 max_iter.times do |iter|

61 candidates = Array.new(candidate_list_size) do |i|

62 generate_candidate(current, tabu_list, cities)

63 end

64 candidates.sort! {|x,y| x.first[:cost] <=> y.first[:cost]}

65 best_candidate = candidates.first[0]

66 best_candidate_edges = candidates.first[1]

67 if best_candidate[:cost] < current[:cost]

68 current = best_candidate

69 best = best_candidate if best_candidate[:cost] < best[:cost]

70 best_candidate_edges.each {|edge| tabu_list.push(edge)}

71 tabu_list.pop while tabu_list.size > tabu_list_size

72 end

73 puts " > iteration #{(iter+1)}, best=#{best[:cost]}"

74 end

75 return best

76 end

77

78 if __FILE__ == $0
79 # problem configuration

80 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

81 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

82 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

83 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

84 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

85 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

86 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

87 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

88 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

89 # algorithm configuration

90 max_iter = 100

91 tabu_list_size = 15

92 max_candidates = 50

93 # execute the algorithm

94 best = search(berlin52, tabu_list_size, max_candidates, max_iter)

95 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

96 end

Listing 2.9: Tabu Search in Ruby

80 Chapter 2. Stochastic Algorithms

2.10.6 References

Primary Sources

Tabu Search was introduced by Glover applied to scheduling employees
to duty rosters [9] and a more general overview in the context of the
TSP [5], based on his previous work on surrogate constraints on integer
programming problems [4]. Glover provided a seminal overview of the
algorithm in a two-part journal article, the first part of which introduced
the algorithm and reviewed then-recent applications [6], and the second
which focused on advanced topics and open areas of research [7].

Learn More

Glover provides a high-level introduction to Tabu Search in the form
of a practical tutorial [8], as does Glover and Taillard in a user guide
format [10]. The best source of information for Tabu Search is the
book dedicated to the approach by Glover and Laguna that covers the
principles of the technique in detail as well as an in-depth review of
applications [11]. The approach appeared in Science, that considered
a modification for its application to continuous function optimization
problems [1]. Finally, Gendreau provides an excellent contemporary
review of the algorithm, highlighting best practices and application
heuristics collected from across the field of study [3].

2.10.7 Bibliography

[1] D. Cvijovic and J. Klinowski. Taboo search: An approach to the
multiple minima problem. Science, 267:664–666, 1995.

[2] C-N. Fiechter. A parallel tabu search algorithm for large traveling
salesman problems. Discrete Applied Mathematics, 3(6):243–267,
1994.

[3] M. Gendreau. Handbook of Metaheuristics, chapter 2: An Introduc-
tion to Tabu Search, pages 37–54. Springer, 2003.

[4] F. Glover. Heuristics for integer programming using surrogate
constraints. Decision Sciences, 8(1):156–166, 1977.

[5] F. Glover. Future paths for integer programming and links to arti-
ficial intelligence. Computers and Operations Research, 13(5):533–
549, 1986.

[6] F. Glover. Tabu search – Part I. ORSA Journal on Computing,
1(3):190–206, 1989.

[7] F. Glover. Tabu search – Part II. ORSA Journal on Computing,
2(1):4–32, 1990.

2.10. Tabu Search 81

[8] F. Glover. Tabu search: A tutorial. Interfaces, 4:74–94, 1990.

[9] F. Glover and C. McMillan. The general employee scheduling
problem: an integration of MS and AI. Computers and Operations
Research, 13(5):536–573, 1986.

[10] F. Glover and E. Taillard. A user’s guide to tabu search. Annals
of Operations Research, 41(1):1–28, 1993.

[11] F. W. Glover and M. Laguna. Tabu Search. Springer, 1998.

[12] J. Knox. Tabu search performance on the symmetric traveling
salesman problem. Computers & Operations Research, 21(8):867–
876, 1994.

82 Chapter 2. Stochastic Algorithms

2.11 Reactive Tabu Search

Reactive Tabu Search, RTS, R-TABU, Reactive Taboo Search.

2.11.1 Taxonomy

Reactive Tabu Search is a Metaheuristic and a Global Optimization
algorithm. It is an extension of Tabu Search (Section 2.10) and the
basis for a field of reactive techniques called Reactive Local Search and
more broadly the field of Reactive Search Optimization.

2.11.2 Strategy

The objective of Tabu Search is to avoid cycles while applying a local
search technique. The Reactive Tabu Search addresses this objective
by explicitly monitoring the search and reacting to the occurrence of
cycles and their repetition by adapting the tabu tenure (tabu list size).
The strategy of the broader field of Reactive Search Optimization is
to automate the process by which a practitioner configures a search
procedure by monitoring its online behavior and to use machine learning
techniques to adapt a techniques configuration.

2.11.3 Procedure

Algorithm 2.11.1 provides a pseudocode listing of the Reactive Tabu
Search algorithm for minimizing a cost function. The Pseudocode is
based on the version of the Reactive Tabu Search described by Battiti
and Tecchiolli in [9] with supplements like the IsTabu function from [7].
The procedure has been modified for brevity to exude the diversification
procedure (escape move). Algorithm 2.11.2 describes the memory based
reaction that manipulates the size of the ProhibitionPeriod in response
to identified cycles in the ongoing search. Algorithm 2.11.3 describes
the selection of the best move from a list of candidate moves in the
neighborhood of a given solution. The function permits prohibited moves
in the case where a prohibited move is better than the best know solution
and the selected admissible move (called aspiration). Algorithm 2.11.4
determines whether a given neighborhood move is tabu based on the
current ProhibitionPeriod, and is employed by sub-functions of the
Algorithm 2.11.3 function.

2.11.4 Heuristics

• Reactive Tabu Search is an extension of Tabu Search and as such
should exploit the best practices used for the parent algorithm.

2.11. Reactive Tabu Search 83

Algorithm 2.11.1: Pseudocode for Reactive Tabu Search.

Input: Iterationmax, Increase, Decrease, ProblemSize
Output: Sbest
Scurr ← ConstructInitialSolution();1

Sbest ← Scurr;2

TabuList ← ∅;3

ProhibitionPeriod ← 1;4

foreach Iterationi ∈ Iterationmax do5

MemoryBasedReaction(Increase, Decrease, ProblemSize);6

CandidateList ← GenerateCandidateNeighborhood(Scurr);7

Scurr ← BestMove(CandidateList);8

TabuList ← Scurrfeature;9

if Cost(Scurr) ≤ Cost(Sbest) then10

Sbest ← Scurr;11

end12

end13

return Sbest;14

Algorithm 2.11.2: Pseudocode for the MemoryBasedReaction

function.
Input: Increase, Decrease, ProblemSize
Output:
if HaveVisitedSolutionBefore(Scurr, VisitedSolutions) then1

Scurrt ← RetrieveLastTimeVisited(VisitedSolutions,2

Scurr);
RepetitionInterval ← Iterationi − Scurrt;3

Scurrt ← Iterationi;4

if RepetitionInterval < 2 × ProblemSize then5

RepetitionIntervalavg ← 0.1 × RepetitionInterval + 0.9 ×6

RepetitionIntervalavg;
ProhibitionPeriod ← ProhibitionPeriod × Increase;7

ProhibitionPeriodt ← Iterationi;8

end9

else10

VisitedSolutions ← Scurr;11

Scurrt ← Iterationi;12

end13

if Iterationi − ProhibitionPeriodt > RepetitionIntervalavg14

then
ProhibitionPeriod ← Max(1, ProhibitionPeriod × Decrease);15

ProhibitionPeriodt ← Iterationi;16

end17

84 Chapter 2. Stochastic Algorithms

Algorithm 2.11.3: Pseudocode for the BestMove function.

Input: ProblemSize
Output: Scurr
CandidateListadmissible ← GetAdmissibleMoves(CandidateList);1

CandidateListtabu ← CandidateList − CandidateListadmissible;2

if Size(CandidateListadmissible) < 2 then3

ProhibitionPeriod ← ProblemSize − 2;4

ProhibitionPeriodt ← Iterationi;5

end6

Scurr ← GetBest(CandidateListadmissible);7

Sbesttabu ← GetBest(CandidateListtabu);8

if Cost(Sbesttabu) < Cost(Sbest) ∧ Cost(Sbesttabu) <9

Cost(Scurr) then
Scurr ← Sbesttabu;10

end11

return Scurr;12

Algorithm 2.11.4: Pseudocode for the IsTabu function.

Input:
Output: Tabu
Tabu ← FALSE;1

Scurrtfeature ← RetrieveTimeFeatureLastUsed(Scurrfeature);2

if Scurrtfeature ≥ Iterationcurr − ProhibitionPeriod then3

Tabu ← TRUE;4

end5

return Tabu;6

• Reactive Tabu Search was designed for discrete domains such as
combinatorial optimization, although has been applied to continu-
ous function optimization.

• Reactive Tabu Search was proposed to use efficient memory data
structures such as hash tables.

• Reactive Tabu Search was proposed to use an long-term memory
to diversify the search after a threshold of cycle repetitions has
been reached.

• The increase parameter should be greater than one (such as 1.1
or 1.3) and the decrease parameter should be less than one (such
as 0.9 or 0.8).

2.11. Reactive Tabu Search 85

2.11.5 Code Listing

Listing 2.10 provides an example of the Reactive Tabu Search algorithm
implemented in the Ruby Programming Language. The algorithm is
applied to the Berlin52 instance of the Traveling Salesman Problem
(TSP), taken from the TSPLIB. The problem seeks a permutation of
the order to visit cities (called a tour) that minimizes the total distance
traveled. The optimal tour distance for Berlin52 instance is 7542 units.

The procedure is based on the code listing described by Battiti and
Tecchiolli in [9] with supplements like the IsTabu function from [7]. The
implementation does not use efficient memory data structures such as
hash tables. The algorithm is initialized with a stochastic 2-opt local
search, and the neighborhood is generated as a fixed candidate list of
stochastic 2-opt moves. The edges selected for changing in the 2-opt
move are stored as features in the tabu list. The example does not
implement the escape procedure for search diversification.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(perm, cities)

6 distance = 0

7 perm.each_with_index do |c1, i|

8 c2 = (i==perm.size-1) ? perm[0] : perm[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def stochastic_two_opt(parent)

24 perm = Array.new(parent)

25 c1, c2 = rand(perm.size), rand(perm.size)

26 exclude = [c1]

27 exclude << ((c1==0) ? perm.size-1 : c1-1)

28 exclude << ((c1==perm.size-1) ? 0 : c1+1)

29 c2 = rand(perm.size) while exclude.include?(c2)

30 c1, c2 = c2, c1 if c2 < c1

31 perm[c1...c2] = perm[c1...c2].reverse

32 return perm, [[parent[c1-1], parent[c1]], [parent[c2-1], parent[c2]]]

33 end

34

35 def is_tabu?(edge, tabu_list, iter, prohib_period)

36 tabu_list.each do |entry|

86 Chapter 2. Stochastic Algorithms

37 if entry[:edge] == edge

38 return true if entry[:iter] >= iter-prohib_period

39 return false

40 end

41 end

42 return false

43 end

44

45 def make_tabu(tabu_list, edge, iter)

46 tabu_list.each do |entry|

47 if entry[:edge] == edge

48 entry[:iter] = iter

49 return entry

50 end

51 end

52 entry = {:edge=>edge, :iter=>iter}

53 tabu_list.push(entry)

54 return entry

55 end

56

57 def to_edge_list(perm)

58 list = []

59 perm.each_with_index do |c1, i|

60 c2 = (i==perm.size-1) ? perm[0] : perm[i+1]

61 c1, c2 = c2, c1 if c1 > c2

62 list << [c1, c2]

63 end

64 return list

65 end

66

67 def equivalent?(el1, el2)

68 el1.each {|e| return false if !el2.include?(e) }

69 return true

70 end

71

72 def generate_candidate(best, cities)

73 candidate = {}

74 candidate[:vector], edges = stochastic_two_opt(best[:vector])

75 candidate[:cost] = cost(candidate[:vector], cities)

76 return candidate, edges

77 end

78

79 def get_candidate_entry(visited_list, permutation)

80 edgeList = to_edge_list(permutation)

81 visited_list.each do |entry|

82 return entry if equivalent?(edgeList, entry[:edgelist])

83 end

84 return nil

85 end

86

87 def store_permutation(visited_list, permutation, iteration)

88 entry = {}

89 entry[:edgelist] = to_edge_list(permutation)

90 entry[:iter] = iteration

91 entry[:visits] = 1

92 visited_list.push(entry)

2.11. Reactive Tabu Search 87

93 return entry

94 end

95

96 def sort_neighborhood(candidates, tabu_list, prohib_period, iteration)

97 tabu, admissable = [], []

98 candidates.each do |a|

99 if is_tabu?(a[1][0], tabu_list, iteration, prohib_period) or

100 is_tabu?(a[1][1], tabu_list, iteration, prohib_period)

101 tabu << a

102 else

103 admissable << a

104 end

105 end

106 return [tabu, admissable]

107 end

108

109 def search(cities, max_cand, max_iter, increase, decrease)

110 current = {:vector=>random_permutation(cities)}

111 current[:cost] = cost(current[:vector], cities)

112 best = current

113 tabu_list, prohib_period = [], 1

114 visited_list, avg_size, last_change = [], 1, 0

115 max_iter.times do |iter|

116 candidate_entry = get_candidate_entry(visited_list,

current[:vector])

117 if !candidate_entry.nil?

118 repetition_interval = iter - candidate_entry[:iter]

119 candidate_entry[:iter] = iter

120 candidate_entry[:visits] += 1

121 if repetition_interval < 2*(cities.size-1)

122 avg_size = 0.1*(iter-candidate_entry[:iter]) + 0.9*avg_size

123 prohib_period = (prohib_period.to_f * increase)

124 last_change = iter

125 end

126 else

127 store_permutation(visited_list, current[:vector], iter)

128 end

129 if iter-last_change > avg_size

130 prohib_period = [prohib_period*decrease,1].max

131 last_change = iter

132 end

133 candidates = Array.new(max_cand) do |i|

134 generate_candidate(current, cities)

135 end

136 candidates.sort! {|x,y| x.first[:cost] <=> y.first[:cost]}

137 tabu,admis =

sort_neighborhood(candidates,tabu_list,prohib_period,iter)

138 if admis.size < 2

139 prohib_period = cities.size-2

140 last_change = iter

141 end

142 current,best_move_edges = (admis.empty?) ? tabu.first : admis.first

143 if !tabu.empty?

144 tf = tabu.first[0]

145 if tf[:cost]<best[:cost] and tf[:cost]<current[:cost]

146 current, best_move_edges = tabu.first

88 Chapter 2. Stochastic Algorithms

147 end

148 end

149 best_move_edges.each {|edge| make_tabu(tabu_list, edge, iter)}

150 best = candidates.first[0] if candidates.first[0][:cost] <

best[:cost]

151 puts " > it=#{iter}, tenure=#{prohib_period.round},

best=#{best[:cost]}"

152 end

153 return best

154 end

155

156 if __FILE__ == $0
157 # problem configuration

158 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

159 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

160 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

161 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

162 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

163 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

164 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

165 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

166 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

167 # algorithm configuration

168 max_iter = 100

169 max_candidates = 50

170 increase = 1.3

171 decrease = 0.9

172 # execute the algorithm

173 best = search(berlin52, max_candidates, max_iter, increase, decrease)

174 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

175 end

Listing 2.10: Reactive Tabu Search in Ruby

2.11.6 References

Primary Sources

Reactive Tabu Search was proposed by Battiti and Tecchiolli as an
extension to Tabu Search that included an adaptive tabu list size in
addition to a diversification mechanism [7]. The technique also used
efficient memory structures that were based on an earlier work by Battiti
and Tecchiolli that considered a parallel tabu search [6]. Some early
application papers by Battiti and Tecchiolli include a comparison to
Simulated Annealing applied to the Quadratic Assignment Problem [8],
benchmarked on instances of the knapsack problem and N-K models and
compared with Repeated Local Minima Search, Simulated Annealing,
and Genetic Algorithms [9], and training neural networks on an array
of problem instances [10].

2.11. Reactive Tabu Search 89

Learn More

Reactive Tabu Search was abstracted to a form called Reactive Local
Search that considers adaptive methods that learn suitable parameters
for heuristics that manage an embedded local search technique [4, 5].
Under this abstraction, the Reactive Tabu Search algorithm is a single
example of the Reactive Local Search principle applied to the Tabu
Search. This framework was further extended to the use of any adaptive
machine learning techniques to adapt the parameters of an algorithm by
reacting to algorithm outcomes online while solving a problem, called
Reactive Search [1]. The best reference for this general framework is the
book on Reactive Search Optimization by Battiti, Brunato, and Mascia
[3]. Additionally, the review chapter by Battiti and Brunato provides a
contemporary description [2].

2.11.7 Bibliography

[1] R. Battiti. Machine learning methods for parameter tuning in
heuristics. In 5th DIMACS Challenge Workshop: Experimental
Methodology Day, 1996.

[2] R. Battiti and M. Brunato. Handbook of Metaheuristics, chapter
Reactive Search Optimization: Learning while Optimizing. Springer
Verlag, 2nd edition, 2009.

[3] R. Battiti, M. Brunato, and F. Mascia. Reactive Search and Intel-
ligent Optimization. Springer, 2008.

[4] R. Battiti and M. Protasi. Reactive local search for the maxi-
mum clique problem. Technical Report TR-95-052, International
Computer Science Institute, Berkeley, CA, 1995.

[5] R. Battiti and M. Protasi. Reactive local search for the maximum
clique problem. Algorithmica, 29(4):610–637, 2001.

[6] R. Battiti and G. Tecchiolli. Parallel biased search for combinatorial
optimization: genetic algorithms and tabu. Microprocessors and
Microsystems, 16(7):351–367, 1992.

[7] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA
Journal on Computing, 6(2):126–140, 1994.

[8] R. Battiti and G. Tecchiolli. Simulated annealing and tabu search
in the long run: a comparison on qap tasks. Computer and Mathe-
matics with Applications, 28(6):1–8, 1994.

[9] R. Battiti and G. Tecchiolli. Local search with memory: Bench-
marking RTS. Operations Research Spektrum, 17(2/3):67–86, 1995.

90 Chapter 2. Stochastic Algorithms

[10] R. Battiti and G. Tecchiolli. Training neural nets with the reactive
tabu search. IEEE Transactions on Neural Networks, 6(5):1185–
1200, 1995.

Chapter 3

Evolutionary Algorithms

3.1 Overview

This chapter describes Evolutionary Algorithms.

3.1.1 Evolution

Evolutionary Algorithms belong to the Evolutionary Computation field
of study concerned with computational methods inspired by the process
and mechanisms of biological evolution. The process of evolution by
means of natural selection (descent with modification) was proposed by
Darwin to account for the variety of life and its suitability (adaptive
fit) for its environment. The mechanisms of evolution describe how
evolution actually takes place through the modification and propagation
of genetic material (proteins). Evolutionary Algorithms are concerned
with investigating computational systems that resemble simplified ver-
sions of the processes and mechanisms of evolution toward achieving
the effects of these processes and mechanisms, namely the development
of adaptive systems. Additional subject areas that fall within the realm
of Evolutionary Computation are algorithms that seek to exploit the
properties from the related fields of Population Genetics, Population
Ecology, Coevolutionary Biology, and Developmental Biology.

3.1.2 References

Evolutionary Algorithms share properties of adaptation through an
iterative process that accumulates and amplifies beneficial variation
through trial and error. Candidate solutions represent members of a
virtual population striving to survive in an environment defined by
a problem specific objective function. In each case, the evolutionary
process refines the adaptive fit of the population of candidate solutions

91

92 Chapter 3. Evolutionary Algorithms

in the environment, typically using surrogates for the mechanisms of
evolution such as genetic recombination and mutation.

There are many excellent texts on the theory of evolution, although
Darwin’s original source can be an interesting and surprisingly enjoyable
read [5]. Huxley’s book defined the modern synthesis in evolutionary
biology that combined Darwin’s natural selection with Mendel’s genetic
mechanisms [25], although any good textbook on evolution will suffice
(such as Futuyma’s “Evolution” [13]). Popular science books on evolution
are an easy place to start, such as Dawkins’ “The Selfish Gene” that
presents a gene-centric perspective on evolution [6], and Dennett’s
“Darwin’s Dangerous Idea” that considers the algorithmic properties of
the process [8].

Goldberg’s classic text is still a valuable resource for the Genetic
Algorithm [14], and Holland’s text is interesting for those looking to
learn about the research into adaptive systems that became the Ge-
netic Algorithm [23]. Additionally, the seminal work by Koza should
be considered for those interested in Genetic Programming [30], and
Schwefel’s seminal work should be considered for those with an interest
in Evolution Strategies [34]. For an in-depth review of the history of
research into the use of simulated evolutionary processed for problem
solving, see Fogel [12] For a rounded and modern review of the field
of Evolutionary Computation, Bäck, Fogel, and Michalewicz’s two vol-
umes of “Evolutionary Computation” are an excellent resource covering
the major techniques, theory, and application specific concerns [2, 3].
For some additional modern books on the unified field of Evolutionary
Computation and Evolutionary Algorithms, see De Jong [26], a recent
edition of Fogel [11], and Eiben and Smith [9].

3.1.3 Extensions

There are many other algorithms and classes of algorithm that were not
described from the field of Evolutionary Computation, not limited to:

• Distributed Evolutionary Computation: that are designed
to partition a population across computer networks or computa-
tional units such as the Distributed or ‘Island Population’ Genetic
Algorithm [4, 35] and Diffusion Genetic Algorithms (also known
as Cellular Genetic Algorithms) [1].

• Niching Genetic Algorithms: that form groups or sub-populations
automatically within a population such as the Deterministic Crowd-
ing Genetic Algorithm [31, 32], Restricted Tournament Selection
[20, 21], and Fitness Sharing Genetic Algorithm [7, 19].

• Evolutionary Multiple Objective Optimization Algorithms:
such as Vector-Evaluated Genetic Algorithm (VEGA) [33], Pareto

3.1. Overview 93

Archived Evolution Strategy (PAES) [28, 29], and the Niched
Pareto Genetic Algorithm (NPGA) [24].

• Classical Techniques: such as GENITOR [36], and the CHC
Genetic Algorithm [10].

• Competent Genetic Algorithms: (so-called [15]) such as the
Messy Genetic Algorithm [17, 18], Fast Messy Genetic Algorithm
[16], Gene Expression Messy Genetic Algorithm [27], and the
Linkage-Learning Genetic Algorithm [22].

3.1.4 Bibliography

[1] E. Alba and B. Dorronsoro. Cellular Genetic Algorithms. Springer,
2008.

[2] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary
Computation 1: Basic Algorithms and Operators. IoP, 2000.

[3] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary
Computation 2: Advanced Algorithms and Operations. IoP, 2000.

[4] E. Cantú-Paz. Efficient and Accurate Parallel Genetic Algorithms.
Kluwer Academic Publishers (Springer), 2000.

[5] C. Darwin. On the Origin of Species by Means of Natural Selection,
or the Preservation of Favoured Races in the Struggle for Life. John
Murray, 1859.

[6] R. Dawkins. The selfish gene. Oxford University Press, 1976.

[7] K. Deb and D. E. Goldberg. An investigation of niche and species
formation in genetic function optimization. In Proceedings of the
Second International Conference on Genetic Algorithms, 1989.

[8] D. C. Dennett. Darwin’s Dangerous Idea. Simon & Schuster, 1995.

[9] A. E. Eiben and J. E. Smith. Introduction to evolutionary computing.
Springer, 2003.

[10] L. J. Eshelman. The CHC adaptive search algorithm: How to do
safe search when engaging in nontraditional genetic recombination.
In Proceedings Foundations of Genetic Algorithms Conf., pages
265–283, 1991.

[11] D. B. Fogel. Evolutionary computation: Toward a new philosophy
of machine intelligence. IEEE Press, 1995.

[12] D. B. Fogel. Evolutionary Computation: The Fossil Record. Wiley-
IEEE Press, 1998.

94 Chapter 3. Evolutionary Algorithms

[13] D. Futuyma. Evolution. Sinauer Associates Inc., 2nd edition, 2009.

[14] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[15] D. E. Goldberg. The design of innovation: Lessons from and for
competent genetic algorithms. Springer, 2002.

[16] D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik. Rapid,
accurate optimization of difficult problems using fast messy genetic
algorithms. In Proceedings of the Fifth International Conference
on Genetic Algorithms, 1993.

[17] D. E. Goldberg, K. Deb, and B. Korb. Messy genetic algorithms
revisited: studies in mixed size and scale. Complex Systems, 4:415–
444, 1990.

[18] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms:
Motivation, analysis, and first results. Complex Systems, 3:493–530,
1989.

[19] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing
for multimodal function optimization. In Proceedings of the 2nd
Internaltional Conference on Genetic Algorithms, 1987.

[20] G. Harik. Finding multiple solutions in problems of bounded
difficulty. Technical Report IlliGAL Report No. 94002, University
of Illinois at Urbana–Champaign, 1994.

[21] G. Harik. Finding multimodal solutions using restricted tournament
selection. In Proceedings of the Sixth International Conference on
Genetic Algorithms, pages 24–31, 1995.

[22] G. R. Harik and D. E. Goldberg. Learning linkage. In Foundations
of Genetic Algorithms 4, pages 247–262, 1996.

[23] J. H. Holland. Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and arti-
ficial intelligence. University of Michigan Press, 1975.

[24] J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched pareto genetic
algorithm for multiobjective optimization. In Proceedings of the
First IEEE Conference on Evolutionary Computation, IEEE World
Congress on Computational Intelligence, volume 1, pages 82–87,
1994.

[25] J. Huxley. Evolution: The Modern Synthesis. Allen & Unwin, 1942.

[26] K. A. De Jong. Evolutionary computation: A unified approach.
MIT Press, 2006.

3.1. Overview 95

[27] H. Kargupta. The gene expression messy genetic algorithm. In
Proceedings of the IEEE International Conference on Evolutionary
Computation, pages 814–819, 1996.

[28] J. D. Knowles and D. W. Corne. Local search, multiobjective opti-
mization and the pareto archived evolution strategy. In Proceedings
of the Third Australia–Japan Joint Workshop on Intelligent and
Evolutionary Systems, pages 209–216, 1999.

[29] J. D. Knowles and D. W. Corne. The pareto archived evolution
strategy : A new baseline algorithm for pareto multiobjective
optimisation. In Proceedings of the 1999 Congress on Evolutionary
Computation, pages 98–105, 1999.

[30] J. R. Koza. Genetic programming: On the programming of comput-
ers by means of natural selection. MIT Press, 1992.

[31] S. W. Mahfoud. Crowding and preselection revised. In Parallel
Problem Solving from Nature 2, pages 27–36, 1992.

[32] S. W. Mahfoud. Niching Methods for Genetic Algorithms. PhD
thesis, University of Illinois at Urbana–Champaign, 1995.

[33] D. J. Schaffer. Some experiments in machine learning using vector
evaluated genetic algorithms. PhD thesis, Vanderbilt University,
Tennessee, 1984.

[34] H-P. Schwefel. Numerical Optimization of Computer Models. John
Wiley & Sons, 1981.

[35] R. Tanese. Distributed genetic algorithms. In Proceedings of the
third international conference on Genetic algorithms, pages 434–439.
Morgan Kaufmann Publishers Inc., 1989.

[36] D. Whitley. The GENITOR algorithm and selective pressure: Why
rank-based allocation of reproductive trials is best. In D. Schaffer,
editor, Proceedings of the 3rd International Conference on Genetic
Algorithms, pages 116–121. Morgan Kaufmann, 1989.

96 Chapter 3. Evolutionary Algorithms

3.2 Genetic Algorithm

Genetic Algorithm, GA, Simple Genetic Algorithm, SGA, Canonical
Genetic Algorithm, CGA.

3.2.1 Taxonomy

The Genetic Algorithm is an Adaptive Strategy and a Global Optimiza-
tion technique. It is an Evolutionary Algorithm and belongs to the
broader study of Evolutionary Computation. The Genetic Algorithm is
a sibling of other Evolutionary Algorithms such as Genetic Programming
(Section 3.3), Evolution Strategies (Section 3.4), Evolutionary Program-
ming (Section 3.6), and Learning Classifier Systems (Section 3.9). The
Genetic Algorithm is a parent of a large number of variant techniques
and sub-fields too numerous to list.

3.2.2 Inspiration

The Genetic Algorithm is inspired by population genetics (including
heredity and gene frequencies), and evolution at the population level,
as well as the Mendelian understanding of the structure (such as chro-
mosomes, genes, alleles) and mechanisms (such as recombination and
mutation). This is the so-called new or modern synthesis of evolutionary
biology.

3.2.3 Metaphor

Individuals of a population contribute their genetic material (called the
genotype) proportional to their suitability of their expressed genome
(called their phenotype) to their environment, in the form of offspring.
The next generation is created through a process of mating that involves
recombination of two individuals genomes in the population with the
introduction of random copying errors (called mutation). This iterative
process may result in an improved adaptive-fit between the phenotypes
of individuals in a population and the environment.

3.2.4 Strategy

The objective of the Genetic Algorithm is to maximize the payoff of
candidate solutions in the population against a cost function from the
problem domain. The strategy for the Genetic Algorithm is to repeatedly
employ surrogates for the recombination and mutation genetic mecha-
nisms on the population of candidate solutions, where the cost function
(also known as objective or fitness function) applied to a decoded repre-
sentation of a candidate governs the probabilistic contributions a given

3.2. Genetic Algorithm 97

candidate solution can make to the subsequent generation of candidate
solutions.

3.2.5 Procedure

Algorithm 3.2.1 provides a pseudocode listing of the Genetic Algorithm
for minimizing a cost function.

Algorithm 3.2.1: Pseudocode for the Genetic Algorithm.

Input: Populationsize, Problemsize, Pcrossover, Pmutation
Output: Sbest
Population ← InitializePopulation(Populationsize,1

Problemsize);
EvaluatePopulation(Population);2

Sbest ← GetBestSolution(Population);3

while ¬StopCondition() do4

Parents ← SelectParents(Population, Populationsize);5

Children ← ∅;6

foreach Parent1, Parent2 ∈ Parents do7

Child1, Child2 ← Crossover(Parent1, Parent2,8

Pcrossover);
Children ← Mutate(Child1, Pmutation);9

Children ← Mutate(Child2, Pmutation);10

end11

EvaluatePopulation(Children);12

Sbest ← GetBestSolution(Children);13

Population ← Replace(Population, Children);14

end15

return Sbest;16

3.2.6 Heuristics

• Binary strings (referred to as ‘bitstrings’) are the classical represen-
tation as they can be decoded to almost any desired representation.
Real-valued and integer variables can be decoded using the binary
coded decimal method, one’s or two’s complement methods, or
the gray code method, the latter of which is generally preferred.

• Problem specific representations and customized genetic operators
should be adopted, incorporating as much prior information about
the problem domain as possible.

• The size of the population must be large enough to provide

98 Chapter 3. Evolutionary Algorithms

sufficient coverage of the domain and mixing of the useful sub-
components of the solution [7].

• The Genetic Algorithm is classically configured with a high prob-
ability of recombination (such as 95%-99% of the selected popula-
tion) and a low probability of mutation (such as 1

L where L is the
number of components in a solution) [1, 18].

• The fitness-proportionate selection of candidate solutions to con-
tribute to the next generation should be neither too greedy (to
avoid the takeover of fitter candidate solutions) nor too random.

3.2.7 Code Listing

Listing 3.1 provides an example of the Genetic Algorithm implemented
in the Ruby Programming Language. The demonstration problem is
a maximizing binary optimization problem called OneMax that seeks
a binary string of unity (all ‘1’ bits). The objective function provides
only an indication of the number of correct bits in a candidate string,
not the positions of the correct bits.

The Genetic Algorithm is implemented with a conservative configu-
ration including binary tournament selection for the selection operator,
one-point crossover for the recombination operator, and point mutations
for the mutation operator.

1 def onemax(bitstring)

2 sum = 0

3 bitstring.size.times {|i| sum+=1 if bitstring[i].chr=='1'}
4 return sum

5 end

6

7 def random_bitstring(num_bits)

8 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

9 end

10

11 def binary_tournament(pop)

12 i, j = rand(pop.size), rand(pop.size)

13 j = rand(pop.size) while j==i

14 return (pop[i][:fitness] > pop[j][:fitness]) ? pop[i] : pop[j]

15 end

16

17 def point_mutation(bitstring, rate=1.0/bitstring.size)

18 child = ""

19 bitstring.size.times do |i|

20 bit = bitstring[i].chr

21 child << ((rand()<rate) ? ((bit=='1') ? "0" : "1") : bit)

22 end

23 return child

24 end

25

26 def crossover(parent1, parent2, rate)

3.2. Genetic Algorithm 99

27 return ""+parent1 if rand()>=rate

28 point = 1 + rand(parent1.size-2)

29 return parent1[0...point]+parent2[point...(parent1.size)]

30 end

31

32 def reproduce(selected, pop_size, p_cross, p_mutation)

33 children = []

34 selected.each_with_index do |p1, i|

35 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

36 p2 = selected[0] if i == selected.size-1

37 child = {}

38 child[:bitstring] = crossover(p1[:bitstring], p2[:bitstring],

p_cross)

39 child[:bitstring] = point_mutation(child[:bitstring], p_mutation)

40 children << child

41 break if children.size >= pop_size

42 end

43 return children

44 end

45

46 def search(max_gens, num_bits, pop_size, p_crossover, p_mutation)

47 population = Array.new(pop_size) do |i|

48 {:bitstring=>random_bitstring(num_bits)}

49 end

50 population.each{|c| c[:fitness] = onemax(c[:bitstring])}

51 best = population.sort{|x,y| y[:fitness] <=> x[:fitness]}.first

52 max_gens.times do |gen|

53 selected = Array.new(pop_size){|i| binary_tournament(population)}

54 children = reproduce(selected, pop_size, p_crossover, p_mutation)

55 children.each{|c| c[:fitness] = onemax(c[:bitstring])}

56 children.sort!{|x,y| y[:fitness] <=> x[:fitness]}

57 best = children.first if children.first[:fitness] >= best[:fitness]

58 population = children

59 puts " > gen #{gen}, best: #{best[:fitness]}, #{best[:bitstring]}"

60 break if best[:fitness] == num_bits

61 end

62 return best

63 end

64

65 if __FILE__ == $0
66 # problem configuration

67 num_bits = 64

68 # algorithm configuration

69 max_gens = 100

70 pop_size = 100

71 p_crossover = 0.98

72 p_mutation = 1.0/num_bits

73 # execute the algorithm

74 best = search(max_gens, num_bits, pop_size, p_crossover, p_mutation)

75 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:bitstring]}"

76 end

Listing 3.1: Genetic Algorithm in Ruby

100 Chapter 3. Evolutionary Algorithms

3.2.8 References

Primary Sources

Holland is the grandfather of the field that became Genetic Algorithms.
Holland investigated adaptive systems in the late 1960s proposing an
adaptive system formalism and adaptive strategies referred to as ‘adap-
tive plans’ [8–10]. Holland’s theoretical framework was investigated
and elaborated by his Ph.D. students at the University of Michigan.
Rosenberg investigated a chemical and molecular model of a biological
inspired adaptive plan [19]. Bagley investigated meta-environments and
a genetic adaptive plan referred to as a genetic algorithm applied to
a simple game called hexapawn [2]. Cavicchio further elaborated the
genetic adaptive plan by proposing numerous variations, referring to
some as ‘reproductive plans’ [15].

Other important contributions were made by Frantz who investigated
what were referred to as genetic algorithms for search [3], and Holl-
stien who investigated genetic plans for adaptive control and function
optimization [12]. De Jong performed a seminal investigation of the
genetic adaptive model (genetic plans) applied to continuous function
optimization and his suite of test problems adopted are still commonly
used [13]. Holland wrote the the seminal book on his research focus-
ing on the proposed adaptive systems formalism, the reproductive and
genetic adaptive plans, and provided a theoretical framework for the
mechanisms used and explanation for the capabilities of what would
become genetic algorithms [11].

Learn More

The field of genetic algorithms is very large, resulting in large numbers
of variations on the canonical technique. Goldberg provides a classical
overview of the field in a review article [5], as does Mitchell [16]. Whitley
describes a classical tutorial for the Genetic Algorithm covering both
practical and theoretical concerns [20].

The algorithm is highly-modular and a sub-field exists to study
each sub-process, specifically: selection, recombination, mutation, and
representation. The Genetic Algorithm is most commonly used as an
optimization technique, although it should also be considered a general
adaptive strategy [14]. The schema theorem is a classical explanation
for the power of the Genetic Algorithm proposed by Holland [11], and
investigated by Goldberg under the name of the building block hypothesis
[4].

The classical book on genetic algorithms as an optimization and
machine learning technique was written by Goldberg and provides an in-
depth review and practical study of the approach [4]. Mitchell provides
a contemporary reference text introducing the technique and the field

3.2. Genetic Algorithm 101

[17]. Finally, Goldberg provides a modern study of the field, the lessons
learned, and reviews the broader toolset of optimization algorithms that
the field has produced [6].

3.2.9 Bibliography

[1] T. Bäck. Optimal mutation rates in genetic search. In Proceedings
of the Fifth International Conference on Genetic Algorithms, pages
2–9, 1993.

[2] J. D. Bagley. The behavior of adaptive systems which employ genetic
and correlation algorithms. PhD thesis, University of Michigan,
1967.

[3] D. R. Frantz. Non-linearities in genetic adaptive search. PhD thesis,
University of Michigan, 1972.

[4] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[5] D. E. Goldberg. Genetic and evolutionary algorithms come of age.
Communications of the ACM, 37(3):113–119, 1994.

[6] D. E. Goldberg. The design of innovation: Lessons from and for
competent genetic algorithms. Springer, 2002.

[7] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise,
and the sizing of populations. Complex Systems, 6:333–362, 1992.

[8] J. H. Holland. Information processing in adaptive systems. In
Processing of Information in the Nervous System, pages 330–338,
1962.

[9] J. H. Holland. Outline for a logical theory of adaptive systems.
Journal of the ACM (JACM), 9(3):297–314, 1962.

[10] J. H. Holland. Adaptive plans optimal for payoff-only environ-
ments. In Proceedings of the Second Hawaii Conference on Systems
Sciences, 1969.

[11] J. H. Holland. Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and arti-
ficial intelligence. University of Michigan Press, 1975.

[12] R. B. Hollstien. Artificial genetic adaptation in computer control
systems. PhD thesis, The University of Michigan, 1971.

[13] K. A. De Jong. An analysis of the behavior of a class of genetic
adaptive systems. PhD thesis, University of Michigan Ann Arbor,
MI, USA, 1975.

102 Chapter 3. Evolutionary Algorithms

[14] K. A. De Jong. Genetic algorithms are NOT function optimizers.
In Proceedings of the Second Workshop on Foundations of Genetic
Algorithms, pages 5–17. Morgan Kaufmann, 1992.

[15] D. J. Cavicchio Jr. Adaptive Search Using Simulated Evolution.
PhD thesis, The University of Michigan, 1970.

[16] M. Mitchell. Genetic algorithms: An overview. Complexity, 1(1):31–
39, 1995.

[17] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press,
1998.

[18] H. Mühlenbein. How genetic algorithms really work: I. mutation
and hillclimbing. In Parallel Problem Solving from Nature 2, pages
15–26, 1992.

[19] R. Rosenberg. Simulation of genetic populations with biochemical
properties. PhD thesis, University of Michigan, 1967.

[20] D. Whitley. A genetic algorithm tutorial. Statistics and Computing,
4:65–85, 1994.

3.3. Genetic Programming 103

3.3 Genetic Programming

Genetic Programming, GP.

3.3.1 Taxonomy

The Genetic Programming algorithm is an example of an Evolution-
ary Algorithm and belongs to the field of Evolutionary Computation
and more broadly Computational Intelligence and Biologically Inspired
Computation. The Genetic Programming algorithm is a sibling to other
Evolutionary Algorithms such as the Genetic Algorithm (Section 3.2),
Evolution Strategies (Section 3.4), Evolutionary Programming (Sec-
tion 3.6), and Learning Classifier Systems (Section 3.9). Technically,
the Genetic Programming algorithm is an extension of the Genetic
Algorithm. The Genetic Algorithm is a parent to a host of variations
and extensions.

3.3.2 Inspiration

The Genetic Programming algorithm is inspired by population genetics
(including heredity and gene frequencies), and evolution at the popu-
lation level, as well as the Mendelian understanding of the structure
(such as chromosomes, genes, alleles) and mechanisms (such as recombi-
nation and mutation). This is the so-called new or modern synthesis of
evolutionary biology.

3.3.3 Metaphor

Individuals of a population contribute their genetic material (called the
genotype) proportional to their suitability of their expressed genome
(called their phenotype) to their environment. The next generation is
created through a process of mating that involves genetic operators such
as recombination of two individuals genomes in the population and the
introduction of random copying errors (called mutation). This iterative
process may result in an improved adaptive-fit between the phenotypes
of individuals in a population and the environment.

Programs may be evolved and used in a secondary adaptive process,
where an assessment of candidates at the end of that secondary adaptive
process is used for differential reproductive success in the first evolution-
ary process. This system may be understood as the inter-dependencies
experienced in evolutionary development where evolution operates upon
an embryo that in turn develops into an individual in an environment
that eventually may reproduce.

104 Chapter 3. Evolutionary Algorithms

3.3.4 Strategy

The objective of the Genetic Programming algorithm is to use induction
to devise a computer program. This is achieved by using evolutionary
operators on candidate programs with a tree structure to improve the
adaptive fit between the population of candidate programs and an
objective function. An assessment of a candidate solution involves its
execution.

3.3.5 Procedure

Algorithm 3.3.1 provides a pseudocode listing of the Genetic Program-
ming algorithm for minimizing a cost function, based on Koza and Poli’s
tutorial [9].

The Genetic Program uses LISP-like symbolic expressions called
S-expressions that represent the graph of a program with function nodes
and terminal nodes. While the algorithm is running, the programs are
treated like data, and when they are evaluated they are executed. The
traversal of a program graph is always depth first, and functions must
always return a value.

3.3.6 Heuristics

• The Genetic Programming algorithm was designed for inductive
automatic programming and is well suited to symbolic regression,
controller design, and machine learning tasks under the broader
name of function approximation.

• Traditionally Lisp symbolic expressions are evolved and evaluated
in a virtual machine, although the approach has been applied with
compiled programming languages.

• The evaluation (fitness assignment) of a candidate solution typi-
cally takes the structure of the program into account, rewarding
parsimony.

• The selection process should be balanced between random selection
and greedy selection to bias the search towards fitter candidate
solutions (exploitation), whilst promoting useful diversity into the
population (exploration).

• A program may respond to zero or more input values and may
produce one or more outputs.

• All functions used in the function node set must return a usable
result. For example, the division function must return a sensible
value (such as zero or one) when a division by zero occurs.

3.3. Genetic Programming 105

Algorithm 3.3.1: Pseudocode for Genetic Programming.

Input: Populationsize, nodesfunc, nodesterm, Pcrossover,
Pmutation, Preproduction, Palteration

Output: Sbest
Population ← InitializePopulation(Populationsize,1

nodesfunc, nodesterm);
EvaluatePopulation(Population);2

Sbest ← GetBestSolution(Population);3

while ¬StopCondition() do4

Children ← ∅;5

while Size(Children) < Populationsize do6

Operator ← SelectGeneticOperator(Pcrossover,7

Pmutation, Preproduction, Palteration);
if Operator ≡ CrossoverOperator then8

Parent1, Parent2 ← SelectParents(Population,9

Populationsize);
Child1, Child2 ← Crossover(Parent1, Parent2);10

Children ← Child1;11

Children ← Child2;12

else if Operator ≡ MutationOperator then13

Parent1 ← SelectParents(Population,14

Populationsize);
Child1 ← Mutate(Parent1);15

Children ← Child1;16

else if Operator ≡ ReproductionOperator then17

Parent1 ← SelectParents(Population,18

Populationsize);
Child1 ← Reproduce(Parent1);19

Children ← Child1;20

else if Operator ≡ AlterationOperator then21

Parent1 ← SelectParents(Population,22

Populationsize);
Child1 ← AlterArchitecture(Parent1);23

Children ← Child1;24

end25

end26

EvaluatePopulation(Children);27

Sbest ← GetBestSolution(Children, Sbest);28

Population ← Children;29

end30

return Sbest;31

106 Chapter 3. Evolutionary Algorithms

• All genetic operations ensure (or should ensure) that syntactically
valid and executable programs are produced as a result of their
application.

• The Genetic Programming algorithm is commonly configured with
a high-probability of crossover (≥ 90%) and a low-probability
of mutation (≤ 1%). Other operators such as reproduction and
architecture alterations are used with moderate-level probabilities
and fill in the probabilistic gap.

• Architecture altering operations are not limited to the duplication
and deletion of sub-structures of a given program.

• The crossover genetic operator in the algorithm is commonly
configured to select a function as a the cross-point with a high-
probability (≥ 90%) and low-probability of selecting a terminal as
a cross-point (≤ 10%).

• The function set may also include control structures such as con-
ditional statements and loop constructs.

• The Genetic Programing algorithm can be realized as a stack-based
virtual machine as opposed to a call graph [11].

• The Genetic Programming algorithm can make use of Automat-
ically Defined Functions (ADFs) that are sub-graphs and are
promoted to the status of functions for reuse and are co-evolved
with the programs.

• The genetic operators employed during reproduction in the algo-
rithm may be considered transformation programs for candidate
solutions and may themselves be co-evolved in the algorithm [1].

3.3.7 Code Listing

Listing 3.2 provides an example of the Genetic Programming algorithm
implemented in the Ruby Programming Language based on Koza and
Poli’s tutorial [9].

The demonstration problem is an instance of a symbolic regression,
where a function must be devised to match a set of observations. In
this case the target function is a quadratic polynomial x2 + x+ 1 where
x ∈ [−1, 1]. The observations are generated directly from the target
function without noise for the purposes of this example. In practical
problems, if one knew and had access to the target function then the
genetic program would not be required.

The algorithm is configured to search for a program with the function
set {+,−,×,÷} and the terminal set {X,R}, where X is the input value,

3.3. Genetic Programming 107

and R is a static random variable generated for a program X ∈ [−5, 5].
A division by zero returns a value of one. The fitness of a candidate
solution is calculated by evaluating the program on range of random
input values and calculating the Root Mean Squared Error (RMSE).
The algorithm is configured with a 90% probability of crossover, 8%
probability of reproduction (copying), and a 2% probability of mutation.
For brevity, the algorithm does not implement the architecture altering
genetic operation and does not bias crossover points towards functions
over terminals.

1 def rand_in_bounds(min, max)

2 return min + (max-min)*rand()

3 end

4

5 def print_program(node)

6 return node if !node.kind_of?(Array)

7 return "(#{node[0]} #{print_program(node[1])}

#{print_program(node[2])})"

8 end

9

10 def eval_program(node, map)

11 if !node.kind_of?(Array)

12 return map[node].to_f if !map[node].nil?

13 return node.to_f

14 end

15 arg1, arg2 = eval_program(node[1], map), eval_program(node[2], map)

16 return 0 if node[0] === :/ and arg2 == 0.0

17 return arg1.__send__(node[0], arg2)

18 end

19

20 def generate_random_program(max, funcs, terms, depth=0)

21 if depth==max-1 or (depth>1 and rand()<0.1)

22 t = terms[rand(terms.size)]

23 return ((t=='R') ? rand_in_bounds(-5.0, +5.0) : t)

24 end

25 depth += 1

26 arg1 = generate_random_program(max, funcs, terms, depth)

27 arg2 = generate_random_program(max, funcs, terms, depth)

28 return [funcs[rand(funcs.size)], arg1, arg2]

29 end

30

31 def count_nodes(node)

32 return 1 if !node.kind_of?(Array)

33 a1 = count_nodes(node[1])

34 a2 = count_nodes(node[2])

35 return a1+a2+1

36 end

37

38 def target_function(input)

39 return input**2 + input + 1

40 end

41

42 def fitness(program, num_trials=20)

43 sum_error = 0.0

108 Chapter 3. Evolutionary Algorithms

44 num_trials.times do |i|

45 input = rand_in_bounds(-1.0, 1.0)

46 error = eval_program(program, {'X'=>input}) - target_function(input)

47 sum_error += error.abs

48 end

49 return sum_error / num_trials.to_f

50 end

51

52 def tournament_selection(pop, bouts)

53 selected = Array.new(bouts){pop[rand(pop.size)]}

54 selected.sort!{|x,y| x[:fitness]<=>y[:fitness]}

55 return selected.first

56 end

57

58 def replace_node(node, replacement, node_num, cur_node=0)

59 return [replacement,(cur_node+1)] if cur_node == node_num

60 cur_node += 1

61 return [node,cur_node] if !node.kind_of?(Array)

62 a1, cur_node = replace_node(node[1], replacement, node_num, cur_node)

63 a2, cur_node = replace_node(node[2], replacement, node_num, cur_node)

64 return [[node[0], a1, a2], cur_node]

65 end

66

67 def copy_program(node)

68 return node if !node.kind_of?(Array)

69 return [node[0], copy_program(node[1]), copy_program(node[2])]

70 end

71

72 def get_node(node, node_num, current_node=0)

73 return node,(current_node+1) if current_node == node_num

74 current_node += 1

75 return nil,current_node if !node.kind_of?(Array)

76 a1, current_node = get_node(node[1], node_num, current_node)

77 return a1,current_node if !a1.nil?

78 a2, current_node = get_node(node[2], node_num, current_node)

79 return a2,current_node if !a2.nil?

80 return nil,current_node

81 end

82

83 def prune(node, max_depth, terms, depth=0)

84 if depth == max_depth-1

85 t = terms[rand(terms.size)]

86 return ((t=='R') ? rand_in_bounds(-5.0, +5.0) : t)

87 end

88 depth += 1

89 return node if !node.kind_of?(Array)

90 a1 = prune(node[1], max_depth, terms, depth)

91 a2 = prune(node[2], max_depth, terms, depth)

92 return [node[0], a1, a2]

93 end

94

95 def crossover(parent1, parent2, max_depth, terms)

96 pt1, pt2 = rand(count_nodes(parent1)-2)+1,

rand(count_nodes(parent2)-2)+1

97 tree1, c1 = get_node(parent1, pt1)

98 tree2, c2 = get_node(parent2, pt2)

3.3. Genetic Programming 109

99 child1, c1 = replace_node(parent1, copy_program(tree2), pt1)

100 child1 = prune(child1, max_depth, terms)

101 child2, c2 = replace_node(parent2, copy_program(tree1), pt2)

102 child2 = prune(child2, max_depth, terms)

103 return [child1, child2]

104 end

105

106 def mutation(parent, max_depth, functs, terms)

107 random_tree = generate_random_program(max_depth/2, functs, terms)

108 point = rand(count_nodes(parent))

109 child, count = replace_node(parent, random_tree, point)

110 child = prune(child, max_depth, terms)

111 return child

112 end

113

114 def search(max_gens, pop_size, max_depth, bouts, p_repro, p_cross,

p_mut, functs, terms)

115 population = Array.new(pop_size) do |i|

116 {:prog=>generate_random_program(max_depth, functs, terms)}

117 end

118 population.each{|c| c[:fitness] = fitness(c[:prog])}

119 best = population.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

120 max_gens.times do |gen|

121 children = []

122 while children.size < pop_size

123 operation = rand()

124 p1 = tournament_selection(population, bouts)

125 c1 = {}

126 if operation < p_repro

127 c1[:prog] = copy_program(p1[:prog])

128 elsif operation < p_repro+p_cross

129 p2 = tournament_selection(population, bouts)

130 c2 = {}

131 c1[:prog],c2[:prog] = crossover(p1[:prog], p2[:prog], max_depth,

terms)

132 children << c2

133 elsif operation < p_repro+p_cross+p_mut

134 c1[:prog] = mutation(p1[:prog], max_depth, functs, terms)

135 end

136 children << c1 if children.size < pop_size

137 end

138 children.each{|c| c[:fitness] = fitness(c[:prog])}

139 population = children

140 population.sort!{|x,y| x[:fitness] <=> y[:fitness]}

141 best = population.first if population.first[:fitness] <=

best[:fitness]

142 puts " > gen #{gen}, fitness=#{best[:fitness]}"

143 break if best[:fitness] == 0

144 end

145 return best

146 end

147

148 if __FILE__ == $0
149 # problem configuration

150 terms = ['X', 'R']
151 functs = [:+, :-, :*, :/]

110 Chapter 3. Evolutionary Algorithms

152 # algorithm configuration

153 max_gens = 100

154 max_depth = 7

155 pop_size = 100

156 bouts = 5

157 p_repro = 0.08

158 p_cross = 0.90

159 p_mut = 0.02

160 # execute the algorithm

161 best = search(max_gens, pop_size, max_depth, bouts, p_repro, p_cross,

p_mut, functs, terms)

162 puts "done! Solution: f=#{best[:fitness]},

#{print_program(best[:prog])}"

163 end

Listing 3.2: Genetic Programming in Ruby

3.3.8 References

Primary Sources

An early work by Cramer involved the study of a Genetic Algorithm
using an expression tree structure for representing computer programs
for primitive mathematical operations [3]. Koza is credited with the
development of the field of Genetic Programming. An early paper by
Koza referred to his hierarchical genetic algorithms as an extension to the
simple genetic algorithm that use symbolic expressions (S-expressions) as
a representation and were applied to a range of induction-style problems
[4]. The seminal reference for the field is Koza’s 1992 book on Genetic
Programming [5].

Learn More

The field of Genetic Programming is vast, including many books, ded-
icated conferences and thousands of publications. Koza is generally
credited with the development and popularizing of the field, publishing
a large number of books and papers himself. Koza provides a practical
introduction to the field as a tutorial and provides recent overview of
the broader field and usage of the technique [9].

In addition his the seminal 1992 book, Koza has released three more
volumes in the series including volume II on Automatically Defined
Functions (ADFs) [6], volume III that considered the Genetic Program-
ming Problem Solver (GPPS) for automatically defining the function
set and program structure for a given problem [7], and volume IV that
focuses on the human competitive results the technique is able to achieve
in a routine manner [8]. All books are rich with targeted and practical
demonstration problem instances.

3.3. Genetic Programming 111

Some additional excellent books include a text by Banzhaf et al. that
provides an introduction to the field [2], Langdon and Poli’s detailed look
at the technique [10], and Poli, Langdon, and McPhee’s contemporary
and practical field guide to Genetic Programming [12].

3.3.9 Bibliography

[1] P. J. Angeline. Two self-adaptive crossover operators for genetic
programming. In Peter J. Angeline and K. E. Kinnear, Jr., editors,
Advances in Genetic Programming 2, pages 89–110. MIT Press,
1996.

[2] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic
Programming – An Introduction; On the Automatic Evolution of
Computer Programs and its Applications. Morgan Kaufmann, 1998.

[3] N. L. Cramer. A representation for the adaptive generation of simple
sequential programs. In J. J. Grefenstette, editor, Proceedings of the
1st International Conference on Genetic Algorithms, pages 183–187,
1985.

[4] J. R. Koza. Hierarchical genetic algorithms operating on populations
of computer programs. In N. S. Sridharan, editor, Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence
IJCAI-89, volume 1, pages 768–774, 1989.

[5] J. R. Koza. Genetic programming: On the programming of comput-
ers by means of natural selection. MIT Press, 1992.

[6] J. R. Koza. Genetic programming II: Automatic discovery of
reusable programs. MIT Press, 1994.

[7] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Genetic
programming III: Darwinian invention and problem solving. Morgan
Kaufmann, 1999.

[8] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and
G. Lanza. Genetic Programming IV: Routine Human-Competitive
Machine Intelligence. Springer, 2003.

[9] J. R. Koza and R. Poli. Search methodologies: Introductory tutorials
in optimization and decision support techniques, chapter 5: Genetic
Programming, pages 127–164. Springer, 2005.

[10] W. B. Langdon and R. Poli. Foundations of Genetic Programming.
Springer-Verlag, 2002.

[11] T. Perkis. Stack-based genetic programming. In Proc IEEE
Congress on Computational Intelligence, 1994.

112 Chapter 3. Evolutionary Algorithms

[12] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Programmers
Guide to Genetic Programming. Lulu Enterprises, 2008.

3.4. Evolution Strategies 113

3.4 Evolution Strategies

Evolution Strategies, Evolution Strategy, Evolutionary Strategies, ES.

3.4.1 Taxonomy

Evolution Strategies is a global optimization algorithm and is an in-
stance of an Evolutionary Algorithm from the field of Evolutionary
Computation. Evolution Strategies is a sibling technique to other Evo-
lutionary Algorithms such as Genetic Algorithms (Section 3.2), Genetic
Programming (Section 3.3), Learning Classifier Systems (Section 3.9),
and Evolutionary Programming (Section 3.6). A popular descendant of
the Evolution Strategies algorithm is the Covariance Matrix Adaptation
Evolution Strategies (CMA-ES).

3.4.2 Inspiration

Evolution Strategies is inspired by the theory of evolution by means of
natural selection. Specifically, the technique is inspired by macro-level or
the species-level process of evolution (phenotype, hereditary, variation)
and is not concerned with the genetic mechanisms of evolution (genome,
chromosomes, genes, alleles).

3.4.3 Strategy

The objective of the Evolution Strategies algorithm is to maximize
the suitability of collection of candidate solutions in the context of an
objective function from a domain. The objective was classically achieved
through the adoption of dynamic variation, a surrogate for descent with
modification, where the amount of variation was adapted dynamically
with performance-based heuristics. Contemporary approaches co-adapt
parameters that control the amount and bias of variation with the
candidate solutions.

3.4.4 Procedure

Instances of Evolution Strategies algorithms may be concisely described
with a custom terminology in the form (µ, λ)−ES, where µ is number
of candidate solutions in the parent generation, and λ is the number
of candidate solutions generated from the parent generation. In this
configuration, the best µ are kept if λ > µ, where λmust be great or equal
to µ. In addition to the so-called comma-selection Evolution Strategies
algorithm, a plus-selection variation may be defined (µ+λ)−ES, where
the best members of the union of the µ and λ generations compete
based on objective fitness for a position in the next generation. The

114 Chapter 3. Evolutionary Algorithms

simplest configuration is the (1 + 1)−ES, which is a type of greedy hill
climbing algorithm. Algorithm 3.4.1 provides a pseudocode listing of
the (µ, λ)−ES algorithm for minimizing a cost function. The algorithm
shows the adaptation of candidate solutions that co-adapt their own
strategy parameters that influence the amount of mutation applied to a
candidate solutions descendants.

Algorithm 3.4.1: Pseudocode for (µ, λ) Evolution Strategies.

Input: µ, λ, ProblemSize
Output: Sbest
Population ← InitializePopulation(µ, ProblemSize);1

EvaluatePopulation(Population);2

Sbest ← GetBest(Population, 1);3

while ¬StopCondition() do4

Children ← ∅;5

for i = 0 to λ do6

Parenti ← GetParent(Population, i);7

Si ← ∅;8

Siproblem ← Mutate(Piproblem, Pistrategy);9

Sistrategy ← Mutate(Pistrategy);10

Children ← Si;11

end12

EvaluatePopulation(Children);13

Sbest ← GetBest(Children + Sbest, 1);14

Population ← SelectBest(Population, Children, µ);15

end16

return Sbest;17

3.4.5 Heuristics

• Evolution Strategies uses problem specific representations, such
as real values for continuous function optimization.

• The algorithm is commonly configured such that 1 ≤ µ ≤ λ.

• The ratio of µ to λ influences the amount of selection pressure
(greediness) exerted by the algorithm.

• A contemporary update to the algorithms notation includes a ρ
as (µ/ρ, λ) − ES that specifies the number of parents that will
contribute to each new candidate solution using a recombination
operator.

• A classical rule used to govern the amount of mutation (standard
deviation used in mutation for continuous function optimization)

3.4. Evolution Strategies 115

was the 1
5 -rule, where the ratio of successful mutations should

be 1
5 of all mutations. If it is greater the variance is increased,

otherwise if the ratio is is less, the variance is decreased.

• The comma-selection variation of the algorithm can be good for
dynamic problem instances given its capability for continued ex-
ploration of the search space, whereas the plus-selection variation
can be good for refinement and convergence.

3.4.6 Code Listing

Listing 3.3 provides an example of the Evolution Strategies algorithm
implemented in the Ruby Programming Language. The demonstration
problem is an instance of a continuous function optimization that seeks
min f(x) where f =

∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0 and n = 2. The optimal

solution for this basin function is (v0, . . . , vn−1) = 0.0. The algorithm
is a implementation of Evolution Strategies based on simple version
described by Bäck and Schwefel [2], which was also used as the basis of
a detailed empirical study [11]. The algorithm is an (30 + 20)−ES that
adapts both the problem and strategy (standard deviations) variables.
More contemporary implementations may modify the strategy variables
differently, and include an additional set of adapted strategy parameters
to influence the direction of mutation (see [7] for a concise description).

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def random_gaussian(mean=0.0, stdev=1.0)

12 u1 = u2 = w = 0

13 begin

14 u1 = 2 * rand() - 1

15 u2 = 2 * rand() - 1

16 w = u1 * u1 + u2 * u2

17 end while w >= 1

18 w = Math.sqrt((-2.0 * Math.log(w)) / w)

19 return mean + (u2 * w) * stdev

20 end

21

22 def mutate_problem(vector, stdevs, search_space)

23 child = Array(vector.size)

24 vector.each_with_index do |v, i|

25 child[i] = v + stdevs[i] * random_gaussian()

26 child[i] = search_space[i][0] if child[i] < search_space[i][0]

27 child[i] = search_space[i][1] if child[i] > search_space[i][1]

116 Chapter 3. Evolutionary Algorithms

28 end

29 return child

30 end

31

32 def mutate_strategy(stdevs)

33 tau = Math.sqrt(2.0*stdevs.size.to_f)**-1.0

34 tau_p = Math.sqrt(2.0*Math.sqrt(stdevs.size.to_f))**-1.0

35 child = Array.new(stdevs.size) do |i|

36 stdevs[i] * Math.exp(tau_p*random_gaussian() +

tau*random_gaussian())

37 end

38 return child

39 end

40

41 def mutate(par, minmax)

42 child = {}

43 child[:vector] = mutate_problem(par[:vector], par[:strategy], minmax)

44 child[:strategy] = mutate_strategy(par[:strategy])

45 return child

46 end

47

48 def init_population(minmax, pop_size)

49 strategy = Array.new(minmax.size) do |i|

50 [0, (minmax[i][1]-minmax[i][0]) * 0.05]

51 end

52 pop = Array.new(pop_size) { Hash.new }

53 pop.each_index do |i|

54 pop[i][:vector] = random_vector(minmax)

55 pop[i][:strategy] = random_vector(strategy)

56 end

57 pop.each{|c| c[:fitness] = objective_function(c[:vector])}

58 return pop

59 end

60

61 def search(max_gens, search_space, pop_size, num_children)

62 population = init_population(search_space, pop_size)

63 best = population.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

64 max_gens.times do |gen|

65 children = Array.new(num_children) do |i|

66 mutate(population[i], search_space)

67 end

68 children.each{|c| c[:fitness] = objective_function(c[:vector])}

69 union = children+population

70 union.sort!{|x,y| x[:fitness] <=> y[:fitness]}

71 best = union.first if union.first[:fitness] < best[:fitness]

72 population = union.first(pop_size)

73 puts " > gen #{gen}, fitness=#{best[:fitness]}"

74 end

75 return best

76 end

77

78 if __FILE__ == $0
79 # problem configuration

80 problem_size = 2

81 search_space = Array.new(problem_size) {|i| [-5, +5]}

82 # algorithm configuration

3.4. Evolution Strategies 117

83 max_gens = 100

84 pop_size = 30

85 num_children = 20

86 # execute the algorithm

87 best = search(max_gens, search_space, pop_size, num_children)

88 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:vector].inspect}"

89 end

Listing 3.3: Evolution Strategies in Ruby

3.4.7 References

Primary Sources

Evolution Strategies was developed by three students (Bienert, Rechen-
berg, Schwefel) at the Technical University in Berlin in 1964 in an effort
to robotically optimize an aerodynamics design problem. The seminal
work in Evolution Strategies was Rechenberg’s PhD thesis [5] that was
later published as a book [6], both in German. Many technical reports
and papers were published by Schwefel and Rechenberg, although the
seminal paper published in English was by Klockgether and Schwefel on
the two–phase nozzle design problem [4].

Learn More

Schwefel published his PhD dissertation [8] not long after Rechenberg,
which was also published as a book [9], both in German. Schwefel’s book
was later translated into English and represents a classical reference for
the technique [10]. Bäck et al. provide a classical introduction to the
technique, covering the history, development of the algorithm, and the
steps that lead it to where it was in 1991 [1]. Beyer and Schwefel provide
a contemporary introduction to the field that includes a detailed history
of the approach, the developments and improvements since its inception,
and an overview of the theoretical findings that have been made [3].

3.4.8 Bibliography

[1] T. Bäck, F. Hoffmeister, and H-P. Schwefel. A survey of evolution
strategies. In Proceedings of the Fourth International Conference
on Genetic Algorithms, pages 2–9, 1991.

[2] T. Bäck and H-P. Schwefel. An overview of evolutionary algorithms
for parameter optimization. Evolutionary Computation, 1(1):1–23,
1993.

[3] H-G. Beyer and H-P. Schwefel. Evolution strategies: A comprehen-
sive introduction. Natural Computing: an international journal,
1(1):3–52, 2002.

118 Chapter 3. Evolutionary Algorithms

[4] J. Klockgether and H-P. Schwefel. Two–phase nozzle and hollow
core jet experiments. In Proceedings of the Eleventh Symp. Engineer-
ing Aspects of Magnetohydrodynamics, pages 141–148. California
Institute of Technology, 1970.

[5] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Sys-
teme nach Prinzipien der biologischen Evolution. PhD thesis, Tech-
nical University of Berlin, Department of Process Engineering,
1971.

[6] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Sys-
teme nach Prinzipien der biologischen Evolution. Frommann-
Holzboog Verlag, 1973.

[7] G. Rudolph. Evolutionary Computation 1: Basic Algorithms and
Operations, chapter 9: Evolution Strategies, pages 81–88. IoP Press,
2000.

[8] H-P. Schwefel. Evolutionsstrategie und numerische Optimierung.
PhD thesis, Technical University of Berlin, Department of Process
Engineering, 1975.

[9] H-P. Schwefel. Numerische Optimierung von Computer – Modellen
mittels der Evolutionsstrategie. Birkhaeuser, 1977.

[10] H-P. Schwefel. Numerical Optimization of Computer Models. John
Wiley & Sons, 1981.

[11] X. Yao and Y. Liu. Fast evolution strategies. In Proceedings of
the 6th International Conference on Evolutionary Programming VI,
pages 151–162, 1997.

3.5. Differential Evolution 119

3.5 Differential Evolution

Differential Evolution, DE.

3.5.1 Taxonomy

Differential Evolution is a Stochastic Direct Search and Global Optimiza-
tion algorithm, and is an instance of an Evolutionary Algorithm from the
field of Evolutionary Computation. It is related to sibling Evolutionary
Algorithms such as the Genetic Algorithm (Section 3.2), Evolutionary
Programming (Section 3.6), and Evolution Strategies (Section 3.4), and
has some similarities with Particle Swarm Optimization (Section 6.2).

3.5.2 Strategy

The Differential Evolution algorithm involves maintaining a population of
candidate solutions subjected to iterations of recombination, evaluation,
and selection. The recombination approach involves the creation of new
candidate solution components based on the weighted difference between
two randomly selected population members added to a third population
member. This perturbs population members relative to the spread of
the broader population. In conjunction with selection, the perturbation
effect self-organizes the sampling of the problem space, bounding it to
known areas of interest.

3.5.3 Procedure

Differential Evolution has a specialized nomenclature that describes
the adopted configuration. This takes the form of DE/x/y/z, where x
represents the solution to be perturbed (such a random or best). The
y signifies the number of difference vectors used in the perturbation of
x, where a difference vectors is the difference between two randomly
selected although distinct members of the population. Finally, z signifies
the recombination operator performed such as bin for binomial and exp

for exponential.

Algorithm 3.5.1 provides a pseudocode listing of the Differential
Evolution algorithm for minimizing a cost function, specifically a DE/-
rand/1/bin configuration. Algorithm 3.5.2 provides a pseudocode listing
of the NewSample function from the Differential Evolution algorithm.

3.5.4 Heuristics

• Differential evolution was designed for nonlinear, non-differentiable
continuous function optimization.

120 Chapter 3. Evolutionary Algorithms

Algorithm 3.5.1: Pseudocode for Differential Evolution.

Input: Populationsize, Problemsize, Weightingfactor,
Crossoverrate

Output: Sbest
Population ← InitializePopulation(Populationsize,1

Problemsize);
EvaluatePopulation(Population);2

Sbest ← GetBestSolution(Population);3

while ¬ StopCondition() do4

NewPopulation ← ∅;5

foreach Pi ∈ Population do6

Si ← NewSample(Pi, Population, Problemsize,7

Weightingfactor, Crossoverrate);
if Cost(Si) ≤ Cost(Pi) then8

NewPopulation ← Si;9

else10

NewPopulation ← Pi;11

end12

end13

Population ← NewPopulation;14

EvaluatePopulation(Population);15

Sbest ← GetBestSolution(Population);16

end17

return Sbest;18

• The weighting factor F ∈ [0, 2] controls the amplification of differ-
ential variation, a value of 0.8 is suggested.

• the crossover weight CR ∈ [0, 1] probabilistically controls the
amount of recombination, a value of 0.9 is suggested.

• The initial population of candidate solutions should be randomly
generated from within the space of valid solutions.

• The popular configurations are DE/rand/1/* and DE/best/2/*.

3.5.5 Code Listing

Listing 3.4 provides an example of the Differential Evolution algorithm
implemented in the Ruby Programming Language. The demonstration
problem is an instance of a continuous function optimization that seeks
min f(x) where f =

∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0 and n = 3. The optimal

solution for this basin function is (v0, . . . , vn−1) = 0.0. The algorithm is
an implementation of Differential Evolution with the DE/rand/1/bin

3.5. Differential Evolution 121

Algorithm 3.5.2: Pseudocode for the NewSample function.

Input: P0, Population, NP, F, CR
Output: S
repeat1

P1 ← RandomMember(Population);2

until P1 6= P0 ;3

repeat4

P2 ← RandomMember(Population);5

until P2 6= P0 ∨ P2 6= P1 ;6

repeat7

P3 ← RandomMember(Population);8

until P3 6= P0 ∨ P3 6= P1 ∨ P3 6= P2 ;9

CutPoint ← RandomPosition(NP);10

S ← 0;11

for i to NP do12

if i ≡ CutPoint ∧ Rand() < CR then13

Si ← P3i + F × (P1i- P2i);14

else15

Si ← P0i ;16

end17

end18

return S;19

configuration proposed by Storn and Price [9].

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def de_rand_1_bin(p0, p1, p2, p3, f, cr, search_space)

12 sample = {:vector=>Array.new(p0[:vector].size)}

13 cut = rand(sample[:vector].size-1) + 1

14 sample[:vector].each_index do |i|

15 sample[:vector][i] = p0[:vector][i]

16 if (i==cut or rand() < cr)

17 v = p3[:vector][i] + f * (p1[:vector][i] - p2[:vector][i])

18 v = search_space[i][0] if v < search_space[i][0]

19 v = search_space[i][1] if v > search_space[i][1]

20 sample[:vector][i] = v

21 end

22 end

122 Chapter 3. Evolutionary Algorithms

23 return sample

24 end

25

26 def select_parents(pop, current)

27 p1, p2, p3 = rand(pop.size), rand(pop.size), rand(pop.size)

28 p1 = rand(pop.size) until p1 != current

29 p2 = rand(pop.size) until p2 != current and p2 != p1

30 p3 = rand(pop.size) until p3 != current and p3 != p1 and p3 != p2

31 return [p1,p2,p3]

32 end

33

34 def create_children(pop, minmax, f, cr)

35 children = []

36 pop.each_with_index do |p0, i|

37 p1, p2, p3 = select_parents(pop, i)

38 children << de_rand_1_bin(p0, pop[p1], pop[p2], pop[p3], f, cr,

minmax)

39 end

40 return children

41 end

42

43 def select_population(parents, children)

44 return Array.new(parents.size) do |i|

45 (children[i][:cost]<=parents[i][:cost]) ? children[i] : parents[i]

46 end

47 end

48

49 def search(max_gens, search_space, pop_size, f, cr)

50 pop = Array.new(pop_size) {|i| {:vector=>random_vector(search_space)}}

51 pop.each{|c| c[:cost] = objective_function(c[:vector])}

52 best = pop.sort{|x,y| x[:cost] <=> y[:cost]}.first

53 max_gens.times do |gen|

54 children = create_children(pop, search_space, f, cr)

55 children.each{|c| c[:cost] = objective_function(c[:vector])}

56 pop = select_population(pop, children)

57 pop.sort!{|x,y| x[:cost] <=> y[:cost]}

58 best = pop.first if pop.first[:cost] < best[:cost]

59 puts " > gen #{gen+1}, fitness=#{best[:cost]}"

60 end

61 return best

62 end

63

64 if __FILE__ == $0
65 # problem configuration

66 problem_size = 3

67 search_space = Array.new(problem_size) {|i| [-5, +5]}

68 # algorithm configuration

69 max_gens = 200

70 pop_size = 10*problem_size

71 weightf = 0.8

72 crossf = 0.9

73 # execute the algorithm

74 best = search(max_gens, search_space, pop_size, weightf, crossf)

75 puts "done! Solution: f=#{best[:cost]}, s=#{best[:vector].inspect}"

76 end

3.5. Differential Evolution 123

Listing 3.4: Differential Evolution in Ruby

3.5.6 References

Primary Sources

The Differential Evolution algorithm was presented by Storn and Price in
a technical report that considered DE1 and DE2 variants of the approach
applied to a suite of continuous function optimization problems [7]. An
early paper by Storn applied the approach to the optimization of an IIR-
filter (Infinite Impulse Response) [5]. A second early paper applied the
approach to a second suite of benchmark problem instances, adopting
the contemporary nomenclature for describing the approach, including
the DE/rand/1/* and DE/best/2/* variations [8]. The early work
including technical reports and conference papers by Storn and Price
culminated in a seminal journal article [9].

Learn More

A classical overview of Differential Evolution was presented by Price
and Storn [2], and terse introduction to the approach for function
optimization is presented by Storn [6]. A seminal extended description
of the algorithm with sample applications was presented by Storn and
Price as a book chapter [3]. Price, Storn, and Lampinen released a
contemporary book dedicated to Differential Evolution including theory,
benchmarks, sample code, and numerous application demonstrations
[4]. Chakraborty also released a book considering extensions to address
complexities such as rotation invariance and stopping criteria [1].

3.5.7 Bibliography

[1] U. K. Chakraborty. Advances in Differential Evolution. Springer,
2008.

[2] K. Price and R. Storn. Differential evolution: Numerical optimization
made easy. Dr. Dobb’s Journal, 78:18–24, 1997.

[3] K. V. Price. New Ideas in Optimization, chapter An introduction to
differential evolution, pages 79–108. McGraw-Hill Ltd., UK, 1999.

[4] K. V. Price, R. M. Storn, and J. A. Lampinen. Differential evolution:
A practical approach to global optimization. Springer, 2005.

[5] R. Storn. Differential evolution design of an IIR-filter. In Proceedings
IEEE Conference Evolutionary Computation, pages 268–273. IEEE,
1996.

124 Chapter 3. Evolutionary Algorithms

[6] R. Storn. On the usage of differential evolution for function opti-
mization. In Proceedings Fuzzy Information Processing Society, 1996
Biennial Conference of the North American, pages 519–523, 1996.

[7] R. Storn and K. Price. Differential evolution: A simple and efficient
adaptive scheme for global optimization over continuous spaces. Tech-
nical Report TR-95-012, International Computer Science Institute,
Berkeley, CA, 1995.

[8] R. Storn and K. Price. Minimizing the real functions of the ICEC’96
contest by differential evolution. In Proceedings of IEEE Inter-
national Conference on Evolutionary Computation, pages 842–844.
IEEE, 1996.

[9] R. Storn and K. Price. Differential evolution: A simple and efficient
heuristic for global optimization over continuous spaces. Journal of
Global Optimization, 11:341–359, 1997.

3.6. Evolutionary Programming 125

3.6 Evolutionary Programming

Evolutionary Programming, EP.

3.6.1 Taxonomy

Evolutionary Programming is a Global Optimization algorithm and
is an instance of an Evolutionary Algorithm from the field of Evolu-
tionary Computation. The approach is a sibling of other Evolutionary
Algorithms such as the Genetic Algorithm (Section 3.2), and Learning
Classifier Systems (Section 3.9). It is sometimes confused with Genetic
Programming given the similarity in name (Section 3.3), and more
recently it shows a strong functional similarity to Evolution Strategies
(Section 3.4).

3.6.2 Inspiration

Evolutionary Programming is inspired by the theory of evolution by
means of natural selection. Specifically, the technique is inspired by
macro-level or the species-level process of evolution (phenotype, heredi-
tary, variation) and is not concerned with the genetic mechanisms of
evolution (genome, chromosomes, genes, alleles).

3.6.3 Metaphor

A population of a species reproduce, creating progeny with small pheno-
typical variation. The progeny and the parents compete based on their
suitability to the environment, where the generally more fit members
constitute the subsequent generation and are provided with the oppor-
tunity to reproduce themselves. This process repeats, improving the
adaptive fit between the species and the environment.

3.6.4 Strategy

The objective of the Evolutionary Programming algorithm is to maximize
the suitability of a collection of candidate solutions in the context of
an objective function from the domain. This objective is pursued by
using an adaptive model with surrogates for the processes of evolution,
specifically hereditary (reproduction with variation) under competition.
The representation used for candidate solutions is directly assessable by
a cost or objective function from the domain.

3.6.5 Procedure

Algorithm 3.6.1 provides a pseudocode listing of the Evolutionary Pro-
gramming algorithm for minimizing a cost function.

126 Chapter 3. Evolutionary Algorithms

Algorithm 3.6.1: Pseudocode for Evolutionary Programming.

Input: Populationsize, ProblemSize, BoutSize
Output: Sbest
Population ← InitializePopulation(Populationsize,1

ProblemSize);
EvaluatePopulation(Population);2

Sbest ← GetBestSolution(Population);3

while ¬StopCondition() do4

Children ← ∅;5

foreach Parenti ∈ Population do6

Childi ← Mutate(Parenti);7

Children ← Childi;8

end9

EvaluatePopulation(Children);10

Sbest ← GetBestSolution(Children, Sbest);11

Union ← Population + Children;12

foreach Si ∈ Union do13

for 1 to BoutSize do14

Sj ← RandomSelection(Union);15

if Cost(Si) < Cost(Sj) then16

Siwins ← Siwins + 1;17

end18

end19

end20

Population ← SelectBestByWins(Union, Populationsize);21

end22

return Sbest;23

3.6.6 Heuristics

• The representation for candidate solutions should be domain spe-
cific, such as real numbers for continuous function optimization.

• The sample size (bout size) for tournament selection during com-
petition is commonly between 5% and 10% of the population
size.

• Evolutionary Programming traditionally only uses the mutation
operator to create new candidate solutions from existing can-
didate solutions. The crossover operator that is used in some
other Evolutionary Algorithms is not employed in Evolutionary
Programming.

• Evolutionary Programming is concerned with the linkage between

3.6. Evolutionary Programming 127

parent and child candidate solutions and is not concerned with
surrogates for genetic mechanisms.

• Continuous function optimization is a popular application for
the approach, where real-valued representations are used with a
Gaussian-based mutation operator.

• The mutation-specific parameters used in the application of the
algorithm to continuous function optimization can be adapted in
concert with the candidate solutions [4].

3.6.7 Code Listing

Listing 3.5 provides an example of the Evolutionary Programming algo-
rithm implemented in the Ruby Programming Language. The demon-
stration problem is an instance of a continuous function optimization
that seeks min f(x) where f =

∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0 and n = 2.

The optimal solution for this basin function is (v0, . . . , vn−1) = 0.0. The
algorithm is an implementation of Evolutionary Programming based
on the classical implementation for continuous function optimization
by Fogel et al. [4] with per-variable adaptive variance based on Fogel’s
description for a self-adaptive variation on page 160 of his 1995 book
[3].

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def random_gaussian(mean=0.0, stdev=1.0)

12 u1 = u2 = w = 0

13 begin

14 u1 = 2 * rand() - 1

15 u2 = 2 * rand() - 1

16 w = u1 * u1 + u2 * u2

17 end while w >= 1

18 w = Math.sqrt((-2.0 * Math.log(w)) / w)

19 return mean + (u2 * w) * stdev

20 end

21

22 def mutate(candidate, search_space)

23 child = {:vector=>[], :strategy=>[]}

24 candidate[:vector].each_with_index do |v_old, i|

25 s_old = candidate[:strategy][i]

26 v = v_old + s_old * random_gaussian()

27 v = search_space[i][0] if v < search_space[i][0]

28 v = search_space[i][1] if v > search_space[i][1]

128 Chapter 3. Evolutionary Algorithms

29 child[:vector] << v

30 child[:strategy] << s_old + random_gaussian() * s_old.abs**0.5

31 end

32 return child

33 end

34

35 def tournament(candidate, population, bout_size)

36 candidate[:wins] = 0

37 bout_size.times do |i|

38 other = population[rand(population.size)]

39 candidate[:wins] += 1 if candidate[:fitness] < other[:fitness]

40 end

41 end

42

43 def init_population(minmax, pop_size)

44 strategy = Array.new(minmax.size) do |i|

45 [0, (minmax[i][1]-minmax[i][0]) * 0.05]

46 end

47 pop = Array.new(pop_size, {})

48 pop.each_index do |i|

49 pop[i][:vector] = random_vector(minmax)

50 pop[i][:strategy] = random_vector(strategy)

51 end

52 pop.each{|c| c[:fitness] = objective_function(c[:vector])}

53 return pop

54 end

55

56 def search(max_gens, search_space, pop_size, bout_size)

57 population = init_population(search_space, pop_size)

58 population.each{|c| c[:fitness] = objective_function(c[:vector])}

59 best = population.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

60 max_gens.times do |gen|

61 children = Array.new(pop_size) {|i| mutate(population[i],

search_space)}

62 children.each{|c| c[:fitness] = objective_function(c[:vector])}

63 children.sort!{|x,y| x[:fitness] <=> y[:fitness]}

64 best = children.first if children.first[:fitness] < best[:fitness]

65 union = children+population

66 union.each{|c| tournament(c, union, bout_size)}

67 union.sort!{|x,y| y[:wins] <=> x[:wins]}

68 population = union.first(pop_size)

69 puts " > gen #{gen}, fitness=#{best[:fitness]}"

70 end

71 return best

72 end

73

74 if __FILE__ == $0
75 # problem configuration

76 problem_size = 2

77 search_space = Array.new(problem_size) {|i| [-5, +5]}

78 # algorithm configuration

79 max_gens = 200

80 pop_size = 100

81 bout_size = 5

82 # execute the algorithm

83 best = search(max_gens, search_space, pop_size, bout_size)

3.6. Evolutionary Programming 129

84 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:vector].inspect}"

85 end

Listing 3.5: Evolutionary Programming in Ruby

3.6.8 References

Primary Sources

Evolutionary Programming was developed by Lawrence Fogel, outlined
in early papers (such as [5]) and later became the focus of his PhD dis-
sertation [6]. Fogel focused on the use of an evolutionary process for the
development of control systems using Finite State Machine (FSM) repre-
sentations. Fogel’s early work on Evolutionary Programming culminated
in a book (co-authored with Owens and Walsh) that elaborated the
approach, focusing on the evolution of state machines for the prediction
of symbols in time series data [9].

Learn More

The field of Evolutionary Programming lay relatively dormant for 30
years until it was revived by Fogel’s son, David. Early works considered
the application of Evolutionary Programming to control systems [11],
and later function optimization (system identification) culminating in
a book on the approach [1], and David Fogel’s PhD dissertation [2].
Lawrence Fogel collaborated in the revival of the technique, including
reviews [7, 8] and extensions on what became the focus of the approach
on function optimization [4].

Yao et al. provide a seminal study of Evolutionary Programming
proposing an extension and racing it against the classical approach on a
large number of test problems [12]. Finally, Porto provides an excellent
contemporary overview of the field and the technique [10].

3.6.9 Bibliography

[1] D. B. Fogel. System Identification Through Simulated Evolution: A
Machine Learning Approach to Modeling. Needham Heights, 1991.

[2] D. B. Fogel. Evolving artificial intelligence. PhD thesis, University
of California, San Diego, CA, USA, 1992.

[3] D. B. Fogel. Evolutionary computation: Toward a new philosophy
of machine intelligence. IEEE Press, 1995.

[4] D. B. Fogel, L. J. Fogel, and J. W. Atmar. Meta-evolutionary
programming. In Proceedings 25th Asilomar Conf. Signals, Systems,
and Computers, pages 540–545, 1991.

130 Chapter 3. Evolutionary Algorithms

[5] L. J. Fogel. Autonomous automata. Industrial Research, 4:14–19,
1962.

[6] L. J. Fogel. On the Organization of Intellect. PhD thesis, UCLA,
1964.

[7] L. J. Fogel. The future of evolutionary programming. In Proceedings
of the Conference on Signals, Systems and Computers, 1990.

[8] L. J. Fogel. Computational Intelligence: Imitating Life, chapter
Evolutionary Programming in Perspective: the Top-down View,
pages 135–146. IEEE Press, 1994.

[9] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence
Through Simulated Evolution. Wiley, 1966.

[10] V. W. Porto. Evolutionary Computation 1: Basic Algorithms and
Operations, chapter 10: Evolutionary Programming, pages 89–102.
IoP Press, 2000.

[11] A. V. Sebald and D. B. Fogel. Design of SLAYR neural networks us-
ing evolutionary programming. In Proceedings of the 24th Asilomar
Conference on Signals, Systems and Computers, pages 1020–1024,
1990.

[12] X. Yao, Y. Liu, and G. Lin. Evolutionary programming made
faster. IEEE Transactions on Evolutionary Computation, 3(2):82–
102, 1999.

3.7. Grammatical Evolution 131

3.7 Grammatical Evolution

Grammatical Evolution, GE.

3.7.1 Taxonomy

Grammatical Evolution is a Global Optimization technique and an
instance of an Evolutionary Algorithm from the field of Evolutionary
Computation. It may also be considered an algorithm for Automatic
Programming. Grammatical Evolution is related to other Evolutionary
Algorithms for evolving programs such as Genetic Programming (Sec-
tion 3.3) and Gene Expression Programming (Section 3.8), as well as
the classical Genetic Algorithm that uses binary strings (Section 3.2).

3.7.2 Inspiration

The Grammatical Evolution algorithm is inspired by the biological
process used for generating a protein from genetic material as well as
the broader genetic evolutionary process. The genome is comprised of
DNA as a string of building blocks that are transcribed to RNA. RNA
codons are in turn translated into sequences of amino acids and used in
the protein. The resulting protein in its environment is the phenotype.

3.7.3 Metaphor

The phenotype is a computer program that is created from a binary
string-based genome. The genome is decoded into a sequence of integers
that are in turn mapped onto pre-defined rules that makeup the program.
The mapping from genotype to the phenotype is a one-to-many process
that uses a wrapping feature. This is like the biological process observed
in many bacteria, viruses, and mitochondria, where the same genetic
material is used in the expression of different genes. The mapping adds
robustness to the process both in the ability to adopt structure-agnostic
genetic operators used during the evolutionary process on the sub-
symbolic representation and the transcription of well-formed executable
programs from the representation.

3.7.4 Strategy

The objective of Grammatical Evolution is to adapt an executable
program to a problem specific objective function. This is achieved
through an iterative process with surrogates of evolutionary mechanisms
such as descent with variation, genetic mutation and recombination, and
genetic transcription and gene expression. A population of programs
are evolved in a sub-symbolic form as variable length binary strings

132 Chapter 3. Evolutionary Algorithms

and mapped to a symbolic and well-structured form as a context free
grammar for execution.

3.7.5 Procedure

A grammar is defined in Backus Normal Form (BNF), which is a context
free grammar expressed as a series of production rules comprised of
terminals and non-terminals. A variable-length binary string represen-
tation is used for the optimization process. Bits are read from the a
candidate solutions genome in blocks of 8 called a codon, and decoded
to an integer (in the range between 0 and 28 − 1). If the end of the
binary string is reached when reading integers, the reading process loops
back to the start of the string, effectively creating a circular genome.
The integers are mapped to expressions from the BNF until a complete
syntactically correct expression is formed. This may not use a solutions
entire genome, or use the decoded genome more than once given it’s
circular nature. Algorithm 3.7.1 provides a pseudocode listing of the
Grammatical Evolution algorithm for minimizing a cost function.

3.7.6 Heuristics

• Grammatical Evolution was designed to optimize programs (such
as mathematical equations) to specific cost functions.

• Classical genetic operators used by the Genetic Algorithm may
be used in the Grammatical Evolution algorithm, such as point
mutations and one-point crossover.

• Codons (groups of bits mapped to an integer) are commonly fixed
at 8 bits, proving a range of integers ∈ [0, 28 − 1] that is scaled to
the range of rules using a modulo function.

• Additional genetic operators may be used with variable-length
representations such as codon segments, duplication (add to the
end), number of codons selected at random, and deletion.

3.7.7 Code Listing

Listing 3.6 provides an example of the Grammatical Evolution algorithm
implemented in the Ruby Programming Language based on the version
described by O’Neill and Ryan [5]. The demonstration problem is an
instance of symbolic regression f(x) = x4 +x3 +x2 +x, where x ∈ [1, 10].
The grammar used in this problem is:

• Non-terminals: N = {expr, op, pre op}

• Terminals: T = {+,−,÷,×, x, 1.0}

3.7. Grammatical Evolution 133

Algorithm 3.7.1: Pseudocode for Grammatical Evolution.

Input: Grammar, Codonnumbits, Populationsize, Pcrossover,
Pmutation, Pdelete, Pduplicate

Output: Sbest
Population ← InitializePopulation(Populationsize,1

Codonnumbits);
foreach Si ∈ Population do2

Siintegers ← Decode(Sibitstring, Codonnumbits);3

Siprogram ← Map(Siintegers, Grammar);4

Sicost ← Execute(Siprogram);5

end6

Sbest ← GetBestSolution(Population);7

while ¬StopCondition() do8

Parents ← SelectParents(Population, Populationsize);9

Children ← ∅;10

foreach Parenti, Parentj ∈ Parents do11

Si ← Crossover(Parenti, Parentj, Pcrossover);12

Sibitstring ← CodonDeletion(Sibitstring, Pdelete);13

Sibitstring ← CodonDuplication(Sibitstring, Pduplicate);14

Sibitstring ← Mutate(Sibitstring, Pmutation);15

Children ← Si;16

end17

foreach Si ∈ Children do18

Siintegers ← Decode(Sibitstring, Codonnumbits);19

Siprogram ← Map(Siintegers, Grammar);20

Sicost ← Execute(Siprogram);21

end22

Sbest ← GetBestSolution(Children);23

Population ← Replace(Population, Children);24

end25

return Sbest;26

• Expression (program): S =<expr>

The production rules for the grammar in BNF are:

• <expr> ::= <expr><op><expr> , (<expr><op><expr>), <pre op>(<expr>),
<var>

• <op> ::= +,−,÷,×

• <var> ::= x, 1.0

The algorithm uses point mutation and a codon-respecting one-point
crossover operator. Binary tournament selection is used to determine the

134 Chapter 3. Evolutionary Algorithms

parent population’s contribution to the subsequent generation. Binary
strings are decoded to integers using an unsigned binary. Candidate
solutions are then mapped directly into executable Ruby code and
executed. A given candidate solution is evaluated by comparing its
output against the target function and taking the sum of the absolute
errors over a number of trials. The probabilities of point mutation, codon
deletion, and codon duplication are hard coded as relative probabilities
to each solution, although should be parameters of the algorithm. In
this case they are heuristically defined as 1.0

L , 0.5
NC and 1.0

NC respectively,
where L is the total number of bits, and NC is the number of codons
in a given candidate solution.

Solutions are evaluated by generating a number of random samples
from the domain and calculating the mean error of the program to
the expected outcome. Programs that contain a single term or those
that return an invalid (NaN) or infinite result are penalized with an
enormous error value. The implementation uses a maximum depth in
the expression tree, whereas traditionally such deep expression trees are
marked as invalid. Programs that resolve to a single expression that
returns the output are penalized.

1 def binary_tournament(pop)

2 i, j = rand(pop.size), rand(pop.size)

3 j = rand(pop.size) while j==i

4 return (pop[i][:fitness] < pop[j][:fitness]) ? pop[i] : pop[j]

5 end

6

7 def point_mutation(bitstring, rate=1.0/bitstring.size.to_f)

8 child = ""

9 bitstring.size.times do |i|

10 bit = bitstring[i].chr

11 child << ((rand()<rate) ? ((bit=='1') ? "0" : "1") : bit)

12 end

13 return child

14 end

15

16 def one_point_crossover(parent1, parent2, codon_bits, p_cross=0.30)

17 return ""+parent1[:bitstring] if rand()>=p_cross

18 cut = rand([parent1[:bitstring].size,

parent2[:bitstring].size].min/codon_bits)

19 cut *= codon_bits

20 p2size = parent2[:bitstring].size

21 return parent1[:bitstring][0...cut]+parent2[:bitstring][cut...p2size]

22 end

23

24 def codon_duplication(bitstring, codon_bits, rate=1.0/codon_bits.to_f)

25 return bitstring if rand() >= rate

26 codons = bitstring.size/codon_bits

27 return bitstring + bitstring[rand(codons)*codon_bits, codon_bits]

28 end

29

30 def codon_deletion(bitstring, codon_bits, rate=0.5/codon_bits.to_f)

31 return bitstring if rand() >= rate

3.7. Grammatical Evolution 135

32 codons = bitstring.size/codon_bits

33 off = rand(codons)*codon_bits

34 return bitstring[0...off] + bitstring[off+codon_bits...bitstring.size]

35 end

36

37 def reproduce(selected, pop_size, p_cross, codon_bits)

38 children = []

39 selected.each_with_index do |p1, i|

40 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

41 p2 = selected[0] if i == selected.size-1

42 child = {}

43 child[:bitstring] = one_point_crossover(p1, p2, codon_bits, p_cross)

44 child[:bitstring] = codon_deletion(child[:bitstring], codon_bits)

45 child[:bitstring] = codon_duplication(child[:bitstring], codon_bits)

46 child[:bitstring] = point_mutation(child[:bitstring])

47 children << child

48 break if children.size == pop_size

49 end

50 return children

51 end

52

53 def random_bitstring(num_bits)

54 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

55 end

56

57 def decode_integers(bitstring, codon_bits)

58 ints = []

59 (bitstring.size/codon_bits).times do |off|

60 codon = bitstring[off*codon_bits, codon_bits]

61 sum = 0

62 codon.size.times do |i|

63 sum += ((codon[i].chr=='1') ? 1 : 0) * (2 ** i);

64 end

65 ints << sum

66 end

67 return ints

68 end

69

70 def map(grammar, integers, max_depth)

71 done, offset, depth = false, 0, 0

72 symbolic_string = grammar["S"]

73 begin

74 done = true

75 grammar.keys.each do |key|

76 symbolic_string = symbolic_string.gsub(key) do |k|

77 done = false

78 set = (k=="EXP" && depth>=max_depth-1) ? grammar["VAR"] :

grammar[k]

79 integer = integers[offset].modulo(set.size)

80 offset = (offset==integers.size-1) ? 0 : offset+1

81 set[integer]

82 end

83 end

84 depth += 1

85 end until done

86 return symbolic_string

136 Chapter 3. Evolutionary Algorithms

87 end

88

89 def target_function(x)

90 return x**4.0 + x**3.0 + x**2.0 + x

91 end

92

93 def sample_from_bounds(bounds)

94 return bounds[0] + ((bounds[1] - bounds[0]) * rand())

95 end

96

97 def cost(program, bounds, num_trials=30)

98 return 9999999 if program.strip == "INPUT"

99 sum_error = 0.0

100 num_trials.times do

101 x = sample_from_bounds(bounds)

102 expression = program.gsub("INPUT", x.to_s)

103 begin score = eval(expression) rescue score = 0.0/0.0 end

104 return 9999999 if score.nan? or score.infinite?

105 sum_error += (score - target_function(x)).abs

106 end

107 return sum_error / num_trials.to_f

108 end

109

110 def evaluate(candidate, codon_bits, grammar, max_depth, bounds)

111 candidate[:integers] = decode_integers(candidate[:bitstring],

codon_bits)

112 candidate[:program] = map(grammar, candidate[:integers], max_depth)

113 candidate[:fitness] = cost(candidate[:program], bounds)

114 end

115

116 def search(max_gens, pop_size, codon_bits, num_bits, p_cross, grammar,

max_depth, bounds)

117 pop = Array.new(pop_size) {|i|

{:bitstring=>random_bitstring(num_bits)}}

118 pop.each{|c| evaluate(c,codon_bits, grammar, max_depth, bounds)}

119 best = pop.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

120 max_gens.times do |gen|

121 selected = Array.new(pop_size){|i| binary_tournament(pop)}

122 children = reproduce(selected, pop_size, p_cross,codon_bits)

123 children.each{|c| evaluate(c, codon_bits, grammar, max_depth,

bounds)}

124 children.sort!{|x,y| x[:fitness] <=> y[:fitness]}

125 best = children.first if children.first[:fitness] <= best[:fitness]

126 pop=(children+pop).sort{|x,y|

x[:fitness]<=>y[:fitness]}.first(pop_size)

127 puts " > gen=#{gen}, f=#{best[:fitness]}, s=#{best[:bitstring]}"

128 break if best[:fitness] == 0.0

129 end

130 return best

131 end

132

133 if __FILE__ == $0
134 # problem configuration

135 grammar = {"S"=>"EXP",

136 "EXP"=>[" EXP BINARY EXP ", " (EXP BINARY EXP) ", " VAR "],

137 "BINARY"=>["+", "-", "/", "*"],

3.7. Grammatical Evolution 137

138 "VAR"=>["INPUT", "1.0"]}

139 bounds = [1, 10]

140 # algorithm configuration

141 max_depth = 7

142 max_gens = 50

143 pop_size = 100

144 codon_bits = 4

145 num_bits = 10*codon_bits

146 p_cross = 0.30

147 # execute the algorithm

148 best = search(max_gens, pop_size, codon_bits, num_bits, p_cross,

grammar, max_depth, bounds)

149 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:program]}"

150 end

Listing 3.6: Grammatical Evolution in Ruby

3.7.8 References

Primary Sources

Grammatical Evolution was proposed by Ryan, Collins and O’Neill in a
seminal conference paper that applied the approach to a symbolic regres-
sion problem [7]. The approach was born out of the desire for syntax
preservation while evolving programs using the Genetic Programming
algorithm. This seminal work was followed by application papers for a
symbolic integration problem [2, 3] and solving trigonometric identities
[8].

Learn More

O’Neill and Ryan provide a high-level introduction to Grammatical
Evolution and early demonstration applications [4]. The same authors
provide a thorough introduction to the technique and overview of the
state of the field [5]. O’Neill and Ryan present a seminal reference
for Grammatical Evolution in their book [6]. A second more recent
book considers extensions to the approach improving its capability on
dynamic problems [1].

3.7.9 Bibliography

[1] I. Dempsey, M. O’Neill, and A. Brabazon. Foundations in Gram-
matical Evolution for Dynamic Environments. Springer, 2009.

[2] M. O’Neill and C. Ryan. Grammatical evolution: A steady state
approach. In Proceedings of the Second International Workshop on
Frontiers in Evolutionary Algorithms, pages 419–423, 1998.

138 Chapter 3. Evolutionary Algorithms

[3] M. O’Neill and C. Ryan. Grammatical evolution: A steady state
approach. In Late Breaking Papers at the Genetic Programming
1998 Conference, 1998.

[4] M. O’Neill and C. Ryan. Under the hood of grammatical evolu-
tion. In Proceedings of the Genetic and Evolutionary Computation
Conference, 1999.

[5] M. O’Neill and C. Ryan. Grammatical evolution. IEEE Transactions
on Evolutionary Computation, 5(4):349–358, 2001.

[6] M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary
Automatic Programming in an Arbitrary Language. Springer, 2003.

[7] C. Ryan, J. J. Collins, and M. O’Neill. Grammatical evolution:
Evolving programs for an arbitrary language. In Lecture Notes
in Computer Science 1391. First European Workshop on Genetic
Programming, 1998.

[8] C. Ryan, J. J. Collins, and M. O’Neill. Grammatical evolution:
Solving trigonometric identities. In Proceedings of Mendel 1998: 4th
International Mendel Conference on Genetic Algorithms, Optimisa-
tion Problems, Fuzzy Logic, Neural Networks, Rough Sets., pages
111–119, 1998.

3.8. Gene Expression Programming 139

3.8 Gene Expression Programming

Gene Expression Programming, GEP.

3.8.1 Taxonomy

Gene Expression Programming is a Global Optimization algorithm and
an Automatic Programming technique, and it is an instance of an Evo-
lutionary Algorithm from the field of Evolutionary Computation. It
is a sibling of other Evolutionary Algorithms such as a the Genetic
Algorithm (Section 3.2) as well as other Evolutionary Automatic Pro-
gramming techniques such as Genetic Programming (Section 3.3) and
Grammatical Evolution (Section 3.7).

3.8.2 Inspiration

Gene Expression Programming is inspired by the replication and expres-
sion of the DNA molecule, specifically at the gene level. The expression
of a gene involves the transcription of its DNA to RNA which in turn
forms amino acids that make up proteins in the phenotype of an organ-
ism. The DNA building blocks are subjected to mechanisms of variation
(mutations such as coping errors) as well as recombination during sexual
reproduction.

3.8.3 Metaphor

Gene Expression Programming uses a linear genome as the basis for
genetic operators such as mutation, recombination, inversion, and trans-
position. The genome is comprised of chromosomes and each chromo-
some is comprised of genes that are translated into an expression tree
to solve a given problem. The robust gene definition means that genetic
operators can be applied to the sub-symbolic representation without
concern for the structure of the resultant gene expression, providing
separation of genotype and phenotype.

3.8.4 Strategy

The objective of the Gene Expression Programming algorithm is to
improve the adaptive fit of an expressed program in the context of a
problem specific cost function. This is achieved through the use of an
evolutionary process that operates on a sub-symbolic representation of
candidate solutions using surrogates for the processes (descent with mod-
ification) and mechanisms (genetic recombination, mutation, inversion,
transposition, and gene expression) of evolution.

140 Chapter 3. Evolutionary Algorithms

3.8.5 Procedure

A candidate solution is represented as a linear string of symbols called
Karva notation or a K-expression, where each symbol maps to a function
or terminal node. The linear representation is mapped to an expression
tree in a breadth-first manner. A K-expression has fixed length and is
comprised of one or more sub-expressions (genes), which are also defined
with a fixed length. A gene is comprised of two sections, a head which
may contain any function or terminal symbols, and a tail section that
may only contain terminal symbols. Each gene will always translate
to a syntactically correct expression tree, where the tail portion of the
gene provides a genetic buffer which ensures closure of the expression.

Algorithm 3.8.1 provides a pseudocode listing of the Gene Expression
Programming algorithm for minimizing a cost function.

Algorithm 3.8.1: Pseudocode for GEP.

Input: Grammar, Populationsize, Headlength, Taillength,
Pcrossover, Pmutation

Output: Sbest
Population ← InitializePopulation(Populationsize, Grammar,1

Headlength, Taillength);
foreach Si ∈ Population do2

Siprogram ← DecodeBreadthFirst(Sigenome, Grammar);3

Sicost ← Execute(Siprogram);4

end5

Sbest ← GetBestSolution(Population);6

while ¬StopCondition() do7

Parents ← SelectParents(Population, Populationsize);8

Children ← ∅;9

foreach Parent1, Parent2 ∈ Parents do10

Sigenome ← Crossover(Parent1, Parent2, Pcrossover);11

Sigenome ← Mutate(Sigenome, Pmutation);12

Children ← Si;13

end14

foreach Si ∈ Children do15

Siprogram ← DecodeBreadthFirst(Sigenome, Grammar);16

Sicost ← Execute(Siprogram);17

end18

Population ← Replace(Population, Children);19

Sbest ← GetBestSolution(Children);20

end21

return Sbest;22

3.8. Gene Expression Programming 141

3.8.6 Heuristics

• The length of a chromosome is defined by the number of genes,
where a gene length is defined by h+ t. The h is a user defined
parameter (such as 10), and t is defined as t = h(n− 1) + 1, where
the n represents the maximum arity of functional nodes in the
expression (such as 2 if the arithmetic functions ×,÷,−,+ are
used).

• The mutation operator substitutes expressions along the genome,
although must respect the gene rules such that function and
terminal nodes are mutated in the head of genes, whereas only
terminal nodes are substituted in the tail of genes.

• Crossover occurs between two selected parents from the population
and can occur based on a one-point cross, two point cross, or a
gene-based approach where genes are selected from the parents
with uniform probability.

• An inversion operator may be used with a low probability that
reverses a small sequence of symbols (1-3) within a section of a
gene (tail or head).

• A transposition operator may be used that has a number of dif-
ferent modes, including: duplicate a small sequences (1-3) from
somewhere on a gene to the head, small sequences on a gene to the
root of the gene, and moving of entire genes in the chromosome.
In the case of intra-gene transpositions, the sequence in the head
of the gene is moved down to accommodate the copied sequence
and the length of the head is truncated to maintain consistent
gene sizes.

• A ‘?’ may be included in the terminal set that represents a
numeric constant from an array that is evolved on the end of
the genome. The constants are read from the end of the genome
and are substituted for ‘?’ as the expression tree is created (in
breadth first order). Finally the numeric constants are used as
array indices in yet another chromosome of numerical values which
are substituted into the expression tree.

• Mutation is low (such as 1
L), selection can be any of the classical

approaches (such as roulette wheel or tournament), and crossover
rates are typically high (0.7 of offspring)

• Use multiple sub-expressions linked together on hard problems
when one gene is not sufficient to address the problem. The sub-
expressions are linked using link expressions which are function

142 Chapter 3. Evolutionary Algorithms

nodes that are either statically defined (such as a conjunction) or
evolved on the genome with the genes.

3.8.7 Code Listing

Listing 3.7 provides an example of the Gene Expression Programming
algorithm implemented in the Ruby Programming Language based
on the seminal version proposed by Ferreira [1]. The demonstration
problem is an instance of symbolic regression f(x) = x4 + x3 + x2 + x,
where x ∈ [1, 10]. The grammar used in this problem is: Functions:
F = {+,−,÷,×, } and Terminals: T = {x}.

The algorithm uses binary tournament selection, uniform crossover
and point mutations. The K-expression is decoded to an expression
tree in a breadth-first manner, which is then parsed depth first as a
Ruby expression string for display and direct evaluation. Solutions are
evaluated by generating a number of random samples from the domain
and calculating the mean error of the program to the expected outcome.
Programs that contain a single term or those that return an invalid
(NaN) or infinite result are penalized with an enormous error value.

1 def binary_tournament(pop)

2 i, j = rand(pop.size), rand(pop.size)

3 return (pop[i][:fitness] < pop[j][:fitness]) ? pop[i] : pop[j]

4 end

5

6 def point_mutation(grammar, genome, head_length,

rate=1.0/genome.size.to_f)

7 child =""

8 genome.size.times do |i|

9 bit = genome[i].chr

10 if rand() < rate

11 if i < head_length

12 selection = (rand() < 0.5) ? grammar["FUNC"]: grammar["TERM"]

13 bit = selection[rand(selection.size)]

14 else

15 bit = grammar["TERM"][rand(grammar["TERM"].size)]

16 end

17 end

18 child << bit

19 end

20 return child

21 end

22

23 def crossover(parent1, parent2, rate)

24 return ""+parent1 if rand()>=rate

25 child = ""

26 parent1.size.times do |i|

27 child << ((rand()<0.5) ? parent1[i] : parent2[i])

28 end

29 return child

30 end

31

3.8. Gene Expression Programming 143

32 def reproduce(grammar, selected, pop_size, p_crossover, head_length)

33 children = []

34 selected.each_with_index do |p1, i|

35 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

36 p2 = selected[0] if i == selected.size-1

37 child = {}

38 child[:genome] = crossover(p1[:genome], p2[:genome], p_crossover)

39 child[:genome] = point_mutation(grammar, child[:genome],

head_length)

40 children << child

41 end

42 return children

43 end

44

45 def random_genome(grammar, head_length, tail_length)

46 s = ""

47 head_length.times do

48 selection = (rand() < 0.5) ? grammar["FUNC"]: grammar["TERM"]

49 s << selection[rand(selection.size)]

50 end

51 tail_length.times { s << grammar["TERM"][rand(grammar["TERM"].size)]}

52 return s

53 end

54

55 def target_function(x)

56 return x**4.0 + x**3.0 + x**2.0 + x

57 end

58

59 def sample_from_bounds(bounds)

60 return bounds[0] + ((bounds[1] - bounds[0]) * rand())

61 end

62

63 def cost(program, bounds, num_trials=30)

64 errors = 0.0

65 num_trials.times do

66 x = sample_from_bounds(bounds)

67 expression, score = program.gsub("x", x.to_s), 0.0

68 begin score = eval(expression) rescue score = 0.0/0.0 end

69 return 9999999 if score.nan? or score.infinite?

70 errors += (score - target_function(x)).abs

71 end

72 return errors / num_trials.to_f

73 end

74

75 def mapping(genome, grammar)

76 off, queue = 0, []

77 root = {}

78 root[:node] = genome[off].chr; off+=1

79 queue.push(root)

80 while !queue.empty? do

81 current = queue.shift

82 if grammar["FUNC"].include?(current[:node])

83 current[:left] = {}

84 current[:left][:node] = genome[off].chr; off+=1

85 queue.push(current[:left])

86 current[:right] = {}

144 Chapter 3. Evolutionary Algorithms

87 current[:right][:node] = genome[off].chr; off+=1

88 queue.push(current[:right])

89 end

90 end

91 return root

92 end

93

94 def tree_to_string(exp)

95 return exp[:node] if (exp[:left].nil? or exp[:right].nil?)

96 left = tree_to_string(exp[:left])

97 right = tree_to_string(exp[:right])

98 return "(#{left} #{exp[:node]} #{right})"

99 end

100

101 def evaluate(candidate, grammar, bounds)

102 candidate[:expression] = mapping(candidate[:genome], grammar)

103 candidate[:program] = tree_to_string(candidate[:expression])

104 candidate[:fitness] = cost(candidate[:program], bounds)

105 end

106

107 def search(grammar, bounds, h_length, t_length, max_gens, pop_size,

p_cross)

108 pop = Array.new(pop_size) do

109 {:genome=>random_genome(grammar, h_length, t_length)}

110 end

111 pop.each{|c| evaluate(c, grammar, bounds)}

112 best = pop.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

113 max_gens.times do |gen|

114 selected = Array.new(pop){|i| binary_tournament(pop)}

115 children = reproduce(grammar, selected, pop_size, p_cross, h_length)

116 children.each{|c| evaluate(c, grammar, bounds)}

117 children.sort!{|x,y| x[:fitness] <=> y[:fitness]}

118 best = children.first if children.first[:fitness] <= best[:fitness]

119 pop = (children+pop).first(pop_size)

120 puts " > gen=#{gen}, f=#{best[:fitness]}, g=#{best[:genome]}"

121 end

122 return best

123 end

124

125 if __FILE__ == $0
126 # problem configuration

127 grammar = {"FUNC"=>["+","-","*","/"], "TERM"=>["x"]}

128 bounds = [1.0, 10.0]

129 # algorithm configuration

130 h_length = 20

131 t_length = h_length * (2-1) + 1

132 max_gens = 150

133 pop_size = 80

134 p_cross = 0.85

135 # execute the algorithm

136 best = search(grammar, bounds, h_length, t_length, max_gens,

pop_size, p_cross)

137 puts "done! Solution: f=#{best[:fitness]}, program=#{best[:program]}"

138 end

Listing 3.7: Gene Expression Programming in Ruby

3.8. Gene Expression Programming 145

3.8.8 References

Primary Sources

The Gene Expression Programming algorithm was proposed by Ferreira
in a paper that detailed the approach, provided a careful walkthrough
of the process and operators, and demonstrated the the algorithm on a
number of benchmark problem instances including symbolic regression
[1].

Learn More

Ferreira provided an early and detailed introduction and overview of
the approach as book chapter, providing a step-by-step walkthrough of
the procedure and sample applications [2]. A more contemporary and
detailed introduction is provided in a later book chapter [3]. Ferreira
published a book on the approach in 2002 covering background, the
algorithm, and demonstration applications which is now in its second
edition [4].

3.8.9 Bibliography

[1] C. Ferreira. Gene expression programming: A new adaptive algo-
rithm for solving problems. Complex Systems, 13(2):87–129, 2001.

[2] C. Ferreira. Soft Computing and Industry: Recent Applications,
chapter Gene Expression Programming in Problem Solving, pages
635–654. Springer-Verlag, 2002.

[3] C. Ferreira. Recent Developments in Biologically Inspired Comput-
ing, chapter Gene Expression Programming and the Evolution of
computer programs, pages 82–103. Idea Group Publishing, 2005.

[4] C. Ferreira. Gene expression programming: Mathematical modeling
by an artificial intelligence. Springer-Verlag, second edition, 2006.

146 Chapter 3. Evolutionary Algorithms

3.9 Learning Classifier System

Learning Classifier System, LCS.

3.9.1 Taxonomy

The Learning Classifier System algorithm is both an instance of an
Evolutionary Algorithm from the field of Evolutionary Computation
and an instance of a Reinforcement Learning algorithm from Machine
Learning. Internally, Learning Classifier Systems make use of a Ge-
netic Algorithm (Section 3.2). The Learning Classifier System is a
theoretical system with a number of implementations. The two main
approaches to implementing and investigating the system empirically are
the Pittsburgh-style that seeks to optimize the whole classifier, and the
Michigan-style that optimize responsive rulesets. The Michigan-style
Learning Classifier is the most common and is comprised of two versions:
the ZCS (zeroth-level classifier system) and the XCS (accuracy-based
classifier system).

3.9.2 Strategy

The objective of the Learning Classifier System algorithm is to optimize
payoff based on exposure to stimuli from a problem-specific environment.
This is achieved by managing credit assignment for those rules that
prove useful and searching for new rules and new variations on existing
rules using an evolutionary process.

3.9.3 Procedure

The actors of the system include detectors, messages, effectors, feedback,
and classifiers. Detectors are used by the system to perceive the state of
the environment. Messages are the discrete information packets passed
from the detectors into the system. The system performs information
processing on messages, and messages may directly result in actions in
the environment. Effectors control the actions of the system on and
within the environment. In addition to the system actively perceiving via
its detections, it may also receive directed feedback from the environment
(payoff). Classifiers are condition-action rules that provide a filter for
messages. If a message satisfies the conditional part of the classifier,
the action of the classifier triggers. Rules act as message processors.
Message a fixed length bitstring. A classifier is defined as a ternary
string with an alphabet ∈ {1, 0,#}, where the # represents do not care
(matching either 1 or 0).

The processing loop for the Learning Classifier system is as follows:

1. Messages from the environment are placed on the message list.

3.9. Learning Classifier System 147

2. The conditions of each classifier are checked to see if they are
satisfied by at least one message in the message list.

3. All classifiers that are satisfied participate in a competition, those
that win post their action to the message list.

4. All messages directed to the effectors are executed (causing actions
in the environment).

5. All messages on the message list from the previous cycle are deleted
(messages persist for a single cycle).

The algorithm may be described in terms of the main processing
loop and two sub-algorithms: a reinforcement learning algorithm such
as the bucket brigade algorithm or Q-learning, and a genetic algorithm
for optimization of the system. Algorithm 3.9.1 provides a pseudocode
listing of the high-level processing loop of the Learning Classifier System,
specifically the XCS as described by Butz and Wilson [3].

3.9.4 Heuristics

The majority of the heuristics in this section are specific to the XCS
Learning Classifier System as described by Butz and Wilson [3].

• Learning Classifier Systems are suited for problems with the follow-
ing characteristics: perpetually novel events with significant noise,
continual real-time requirements for action, implicitly or inexactly
defined goals, and sparse payoff or reinforcement obtainable only
through long sequences of tasks.

• The learning rate β for a classifier’s expected payoff, error, and
fitness are typically in the range [0.1, 0.2].

• The frequency of running the genetic algorithm θGA should be in
the range [25, 50].

• The discount factor used in multi-step programs γ are typically in
the around 0.71.

• The minimum error whereby classifiers are considered to have
equal accuracy ε0 is typically 10% of the maximum reward.

• The probability of crossover in the genetic algorithm χ is typically
in the range [0.5, 1.0].

• The probability of mutating a single position in a classifier in the
genetic algorithm µ is typically in the range [0.01, 0.05].

148 Chapter 3. Evolutionary Algorithms

Algorithm 3.9.1: Pseudocode for the LCS.

Input: EnvironmentDetails
Output: Population
env ← InitializeEnvironment(EnvironmentDetails);1

Population ← InitializePopulation();2

ActionSett−1 ← ∅;3

Inputt−1 ← ∅;4

Rewardt−1 ← ∅;5

while ¬StopCondition() do6

Inputt ← env;7

Matchset ← GenerateMatchSet(Population, Inputt);8

Prediction ← GeneratePrediction(Matchset);9

Action ← SelectionAction(Prediction);10

ActionSett ← GenerateActionSet(Action, Matchset);11

Rewardt ← ExecuteAction(Action, env);12

if ActionSett−1 6= ∅ then13

Payofft ← CalculatePayoff(Rewardt−1, Prediction);14

PerformLearning(ActionSett−1, Payofft, Population);15

RunGeneticAlgorithm(ActionSett−1, Inputt−1,16

Population);
end17

if LastStepOfTask(env, Action) then18

Payofft ← Rewardt;19

PerformLearning(ActionSett, Payofft, Population);20

RunGeneticAlgorithm(ActionSett, Inputt, Population);21

ActionSett−1 ← ∅;22

else23

ActionSett−1 ← ActionSett;24

Inputt−1 ← Inputt;25

Rewardt−1 ← Rewardt;26

end27

end28

• The experience threshold during classifier deletion θdel is typically
about 20.

• The experience threshold for a classifier during subsumption θsub
is typically around 20.

• The initial values for a classifier’s expected payoff p1, error ε1, and
fitness f1 are typically small and close to zero.

• The probability of selecting a random action for the purposes of
exploration pexp is typically close to 0.5.

3.9. Learning Classifier System 149

• The minimum number of different actions that must be specified
in a match set θmna is usually the total number of possible actions
in the environment for the input.

• Subsumption should be used on problem domains that are known
contain well defined rules for mapping inputs to outputs.

3.9.5 Code Listing

Listing 3.8 provides an example of the Learning Classifier System algo-
rithm implemented in the Ruby Programming Language. The problem
is an instance of a Boolean multiplexer called the 6-multiplexer. It can
be described as a classification problem, where each of the 26 patterns
of bits is associated with a boolean class ∈ {1, 0}. For this problem
instance, the first two bits may be decoded as an address into the
remaining four bits that specify the class (for example in 100011, ‘10’
decode to the index of ‘2’ in the remaining 4 bits making the class
‘1’). In propositional logic this problem instance may be described as
F = (¬x0)(¬x1)x2 +(¬x0)x1x3 +x0(¬x1)x4 +x0x1x5. The algorithm is
an instance of XCS based on the description provided by Butz and Wil-
son [3] with the parameters based on the application of XCS to Boolean
multiplexer problems by Wilson [14, 15]. The population is grown as
needed, and subsumption which would be appropriate for the Boolean
multiplexer problem was not used for brevity. The multiplexer problem
is a single step problem, so the complexities of delayed payoff are not
required. A number of parameters were hard coded to recommended
values, specifically: α = 0.1, v = −0.5, δ = 0.1 and P# = 1

3 .

1 def neg(bit)

2 return (bit==1) ? 0 : 1

3 end

4

5 def target_function(s)

6 ints = Array.new(6){|i| s[i].chr.to_i}

7 x0,x1,x2,x3,x4,x5 = ints

8 return neg(x0)*neg(x1)*x2 + neg(x0)*x1*x3 + x0*neg(x1)*x4 + x0*x1*x5

9 end

10

11 def new_classifier(condition, action, gen, p1=10.0, e1=0.0, f1=10.0)

12 other = {}

13 other[:condition],other[:action],other[:lasttime] = condition,

action, gen

14 other[:pred], other[:error], other[:fitness] = p1, e1, f1

15 other[:exp], other[:setsize], other[:num] = 0.0, 1.0, 1.0

16 return other

17 end

18

19 def copy_classifier(parent)

20 copy = {}

21 parent.keys.each do |k|

150 Chapter 3. Evolutionary Algorithms

22 copy[k] = (parent[k].kind_of? String) ? ""+parent[k] : parent[k]

23 end

24 copy[:num],copy[:exp] = 1.0, 0.0

25 return copy

26 end

27

28 def random_bitstring(size=6)

29 return (0...size).inject(""){|s,i| s+((rand<0.5) ? "1" : "0")}

30 end

31

32 def calculate_deletion_vote(classifier, pop, del_thresh, f_thresh=0.1)

33 vote = classifier[:setsize] * classifier[:num]

34 total = pop.inject(0.0){|s,c| s+c[:num]}

35 avg_fitness = pop.inject(0.0){|s,c| s + (c[:fitness]/total)}

36 derated = classifier[:fitness] / classifier[:num].to_f

37 if classifier[:exp]>del_thresh and derated<(f_thresh*avg_fitness)

38 return vote * (avg_fitness / derated)

39 end

40 return vote

41 end

42

43 def delete_from_pop(pop, pop_size, del_thresh=20.0)

44 total = pop.inject(0) {|s,c| s+c[:num]}

45 return if total <= pop_size

46 pop.each {|c| c[:dvote] = calculate_deletion_vote(c, pop, del_thresh)}

47 vote_sum = pop.inject(0.0) {|s,c| s+c[:dvote]}

48 point = rand() * vote_sum

49 vote_sum, index = 0.0, 0

50 pop.each_with_index do |c,i|

51 vote_sum += c[:dvote]

52 if vote_sum >= point

53 index = i

54 break

55 end

56 end

57 if pop[index][:num] > 1

58 pop[index][:num] -= 1

59 else

60 pop.delete_at(index)

61 end

62 end

63

64 def generate_random_classifier(input, actions, gen, rate=1.0/3.0)

65 condition = ""

66 input.size.times {|i| condition << ((rand<rate) ? '#' : input[i].chr)}

67 action = actions[rand(actions.size)]

68 return new_classifier(condition, action, gen)

69 end

70

71 def does_match?(input, condition)

72 input.size.times do |i|

73 return false if condition[i].chr!='#' and

input[i].chr!=condition[i].chr

74 end

75 return true

76 end

3.9. Learning Classifier System 151

77

78 def get_actions(pop)

79 actions = []

80 pop.each do |c|

81 actions << c[:action] if !actions.include?(c[:action])

82 end

83 return actions

84 end

85

86 def generate_match_set(input, pop, all_actions, gen, pop_size)

87 match_set = pop.select{|c| does_match?(input, c[:condition])}

88 actions = get_actions(match_set)

89 while actions.size < all_actions.size do

90 remaining = all_actions - actions

91 classifier = generate_random_classifier(input, remaining, gen)

92 pop << classifier

93 match_set << classifier

94 delete_from_pop(pop, pop_size)

95 actions << classifier[:action]

96 end

97 return match_set

98 end

99

100 def generate_prediction(match_set)

101 pred = {}

102 match_set.each do |classifier|

103 key = classifier[:action]

104 pred[key] = {:sum=>0.0,:count=>0.0,:weight=>0.0} if pred[key].nil?

105 pred[key][:sum] += classifier[:pred]*classifier[:fitness]

106 pred[key][:count] += classifier[:fitness]

107 end

108 pred.keys.each do |key|

109 pred[key][:weight] = 0.0

110 if pred[key][:count] > 0

111 pred[key][:weight] = pred[key][:sum]/pred[key][:count]

112 end

113 end

114 return pred

115 end

116

117 def select_action(predictions, p_explore=false)

118 keys = Array.new(predictions.keys)

119 return keys[rand(keys.size)] if p_explore

120 keys.sort!{|x,y| predictions[y][:weight]<=>predictions[x][:weight]}

121 return keys.first

122 end

123

124 def update_set(action_set, reward, beta=0.2)

125 sum = action_set.inject(0.0) {|s,other| s+other[:num]}

126 action_set.each do |c|

127 c[:exp] += 1.0

128 if c[:exp] < 1.0/beta

129 c[:error] =

(c[:error]*(c[:exp]-1.0)+(reward-c[:pred]).abs)/c[:exp]

130 c[:pred] = (c[:pred] * (c[:exp]-1.0) + reward) / c[:exp]

131 c[:setsize] = (c[:setsize]*(c[:exp]-1.0)+sum) / c[:exp]

152 Chapter 3. Evolutionary Algorithms

132 else

133 c[:error] += beta * ((reward-c[:pred]).abs - c[:error])

134 c[:pred] += beta * (reward-c[:pred])

135 c[:setsize] += beta * (sum - c[:setsize])

136 end

137 end

138 end

139

140 def update_fitness(action_set, min_error=10, l_rate=0.2, alpha=0.1,

v=-5.0)

141 sum = 0.0

142 acc = Array.new(action_set.size)

143 action_set.each_with_index do |c,i|

144 acc[i] = (c[:error]<min_error) ? 1.0 :

alpha*(c[:error]/min_error)**v

145 sum += acc[i] * c[:num].to_f

146 end

147 action_set.each_with_index do |c,i|

148 c[:fitness] += l_rate * ((acc[i] * c[:num].to_f) / sum -

c[:fitness])

149 end

150 end

151

152 def can_run_genetic_algorithm(action_set, gen, ga_freq)

153 return false if action_set.size <= 2

154 total = action_set.inject(0.0) {|s,c| s+c[:lasttime]*c[:num]}

155 sum = action_set.inject(0.0) {|s,c| s+c[:num]}

156 return true if gen - (total/sum) > ga_freq

157 return false

158 end

159

160 def binary_tournament(pop)

161 i, j = rand(pop.size), rand(pop.size)

162 j = rand(pop.size) while j==i

163 return (pop[i][:fitness] > pop[j][:fitness]) ? pop[i] : pop[j]

164 end

165

166 def mutation(cl, action_set, input, rate=0.04)

167 cl[:condition].size.times do |i|

168 if rand() < rate

169 cl[:condition][i] = (cl[:condition][i].chr=='#') ? input[i] : '#'
170 end

171 end

172 if rand() < rate

173 subset = action_set - [cl[:action]]

174 cl[:action] = subset[rand(subset.size)]

175 end

176 end

177

178 def uniform_crossover(parent1, parent2)

179 child = ""

180 parent1.size.times do |i|

181 child << ((rand()<0.5) ? parent1[i].chr : parent2[i].chr)

182 end

183 return child

184 end

3.9. Learning Classifier System 153

185

186 def insert_in_pop(cla, pop)

187 pop.each do |c|

188 if cla[:condition]==c[:condition] and cla[:action]==c[:action]

189 c[:num] += 1

190 return

191 end

192 end

193 pop << cla

194 end

195

196 def crossover(c1, c2, p1, p2)

197 c1[:condition] = uniform_crossover(p1[:condition], p2[:condition])

198 c2[:condition] = uniform_crossover(p1[:condition], p2[:condition])

199 c2[:pred] = c1[:pred] = (p1[:pred]+p2[:pred])/2.0

200 c2[:error] = c1[:error] = 0.25*(p1[:error]+p2[:error])/2.0

201 c2[:fitness] = c1[:fitness] = 0.1*(p1[:fitness]+p2[:fitness])/2.0

202 end

203

204 def run_ga(actions, pop, action_set, input, gen, pop_size, crate=0.8)

205 p1, p2 = binary_tournament(action_set), binary_tournament(action_set)

206 c1, c2 = copy_classifier(p1), copy_classifier(p2)

207 crossover(c1, c2, p1, p2) if rand() < crate

208 [c1,c2].each do |c|

209 mutation(c, actions, input)

210 insert_in_pop(c, pop)

211 end

212 while pop.inject(0) {|s,c| s+c[:num]} > pop_size

213 delete_from_pop(pop, pop_size)

214 end

215 end

216

217 def train_model(pop_size, max_gens, actions, ga_freq)

218 pop, perf = [], []

219 max_gens.times do |gen|

220 explore = gen.modulo(2)==0

221 input = random_bitstring()

222 match_set = generate_match_set(input, pop, actions, gen, pop_size)

223 pred_array = generate_prediction(match_set)

224 action = select_action(pred_array, explore)

225 reward = (target_function(input)==action.to_i) ? 1000.0 : 0.0

226 if explore

227 action_set = match_set.select{|c| c[:action]==action}

228 update_set(action_set, reward)

229 update_fitness(action_set)

230 if can_run_genetic_algorithm(action_set, gen, ga_freq)

231 action_set.each {|c| c[:lasttime] = gen}

232 run_ga(actions, pop, action_set, input, gen, pop_size)

233 end

234 else

235 e,a = (pred_array[action][:weight]-reward).abs,

((reward==1000.0)?1:0)

236 perf << {:error=>e,:correct=>a}

237 if perf.size >= 50

238 err = (perf.inject(0){|s,x|s+x[:error]}/perf.size).round

239 acc = perf.inject(0.0){|s,x|s+x[:correct]}/perf.size

154 Chapter 3. Evolutionary Algorithms

240 puts " >iter=#{gen+1} size=#{pop.size}, error=#{err}, acc=#{acc}"

241 perf = []

242 end

243 end

244 end

245 return pop

246 end

247

248 def test_model(system, num_trials=50)

249 correct = 0

250 num_trials.times do

251 input = random_bitstring()

252 match_set = system.select{|c| does_match?(input, c[:condition])}

253 pred_array = generate_prediction(match_set)

254 action = select_action(pred_array, false)

255 correct += 1 if target_function(input) == action.to_i

256 end

257 puts "Done! classified correctly=#{correct}/#{num_trials}"

258 return correct

259 end

260

261 def execute(pop_size, max_gens, actions, ga_freq)

262 system = train_model(pop_size, max_gens, actions, ga_freq)

263 test_model(system)

264 return system

265 end

266

267 if __FILE__ == $0
268 # problem configuration

269 all_actions = ['0', '1']
270 # algorithm configuration

271 max_gens, pop_size = 5000, 200

272 ga_freq = 25

273 # execute the algorithm

274 execute(pop_size, max_gens, all_actions, ga_freq)

275 end

Listing 3.8: Learning Classifier System in Ruby

3.9.6 References

Primary Sources

Early ideas on the theory of Learning Classifier Systems were proposed
by Holland [4, 7], culminating in a standardized presentation a few years
later [5]. A number of implementations of the theoretical system were
investigated, although a taxonomy of the two main streams was proposed
by De Jong [9]: 1) Pittsburgh-style proposed by Smith [11, 12] and
2) Holland-style or Michigan-style Learning classifiers that are further
comprised of the Zeroth-level classifier (ZCS) [13] and the accuracy-based
classifier (XCS) [14].

3.9. Learning Classifier System 155

Learn More

Booker, Goldberg, and Holland provide a classical introduction to Learn-
ing Classifier Systems including an overview of the state of the field
and the algorithm in detail [1]. Wilson and Goldberg also provide an
introduction and review of the approach, taking a more critical stance
[16]. Holmes et al. provide a contemporary review of the field focusing
both on a description of the method and application areas to which
the approach has been demonstrated successfully [8]. Lanzi, Stolzmann,
and Wilson provide a seminal book in the field as a collection of papers
covering the basics, advanced topics, and demonstration applications;
a particular highlight from this book is the first section that provides
a concise description of Learning Classifier Systems by many leaders
and major contributors to the field [6], providing rare insight. Another
paper from Lanzi and Riolo’s book provides a detailed review of the
development of the approach as it matured throughout the 1990s [10].
Bull and Kovacs provide a second book introductory book to the field
focusing on the theory of the approach and its practical application [2].

3.9.7 Bibliography

[1] L. B. Booker, D. E. Goldberg, and J. H. Holland. Classifier systems
and genetic algorithms. Artificial Intelligence, 40:235–282, 1989.

[2] L. Bull and T. Kovacs. Foundations of learning classifier systems.
Springer, 2005.

[3] M. V. Butz and S. W. Wilson. An algorithmic description of XCS.
Journal of Soft Computing, 6(3–4):144–153, 2002.

[4] J. H. Holland. Progress in Theoretical Biology IV, chapter Adapta-
tion, pages 263–293. Academic Press, 1976.

[5] J. H. Holland. Adaptive algorithms for discovering and using
general patterns in growing knowledge-bases. International Journal
of Policy Analysis and Information Systems, 4:217–240, 1980.

[6] J. H. Holland, L. B. Booker, M. Colombetti, M. Dorigo, D. E. Gold-
berg, S. Forrest, R. L. Riolo, R. E. Smith, P. L. Lanzi, W. Stolzmann,
and S. W. Wilson. Learning classifier systems: from foundations to
applications, chapter What is a learning classifier system?, pages
3–32. Springer, 2000.

[7] J. H. Holland and J. S. Reitman. Cognitive systems based on
adaptive algorithms. ACM SIGART Bulletin, 63:49, 1977.

[8] J. H. Holmes, P. L. Lanzi, W. Stolzmann, and S. W. Wilson.
Learning classifier systems: New models, successful applications.
Information Processing Letters, 82:23–30, 2002.

156 Chapter 3. Evolutionary Algorithms

[9] K. De Jong. Learning with genetic algorithms: An overview. Ma-
chine Learning, 3:121–138, 1988.

[10] P. L. Lanzi and R. L. Riolo. Learning classifier systems: from
foundations to applications, chapter A Roadmap to the Last Decade
of Learning Classifier System Research, pages 33–62. Springer, 2000.

[11] S. Smith. Flexible learning of problem solving heuristics through
adaptive search. In Proceedings 8th International Joint Conference
on Artificial Intelligence, pages 422–425, 1983.

[12] S. F. Smith. A learning system based on genetic adaptive algo-
rithms. PhD thesis, Department of Computer Science, University
of Pittsburgh, 1980.

[13] S. W. Wilson. ZCS: A zeroth level classifier systems. Evolutionary
Computation, 2:1–18, 1994.

[14] S. W. Wilson. Classifier fitness based on accuracy. Evolutionary
Computation, 3:149–175, 1995.

[15] S. W. Wilson. Generalization in the XCS classifier systems. In
Genetic Programming 1998: Proceedings of the Third Annual Con-
ference, pages 665–674. Morgan Kaufmann, 1998.

[16] S. W. Wilson and D. E. Goldberg. A critical review of classifier
systems. In Proceedings of the third international conference on
Genetic algorithms, pages 244–255, 1989.

3.10. Non-dominated Sorting Genetic Algorithm 157

3.10 Non-dominated Sorting Genetic Algo-
rithm

Non-dominated Sorting Genetic Algorithm, Nondominated Sorting Ge-
netic Algorithm, Fast Elitist Non-dominated Sorting Genetic Algorithm,
NSGA, NSGA-II, NSGAII.

3.10.1 Taxonomy

The Non-dominated Sorting Genetic Algorithm is a Multiple Objective
Optimization (MOO) algorithm and is an instance of an Evolutionary
Algorithm from the field of Evolutionary Computation. Refer to Sec-
tion 9.5.3 for more information and references on Multiple Objective
Optimization. NSGA is an extension of the Genetic Algorithm for mul-
tiple objective function optimization (Section 3.2). It is related to other
Evolutionary Multiple Objective Optimization Algorithms (EMOO) (or
Multiple Objective Evolutionary Algorithms MOEA) such as the Vector-
Evaluated Genetic Algorithm (VEGA), Strength Pareto Evolutionary
Algorithm (SPEA) (Section 3.11), and Pareto Archived Evolution Strat-
egy (PAES). There are two versions of the algorithm, the classical NSGA
and the updated and currently canonical form NSGA-II.

3.10.2 Strategy

The objective of the NSGA algorithm is to improve the adaptive fit
of a population of candidate solutions to a Pareto front constrained
by a set of objective functions. The algorithm uses an evolutionary
process with surrogates for evolutionary operators including selection,
genetic crossover, and genetic mutation. The population is sorted into a
hierarchy of sub-populations based on the ordering of Pareto dominance.
Similarity between members of each sub-group is evaluated on the
Pareto front, and the resulting groups and similarity measures are used
to promote a diverse front of non-dominated solutions.

3.10.3 Procedure

Algorithm 3.10.1 provides a pseudocode listing of the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) for minimizing a cost function.
The SortByRankAndDistance function orders the population into a
hierarchy of non-dominated Pareto fronts. The CrowdingDistance-

Assignment calculates the average distance between members of each
front on the front itself. Refer to Deb et al. for a clear presentation of
the Pseudocode and explanation of these functions [4]. The Crossover-

AndMutation function performs the classical crossover and mutation

158 Chapter 3. Evolutionary Algorithms

genetic operators of the Genetic Algorithm. Both the SelectParentsBy-
RankAndDistance and SortByRankAndDistance functions discriminate
members of the population first by rank (order of dominated precedence
of the front to which the solution belongs) and then distance within the
front (calculated by CrowdingDistanceAssignment).

3.10.4 Heuristics

• NSGA was designed for and is suited to continuous function
multiple objective optimization problem instances.

• A binary representation can be used in conjunction with classical
genetic operators such as one-point crossover and point mutation.

• A real-valued representation is recommended for continuous func-
tion optimization problems, in turn requiring representation spe-
cific genetic operators such as Simulated Binary Crossover (SBX)
and polynomial mutation [2].

3.10.5 Code Listing

Listing 3.9 provides an example of the Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II) implemented in the Ruby Programming
Language. The demonstration problem is an instance of continuous
multiple objective function optimization called SCH (problem one in [4]).
The problem seeks the minimum of two functions: f1 =

∑n
i=1 x

2
i and

f2 =
∑n
i=1(xi − 2)2, −10 ≤ xi ≤ 10 and n = 1. The optimal solution

for this function are x ∈ [0, 2]. The algorithm is an implementation of
NSGA-II based on the presentation by Deb et al. [4]. The algorithm
uses a binary string representation (16 bits per objective function pa-
rameter) that is decoded and rescaled to the function domain. The
implementation uses a uniform crossover operator and point mutations
with a fixed mutation rate of 1

L , where L is the number of bits in a
solution’s binary string.

1 def objective1(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x**2.0)}

3 end

4

5 def objective2(vector)

6 return vector.inject(0.0) {|sum, x| sum + ((x-2.0)**2.0)}

7 end

8

9 def decode(bitstring, search_space, bits_per_param)

10 vector = []

11 search_space.each_with_index do |bounds, i|

12 off, sum = i*bits_per_param, 0.0

13 param = bitstring[off...(off+bits_per_param)].reverse

14 param.size.times do |j|

3.10. Non-dominated Sorting Genetic Algorithm 159

Algorithm 3.10.1: Pseudocode for NSGAII.

Input: Populationsize, ProblemSize, Pcrossover, Pmutation
Output: Children
Population ← InitializePopulation(Populationsize,1

ProblemSize);
EvaluateAgainstObjectiveFunctions(Population);2

FastNondominatedSort(Population);3

Selected ← SelectParentsByRank(Population, Populationsize);4

Children ← CrossoverAndMutation(Selected, Pcrossover,5

Pmutation);
while ¬StopCondition() do6

EvaluateAgainstObjectiveFunctions(Children);7

Union ← Merge(Population, Children);8

Fronts ← FastNondominatedSort(Union);9

Parents ← ∅;10

FrontL ← ∅;11

foreach Fronti ∈ Fronts do12

CrowdingDistanceAssignment(Fronti);13

if Size(Parents)+Size(Fronti) > Populationsize then14

FrontL ← i;15

Break();16

else17

Parents ← Merge(Parents, Fronti);18

end19

end20

if Size(Parents)<Populationsize then21

FrontL ← SortByRankAndDistance(FrontL);22

for P1 to PPopulationsize−Size(FrontL) do23

Parents ← Pi;24

end25

end26

Selected ← SelectParentsByRankAndDistance(Parents,27

Populationsize);
Population ← Children;28

Children ← CrossoverAndMutation(Selected, Pcrossover,29

Pmutation);
end30

return Children;31

15 sum += ((param[j].chr=='1') ? 1.0 : 0.0) * (2.0 ** j.to_f)

16 end

17 min, max = bounds

18 vector << min + ((max-min)/((2.0**bits_per_param.to_f)-1.0)) * sum

160 Chapter 3. Evolutionary Algorithms

19 end

20 return vector

21 end

22

23 def random_bitstring(num_bits)

24 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

25 end

26

27 def point_mutation(bitstring, rate=1.0/bitstring.size)

28 child = ""

29 bitstring.size.times do |i|

30 bit = bitstring[i].chr

31 child << ((rand()<rate) ? ((bit=='1') ? "0" : "1") : bit)

32 end

33 return child

34 end

35

36 def crossover(parent1, parent2, rate)

37 return ""+parent1 if rand()>=rate

38 child = ""

39 parent1.size.times do |i|

40 child << ((rand()<0.5) ? parent1[i].chr : parent2[i].chr)

41 end

42 return child

43 end

44

45 def reproduce(selected, pop_size, p_cross)

46 children = []

47 selected.each_with_index do |p1, i|

48 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

49 p2 = selected[0] if i == selected.size-1

50 child = {}

51 child[:bitstring] = crossover(p1[:bitstring], p2[:bitstring],

p_cross)

52 child[:bitstring] = point_mutation(child[:bitstring])

53 children << child

54 break if children.size >= pop_size

55 end

56 return children

57 end

58

59 def calculate_objectives(pop, search_space, bits_per_param)

60 pop.each do |p|

61 p[:vector] = decode(p[:bitstring], search_space, bits_per_param)

62 p[:objectives] = [objective1(p[:vector]), objective2(p[:vector])]

63 end

64 end

65

66 def dominates(p1, p2)

67 p1[:objectives].each_index do |i|

68 return false if p1[:objectives][i] > p2[:objectives][i]

69 end

70 return true

71 end

72

73 def fast_nondominated_sort(pop)

3.10. Non-dominated Sorting Genetic Algorithm 161

74 fronts = Array.new(1){[]}

75 pop.each do |p1|

76 p1[:dom_count], p1[:dom_set] = 0, []

77 pop.each do |p2|

78 if dominates(p1, p2)

79 p1[:dom_set] << p2

80 elsif dominates(p2, p1)

81 p1[:dom_count] += 1

82 end

83 end

84 if p1[:dom_count] == 0

85 p1[:rank] = 0

86 fronts.first << p1

87 end

88 end

89 curr = 0

90 begin

91 next_front = []

92 fronts[curr].each do |p1|

93 p1[:dom_set].each do |p2|

94 p2[:dom_count] -= 1

95 if p2[:dom_count] == 0

96 p2[:rank] = (curr+1)

97 next_front << p2

98 end

99 end

100 end

101 curr += 1

102 fronts << next_front if !next_front.empty?

103 end while curr < fronts.size

104 return fronts

105 end

106

107 def calculate_crowding_distance(pop)

108 pop.each {|p| p[:dist] = 0.0}

109 num_obs = pop.first[:objectives].size

110 num_obs.times do |i|

111 min = pop.min{|x,y| x[:objectives][i]<=>y[:objectives][i]}

112 max = pop.max{|x,y| x[:objectives][i]<=>y[:objectives][i]}

113 rge = max[:objectives][i] - min[:objectives][i]

114 pop.first[:dist], pop.last[:dist] = 1.0/0.0, 1.0/0.0

115 next if rge == 0.0

116 (1...(pop.size-1)).each do |j|

117 pop[j][:dist]+=(pop[j+1][:objectives][i]-pop[j-1][:objectives][i])/rge

118 end

119 end

120 end

121

122 def crowded_comparison_operator(x,y)

123 return y[:dist]<=>x[:dist] if x[:rank] == y[:rank]

124 return x[:rank]<=>y[:rank]

125 end

126

127 def better(x,y)

128 if !x[:dist].nil? and x[:rank] == y[:rank]

129 return (x[:dist]>y[:dist]) ? x : y

162 Chapter 3. Evolutionary Algorithms

130 end

131 return (x[:rank]<y[:rank]) ? x : y

132 end

133

134 def select_parents(fronts, pop_size)

135 fronts.each {|f| calculate_crowding_distance(f)}

136 offspring, last_front = [], 0

137 fronts.each do |front|

138 break if (offspring.size+front.size) > pop_size

139 front.each {|p| offspring << p}

140 last_front += 1

141 end

142 if (remaining = pop_size-offspring.size) > 0

143 fronts[last_front].sort! {|x,y| crowded_comparison_operator(x,y)}

144 offspring += fronts[last_front][0...remaining]

145 end

146 return offspring

147 end

148

149 def weighted_sum(x)

150 return x[:objectives].inject(0.0) {|sum, x| sum+x}

151 end

152

153 def search(search_space, max_gens, pop_size, p_cross, bits_per_param=16)

154 pop = Array.new(pop_size) do |i|

155 {:bitstring=>random_bitstring(search_space.size*bits_per_param)}

156 end

157 calculate_objectives(pop, search_space, bits_per_param)

158 fast_nondominated_sort(pop)

159 selected = Array.new(pop_size) do

160 better(pop[rand(pop_size)], pop[rand(pop_size)])

161 end

162 children = reproduce(selected, pop_size, p_cross)

163 calculate_objectives(children, search_space, bits_per_param)

164 max_gens.times do |gen|

165 union = pop + children

166 fronts = fast_nondominated_sort(union)

167 parents = select_parents(fronts, pop_size)

168 selected = Array.new(pop_size) do

169 better(parents[rand(pop_size)], parents[rand(pop_size)])

170 end

171 pop = children

172 children = reproduce(selected, pop_size, p_cross)

173 calculate_objectives(children, search_space, bits_per_param)

174 best = parents.sort!{|x,y| weighted_sum(x)<=>weighted_sum(y)}.first

175 best_s = "[x=#{best[:vector]}, objs=#{best[:objectives].join(',
')}]"

176 puts " > gen=#{gen+1}, fronts=#{fronts.size}, best=#{best_s}"

177 end

178 union = pop + children

179 fronts = fast_nondominated_sort(union)

180 parents = select_parents(fronts, pop_size)

181 return parents

182 end

183

184 if __FILE__ == $0

3.10. Non-dominated Sorting Genetic Algorithm 163

185 # problem configuration

186 problem_size = 1

187 search_space = Array.new(problem_size) {|i| [-10, 10]}

188 # algorithm configuration

189 max_gens = 50

190 pop_size = 100

191 p_cross = 0.98

192 # execute the algorithm

193 pop = search(search_space, max_gens, pop_size, p_cross)

194 puts "done!"

195 end

Listing 3.9: NSGA-II in Ruby

3.10.6 References

Primary Sources

Srinivas and Deb proposed the NSGA inspired by Goldberg’s notion
of a non-dominated sorting procedure [6]. Goldberg proposed a non-
dominated sorting procedure in his book in considering the biases in
the Pareto optimal solutions provided by VEGA [5]. Srinivas and Deb’s
NSGA used the sorting procedure as a ranking selection method, and
a fitness sharing niching method to maintain stable sub-populations
across the Pareto front. Deb et al. later extended NSGA to address
three criticism of the approach: the O(mN3) time complexity, the lack
of elitism, and the need for a sharing parameter for the fitness sharing
niching method [3, 4].

Learn More

Deb provides in depth coverage of Evolutionary Multiple Objective
Optimization algorithms in his book, including a detailed description of
the NSGA in Chapter 5 [1].

3.10.7 Bibliography

[1] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley and Sons, 2001.

[2] K. Deb and R. B. Agrawal. Simulated binary crossover for continuous
search space. Complex Systems, 9:115–148, 1995.

[3] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non–
dominated sorting genetic algorithm for multi–objective optimization:
NSGA–II. Parallel Problem Solving from Nature PPSN VI, 1917:849–
858, 2000.

164 Chapter 3. Evolutionary Algorithms

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA–II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[5] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[6] N. Srinivas and K. Deb. Muiltiobjective optimization using non-
dominated sorting in genetic algorithms. Evolutionary Computation,
2(3):221–248, 1994.

3.11. Strength Pareto Evolutionary Algorithm 165

3.11 Strength Pareto Evolutionary Algorithm

Strength Pareto Evolutionary Algorithm, SPEA, SPEA2.

3.11.1 Taxonomy

Strength Pareto Evolutionary Algorithm is a Multiple Objective Opti-
mization (MOO) algorithm and an Evolutionary Algorithm from the
field of Evolutionary Computation. It belongs to the field of Evolution-
ary Multiple Objective (EMO) algorithms. Refer to Section 9.5.3 for
more information and references on Multiple Objective Optimization.
Strength Pareto Evolutionary Algorithm is an extension of the Genetic
Algorithm for multiple objective optimization problems (Section 3.2).
It is related to sibling Evolutionary Algorithms such as Non-dominated
Sorting Genetic Algorithm (NSGA) (Section 3.10), Vector-Evaluated
Genetic Algorithm (VEGA), and Pareto Archived Evolution Strategy
(PAES). There are two versions of SPEA, the original SPEA algorithm
and the extension SPEA2. Additional extensions include SPEA+ and
iSPEA.

3.11.2 Strategy

The objective of the algorithm is to locate and and maintain a front of
non-dominated solutions, ideally a set of Pareto optimal solutions. This
is achieved by using an evolutionary process (with surrogate procedures
for genetic recombination and mutation) to explore the search space,
and a selection process that uses a combination of the degree to which a
candidate solution is dominated (strength) and an estimation of density
of the Pareto front as an assigned fitness. An archive of the non-
dominated set is maintained separate from the population of candidate
solutions used in the evolutionary process, providing a form of elitism.

3.11.3 Procedure

Algorithm 3.11.1 provides a pseudocode listing of the Strength Pareto
Evolutionary Algorithm 2 (SPEA2) for minimizing a cost function. The
CalculateRawFitness function calculates the raw fitness as the sum of
the strength values of the solutions that dominate a given candidate,
where strength is the number of solutions that a give solution dominate.
The CandidateDensity function estimates the density of an area of the
Pareto front as 1.0

σk+2
where σk is the Euclidean distance of the objective

values between a given solution the kth nearest neighbor of the solution,
and k is the square root of the size of the population and archive com-
bined. The PopulateWithRemainingBest function iteratively fills the
archive with the remaining candidate solutions in order of fitness. The

166 Chapter 3. Evolutionary Algorithms

RemoveMostSimilar function truncates the archive population removing
those members with the smallest σk values as calculated against the
archive. The SelectParents function selects parents from a population
using a Genetic Algorithm selection method such as binary tournament
selection. The CrossoverAndMutation function performs the crossover
and mutation genetic operators from the Genetic Algorithm.

Algorithm 3.11.1: Pseudocode for SPEA2.

Input: Populationsize, Archivesize, ProblemSize, Pcrossover,
Pmutation

Output: Archive
Population ← InitializePopulation(Populationsize,1

ProblemSize);
Archive ← ∅;2

while ¬StopCondition() do3

for Si ∈ Population do4

Siobjectives ← CalculateObjectives(Si);5

end6

Union ← Population + Archive;7

for Si ∈ Union do8

Siraw ← CalculateRawFitness(Si, Union);9

Sidensity ← CalculateSolutionDensity(Si, Union);10

Sifitness ← Siraw + Sidensity;11

end12

Archive ← GetNonDominated(Union);13

if Size(Archive) < Archivesize then14

PopulateWithRemainingBest(Union, Archive,15

Archivesize);
else if Size(Archive) > Archivesize then16

RemoveMostSimilar(Archive, Archivesize);17

end18

Selected ← SelectParents(Archive, Populationsize);19

Population ← CrossoverAndMutation(Selected, Pcrossover,20

Pmutation);
end21

return GetNonDominatedArchive;22

3.11.4 Heuristics

• SPEA was designed for and is suited to combinatorial and contin-
uous function multiple objective optimization problem instances.

• A binary representation can be used for continuous function opti-
mization problems in conjunction with classical genetic operators

3.11. Strength Pareto Evolutionary Algorithm 167

such as one-point crossover and point mutation.

• A k value of 1 may be used for efficiency whilst still providing
useful results.

• The size of the archive is commonly smaller than the size of the
population.

• There is a lot of room for implementation optimization in density
and Pareto dominance calculations.

3.11.5 Code Listing

Listing 3.10 provides an example of the Strength Pareto Evolution-
ary Algorithm 2 (SPEA2) implemented in the Ruby Programming
Language. The demonstration problem is an instance of continuous
multiple objective function optimization called SCH (problem one in [1]).
The problem seeks the minimum of two functions: f1 =

∑n
i=1 x

2
i and

f2 =
∑n
i=1(xi − 2)2, −10 ≤ xi ≤ 10 and n = 1. The optimal solutions

for this function are x ∈ [0, 2]. The algorithm is an implementation of
SPEA2 based on the presentation by Zitzler, Laumanns, and Thiele [5].
The algorithm uses a binary string representation (16 bits per objective
function parameter) that is decoded and rescaled to the function do-
main. The implementation uses a uniform crossover operator and point
mutations with a fixed mutation rate of 1

L , where L is the number of
bits in a solution’s binary string.

1 def objective1(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x**2.0)}

3 end

4

5 def objective2(vector)

6 return vector.inject(0.0) {|sum, x| sum + ((x-2.0)**2.0)}

7 end

8

9 def decode(bitstring, search_space, bits_per_param)

10 vector = []

11 search_space.each_with_index do |bounds, i|

12 off, sum = i*bits_per_param, 0.0

13 param = bitstring[off...(off+bits_per_param)].reverse

14 param.size.times do |j|

15 sum += ((param[j].chr=='1') ? 1.0 : 0.0) * (2.0 ** j.to_f)

16 end

17 min, max = bounds

18 vector << min + ((max-min)/((2.0**bits_per_param.to_f)-1.0)) * sum

19 end

20 return vector

21 end

22

23 def point_mutation(bitstring, rate=1.0/bitstring.size)

24 child = ""

168 Chapter 3. Evolutionary Algorithms

25 bitstring.size.times do |i|

26 bit = bitstring[i].chr

27 child << ((rand()<rate) ? ((bit=='1') ? "0" : "1") : bit)

28 end

29 return child

30 end

31

32 def binary_tournament(pop)

33 i, j = rand(pop.size), rand(pop.size)

34 j = rand(pop.size) while j==i

35 return (pop[i][:fitness] < pop[j][:fitness]) ? pop[i] : pop[j]

36 end

37

38 def crossover(parent1, parent2, rate)

39 return ""+parent1 if rand()>=rate

40 child = ""

41 parent1.size.times do |i|

42 child << ((rand()<0.5) ? parent1[i].chr : parent2[i].chr)

43 end

44 return child

45 end

46

47 def reproduce(selected, pop_size, p_cross)

48 children = []

49 selected.each_with_index do |p1, i|

50 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

51 p2 = selected[0] if i == selected.size-1

52 child = {}

53 child[:bitstring] = crossover(p1[:bitstring], p2[:bitstring],

p_cross)

54 child[:bitstring] = point_mutation(child[:bitstring])

55 children << child

56 break if children.size >= pop_size

57 end

58 return children

59 end

60

61 def random_bitstring(num_bits)

62 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

63 end

64

65 def calculate_objectives(pop, search_space, bits_per_param)

66 pop.each do |p|

67 p[:vector] = decode(p[:bitstring], search_space, bits_per_param)

68 p[:objectives] = []

69 p[:objectives] << objective1(p[:vector])

70 p[:objectives] << objective2(p[:vector])

71 end

72 end

73

74 def dominates?(p1, p2)

75 p1[:objectives].each_index do |i|

76 return false if p1[:objectives][i] > p2[:objectives][i]

77 end

78 return true

79 end

3.11. Strength Pareto Evolutionary Algorithm 169

80

81 def weighted_sum(x)

82 return x[:objectives].inject(0.0) {|sum, x| sum+x}

83 end

84

85 def euclidean_distance(c1, c2)

86 sum = 0.0

87 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

88 return Math.sqrt(sum)

89 end

90

91 def calculate_dominated(pop)

92 pop.each do |p1|

93 p1[:dom_set] = pop.select {|p2| p1!=p2 and dominates?(p1, p2) }

94 end

95 end

96

97 def calculate_raw_fitness(p1, pop)

98 return pop.inject(0.0) do |sum, p2|

99 (dominates?(p2, p1)) ? sum + p2[:dom_set].size.to_f : sum

100 end

101 end

102

103 def calculate_density(p1, pop)

104 pop.each do |p2|

105 p2[:dist] = euclidean_distance(p1[:objectives], p2[:objectives])

106 end

107 list = pop.sort{|x,y| x[:dist]<=>y[:dist]}

108 k = Math.sqrt(pop.size).to_i

109 return 1.0 / (list[k][:dist] + 2.0)

110 end

111

112 def calculate_fitness(pop, archive, search_space, bits_per_param)

113 calculate_objectives(pop, search_space, bits_per_param)

114 union = archive + pop

115 calculate_dominated(union)

116 union.each do |p|

117 p[:raw_fitness] = calculate_raw_fitness(p, union)

118 p[:density] = calculate_density(p, union)

119 p[:fitness] = p[:raw_fitness] + p[:density]

120 end

121 end

122

123 def environmental_selection(pop, archive, archive_size)

124 union = archive + pop

125 environment = union.select {|p| p[:fitness]<1.0}

126 if environment.size < archive_size

127 union.sort!{|x,y| x[:fitness]<=>y[:fitness]}

128 union.each do |p|

129 environment << p if p[:fitness] >= 1.0

130 break if environment.size >= archive_size

131 end

132 elsif environment.size > archive_size

133 begin

134 k = Math.sqrt(environment.size).to_i

135 environment.each do |p1|

170 Chapter 3. Evolutionary Algorithms

136 environment.each do |p2|

137 p2[:dist] = euclidean_distance(p1[:objectives],

p2[:objectives])

138 end

139 list = environment.sort{|x,y| x[:dist]<=>y[:dist]}

140 p1[:density] = list[k][:dist]

141 end

142 environment.sort!{|x,y| x[:density]<=>y[:density]}

143 environment.shift

144 end until environment.size <= archive_size

145 end

146 return environment

147 end

148

149 def search(search_space, max_gens, pop_size, archive_size, p_cross,

bits_per_param=16)

150 pop = Array.new(pop_size) do |i|

151 {:bitstring=>random_bitstring(search_space.size*bits_per_param)}

152 end

153 gen, archive = 0, []

154 begin

155 calculate_fitness(pop, archive, search_space, bits_per_param)

156 archive = environmental_selection(pop, archive, archive_size)

157 best = archive.sort{|x,y| weighted_sum(x)<=>weighted_sum(y)}.first

158 puts ">gen=#{gen}, objs=#{best[:objectives].join(', ')}"
159 break if gen >= max_gens

160 selected = Array.new(pop_size){binary_tournament(archive)}

161 pop = reproduce(selected, pop_size, p_cross)

162 gen += 1

163 end while true

164 return archive

165 end

166

167 if __FILE__ == $0
168 # problem configuration

169 problem_size = 1

170 search_space = Array.new(problem_size) {|i| [-10, 10]}

171 # algorithm configuration

172 max_gens = 50

173 pop_size = 80

174 archive_size = 40

175 p_cross = 0.90

176 # execute the algorithm

177 pop = search(search_space, max_gens, pop_size, archive_size, p_cross)

178 puts "done!"

179 end

Listing 3.10: SPEA2 in Ruby

3.11.6 References

Primary Sources

Zitzler and Thiele introduced the Strength Pareto Evolutionary Al-
gorithm as a technical report on a multiple objective optimization

3.11. Strength Pareto Evolutionary Algorithm 171

algorithm with elitism and clustering along the Pareto front [6]. The
technical report was later published [7]. The Strength Pareto Evolu-
tionary Algorithm was developed as a part of Zitzler’s PhD thesis [2].
Zitzler, Laumanns, and Thiele later extended SPEA to address some
inefficiencies of the approach, the algorithm was called SPEA2 and was
released as a technical report [4] and later published [5]. SPEA2 provides
fine-grained fitness assignment, density estimation of the Pareto front,
and an archive truncation operator.

Learn More

Zitzler, Laumanns, and Bleuler provide a tutorial on SPEA2 as a book
chapter that considers the basics of multiple objective optimization, and
the differences from SPEA and the other related Multiple Objective
Evolutionary Algorithms [3].

3.11.7 Bibliography

[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist
multiobjective genetic algorithm: NSGA–II. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[2] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications. PhD thesis, Shaker Verlag, Aachen,
Germany, 1999.

[3] E. Zitzler, M. Laumanns, and S. Bleuler. Metaheuristics for Multi-
objective Optimisation, chapter A Tutorial on Evolutionary Multiob-
jective Optimization, pages 3–37. Springer, 2004.

[4] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the
strength pareto evolutionary algorithm. Technical Report 103, Com-
puter Engineering and Networks Laboratory (TIK), Swiss Federal
Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092
Zurich, Switzerland, May 2001.

[5] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimiza-
tion. In Evolutionary Methods for Design, Optimisation and Control
with Application to Industrial Problems (EUROGEN 2001), pages
95–100, 2002.

[6] E. Zitzler and L. Thiele. An evolutionary algorithm for multiobjective
optimization: The strength pareto approach. Technical Report 43,
Computer Engineering and Networks Laboratory (TIK), Swiss Fed-
eral Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092
Zurich, Switzerland, May 1998.

172 Chapter 3. Evolutionary Algorithms

[7] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A
comparative case study and the strength pareto approach. IEEE
Transactions on Evolutionary Computation, 3(4):257–271, 1999.

Chapter 4

Physical Algorithms

4.1 Overview

This chapter describes Physical Algorithms.

4.1.1 Physical Properties

Physical algorithms are those algorithms inspired by a physical pro-
cess. The described physical algorithm generally belong to the fields of
Metaheustics and Computational Intelligence, although do not fit neatly
into the existing categories of the biological inspired techniques (such
as Swarm, Immune, Neural, and Evolution). In this vein, they could
just as easily be referred to as nature inspired algorithms.

The inspiring physical systems range from metallurgy, music, the
interplay between culture and evolution, and complex dynamic systems
such as avalanches. They are generally stochastic optimization algo-
rithms with a mixtures of local (neighborhood-based) and global search
techniques.

4.1.2 Extensions

There are many other algorithms and classes of algorithm that were not
described inspired by natural systems, not limited to:

• More Annealing: Extensions to the classical Simulated Anneal-
ing algorithm, such as Adaptive Simulated Annealing (formally
Very Fast Simulated Re-annealing) [3, 4], and Quantum Annealing
[1, 2].

• Stochastic tunneling: based on the physical idea of a particle
tunneling through structures [5].

173

174 Chapter 4. Physical Algorithms

4.1.3 Bibliography

[1] B. Apolloni, C. Caravalho, and D. De Falco. Quantum stochastic
optimization. Stochastic Processes and their Applications, 33:233–
244, 1989.

[2] A. Das and B. K. Chakrabarti. Quantum annealing and related
optimization methods. Springer, 2005.

[3] L. Ingber. Very fast simulated re-annealing. Mathematical and
Computer Modelling, 12(8):967–973, 1989.

[4] L. Ingber. Adaptive simulated annealing (ASA): Lessons learned.
Control and Cybernetics, 25(1):33–54, 1996.

[5] W. Wenzel and K. Hamacher. A stochastic tunneling approach for
global minimization of complex potential energy landscapes. Phys.
Rev. Lett., 82(15):3003–3007, 1999.

4.2. Simulated Annealing 175

4.2 Simulated Annealing

Simulated Annealing, SA.

4.2.1 Taxonomy

Simulated Annealing is a global optimization algorithm that belongs
to the field of Stochastic Optimization and Metaheuristics. Simulated
Annealing is an adaptation of the Metropolis-Hastings Monte Carlo
algorithm and is used in function optimization. Like the Genetic Algo-
rithm (Section 3.2), it provides a basis for a large variety of extensions
and specialization’s of the general method not limited to Parallel Sim-
ulated Annealing, Fast Simulated Annealing, and Adaptive Simulated
Annealing.

4.2.2 Inspiration

Simulated Annealing is inspired by the process of annealing in metallurgy.
In this natural process a material is heated and slowly cooled under
controlled conditions to increase the size of the crystals in the material
and reduce their defects. This has the effect of improving the strength
and durability of the material. The heat increases the energy of the
atoms allowing them to move freely, and the slow cooling schedule allows
a new low-energy configuration to be discovered and exploited.

4.2.3 Metaphor

Each configuration of a solution in the search space represents a different
internal energy of the system. Heating the system results in a relaxation
of the acceptance criteria of the samples taken from the search space.
As the system is cooled, the acceptance criteria of samples is narrowed
to focus on improving movements. Once the system has cooled, the
configuration will represent a sample at or close to a global optimum.

4.2.4 Strategy

The information processing objective of the technique is to locate the
minimum cost configuration in the search space. The algorithms plan
of action is to probabilistically re-sample the problem space where the
acceptance of new samples into the currently held sample is managed
by a probabilistic function that becomes more discerning of the cost
of samples it accepts over the execution time of the algorithm. This
probabilistic decision is based on the Metropolis-Hastings algorithm for
simulating samples from a thermodynamic system.

176 Chapter 4. Physical Algorithms

4.2.5 Procedure

Algorithm 4.2.1 provides a pseudocode listing of the main Simulated
Annealing algorithm for minimizing a cost function.

Algorithm 4.2.1: Pseudocode for Simulated Annealing.

Input: ProblemSize, iterationsmax, tempmax
Output: Sbest
Scurrent ← CreateInitialSolution(ProblemSize);1

Sbest ← Scurrent;2

for i = 1 to iterationsmax do3

Si ← CreateNeighborSolution(Scurrent);4

tempcurr ← CalculateTemperature(i, tempmax);5

if Cost(Si) ≤ Cost(Scurrent) then6

Scurrent ← Si;7

if Cost(Si) ≤ Cost(Sbest) then8

Sbest ← Si;9

end10

else if Exp(Cost(Scurrent)−Cost(Si)
tempcurr

) > Rand() then11

Scurrent ← Si;12

end13

end14

return Sbest;15

4.2.6 Heuristics

• Simulated Annealing was designed for use with combinatorial op-
timization problems, although it has been adapted for continuous
function optimization problems.

• The convergence proof suggests that with a long enough cooling
period, the system will always converge to the global optimum.
The downside of this theoretical finding is that the number of
samples taken for optimum convergence to occur on some problems
may be more than a complete enumeration of the search space.

• Performance improvements can be given with the selection of a
candidate move generation scheme (neighborhood) that is less
likely to generate candidates of significantly higher cost.

• Restarting the cooling schedule using the best found solution so
far can lead to an improved outcome on some problems.

• A common acceptance method is to always accept improving solu-
tions and accept worse solutions with a probability of P (accept)←

4.2. Simulated Annealing 177

exp(e−e
′

T), where T is the current temperature, e is the energy (or
cost) of the current solution and e′ is the energy of a candidate
solution being considered.

• The size of the neighborhood considered in generating candidate
solutions may also change over time or be influenced by the tem-
perature, starting initially broad and narrowing with the execution
of the algorithm.

• A problem specific heuristic method can be used to provide the
starting point for the search.

4.2.7 Code Listing

Listing 4.1 provides an example of the Simulated Annealing algorithm
implemented in the Ruby Programming Language. The algorithm is
applied to the Berlin52 instance of the Traveling Salesman Problem
(TSP), taken from the TSPLIB. The problem seeks a permutation of
the order to visit cities (called a tour) that minimizes the total distance
traveled. The optimal tour distance for Berlin52 instance is 7542 units.

The algorithm implementation uses a two-opt procedure for the
neighborhood function and the classical P (accept)← exp(e−e

′

T) as the
acceptance function. A simple linear cooling regime is used with a large
initial temperature which is decreased each iteration.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(permutation, cities)

6 distance =0

7 permutation.each_with_index do |c1, i|

8 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def stochastic_two_opt!(perm)

24 c1, c2 = rand(perm.size), rand(perm.size)

25 exclude = [c1]

26 exclude << ((c1==0) ? perm.size-1 : c1-1)

178 Chapter 4. Physical Algorithms

27 exclude << ((c1==perm.size-1) ? 0 : c1+1)

28 c2 = rand(perm.size) while exclude.include?(c2)

29 c1, c2 = c2, c1 if c2 < c1

30 perm[c1...c2] = perm[c1...c2].reverse

31 return perm

32 end

33

34 def create_neighbor(current, cities)

35 candidate = {}

36 candidate[:vector] = Array.new(current[:vector])

37 stochastic_two_opt!(candidate[:vector])

38 candidate[:cost] = cost(candidate[:vector], cities)

39 return candidate

40 end

41

42 def should_accept?(candidate, current, temp)

43 return true if candidate[:cost] <= current[:cost]

44 return Math.exp((current[:cost] - candidate[:cost]) / temp) > rand()

45 end

46

47 def search(cities, max_iter, max_temp, temp_change)

48 current = {:vector=>random_permutation(cities)}

49 current[:cost] = cost(current[:vector], cities)

50 temp, best = max_temp, current

51 max_iter.times do |iter|

52 candidate = create_neighbor(current, cities)

53 temp = temp * temp_change

54 current = candidate if should_accept?(candidate, current, temp)

55 best = candidate if candidate[:cost] < best[:cost]

56 if (iter+1).modulo(10) == 0

57 puts " > iteration #{(iter+1)}, temp=#{temp}, best=#{best[:cost]}"

58 end

59 end

60 return best

61 end

62

63 if __FILE__ == $0
64 # problem configuration

65 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

66 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

67 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

68 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

69 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

70 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

71 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

72 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

73 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

74 # algorithm configuration

75 max_iterations = 2000

76 max_temp = 100000.0

77 temp_change = 0.98

78 # execute the algorithm

79 best = search(berlin52, max_iterations, max_temp, temp_change)

80 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

81 end

4.2. Simulated Annealing 179

Listing 4.1: Simulated Annealing in Ruby

4.2.8 References

Primary Sources

Simulated Annealing is credited to Kirkpatrick, Gelatt, and Vecchi
in 1983 [5]. Granville, Krivanek, and Rasson provided the proof for
convergence for Simulated Annealing in 1994 [2]. There were a number of
early studies and application papers such as Kirkpatrick’s investigation
into the TSP and minimum cut problems [4], and a study by Vecchi
and Kirkpatrick on Simulated Annealing applied to the global wiring
problem [7].

Learn More

There are many excellent reviews of Simulated Annealing, not limited to
the review by Ingber that describes improved methods such as Adaptive
Simulated Annealing, Simulated Quenching, and hybrid methods [3].
There are books dedicated to Simulated Annealing, applications and
variations. Two examples of good texts include “Simulated Annealing:
Theory and Applications” by Laarhoven and Aarts [6] that provides
an introduction to the technique and applications, and “Simulated
Annealing: Parallelization Techniques” by Robert Azencott [1] that
focuses on the theory and applications of parallel methods for Simulated
Annealing.

4.2.9 Bibliography

[1] R. Azencott. Simulated annealing: parallelization techniques. Wiley,
1992.

[2] V. Granville, M. Krivanek, and J-P. Rasson. Simulated annealing:
A proof of convergence. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(6):652–656, 1994.

[3] L. Ingber. Simulated annealing: Practice versus theory. Math.
Comput. Modelling, 18:29–57, 1993.

[4] S. Kirkpatrick. Optimization by simulated annealing: Quantitative
studies. Journal of Statistical Physics, 34:975–986, 1983.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

180 Chapter 4. Physical Algorithms

[6] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing:
Theory and Applications. Springer, 1988.

[7] M. P. Vecchi and S. Kirkpatrick. Global wiring by simulated anneal-
ing. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2(4):215–222, 1983.

4.3. Extremal Optimization 181

4.3 Extremal Optimization

Extremal Optimization, EO.

4.3.1 Taxonomy

Extremal Optimization is a stochastic search technique that has the
properties of being a local and global search method. It is generally
related to hill-climbing algorithms and provides the basis for extensions
such as Generalized Extremal Optimization.

4.3.2 Inspiration

Extremal Optimization is inspired by the Bak-Sneppen self-organized
criticality model of co-evolution from the field of statistical physics. The
self-organized criticality model suggests that some dynamical systems
have a critical point as an attractor, whereby the systems exhibit pe-
riods of slow movement or accumulation followed by short periods of
avalanche or instability. Examples of such systems include land forma-
tion, earthquakes, and the dynamics of sand piles. The Bak-Sneppen
model considers these dynamics in co-evolutionary systems and in the
punctuated equilibrium model, which is described as long periods of
status followed by short periods of extinction and large evolutionary
change.

4.3.3 Metaphor

The dynamics of the system result in the steady improvement of a
candidate solution with sudden and large crashes in the quality of the
candidate solution. These dynamics allow two main phases of activity
in the system: 1) to exploit higher quality solutions in a local search like
manner, and 2) escape possible local optima with a population crash
and explore the search space for a new area of high quality solutions.

4.3.4 Strategy

The objective of the information processing strategy is to iteratively
identify the worst performing components of a given solution and replace
or swap them with other components. This is achieved through the
allocation of cost to the components of the solution based on their
contribution to the overall cost of the solution in the problem domain.
Once components are assessed they can be ranked and the weaker
components replaced or switched with a randomly selected component.

182 Chapter 4. Physical Algorithms

4.3.5 Procedure

Algorithm 4.3.1 provides a pseudocode listing of the Extremal Opti-
mization algorithm for minimizing a cost function. The deterministic
selection of the worst component in the SelectWeakComponent function
and replacement in the SelectReplacementComponent function is clas-
sical EO. If these decisions are probabilistic making use of τ parameter,
this is referred to as τ -Extremal Optimization.

Algorithm 4.3.1: Pseudocode for Extremal Optimization.

Input: ProblemSize, iterationsmax, τ
Output: Sbest
Scurrent ← CreateInitialSolution(ProblemSize);1

Sbest ← Scurrent;2

for i = 1 to iterationsmax do3

foreach Componenti ∈ Scurrent do4

Componentcosti ← Cost(Componenti, Scurrent);5

end6

RankedComponents ← Rank(Sicomponents)7

Componenti ← SelectWeakComponent(RankedComponents,8

Componenti, τ);
Componentj ←9

SelectReplacementComponent(RankedComponents, τ);
Scandidate ← Replace(Scurrent, Componenti, Componentj);10

if Cost(Scandidate) ≤ Cost(Sbest) then11

Sbest ← Scandidate;12

end13

end14

return Sbest;15

4.3.6 Heuristics

• Extremal Optimization was designed for combinatorial optimiza-
tion problems, although variations have been applied to continuous
function optimization.

• The selection of the worst component and the replacement compo-
nent each iteration can be deterministic or probabilistic, the latter
of which is referred to as τ -Extremal Optimization given the use
of a τ parameter.

• The selection of an appropriate scoring function of the components
of a solution is the most difficult part in the application of the
technique.

4.3. Extremal Optimization 183

• For τ -Extremal Optimization, low τ values are used (such as
τ ∈ [1.2, 1.6]) have been found to be effective for the TSP.

4.3.7 Code Listing

Listing 4.2 provides an example of the Extremal Optimization algorithm
implemented in the Ruby Programming Language. The algorithm is
applied to the Berlin52 instance of the Traveling Salesman Problem
(TSP), taken from the TSPLIB. The problem seeks a permutation of
the order to visit cities (called a tour) that minimizes the total distance
traveled. The optimal tour distance for Berlin52 instance is 7542 units.

The algorithm implementation is based on the seminal work by
Boettcher and Percus [5]. A solution is comprised of a permutation of
city components. Each city can potentially form a connection to any
other city, and the connections to other cities ordered by distance may
be considered its neighborhood. For a given candidate solution, the city
components of a solution are scored based on the neighborhood rank
of the cities to which they are connected: fitnessk ← 3

ri+rj
, where ri

and rj are the neighborhood ranks of cities i and j against city k. A
city is selected for modification probabilistically where the probability
of selecting a given city is proportional to n−τi , where n is the rank of
city i. The longest connection is broken, and the city is connected with
another neighboring city that is also probabilistically selected.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(permutation, cities)

6 distance =0

7 permutation.each_with_index do |c1, i|

8 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def calculate_neighbor_rank(city_number, cities, ignore=[])

24 neighbors = []

25 cities.each_with_index do |city, i|

26 next if i==city_number or ignore.include?(i)

27 neighbor = {:number=>i}

184 Chapter 4. Physical Algorithms

28 neighbor[:distance] = euc_2d(cities[city_number], city)

29 neighbors << neighbor

30 end

31 return neighbors.sort!{|x,y| x[:distance] <=> y[:distance]}

32 end

33

34 def get_edges_for_city(city_number, permutation)

35 c1, c2 = nil, nil

36 permutation.each_with_index do |c, i|

37 if c == city_number

38 c1 = (i==0) ? permutation.last : permutation[i-1]

39 c2 = (i==permutation.size-1) ? permutation.first : permutation[i+1]

40 break

41 end

42 end

43 return [c1, c2]

44 end

45

46 def calculate_city_fitness(permutation, city_number, cities)

47 c1, c2 = get_edges_for_city(city_number, permutation)

48 neighbors = calculate_neighbor_rank(city_number, cities)

49 n1, n2 = -1, -1

50 neighbors.each_with_index do |neighbor,i|

51 n1 = i+1 if neighbor[:number] == c1

52 n2 = i+1 if neighbor[:number] == c2

53 break if n1!=-1 and n2!=-1

54 end

55 return 3.0 / (n1.to_f + n2.to_f)

56 end

57

58 def calculate_city_fitnesses(cities, permutation)

59 city_fitnesses = []

60 cities.each_with_index do |city, i|

61 city_fitness = {:number=>i}

62 city_fitness[:fitness] = calculate_city_fitness(permutation, i,

cities)

63 city_fitnesses << city_fitness

64 end

65 return city_fitnesses.sort!{|x,y| y[:fitness] <=> x[:fitness]}

66 end

67

68 def calculate_component_probabilities(ordered_components, tau)

69 sum = 0.0

70 ordered_components.each_with_index do |component, i|

71 component[:prob] = (i+1.0)**(-tau)

72 sum += component[:prob]

73 end

74 return sum

75 end

76

77 def make_selection(components, sum_probability)

78 selection = rand()

79 components.each_with_index do |component, i|

80 selection -= (component[:prob] / sum_probability)

81 return component[:number] if selection <= 0.0

82 end

4.3. Extremal Optimization 185

83 return components.last[:number]

84 end

85

86 def probabilistic_selection(ordered_components, tau, exclude=[])

87 sum = calculate_component_probabilities(ordered_components, tau)

88 selected_city = nil

89 begin

90 selected_city = make_selection(ordered_components, sum)

91 end while exclude.include?(selected_city)

92 return selected_city

93 end

94

95 def vary_permutation(permutation, selected, new, long_edge)

96 perm = Array.new(permutation)

97 c1, c2 = perm.rindex(selected), perm.rindex(new)

98 p1,p2 = (c1<c2) ? [c1,c2] : [c2,c1]

99 right = (c1==perm.size-1) ? 0 : c1+1

100 if perm[right] == long_edge

101 perm[p1+1..p2] = perm[p1+1..p2].reverse

102 else

103 perm[p1...p2] = perm[p1...p2].reverse

104 end

105 return perm

106 end

107

108 def get_long_edge(edges, neighbor_distances)

109 n1 = neighbor_distances.find {|x| x[:number]==edges[0]}

110 n2 = neighbor_distances.find {|x| x[:number]==edges[1]}

111 return (n1[:distance] > n2[:distance]) ? n1[:number] : n2[:number]

112 end

113

114 def create_new_perm(cities, tau, perm)

115 city_fitnesses = calculate_city_fitnesses(cities, perm)

116 selected_city = probabilistic_selection(city_fitnesses.reverse, tau)

117 edges = get_edges_for_city(selected_city, perm)

118 neighbors = calculate_neighbor_rank(selected_city, cities)

119 new_neighbor = probabilistic_selection(neighbors, tau, edges)

120 long_edge = get_long_edge(edges, neighbors)

121 return vary_permutation(perm, selected_city, new_neighbor, long_edge)

122 end

123

124 def search(cities, max_iterations, tau)

125 current = {:vector=>random_permutation(cities)}

126 current[:cost] = cost(current[:vector], cities)

127 best = current

128 max_iterations.times do |iter|

129 candidate = {}

130 candidate[:vector] = create_new_perm(cities, tau, current[:vector])

131 candidate[:cost] = cost(candidate[:vector], cities)

132 current = candidate

133 best = candidate if candidate[:cost] < best[:cost]

134 puts " > iter #{(iter+1)}, curr=#{current[:cost]},

best=#{best[:cost]}"

135 end

136 return best

137 end

186 Chapter 4. Physical Algorithms

138

139 if __FILE__ == $0
140 # problem configuration

141 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

142 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

143 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

144 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

145 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

146 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

147 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

148 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

149 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

150 # algorithm configuration

151 max_iterations = 250

152 tau = 1.8

153 # execute the algorithm

154 best = search(berlin52, max_iterations, tau)

155 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

156 end

Listing 4.2: Extremal Optimization in Ruby

4.3.8 References

Primary Sources

Extremal Optimization was proposed as an optimization heuristic by
Boettcher and Percus applied to graph partitioning and the Traveling
Salesman Problem [5]. The approach was inspired by the Bak-Sneppen
self-organized criticality model of co-evolution [1, 2].

Learn More

A number of detailed reviews of Extremal Optimization have been
presented, including a review and studies by Boettcher and Percus [4],
an accessible review by Boettcher [3], and a focused study on the Spin
Glass problem by Boettcher and Percus [6].

4.3.9 Bibliography

[1] P. Bak and K. Sneppen. Punctuated equilibrium and criticality in a
simple model of evolution. Physical Review Letters, 71:4083–4086,
1993.

[2] P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An
explanation of the 1/f noise. Physical Review Letters, 59:381–384,
1987.

[3] S. Boettcher. Extremal optimization: heuristics via coevolutionary
avalanches. Computing in Science & Engineering, 2(6):75–82, 2000.

4.3. Extremal Optimization 187

[4] S. Boettcher and A. Percus. Natures way of optimizing. Artificial
Intelligence, 119(1-2):275–286, 2000.

[5] S. Boettcher and A. G. Percus. Extremal optimization: Methods
derived from co-evolution. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, 1999.

[6] S. Boettcher and A. G. Percus. Optimization with extremal dynamics.
Phys. Rev. Lett., 86:5211–5214, 2001.

188 Chapter 4. Physical Algorithms

4.4 Harmony Search

Harmony Search, HS.

4.4.1 Taxonomy

Harmony Search belongs to the fields of Computational Intelligence and
Metaheuristics.

4.4.2 Inspiration

Harmony Search was inspired by the improvisation of Jazz musicians.
Specifically, the process by which the musicians (who may have never
played together before) rapidly refine their individual improvisation
through variation resulting in an aesthetic harmony.

4.4.3 Metaphor

Each musician corresponds to an attribute in a candidate solution from
a problem domain, and each instrument’s pitch and range corresponds
to the bounds and constraints on the decision variable. The harmony
between the musicians is taken as a complete candidate solution at a
given time, and the audiences aesthetic appreciation of the harmony
represent the problem specific cost function. The musicians seek harmony
over time through small variations and improvisations, which results in
an improvement against the cost function.

4.4.4 Strategy

The information processing objective of the technique is to use good can-
didate solutions already discovered to influence the creation of new can-
didate solutions toward locating the problems optima. This is achieved
by stochastically creating candidate solutions in a step-wise manner,
where each component is either drawn randomly from a memory of high-
quality solutions, adjusted from the memory of high-quality solutions,
or assigned randomly within the bounds of the problem. The memory of
candidate solutions is initially random, and a greedy acceptance criteria
is used to admit new candidate solutions only if they have an improved
objective value, replacing an existing member.

4.4.5 Procedure

Algorithm 4.4.1 provides a pseudocode listing of the Harmony Search
algorithm for minimizing a cost function. The adjustment of a pitch

4.4. Harmony Search 189

selected from the harmony memory is typically linear, for example for
continuous function optimization:

x′ ← x+ range× ε (4.1)

where range is a the user parameter (pitch bandwidth) to control the
size of the changes, and ε is a uniformly random number ∈ [−1, 1].

Algorithm 4.4.1: Pseudocode for Harmony Search.

Input: Pitchnum, Pitchbounds, Memorysize, Consolidationrate,
PitchAdjustrate, Improvisationmax

Output: Harmonybest
Harmonies ← InitializeHarmonyMemory(Pitchnum,1

Pitchbounds, Memorysize);
EvaluateHarmonies(Harmonies);2

for i to Improvisationmax do3

Harmony ← ∅;4

foreach Pitchi ∈ Pitchnum do5

if Rand() ≤ Consolidationrate then6

RandomHarmonyipitch ←7

SelectRandomHarmonyPitch(Harmonies, Pitchi);
if Rand() ≤ PitchAdjustrate then8

Harmonyipitch ←9

AdjustPitch(RandomHarmonyipitch);

else10

Harmonyipitch ← RandomHarmonyipitch;11

end12

else13

Harmonyipitch ← RandomPitch(Pitchbounds);14

end15

end16

EvaluateHarmonies(Harmony);17

if Cost(Harmony) ≤ Cost(Worst(Harmonies)) then18

Worst(Harmonies) ← Harmony;19

end20

end21

return Harmonybest;22

4.4.6 Heuristics

• Harmony Search was designed as a generalized optimization method
for continuous, discrete, and constrained optimization and has
been applied to numerous types of optimization problems.

190 Chapter 4. Physical Algorithms

• The harmony memory considering rate (HMCR) ∈ [0, 1] controls
the use of information from the harmony memory or the generation
of a random pitch. As such, it controls the rate of convergence of
the algorithm and is typically configured ∈ [0.7, 0.95].

• The pitch adjustment rate (PAR) ∈ [0, 1] controls the frequency
of adjustment of pitches selected from harmony memory, typically
configured ∈ [0.1, 0.5]. High values can result in the premature
convergence of the search.

• The pitch adjustment rate and the adjustment method (amount
of adjustment or fret width) are typically fixed, having a linear
effect through time. Non-linear methods have been considered, for
example refer to Geem [4].

• When creating a new harmony, aggregations of pitches can be
taken from across musicians in the harmony memory.

• The harmony memory update is typically a greedy process, al-
though other considerations such as diversity may be used where
the most similar harmony is replaced.

4.4.7 Code Listing

Listing 4.3 provides an example of the Harmony Search algorithm
implemented in the Ruby Programming Language. The demonstration
problem is an instance of a continuous function optimization that seeks
minf(x) where f =

∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0 and n = 3. The optimal

solution for this basin function is (v0, . . . , vn−1) = 0.0. The algorithm
implementation and parameterization are based on the description by
Yang [7], with refinement from Geem [4].

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def rand_in_bounds(min, max)

6 return min + ((max-min) * rand())

7 end

8

9 def random_vector(search_space)

10 return Array.new(search_space.size) do |i|

11 rand_in_bounds(search_space[i][0], search_space[i][1])

12 end

13 end

14

15 def create_random_harmony(search_space)

16 harmony = {}

17 harmony[:vector] = random_vector(search_space)

18 harmony[:fitness] = objective_function(harmony[:vector])

4.4. Harmony Search 191

19 return harmony

20 end

21

22 def initialize_harmony_memory(search_space, mem_size, factor=3)

23 memory =

Array.new(mem_size*factor){create_random_harmony(search_space)}

24 memory.sort!{|x,y| x[:fitness]<=>y[:fitness]}

25 return memory.first(mem_size)

26 end

27

28 def create_harmony(search_space, memory, consid_rate, adjust_rate,

range)

29 vector = Array.new(search_space.size)

30 search_space.size.times do |i|

31 if rand() < consid_rate

32 value = memory[rand(memory.size)][:vector][i]

33 value = value + range*rand_in_bounds(-1.0, 1.0) if

rand()<adjust_rate

34 value = search_space[i][0] if value < search_space[i][0]

35 value = search_space[i][1] if value > search_space[i][1]

36 vector[i] = value

37 else

38 vector[i] = rand_in_bounds(search_space[i][0], search_space[i][1])

39 end

40 end

41 return {:vector=>vector}

42 end

43

44 def search(bounds, max_iter, mem_size, consid_rate, adjust_rate, range)

45 memory = initialize_harmony_memory(bounds, mem_size)

46 best = memory.first

47 max_iter.times do |iter|

48 harm = create_harmony(bounds, memory, consid_rate, adjust_rate,

range)

49 harm[:fitness] = objective_function(harm[:vector])

50 best = harm if harm[:fitness] < best[:fitness]

51 memory << harm

52 memory.sort!{|x,y| x[:fitness]<=>y[:fitness]}

53 memory.delete_at(memory.size-1)

54 puts " > iteration=#{iter}, fitness=#{best[:fitness]}"

55 end

56 return best

57 end

58

59 if __FILE__ == $0
60 # problem configuration

61 problem_size = 3

62 bounds = Array.new(problem_size) {|i| [-5, 5]}

63 # algorithm configuration

64 mem_size = 20

65 consid_rate = 0.95

66 adjust_rate = 0.7

67 range = 0.05

68 max_iter = 500

69 # execute the algorithm

70 best = search(bounds, max_iter, mem_size, consid_rate, adjust_rate,

192 Chapter 4. Physical Algorithms

range)

71 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:vector].inspect}"

72 end

Listing 4.3: Harmony Search in Ruby

4.4.8 References

Primary Sources

Geem et al. proposed the Harmony Search algorithm in 2001, which
was applied to a range of optimization problems including a constraint
optimization, the Traveling Salesman problem, and the design of a water
supply network [6].

Learn More

A book on Harmony Search, edited by Geem provides a collection of
papers on the technique and its applications [2], chapter 1 provides
a useful summary of the method heuristics for its configuration [7].
Similarly a second edited volume by Geem focuses on studies that
provide more advanced applications of the approach [5], and chapter
1 provides a detailed walkthrough of the technique itself [4]. Geem
also provides a treatment of Harmony Search applied to the optimal
design of water distribution networks [3] and edits yet a third volume on
papers related to the application of the technique to structural design
optimization problems [1].

4.4.9 Bibliography

[1] Z. W. Geem, editor. Harmony Search Algorithms for Structural
Design Optimization. Springer, 2009.

[2] Z. W. Geem, editor. Music-Inspired Harmony Search Algorithm:
Theory and Applications. Springer, 2009.

[3] Z. W. Geem. Optimal Design of Water Distribution Networks Using
Harmony Search. Lap Lambert Academic Publishing, 2009.

[4] Z. W. Geem. Recent Advances In Harmony Search Algorithms, chap-
ter State-of-the-Art in the Structure of Harmony Search Algorithm,
pages 1–10. Springer, 2010.

[5] Z. W. Geem, editor. Recent Advances in Harmony Search Algorithms.
Springer, 2010.

4.4. Harmony Search 193

[6] Z. W. Geem, J. H. Kim, and G. V. Loganathan. A new heuristic
optimization algorithm: Harmony search. Simulation, 76:60–68,
2001.

[7] X-S. Yang. Music-Inspired Harmony Search Algorithm: Theory and
Applications, chapter Harmony Search as a Metaheuristic, pages
1–14. Springer, 2009.

194 Chapter 4. Physical Algorithms

4.5 Cultural Algorithm

Cultural Algorithm, CA.

4.5.1 Taxonomy

The Cultural Algorithm is an extension to the field of Evolutionary
Computation and may be considered a Meta-Evolutionary Algorithm.
It more broadly belongs to the field of Computational Intelligence
and Metaheuristics. It is related to other high-order extensions of
Evolutionary Computation such as the Memetic Algorithm (Section 4.6).

4.5.2 Inspiration

The Cultural Algorithm is inspired by the principle of cultural evolution.
Culture includes the habits, knowledge, beliefs, customs, and morals
of a member of society. Culture does not exist independent of the
environment, and can interact with the environment via positive or
negative feedback cycles. The study of the interaction of culture in the
environment is referred to as Cultural Ecology.

4.5.3 Metaphor

The Cultural Algorithm may be explained in the context of the inspiring
system. As the evolutionary process unfolds, individuals accumulate
information about the world which is communicated to other individuals
in the population. Collectively this corpus of information is a knowledge
base that members of the population may tap-into and exploit. Positive
feedback mechanisms can occur where cultural knowledge indicates
useful areas of the environment, information which is passed down
between generations, exploited, refined, and adapted as situations change.
Additionally, areas of potential hazard may also be communicated
through the cultural knowledge base.

4.5.4 Strategy

The information processing objective of the algorithm is to improve the
learning or convergence of an embedded search technique (typically an
evolutionary algorithm) using a higher-order cultural evolution. The
algorithm operates at two levels: a population level and a cultural level.
The population level is like an evolutionary search, where individuals rep-
resent candidate solutions, are mostly distinct and their characteristics
are translated into an objective or cost function in the problem domain.
The second level is the knowledge or believe space where information
acquired by generations is stored, and which is accessible to the current

4.5. Cultural Algorithm 195

generation. A communication protocol is used to allow the two spaces
to interact and the types of information that can be exchanged.

4.5.5 Procedure

The focus of the algorithm is the KnowledgeBase data structure that
records different knowledge types based on the nature of the problem.
For example, the structure may be used to record the best candidate
solution found as well as generalized information about areas of the
search space that are expected to payoff (result in good candidate
solutions). This cultural knowledge is discovered by the population-
based evolutionary search, and is in turn used to influence subsequent
generations. The acceptance function constrain the communication of
knowledge from the population to the knowledge base.

Algorithm 4.5.1 provides a pseudocode listing of the Cultural Al-
gorithm. The algorithm is abstract, providing flexibility in the inter-
pretation of the processes such as the acceptance of information, the
structure of the knowledge base, and the specific embedded evolutionary
algorithm.

Algorithm 4.5.1: Pseudocode for the Cultural Algorithm.

Input: Problemsize, Populationnum
Output: KnowledgeBase
Population ← InitializePopulation(Problemsize,1

Populationnum);
KnowledgeBase ← InitializeKnowledgebase(Problemsize,2

Populationnum);
while ¬StopCondition() do3

Evaluate(Population);4

SituationalKnowledgecandidate ←5

AcceptSituationalKnowledge(Population);
UpdateSituationalKnowledge(KnowledgeBase,6

SituationalKnowledgecandidate);
Children ← ReproduceWithInfluence(Population,7

KnowledgeBase);
Population ← Select(Children, Population);8

NormativeKnowledgecandidate ←9

AcceptNormativeKnowledge(Population);
UpdateNormativeKnowledge(KnowledgeBase,10

NormativeKnowledgecandidate);
end11

return KnowledgeBase;12

196 Chapter 4. Physical Algorithms

4.5.6 Heuristics

• The Cultural Algorithm was initially used as a simulation tool
to investigate Cultural Ecology. It has been adapted for use
as an optimization algorithm for a wide variety of domains not-
limited to constraint optimization, combinatorial optimization,
and continuous function optimization.

• The knowledge base structure provides a mechanism for incor-
porating problem-specific information into the execution of an
evolutionary search.

• The acceptance functions that control the flow of information
into the knowledge base are typically greedy, only including the
best information from the current generation, and not replacing
existing knowledge unless it is an improvement.

• Acceptance functions are traditionally deterministic, although
probabilistic and fuzzy acceptance functions have been investi-
gated.

4.5.7 Code Listing

Listing 4.4 provides an example of the Cultural Algorithm implemented
in the Ruby Programming Language. The demonstration problem is
an instance of a continuous function optimization that seeks min f(x)
where f =

∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0 and n = 2. The optimal solution

for this basin function is (v0, . . . , vn−1) = 0.0.
The Cultural Algorithm was implemented based on the description

of the Cultural Algorithm Evolutionary Program (CAEP) presented
by Reynolds [4]. A real-valued Genetic Algorithm was used as the
embedded evolutionary algorithm. The overall best solution is taken
as the ‘situational’ cultural knowledge, whereas the bounds of the top
20% of the best solutions each generation are taken as the ‘normative’
cultural knowledge. The situational knowledge is returned as the result
of the search, whereas the normative knowledge is used to influence
the evolutionary process. Specifically, vector bounds in the normative
knowledge are used to define a subspace from which new candidate
solutions are uniformly sampled during the reproduction step of the evo-
lutionary algorithm’s variation mechanism. A real-valued representation
and a binary tournament selection strategy are used by the evolutionary
algorithm.

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def rand_in_bounds(min, max)

4.5. Cultural Algorithm 197

6 return min + ((max-min) * rand())

7 end

8

9 def random_vector(minmax)

10 return Array.new(minmax.size) do |i|

11 rand_in_bounds(minmax[i][0], minmax[i][1])

12 end

13 end

14

15 def mutate_with_inf(candidate, beliefs, minmax)

16 v = Array.new(candidate[:vector].size)

17 candidate[:vector].each_with_index do |c,i|

18 v[i]=rand_in_bounds(beliefs[:normative][i][0],beliefs[:normative][i][1])

19 v[i] = minmax[i][0] if v[i] < minmax[i][0]

20 v[i] = minmax[i][1] if v[i] > minmax[i][1]

21 end

22 return {:vector=>v}

23 end

24

25 def binary_tournament(pop)

26 i, j = rand(pop.size), rand(pop.size)

27 j = rand(pop.size) while j==i

28 return (pop[i][:fitness] < pop[j][:fitness]) ? pop[i] : pop[j]

29 end

30

31 def initialize_beliefspace(search_space)

32 belief_space = {}

33 belief_space[:situational] = nil

34 belief_space[:normative] = Array.new(search_space.size) do |i|

35 Array.new(search_space[i])

36 end

37 return belief_space

38 end

39

40 def update_beliefspace_situational!(belief_space, best)

41 curr_best = belief_space[:situational]

42 if curr_best.nil? or best[:fitness] < curr_best[:fitness]

43 belief_space[:situational] = best

44 end

45 end

46

47 def update_beliefspace_normative!(belief_space, acc)

48 belief_space[:normative].each_with_index do |bounds,i|

49 bounds[0] = acc.min{|x,y| x[:vector][i]<=>y[:vector][i]}[:vector][i]

50 bounds[1] = acc.max{|x,y| x[:vector][i]<=>y[:vector][i]}[:vector][i]

51 end

52 end

53

54 def search(max_gens, search_space, pop_size, num_accepted)

55 # initialize

56 pop = Array.new(pop_size) { {:vector=>random_vector(search_space)} }

57 belief_space = initialize_beliefspace(search_space)

58 # evaluate

59 pop.each{|c| c[:fitness] = objective_function(c[:vector])}

60 best = pop.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

61 # update situational knowledge

198 Chapter 4. Physical Algorithms

62 update_beliefspace_situational!(belief_space, best)

63 max_gens.times do |gen|

64 # create next generation

65 children = Array.new(pop_size) do |i|

66 mutate_with_inf(pop[i], belief_space, search_space)

67 end

68 # evaluate

69 children.each{|c| c[:fitness] = objective_function(c[:vector])}

70 best = children.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

71 # update situational knowledge

72 update_beliefspace_situational!(belief_space, best)

73 # select next generation

74 pop = Array.new(pop_size) { binary_tournament(children + pop) }

75 # update normative knowledge

76 pop.sort!{|x,y| x[:fitness] <=> y[:fitness]}

77 acccepted = pop[0...num_accepted]

78 update_beliefspace_normative!(belief_space, acccepted)

79 # user feedback

80 puts " > generation=#{gen},

f=#{belief_space[:situational][:fitness]}"

81 end

82 return belief_space[:situational]

83 end

84

85 if __FILE__ == $0
86 # problem configuration

87 problem_size = 2

88 search_space = Array.new(problem_size) {|i| [-5, +5]}

89 # algorithm configuration

90 max_gens = 200

91 pop_size = 100

92 num_accepted = (pop_size*0.20).round

93 # execute the algorithm

94 best = search(max_gens, search_space, pop_size, num_accepted)

95 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:vector].inspect}"

96 end

Listing 4.4: Cultural Algorithm in Ruby

4.5.8 References

Primary Sources

The Cultural Algorithm was proposed by Reynolds in 1994 that com-
bined the method with the Version Space Algorithm (a binary string
based Genetic Algorithm), where generalizations of individual solutions
were communicated as cultural knowledge in the form of schema patterns
(strings of 1’s, 0’s and #’s, where ‘#’ represents a wildcard) [3].

Learn More

Chung and Reynolds provide a study of the Cultural Algorithm on a
testbed of constraint satisfaction problems [1]. Reynolds provides a

4.5. Cultural Algorithm 199

detailed overview of the history of the technique as a book chapter that
presents the state of the art and summaries of application areas including
concept learning and continuous function optimization [4]. Coello Coello
and Becerra proposed a variation of the Cultural Algorithm that uses
Evolutionary Programming as the embedded weak search method, for
use with Multi-Objective Optimization problems [2].

4.5.9 Bibliography

[1] C.-J. Chung and R. G. Reynolds. A testbed for solving optimization
problems using cultural algorithms. In L. J. Fogel, P. J. Angeline,
and T. Bäck, editors, Evolutionary Programming V: Proceedings of
the Fifth Annual Conference on Evolutionary Programming, pages
225–236, 1996.

[2] C. A. Coello Coello and R. L. Becerra. Evolutionary multiobjective
optimization using a cultural algorithm. In Proceedings of the 2003
IEEE Swarm Intelligence Symposium, pages 6–13. IEEE Press, 2003.

[3] R. G. Reynolds. An introduction to cultural algorithms. In Proceed-
ings of the 3rd Annual Conference on Evolutionary Programming,
pages 131–139. World Scienfific Publishing, 1994.

[4] R. G. Reynolds. New Ideas in Optimization, chapter Cultural Al-
gorithms: Theory and Applications, pages 367–378. McGraw-Hill
Ltd., 1999.

200 Chapter 4. Physical Algorithms

4.6 Memetic Algorithm

Memetic Algorithm, MA.

4.6.1 Taxonomy

Memetic Algorithms have elements of Metaheuristics and Computational
Intelligence. Although they have principles of Evolutionary Algorithms,
they may not strictly be considered an Evolutionary Technique. Memetic
Algorithms have functional similarities to Baldwinian Evolutionary
Algorithms, Lamarckian Evolutionary Algorithms, Hybrid Evolutionary
Algorithms, and Cultural Algorithms (Section 4.5). Using ideas of
memes and Memetic Algorithms in optimization may be referred to as
Memetic Computing.

4.6.2 Inspiration

Memetic Algorithms are inspired by the interplay of genetic evolution
and memetic evolution. Universal Darwinism is the generalization of
genes beyond biological-based systems to any system where discrete
units of information can be inherited and be subjected to evolutionary
forces of selection and variation. The term ‘meme’ is used to refer to
a piece of discrete cultural information, suggesting at the interplay of
genetic and cultural evolution.

4.6.3 Metaphor

The genotype is evolved based on the interaction the phenotype has with
the environment. This interaction is metered by cultural phenomena
that influence the selection mechanisms, and even the pairing and
recombination mechanisms. Cultural information is shared between
individuals, spreading through the population as memes relative to their
fitness or fitness the memes impart to the individuals. Collectively, the
interplay of the geneotype and the memeotype strengthen the fitness of
population in the environment.

4.6.4 Strategy

The objective of the information processing strategy is to exploit a
population based global search technique to broadly locate good ar-
eas of the search space, combined with the repeated usage of a local
search heuristic by individual solutions to locate local optimum. Ideally,
memetic algorithms embrace the duality of genetic and cultural evolu-
tion, allowing the transmission, selection, inheritance, and variation of
memes as well as genes.

4.6. Memetic Algorithm 201

4.6.5 Procedure

Algorithm 4.6.1 provides a pseudocode listing of the Memetic Algorithm
for minimizing a cost function. The procedure describes a simple or first
order Memetic Algorithm that shows the improvement of individual
solutions separate from a global search, although does not show the
independent evolution of memes.

Algorithm 4.6.1: Pseudocode for the Memetic Algorithm.

Input: ProblemSize, Popsize, MemePopsize
Output: Sbest
Population ← InitializePopulation(ProblemSize, Popsize);1

while ¬StopCondition() do2

foreach Si ∈ Population do3

Sicost ← Cost(Si);4

end5

Sbest ← GetBestSolution(Population);6

Population ← StochasticGlobalSearch(Population);7

MemeticPopulation ← SelectMemeticPopulation(Population,8

MemePopsize);
foreach Si ∈ MemeticPopulation do9

Si ← LocalSearch(Si);10

end11

end12

return Sbest;13

4.6.6 Heuristics

• The global search provides the broad exploration mechanism,
whereas the individual solution improvement via local search pro-
vides an exploitation mechanism.

• Balance is needed between the local and global mechanisms to en-
sure the system does not prematurely converge to a local optimum
and does not consume unnecessary computational resources.

• The local search should be problem and representation specific,
where as the global search may be generic and non-specific (black-
box).

• Memetic Algorithms have been applied to a range of constraint,
combinatorial, and continuous function optimization problem do-
mains.

202 Chapter 4. Physical Algorithms

4.6.7 Code Listing

Listing 4.5 provides an example of the Memetic Algorithm implemented
in the Ruby Programming Language. The demonstration problem is
an instance of a continuous function optimization that seeks min f(x)
where f =

∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0 and n = 3. The optimal solution

for this basin function is (v0, . . . , vn−1) = 0.0. The Memetic Algorithm
uses a canonical Genetic Algorithm as the global search technique that
operates on binary strings, uses tournament selection, point mutations,
uniform crossover and a binary coded decimal decoding of bits to real
values. A bit climber local search is used that performs probabilistic
bit flips (point mutations) and only accepts solutions with the same or
improving fitness.

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_bitstring(num_bits)

6 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

7 end

8

9 def decode(bitstring, search_space, bits_per_param)

10 vector = []

11 search_space.each_with_index do |bounds, i|

12 off, sum = i*bits_per_param, 0.0

13 param = bitstring[off...(off+bits_per_param)].reverse

14 param.size.times do |j|

15 sum += ((param[j].chr=='1') ? 1.0 : 0.0) * (2.0 ** j.to_f)

16 end

17 min, max = bounds

18 vector << min + ((max-min)/((2.0**bits_per_param.to_f)-1.0)) * sum

19 end

20 return vector

21 end

22

23 def fitness(candidate, search_space, param_bits)

24 candidate[:vector]=decode(candidate[:bitstring], search_space,

param_bits)

25 candidate[:fitness] = objective_function(candidate[:vector])

26 end

27

28 def binary_tournament(pop)

29 i, j = rand(pop.size), rand(pop.size)

30 j = rand(pop.size) while j==i

31 return (pop[i][:fitness] < pop[j][:fitness]) ? pop[i] : pop[j]

32 end

33

34 def point_mutation(bitstring, rate=1.0/bitstring.size)

35 child = ""

36 bitstring.size.times do |i|

37 bit = bitstring[i].chr

38 child << ((rand()<rate) ? ((bit=='1') ? "0" : "1") : bit)

39 end

4.6. Memetic Algorithm 203

40 return child

41 end

42

43 def crossover(parent1, parent2, rate)

44 return ""+parent1 if rand()>=rate

45 child = ""

46 parent1.size.times do |i|

47 child << ((rand()<0.5) ? parent1[i].chr : parent2[i].chr)

48 end

49 return child

50 end

51

52 def reproduce(selected, pop_size, p_cross, p_mut)

53 children = []

54 selected.each_with_index do |p1, i|

55 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

56 p2 = selected[0] if i == selected.size-1

57 child = {}

58 child[:bitstring] = crossover(p1[:bitstring], p2[:bitstring],

p_cross)

59 child[:bitstring] = point_mutation(child[:bitstring], p_mut)

60 children << child

61 break if children.size >= pop_size

62 end

63 return children

64 end

65

66 def bitclimber(child, search_space, p_mut, max_local_gens,

bits_per_param)

67 current = child

68 max_local_gens.times do

69 candidate = {}

70 candidate[:bitstring] = point_mutation(current[:bitstring], p_mut)

71 fitness(candidate, search_space, bits_per_param)

72 current = candidate if candidate[:fitness] <= current[:fitness]

73 end

74 return current

75 end

76

77 def search(max_gens, search_space, pop_size, p_cross, p_mut,

max_local_gens,

78 p_local, bits_per_param=16)

79 pop = Array.new(pop_size) do |i|

80 {:bitstring=>random_bitstring(search_space.size*bits_per_param)}

81 end

82 pop.each{|candidate| fitness(candidate, search_space, bits_per_param)

}

83 gen, best = 0, pop.sort{|x,y| x[:fitness] <=> y[:fitness]}.first

84 max_gens.times do |gen|

85 selected = Array.new(pop_size){|i| binary_tournament(pop)}

86 children = reproduce(selected, pop_size, p_cross, p_mut)

87 children.each{|cand| fitness(cand, search_space, bits_per_param)}

88 pop = []

89 children.each do |child|

90 if rand() < p_local

91 child = bitclimber(child, search_space, p_mut, max_local_gens,

204 Chapter 4. Physical Algorithms

92 bits_per_param)

93 end

94 pop << child

95 end

96 pop.sort!{|x,y| x[:fitness] <=> y[:fitness]}

97 best = pop.first if pop.first[:fitness] <= best[:fitness]

98 puts ">gen=#{gen}, f=#{best[:fitness]}, b=#{best[:bitstring]}"

99 end

100 return best

101 end

102

103 if __FILE__ == $0
104 # problem configuration

105 problem_size = 3

106 search_space = Array.new(problem_size) {|i| [-5, +5]}

107 # algorithm configuration

108 max_gens = 100

109 pop_size = 100

110 p_cross = 0.98

111 p_mut = 1.0/(problem_size*16).to_f

112 max_local_gens = 20

113 p_local = 0.5

114 # execute the algorithm

115 best = search(max_gens, search_space, pop_size, p_cross, p_mut,

max_local_gens, p_local)

116 puts "done! Solution: f=#{best[:fitness]}, b=#{best[:bitstring]},

v=#{best[:vector].inspect}"

117 end

Listing 4.5: Memetic Algorithm in Ruby

4.6.8 References

Primary Sources

The concept of a Memetic Algorithm is credited to Moscato [5], who
was inspired by the description of meme’s in Dawkins’ “The Selfish
Gene” [1]. Moscato proposed Memetic Algorithms as the marriage
between population based global search and heuristic local search made
by each individual without the constraints of a genetic representation
and investigated variations on the Traveling Salesman Problem.

Learn More

Moscato and Cotta provide a gentle introduction to the field of Memetic
Algorithms as a book chapter that covers formal descriptions of the
approach, a summary of the fields of application, and the state of
the art [6]. An overview and classification of the types of Memetic
Algorithms is presented by Ong et al. who describe a class of adaptive
Memetic Algorithms [7]. Krasnogor and Smith also provide a taxonomy
of Memetic Algorithms, focusing on the properties needed to design

4.6. Memetic Algorithm 205

‘competent’ implementations of the approach with examples on a number
of combinatorial optimization problems [4]. Work by Krasnogor and
Gustafson investigate what they refer to as ‘self-generating’ Memetic
Algorithms that use the memetic principle to co-evolve the local search
applied by individual solutions [3]. For a broader overview of the field,
see the 2005 book “Recent Advances in Memetic Algorithms” that
provides an overview and a number of studies [2].

4.6.9 Bibliography

[1] R. Dawkins. The selfish gene. Oxford University Press, 1976.

[2] W. E. Hart, N. Krasnogor, and J. E. Smith. Recent Advances in
Memetic Algorithms. Springer, 2005.

[3] N. Krasnogor and S. Gustafson. A study on the use of “self-
generation” in memetic algorithms. Natural Computing, 3(1):53–76,
2004.

[4] N. Krasnogor and J. Smith. A tutorial for competent memetic
algorithms: Model, taxonomy and design issues. IEEE Transactions
on Evolutionary Computation, 9(5):474–488, 2005.

[5] P. Moscato. On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms. Technical report,
California Institute of Technology, 1989.

[6] P. Moscato and C. Cotta. Handbook of Metaheuristics, chapter A
gentle introduction to memetic algorithms, pages 105–144. Kluwer
Academic Publishers, 2003.

[7] Y-S. Ong, M-H. Lim, N. Zhu, and K-W. Wong. Classification of
adaptive memetic algorithms: A comparative study. IEEE Trans-
actions on Systems, Man, and Cybernetics-Part B: Cybernetics,
36(1):141–152, 2006.

206 Chapter 4. Physical Algorithms

Chapter 5

Probabilistic Algorithms

5.1 Overview

This chapter describes Probabilistic Algorithms

5.1.1 Probabilistic Models

Probabilistic Algorithms are those algorithms that model a problem
or search a problem space using an probabilistic model of candidate
solutions. Many Metaheuristics and Computational Intelligence algo-
rithms may be considered probabilistic, although the difference with
algorithms is the explicit (rather than implicit) use of the tools of prob-
ability in problem solving. The majority of the algorithms described in
this Chapter are referred to as Estimation of Distribution Algorithms.

5.1.2 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDA) also called Probabilistic
Model-Building Genetic Algorithms (PMBGA) are an extension of the
field of Evolutionary Computation that model a population of candidate
solutions as a probabilistic model. They generally involve iterations that
alternate between creating candidate solutions in the problem space from
a probabilistic model, and reducing a collection of generated candidate
solutions into a probabilistic model.

The model at the heart of an EDA typically provides the probabilistic
expectation of a component or component configuration comprising part
of an optimal solution. This estimation is typically based on the observed
frequency of use of the component in better than average candidate
solutions. The probabilistic model is used to generate candidate solutions
in the problem space, typically in a component-wise or step-wise manner
using a domain specific construction method to ensure validity.

207

208 Chapter 5. Probabilistic Algorithms

Pelikan et al. provide a comprehensive summary of the field of
probabilistic optimization algorithms, summarizing the core approaches
and their differences [10]. The edited volume by Pelikan, Sastry, and
Cantu-Paz provides a collection of studies on the popular Estimation of
Distribution algorithms as well as methodology for designing algorithms
and application demonstration studies [13]. An edited volume on studies
of EDAs by Larranaga and Lozano [4] and the follow-up volume by
Lozano et al. [5] provide an applied foundation for the field.

5.1.3 Extensions

There are many other algorithms and classes of algorithm that were not
described from the field of Estimation of Distribution Algorithm, not
limited to:

• Extensions to UMDA: Extensions to the Univariate Marginal
Distribution Algorithm such as the Bivariate Marginal Distribu-
tion Algorithm (BMDA) [11, 12] and the Factorized Distribution
Algorithm (FDA) [7].

• Extensions to cGA: Extensions to the Compact Genetic Algo-
rithm such as the Extended Compact Genetic Algorithm (ECGA)
[2, 3].

• Extensions to BOA: Extensions to the Bayesian Optimization
Algorithm such as the Hierarchal Bayesian Optimization Algo-
rithm (hBOA) [8, 9] and the Incremental Bayesian Optimization
Algorithm (iBOA) [14].

• Bayesian Network Algorithms: Other Bayesian network algo-
rithms such as The Estimation of Bayesian Network Algorithm [1],
and the Learning Factorized Distribution Algorithm (LFDA) [6].

• PIPE: The Probabilistic Incremental Program Evolution that
uses EDA methods for constructing programs [16].

• SHCLVND: The Stochastic Hill-Climbing with Learning by Vec-
tors of Normal Distributions algorithm [15].

5.1.4 Bibliography

[1] R. Etxeberria and P. Larranaga. Global optimization using bayesian
networks. In Proceedings of the Second Symposium on Artificial
Intelligence (CIMAF-99), pages 151–173, 1999.

[2] G. R. Harik. Linkage learning via probabilistic modeling in the
extended compact genetic algorithm (ECGA). Technical Report

5.1. Overview 209

99010, Illinois Genetic Algorithms Laboratory, Department of Gen-
eral Engineering, University of Illinois, 1999.

[3] G. R. Harik, F. G. Lobo, and K. Sastry. Scalable Optimization via
Probabilistic Modeling, chapter Linkage Learning via Probabilistic
Modeling in the Extended Compact Genetic Algorithm (ECGA),
pages 39–61. Springer, 2006.

[4] P. Larranaga and J. A. Lozano. Estimation of distribution algo-
rithms: A new tool for evolutionary computation. Springer, 2002.

[5] J. A. Lozano, P. Larranaga, I. Inza, and E. Bengoetxea. Towards a
new evolutionary computation. Advances in estimation of distribu-
tion algorithms. Springer, 2006.

[6] H. Mühlenbein and T. Mahnig. FDA–a scalable evolutionary al-
gorithm for the optimization of additively decomposed discrete
functions. Evolutionary Compilation, 7(4):353–376, 1999.

[7] H. Mühlenbein, T. Mahnig, and A. O. Rodriguez. Schemata,
distributions and graphical models in evolutionary optimization.
Journal of Heuristics, 5(2):215–247, 1999.

[8] M. Pelikan and D. E. Goldberg. Hierarchical problem solving and
the bayesian optimization algorithms. In Genetic and Evolution-
ary Computation Conference 2000 (GECCO-2000), pages 267–274,
2000.

[9] M. Pelikan and D. E. Goldberg. Escaping hierarchical traps with
competent genetic algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), number
511–518, 2001.

[10] M. Pelikan, D. E. Goldberg, and F. G. Lobo. A survey of optimiza-
tion by building and using probabilistic models. Computational
Optimization and Applications, 21:5–20, 2002.

[11] M. Pelikan and H. Mühlenbein. Marginal distributions in evolu-
tionary algorithms. In Proceedings of the International Conference
on Genetic Algorithms Mendel, 1998.

[12] M. Pelikan and H. Mühlenbein. Advances in Soft Computing:
Engineering Design and Manufacturing, chapter The Bivariate
Marginal Distribution Algorithm, pages 521–535. Springer, 1999.

[13] M. Pelikan, K. Sastry, and E. Cantú-Paz, editors. Scalable Optimiza-
tion via Probabilistic Modeling: From Algorithms to Applications.
Springer, 2006.

210 Chapter 5. Probabilistic Algorithms

[14] M. Pelikan, K. Sastry, and D. E. Goldberg. iBOA: The incremental
bayesian optimization algorithms. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2008), pages
455–462, 2008.

[15] S. Rudlof and M. Koppen. Stochastic hill climbing with learning
by vectors of normal distributions. In First On-line Workshop on
Soft Computing, Nagoya, Japan, 1996.

[16] R. Salustowicz and J. Schmidhuber. Probabilistic incremental
program evolution: Stochastic search through program space. In
Proceedings of the 9th European Conference on Machine Learning
Prague, pages 213–220, 1997.

5.2. Population-Based Incremental Learning 211

5.2 Population-Based Incremental Learning

Population-Based Incremental Learning, PBIL.

5.2.1 Taxonomy

Population-Based Incremental Learning is an Estimation of Distribu-
tion Algorithm (EDA), also referred to as Population Model-Building
Genetic Algorithms (PMBGA) an extension to the field of Evolutionary
Computation. PBIL is related to other EDAs such as the Compact
Genetic Algorithm (Section 5.4), the Probabilistic Incremental Program-
ing Evolution Algorithm, and the Bayesian Optimization Algorithm
(Section 5.5). The fact the the algorithm maintains a single prototype
vector that is updated competitively shows some relationship to the
Learning Vector Quantization algorithm (Section 8.5).

5.2.2 Inspiration

Population-Based Incremental Learning is a population-based technique
without an inspiration. It is related to the Genetic Algorithm and other
Evolutionary Algorithms that are inspired by the biological theory of
evolution by means of natural selection.

5.2.3 Strategy

The information processing objective of the PBIL algorithm is to reduce
the memory required by the genetic algorithm. This is done by reducing
the population of a candidate solutions to a single prototype vector of
attributes from which candidate solutions can be generated and assessed.
Updates and mutation operators are also performed to the prototype
vector, rather than the generated candidate solutions.

5.2.4 Procedure

The Population-Based Incremental Learning algorithm maintains a
real-valued prototype vector that represents the probability of each
component being expressed in a candidate solution. Algorithm 5.2.1
provides a pseudocode listing of the Population-Based Incremental
Learning algorithm for maximizing a cost function.

5.2.5 Heuristics

• PBIL was designed to optimize the probability of components
from low cardinality sets, such as bit’s in a binary string.

212 Chapter 5. Probabilistic Algorithms

Algorithm 5.2.1: Pseudocode for PBIL.

Input: Bitsnum, Samplesnum, Learnrate, Pmutation,
Mutationfactor

Output: Sbest
V ← InitializeVector(Bitsnum);1

Sbest ← ∅;2

while ¬StopCondition() do3

Scurrent ← ∅;4

for i to Samplesnum do5

Si ← GenerateSamples(V);6

if Cost(Si) ≤ Cost(Scurrent) then7

Scurrent ← Si;8

if Cost(Si) ≤ Cost(Sbest) then9

Sbest ← Si;10

end11

end12

end13

foreach Sibit ∈ Scurrent do14

V ibit ← V ibit × (1.0 − Learnrate) + Sibit × Learnrate;15

if Rand() < Pmutation then16

V ibit ← V ibit × (1.0 − Mutationfactor) + Rand() ×17

Mutationfactor;
end18

end19

end20

return Sbest;21

• The algorithm has a very small memory footprint (compared to
some population-based evolutionary algorithms) given the com-
pression of information into a single prototype vector.

• Extensions to PBIL have been proposed that extend the represen-
tation beyond sets to real-valued vectors.

• Variants of PBIL that were proposed in the original paper include
updating the prototype vector with more than one competitive
candidate solution (such as an average of top candidate solutions),
and moving the prototype vector away from the least competitive
candidate solution each iteration.

• Low learning rates are preferred, such as 0.1.

5.2. Population-Based Incremental Learning 213

5.2.6 Code Listing

Listing 5.1 provides an example of the Population-Based Incremental
Learning algorithm implemented in the Ruby Programming Language.
The demonstration problem is a maximizing binary optimization problem
called OneMax that seeks a binary string of unity (all ‘1’ bits). The
objective function only provides an indication of the number of correct
bits in a candidate string, not the positions of the correct bits. The
algorithm is an implementation of the simple PBIL algorithm that
updates the prototype vector based on the best candidate solution
generated each iteration.

1 def onemax(vector)

2 return vector.inject(0){|sum, value| sum + value}

3 end

4

5 def generate_candidate(vector)

6 candidate = {}

7 candidate[:bitstring] = Array.new(vector.size)

8 vector.each_with_index do |p, i|

9 candidate[:bitstring][i] = (rand()<p) ? 1 : 0

10 end

11 return candidate

12 end

13

14 def update_vector(vector, current, lrate)

15 vector.each_with_index do |p, i|

16 vector[i] = p*(1.0-lrate) + current[:bitstring][i]*lrate

17 end

18 end

19

20 def mutate_vector(vector, current, coefficient, rate)

21 vector.each_with_index do |p, i|

22 if rand() < rate

23 vector[i] = p*(1.0-coefficient) + rand()*coefficient

24 end

25 end

26 end

27

28 def search(num_bits, max_iter, num_samples, p_mutate, mut_factor,

l_rate)

29 vector = Array.new(num_bits){0.5}

30 best = nil

31 max_iter.times do |iter|

32 current = nil

33 num_samples.times do

34 candidate = generate_candidate(vector)

35 candidate[:cost] = onemax(candidate[:bitstring])

36 current = candidate if current.nil? or

candidate[:cost]>current[:cost]

37 best = candidate if best.nil? or candidate[:cost]>best[:cost]

38 end

39 update_vector(vector, current, l_rate)

40 mutate_vector(vector, current, mut_factor, p_mutate)

214 Chapter 5. Probabilistic Algorithms

41 puts " >iteration=#{iter}, f=#{best[:cost]}, s=#{best[:bitstring]}"

42 break if best[:cost] == num_bits

43 end

44 return best

45 end

46

47 if __FILE__ == $0
48 # problem configuration

49 num_bits = 64

50 # algorithm configuration

51 max_iter = 100

52 num_samples = 100

53 p_mutate = 1.0/num_bits

54 mut_factor = 0.05

55 l_rate = 0.1

56 # execute the algorithm

57 best=search(num_bits, max_iter, num_samples, p_mutate, mut_factor,

l_rate)

58 puts "done! Solution: f=#{best[:cost]}/#{num_bits},

s=#{best[:bitstring]}"

59 end

Listing 5.1: Population-Based Incremental Learning in Ruby

5.2.7 References

Primary Sources

The Population-Based Incremental Learning algorithm was proposed by
Baluja in a technical report that proposed the base algorithm as well
as a number of variants inspired by the Learning Vector Quantization
algorithm [1].

Learn More

Baluja and Caruana provide an excellent overview of PBIL and compare
it to the standard Genetic Algorithm, released as a technical report [3]
and later published [4]. Baluja provides a detailed comparison between
the Genetic algorithm and PBIL on a range of problems and scales in
another technical report [2]. Greene provided an excellent account on the
applicability of PBIL as a practical optimization algorithm [5]. Höhfeld
and Rudolph provide the first theoretical analysis of the technique and
provide a convergence proof [6].

5.2.8 Bibliography

[1] S. Baluja. Population-based incremental learning: A method for inte-
grating genetic search based function optimization and competitive
learning. Technical Report CMU-CS-94-163, School of Computer

5.2. Population-Based Incremental Learning 215

Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,
June 1994.

[2] S. Baluja. An empirical comparison of seven iterative and evolu-
tionary function optimization heuristics. Technical Report CMU-
CS-95-193, School of Computer Science Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213, September 1995.

[3] S. Baluja and R. Caruana. Removing the genetics from the standard
genetic algorithm. Technical Report CMU-CS-95-141, School of Com-
puter Science Carnegie Mellon University, Pittsburgh, Pennsylvania
15213, May 1995.

[4] S. Baluja and R. Caruana. Removing the genetics from the standard
genetic algorithm. In Proceedings of the International Conference
on Machine Learning, pages 36–46. Morgan Kaufmann, 1995.

[5] J. R. Greene. Population-based incremental learning as a simple
versatile tool for engineering optimization. In Proceedings of the
First International Conference on Evolutionary Computation and
Its Applications, pages 258–269, 1996.

[6] M. Höhfeld and G. Rudolph. Towards a theory of population based
incremental learning. In Proceedings of the IEEE Conference on
Evolutionary Computation, pages 1–5. IEEE Press, 1997.

216 Chapter 5. Probabilistic Algorithms

5.3 Univariate Marginal Distribution Algo-
rithm

Univariate Marginal Distribution Algorithm, UMDA, Univariate Marginal
Distribution, UMD.

5.3.1 Taxonomy

The Univariate Marginal Distribution Algorithm belongs to the field
of Estimation of Distribution Algorithms (EDA), also referred to as
Population Model-Building Genetic Algorithms (PMBGA), an extension
to the field of Evolutionary Computation. UMDA is closely related to the
Factorized Distribution Algorithm (FDA) and an extension called the
Bivariate Marginal Distribution Algorithm (BMDA). UMDA is related
to other EDAs such as the Compact Genetic Algorithm (Section 5.4),
the Population-Based Incremental Learning algorithm (Section 5.2), and
the Bayesian Optimization Algorithm (Section 5.5).

5.3.2 Inspiration

Univariate Marginal Distribution Algorithm is a population technique-
based without an inspiration. It is related to the Genetic Algorithm
and other Evolutionary Algorithms that are inspired by the biological
theory of evolution by means of natural selection.

5.3.3 Strategy

The information processing strategy of the algorithm is to use the
frequency of the components in a population of candidate solutions
in the construction of new candidate solutions. This is achieved by
first measuring the frequency of each component in the population
(the univariate marginal probability) and using the probabilities to
influence the probabilistic selection of components in the component-
wise construction of new candidate solutions.

5.3.4 Procedure

Algorithm 5.3.1 provides a pseudocode listing of the Univariate Marginal
Distribution Algorithm for minimizing a cost function.

5.3.5 Heuristics

• UMDA was designed for problems where the components of a
solution are independent (linearly separable).

5.3. Univariate Marginal Distribution Algorithm 217

Algorithm 5.3.1: Pseudocode for the UMDA.

Input: Bitsnum, Populationsize, Selectionsize
Output: Sbest
Population ← InitializePopulation(Bitsnum,1

Populationsize);
EvaluatePopulation(Population);2

Sbest ← GetBestSolution(Population);3

while ¬StopCondition() do4

Selected ← SelectFitSolutions(Population, Selectionsize);5

V ← CalculateFrequencyOfComponents(Selected);6

Offspring ← ∅;7

for i to Populationsize do8

Offspring ← ProbabilisticallyConstructSolution(V);9

end10

EvaluatePopulation(Offspring);11

Sbest ← GetBestSolution(Offspring);12

Population ← Offspring;13

end14

return Sbest;15

• A selection method is needed to identify the subset of good solu-
tions from which to calculate the univariate marginal probabilities.
Many selection methods from the field of Evolutionary Computa-
tion may be used.

5.3.6 Code Listing

Listing 5.2 provides an example of the Univariate Marginal Distribution
Algorithm implemented in the Ruby Programming Language. The
demonstration problem is a maximizing binary optimization problem
called OneMax that seeks a binary string of unity (all ‘1’ bits). The
objective function provides only an indication of the number of correct
bits in a candidate string, not the positions of the correct bits.

The algorithm is an implementation of UMDA that uses the integers
1 and 0 to represent bits in a binary string representation. A binary tour-
nament selection strategy is used and the whole population is replaced
each iteration. The mechanisms from Evolutionary Computation such
as elitism and more elaborate selection methods may be implemented
as an extension.

1 def onemax(vector)

2 return vector.inject(0){|sum, value| sum + value}

3 end

4

218 Chapter 5. Probabilistic Algorithms

5 def random_bitstring(size)

6 return Array.new(size){ ((rand()<0.5) ? 1 : 0) }

7 end

8

9 def binary_tournament(pop)

10 i, j = rand(pop.size), rand(pop.size)

11 j = rand(pop.size) while j==i

12 return (pop[i][:fitness] > pop[j][:fitness]) ? pop[i] : pop[j]

13 end

14

15 def calculate_bit_probabilities(pop)

16 vector = Array.new(pop.first[:bitstring].length, 0.0)

17 pop.each do |member|

18 member[:bitstring].each_with_index {|v, i| vector[i] += v}

19 end

20 vector.each_with_index {|f, i| vector[i] = (f.to_f/pop.size.to_f)}

21 return vector

22 end

23

24 def generate_candidate(vector)

25 candidate = {}

26 candidate[:bitstring] = Array.new(vector.size)

27 vector.each_with_index do |p, i|

28 candidate[:bitstring][i] = (rand()<p) ? 1 : 0

29 end

30 return candidate

31 end

32

33 def search(num_bits, max_iter, pop_size, select_size)

34 pop = Array.new(pop_size) do

35 {:bitstring=>random_bitstring(num_bits)}

36 end

37 pop.each{|c| c[:fitness] = onemax(c[:bitstring])}

38 best = pop.sort{|x,y| y[:fitness] <=> x[:fitness]}.first

39 max_iter.times do |iter|

40 selected = Array.new(select_size) { binary_tournament(pop) }

41 vector = calculate_bit_probabilities(selected)

42 samples = Array.new(pop_size) { generate_candidate(vector) }

43 samples.each{|c| c[:fitness] = onemax(c[:bitstring])}

44 samples.sort!{|x,y| y[:fitness] <=> x[:fitness]}

45 best = samples.first if samples.first[:fitness] > best[:fitness]

46 pop = samples

47 puts " >iteration=#{iter}, f=#{best[:fitness]},

s=#{best[:bitstring]}"

48 end

49 return best

50 end

51

52 if __FILE__ == $0
53 # problem configuration

54 num_bits = 64

55 # algorithm configuration

56 max_iter = 100

57 pop_size = 50

58 select_size = 30

59 # execute the algorithm

5.3. Univariate Marginal Distribution Algorithm 219

60 best = search(num_bits, max_iter, pop_size, select_size)

61 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:bitstring]}"

62 end

Listing 5.2: Univariate Marginal Distribution Algorithm in Ruby

5.3.7 References

Primary Sources

The Univariate Marginal Distribution Algorithm was described by
Mühlenbein in 1997 in which a theoretical foundation is provided (for
the field of investigation in general and the algorithm specifically) [2].
Mühlenbein also describes an incremental version of UMDA (IUMDA)
that is described as being equivalent to Baluja’s Population-Based In-
cremental Learning (PBIL) algorithm [1].

Learn More

Pelikan and Mühlenbein extended the approach to cover problems
that have dependencies between the components (specifically pair-
dependencies), referring to the technique as the Bivariate Marginal
Distribution Algorithm (BMDA) [3, 4].

5.3.8 Bibliography

[1] S. Baluja. Population-based incremental learning: A method for inte-
grating genetic search based function optimization and competitive
learning. Technical Report CMU-CS-94-163, School of Computer
Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,
June 1994.

[2] H. Mühlenbein. The equation for response to selection and its use
for prediction. Evolutionary Computation, 5(3):303–346, 1997.

[3] M. Pelikan and H. Mühlenbein. Marginal distributions in evolution-
ary algorithms. In Proceedings of the International Conference on
Genetic Algorithms Mendel, 1998.

[4] M. Pelikan and H. Mühlenbein. Advances in Soft Computing: Engi-
neering Design and Manufacturing, chapter The Bivariate Marginal
Distribution Algorithm, pages 521–535. Springer, 1999.

220 Chapter 5. Probabilistic Algorithms

5.4 Compact Genetic Algorithm

Compact Genetic Algorithm, CGA, cGA.

5.4.1 Taxonomy

The Compact Genetic Algorithm is an Estimation of Distribution Al-
gorithm (EDA), also referred to as Population Model-Building Genetic
Algorithms (PMBGA), an extension to the field of Evolutionary Com-
putation. The Compact Genetic Algorithm is the basis for extensions
such as the Extended Compact Genetic Algorithm (ECGA). It is related
to other EDAs such as the Univariate Marginal Probability Algorithm
(Section 5.3), the Population-Based Incremental Learning algorithm
(Section 5.2), and the Bayesian Optimization Algorithm (Section 5.5).

5.4.2 Inspiration

The Compact Genetic Algorithm is a probabilistic technique without an
inspiration. It is related to the Genetic Algorithm and other Evolutionary
Algorithms that are inspired by the biological theory of evolution by
means of natural selection.

5.4.3 Strategy

The information processing objective of the algorithm is to simulate the
behavior of a Genetic Algorithm with a much smaller memory footprint
(without requiring a population to be maintained). This is achieved
by maintaining a vector that specifies the probability of including each
component in a solution in new candidate solutions. Candidate solutions
are probabilistically generated from the vector and the components in
the better solution are used to make small changes to the probabilities
in the vector.

5.4.4 Procedure

The Compact Genetic Algorithm maintains a real-valued prototype
vector that represents the probability of each component being expressed
in a candidate solution. Algorithm 5.4.1 provides a pseudocode listing
of the Compact Genetic Algorithm for maximizing a cost function. The
parameter n indicates the amount to update probabilities for conflicting
bits in each algorithm iteration.

5.4.5 Heuristics

• The vector update parameter (n) influences the amount that the
probabilities are updated each algorithm iteration.

5.4. Compact Genetic Algorithm 221

Algorithm 5.4.1: Pseudocode for the cGA.

Input: Bitsnum, n
Output: Sbest
V ← InitializeVector(Bitsnum, 0.5);1

Sbest ← ∅;2

while ¬StopCondition() do3

S1 ← GenerateSamples(V);4

S2 ← GenerateSamples(V);5

Swinner, Sloser ← SelectWinnerAndLoser(S1, S2);6

if Cost(Swinner) ≤ Cost(Sbest) then7

Sbest ← Swinner;8

end9

for i to Bitsnum do10

if Siwinner 6= Siloser then11

if Siwinner ≡ 1 then12

V ii ← V ii + 1
n ;13

else14

V ii ← V ii − 1
n ;15

end16

end17

end18

end19

return Sbest;20

• The vector update parameter (n) may be considered to be compa-
rable to the population size parameter in the Genetic Algorithm.

• Early results demonstrate that the cGA may be comparable to a
standard Genetic Algorithm on classical binary string optimization
problems (such as OneMax).

• The algorithm may be considered to have converged if the vector
probabilities are all either 0 or 1.

5.4.6 Code Listing

Listing 5.3 provides an example of the Compact Genetic Algorithm
implemented in the Ruby Programming Language. The demonstration
problem is a maximizing binary optimization problem called OneMax
that seeks a binary string of unity (all ‘1’ bits). The objective function
only provides an indication of the number of correct bits in a candidate
string, not the positions of the correct bits. The algorithm is an imple-
mentation of Compact Genetic Algorithm that uses integer values to
represent 1 and 0 bits in a binary string representation.

222 Chapter 5. Probabilistic Algorithms

1 def onemax(vector)

2 return vector.inject(0){|sum, value| sum + value}

3 end

4

5 def generate_candidate(vector)

6 candidate = {}

7 candidate[:bitstring] = Array.new(vector.size)

8 vector.each_with_index do |p, i|

9 candidate[:bitstring][i] = (rand()<p) ? 1 : 0

10 end

11 candidate[:cost] = onemax(candidate[:bitstring])

12 return candidate

13 end

14

15 def update_vector(vector, winner, loser, pop_size)

16 vector.size.times do |i|

17 if winner[:bitstring][i] != loser[:bitstring][i]

18 if winner[:bitstring][i] == 1

19 vector[i] += 1.0/pop_size.to_f

20 else

21 vector[i] -= 1.0/pop_size.to_f

22 end

23 end

24 end

25 end

26

27 def search(num_bits, max_iterations, pop_size)

28 vector = Array.new(num_bits){0.5}

29 best = nil

30 max_iterations.times do |iter|

31 c1 = generate_candidate(vector)

32 c2 = generate_candidate(vector)

33 winner, loser = (c1[:cost] > c2[:cost] ? [c1,c2] : [c2,c1])

34 best = winner if best.nil? or winner[:cost]>best[:cost]

35 update_vector(vector, winner, loser, pop_size)

36 puts " >iteration=#{iter}, f=#{best[:cost]}, s=#{best[:bitstring]}"

37 break if best[:cost] == num_bits

38 end

39 return best

40 end

41

42 if __FILE__ == $0
43 # problem configuration

44 num_bits = 32

45 # algorithm configuration

46 max_iterations = 200

47 pop_size = 20

48 # execute the algorithm

49 best = search(num_bits, max_iterations, pop_size)

50 puts "done! Solution: f=#{best[:cost]}/#{num_bits},

s=#{best[:bitstring]}"

51 end

Listing 5.3: Compact Genetic Algorithm in Ruby

5.4. Compact Genetic Algorithm 223

5.4.7 References

Primary Sources

The Compact Genetic Algorithm was proposed by Harik, Lobo, and
Goldberg in 1999 [3], based on a random walk model previously in-
troduced by Harik et al. [2]. In the introductory paper, the cGA is
demonstrated to be comparable to the Genetic Algorithm on standard
binary string optimization problems.

Learn More

Harik et al. extended the Compact Genetic Algorithm (called the Ex-
tended Compact Genetic Algorithm) to generate populations of candi-
date solutions and perform selection (much like the Univariate Marginal
Probabilist Algorithm), although it used Marginal Product Models [1, 4].
Sastry and Goldberg performed further analysis into the Extended Com-
pact Genetic Algorithm applying the method to a complex optimization
problem [5].

5.4.8 Bibliography

[1] G. R. Harik. Linkage learning via probabilistic modeling in the
extended compact genetic algorithm (ECGA). Technical Report
99010, Illinois Genetic Algorithms Laboratory, Department of Gen-
eral Engineering, University of Illinois, 1999.

[2] G. R. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller. The
gambler’s ruin problem, genetic algorithms, and the sizing of popu-
lations. In IEEE International Conference on Evolutionary Compu-
tation, pages 7–12, 1997.

[3] G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact ge-
netic algorithm. IEEE Transactions on Evolutionary Computation,
3(4):287–297, 1999.

[4] G. R. Harik, F. G. Lobo, and K. Sastry. Scalable Optimization via
Probabilistic Modeling, chapter Linkage Learning via Probabilistic
Modeling in the Extended Compact Genetic Algorithm (ECGA),
pages 39–61. Springer, 2006.

[5] K. Sastry and D. E. Goldberg. On extended compact genetic algo-
rithm. In Late Breaking Paper in Genetic and Evolutionary Compu-
tation Conference, pages 352–359, 2000.

224 Chapter 5. Probabilistic Algorithms

5.5 Bayesian Optimization Algorithm

Bayesian Optimization Algorithm, BOA.

5.5.1 Taxonomy

The Bayesian Optimization Algorithm belongs to the field of Estima-
tion of Distribution Algorithms, also referred to as Population Model-
Building Genetic Algorithms (PMBGA) an extension to the field of
Evolutionary Computation. More broadly, BOA belongs to the field of
Computational Intelligence. The Bayesian Optimization Algorithm is
related to other Estimation of Distribution Algorithms such as the Popu-
lation Incremental Learning Algorithm (Section 5.2), and the Univariate
Marginal Distribution Algorithm (Section 5.3). It is also the basis for
extensions such as the Hierarchal Bayesian Optimization Algorithm
(hBOA) and the Incremental Bayesian Optimization Algorithm (iBOA).

5.5.2 Inspiration

Bayesian Optimization Algorithm is a technique without an inspiration.
It is related to the Genetic Algorithm and other Evolutionary Algorithms
that are inspired by the biological theory of evolution by means of natural
selection.

5.5.3 Strategy

The information processing objective of the technique is to construct a
probabilistic model that describes the relationships between the compo-
nents of fit solutions in the problem space. This is achieved by repeating
the process of creating and sampling from a Bayesian network that
contains the conditional dependancies, independencies, and conditional
probabilities between the components of a solution. The network is
constructed from the relative frequencies of the components within a
population of high fitness candidate solutions. Once the network is
constructed, the candidate solutions are discarded and a new population
of candidate solutions are generated from the model. The process is
repeated until the model converges on a fit prototype solution.

5.5.4 Procedure

Algorithm 5.5.1 provides a pseudocode listing of the Bayesian Optimiza-
tion Algorithm for minimizing a cost function. The Bayesian network
is constructed each iteration using a greedy algorithm. The network is
assessed based on its fit of the information in the population of candidate
solutions using either a Bayesian Dirichlet Metric (BD) [9], or a Bayesian

5.5. Bayesian Optimization Algorithm 225

Information Criterion (BIC). Refer to Chapter 3 of Pelikan’s book for a
more detailed presentation of the pseudocode for BOA [5].

Algorithm 5.5.1: Pseudocode for BOA.

Input: Bitsnum, Populationsize, Selectionsize
Output: Sbest
Population ← InitializePopulation(Bitsnum,1

Populationsize);
EvaluatePopulation(Population);2

Sbest ← GetBestSolution(Population);3

while ¬StopCondition() do4

Selected ← SelectFitSolutions(Population, Selectionsize);5

Model ← ConstructBayesianNetwork(Selected);6

Offspring ← ∅;7

for i to Populationsize do8

Offspring ←9

ProbabilisticallyConstructSolution(Model);
end10

EvaluatePopulation(Offspring);11

Sbest ← GetBestSolution(Offspring);12

Population ← Combine(Population, Offspring);13

end14

return Sbest;15

5.5.5 Heuristics

• The Bayesian Optimization Algorithm was designed and investi-
gated on binary string-base problems, most commonly representing
binary function optimization problems.

• Bayesian networks are typically constructed (grown) from scratch
each iteration using an iterative process of adding, removing, and
reversing links. Additionally, past networks may be used as the
basis for the subsequent generation.

• A greedy hill-climbing algorithm is used each algorithm iteration to
optimize a Bayesian network to represent a population of candidate
solutions.

• The fitness of constructed Bayesian networks may be assessed using
the Bayesian Dirichlet Metric (BD) or a Minimum Description
length method called the Bayesian Information Criterion (BIC).

226 Chapter 5. Probabilistic Algorithms

5.5.6 Code Listing

Listing 5.4 provides an example of the Bayesian Optimization Algorithm
implemented in the Ruby Programming Language. The demonstration
problem is a maximizing binary optimization problem called OneMax
that seeks a binary string of unity (all ‘1’ bits). The objective function
provides only an indication of the number of correct bits in a candidate
string, not the positions of the correct bits.

The Bayesian Optimization Algorithm can be tricky to implement
given the use of of a Bayesian Network at the core of the technique. The
implementation of BOA provided is based on the the C++ implementa-
tion provided by Pelikan, version 1.0 [3]. Specifically, the implementation
uses the K2 metric to construct a Bayesian network from a population
of candidate solutions [1]. Essentially, this metric is a greedy algorithm
that starts with an empty graph and adds the arc with the most gain
each iteration until a maximum number of edges have been added or no
further edges can be added. The result is a directed acyclic graph. The
process that constructs the graph imposes limits, such as the maximum
number of edges and the maximum number of in-bound connections per
node.

New solutions are sampled from the graph by first topologically
ordering the graph (so that bits can be generated based on their depen-
dencies), then probabilistically sampling the bits based on the conditional
probabilities encoded in the graph. The algorithm used for sampling
the conditional probabilities from the network is Probabilistic Logic
Sampling [2]. The stopping condition is either the best solution for the
problem is found or the system converges to a single bit pattern.

Given that the implementation was written for clarity, it is slow
to execute and provides an great opportunity for improvements and
efficiencies.

1 def onemax(vector)

2 return vector.inject(0){|sum, value| sum + value}

3 end

4

5 def random_bitstring(size)

6 return Array.new(size){ ((rand()<0.5) ? 1 : 0) }

7 end

8

9 def path_exists?(i, j, graph)

10 visited, stack = [], [i]

11 while !stack.empty?

12 return true if stack.include?(j)

13 k = stack.shift

14 next if visited.include?(k)

15 visited << k

16 graph[k][:out].each {|m| stack.unshift(m) if !visited.include?(m)}

17 end

18 return false

5.5. Bayesian Optimization Algorithm 227

19 end

20

21 def can_add_edge?(i, j, graph)

22 return !graph[i][:out].include?(j) && !path_exists?(j, i, graph)

23 end

24

25 def get_viable_parents(node, graph)

26 viable = []

27 graph.size.times do |i|

28 if node!=i and can_add_edge?(node, i, graph)

29 viable << i

30 end

31 end

32 return viable

33 end

34

35 def compute_count_for_edges(pop, indexes)

36 counts = Array.new(2**(indexes.size)){0}

37 pop.each do |p|

38 index = 0

39 indexes.reverse.each_with_index do |v,i|

40 index += ((p[:bitstring][v] == 1) ? 1 : 0) * (2**i)

41 end

42 counts[index] += 1

43 end

44 return counts

45 end

46

47 def fact(v)

48 return v <= 1 ? 1 : v*fact(v-1)

49 end

50

51 def k2equation(node, candidates, pop)

52 counts = compute_count_for_edges(pop, [node]+candidates)

53 total = nil

54 (counts.size/2).times do |i|

55 a1, a2 = counts[i*2], counts[(i*2)+1]

56 rs = (1.0/fact((a1+a2)+1).to_f) * fact(a1).to_f * fact(a2).to_f

57 total = (total.nil? ? rs : total*rs)

58 end

59 return total

60 end

61

62 def compute_gains(node, graph, pop, max=2)

63 viable = get_viable_parents(node[:num], graph)

64 gains = Array.new(graph.size) {-1.0}

65 gains.each_index do |i|

66 if graph[i][:in].size < max and viable.include?(i)

67 gains[i] = k2equation(node[:num], node[:in]+[i], pop)

68 end

69 end

70 return gains

71 end

72

73 def construct_network(pop, prob_size, max_edges=3*pop.size)

74 graph = Array.new(prob_size) {|i| {:out=>[], :in=>[], :num=>i} }

228 Chapter 5. Probabilistic Algorithms

75 gains = Array.new(prob_size)

76 max_edges.times do

77 max, from, to = -1, nil, nil

78 graph.each_with_index do |node, i|

79 gains[i] = compute_gains(node, graph, pop)

80 gains[i].each_with_index {|v,j| from,to,max = i,j,v if v>max}

81 end

82 break if max <= 0.0

83 graph[from][:out] << to

84 graph[to][:in] << from

85 end

86 return graph

87 end

88

89 def topological_ordering(graph)

90 graph.each {|n| n[:count] = n[:in].size}

91 ordered,stack = [], graph.select {|n| n[:count]==0}

92 while ordered.size < graph.size

93 current = stack.shift

94 current[:out].each do |edge|

95 node = graph.find {|n| n[:num]==edge}

96 node[:count] -= 1

97 stack << node if node[:count] <= 0

98 end

99 ordered << current

100 end

101 return ordered

102 end

103

104 def marginal_probability(i, pop)

105 return pop.inject(0.0){|s,x| s + x[:bitstring][i]} / pop.size.to_f

106 end

107

108 def calculate_probability(node, bitstring, graph, pop)

109 return marginal_probability(node[:num], pop) if node[:in].empty?

110 counts = compute_count_for_edges(pop, [node[:num]]+node[:in])

111 index = 0

112 node[:in].reverse.each_with_index do |v,i|

113 index += ((bitstring[v] == 1) ? 1 : 0) * (2**i)

114 end

115 i1 = index + (1*2**(node[:in].size))

116 i2 = index + (0*2**(node[:in].size))

117 a1, a2 = counts[i1].to_f, counts[i2].to_f

118 return a1/(a1+a2)

119 end

120

121 def probabilistic_logic_sample(graph, pop)

122 bitstring = Array.new(graph.size)

123 graph.each do |node|

124 prob = calculate_probability(node, bitstring, graph, pop)

125 bitstring[node[:num]] = ((rand() < prob) ? 1 : 0)

126 end

127 return {:bitstring=>bitstring}

128 end

129

130 def sample_from_network(pop, graph, num_samples)

5.5. Bayesian Optimization Algorithm 229

131 ordered = topological_ordering(graph)

132 samples = Array.new(num_samples) do

133 probabilistic_logic_sample(ordered, pop)

134 end

135 return samples

136 end

137

138 def search(num_bits, max_iter, pop_size, select_size, num_children)

139 pop = Array.new(pop_size) { {:bitstring=>random_bitstring(num_bits)} }

140 pop.each{|c| c[:cost] = onemax(c[:bitstring])}

141 best = pop.sort!{|x,y| y[:cost] <=> x[:cost]}.first

142 max_iter.times do |it|

143 selected = pop.first(select_size)

144 network = construct_network(selected, num_bits)

145 arcs = network.inject(0){|s,x| s+x[:out].size}

146 children = sample_from_network(selected, network, num_children)

147 children.each{|c| c[:cost] = onemax(c[:bitstring])}

148 children.each {|c| puts " >>sample, f=#{c[:cost]} #{c[:bitstring]}"}

149 pop = pop[0...(pop_size-select_size)] + children

150 pop.sort! {|x,y| y[:cost] <=> x[:cost]}

151 best = pop.first if pop.first[:cost] >= best[:cost]

152 puts " >it=#{it}, arcs=#{arcs}, f=#{best[:cost]},

[#{best[:bitstring]}]"

153 converged = pop.select {|x|

x[:bitstring]!=pop.first[:bitstring]}.empty?

154 break if converged or best[:cost]==num_bits

155 end

156 return best

157 end

158

159 if __FILE__ == $0
160 # problem configuration

161 num_bits = 20

162 # algorithm configuration

163 max_iter = 100

164 pop_size = 50

165 select_size = 15

166 num_children = 25

167 # execute the algorithm

168 best = search(num_bits, max_iter, pop_size, select_size, num_children)

169 puts "done! Solution: f=#{best[:cost]}/#{num_bits},

s=#{best[:bitstring]}"

170 end

Listing 5.4: Bayesian Optimization Algorithm in Ruby

5.5.7 References

Primary Sources

The Bayesian Optimization Algorithm was proposed by Pelikan, Gold-
berg, and Cantú-Paz in the technical report [8], that was later published
[10]. The technique was proposed as an extension to the state of Es-
timation of Distribution algorithms (such as the Univariate Marginal

230 Chapter 5. Probabilistic Algorithms

Distribution Algorithm and the Bivariate Marginal Distribution Algo-
rithm) that used a Bayesian Network to model the relationships and
conditional probabilities for the components expressed in a population of
fit candidate solutions. Pelikan, Goldberg, and Cantú-Paz also described
the approach applied to deceptive binary optimization problems (trap
functions) in a paper that was published before the seminal journal
article [9].

Learn More

Pelikan and Goldberg described an extension to the approach called
the Hierarchical Bayesian Optimization Algorithm (hBOA) [6, 7]. The
differences in the hBOA algorithm are that it replaces the decision
tables (used to store the probabilities) with decision graphs and used a
niching method called Restricted Tournament Replacement to maintain
diversity in the selected set of candidate solutions used to construct the
network models. Pelikan’s work on BOA culminated in his PhD thesis
that provides a detailed treatment of the approach, its configuration and
application [4]. Pelikan, Sastry, and Goldberg proposed the Incremental
Bayesian Optimization Algorithm (iBOA) extension of the approach that
removes the population and adds incremental updates to the Bayesian
network [11].

Pelikan published a book that focused on the technique, walking
through the development of probabilistic algorithms inspired by evo-
lutionary computation, a detailed look at the Bayesian Optimization
Algorithm (Chapter 3), the hierarchic extension to Hierarchical Bayesian
Optimization Algorithm and demonstration studies of the approach on
test problems [5].

5.5.8 Bibliography

[1] G. F. Cooper and E. Herskovits. A bayesian method for the
induction of probabilistic networks from data. Machine Learning,
9(4):309–347, 1992.

[2] M. Henrion. Uncertainty in Artificial Intelligence 2, chapter Prop-
agation of Uncertainty by Probabilistic Logic Sampling in Bayes
Networks, pages 149–163. Elsevier Science Publishing Company,
Inc., 1988.

[3] M. Pelikan. A simple implementation of the bayesian optimization
algorithm (boa) in c++ (version 1.0). Technical Report IlliGAL
Report No. 99011, University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory, Urbana, IL, March 1999.

5.5. Bayesian Optimization Algorithm 231

[4] M. Pelikan. Bayesian optimization algorithm: From single level to
hierarchy. PhD thesis, University of Illinois at Urbana-Champaign,
Urbana, IL, 2002.

[5] M. Pelikan. Hierarchical Bayesian Optimization Algorithm: Toward
a New Generation of Evolutionary Algorithms. Springer, 2005.

[6] M. Pelikan and D. E. Goldberg. Hierarchical problem solving and
the bayesian optimization algorithms. In Genetic and Evolution-
ary Computation Conference 2000 (GECCO-2000), pages 267–274,
2000.

[7] M. Pelikan and D. E. Goldberg. Escaping hierarchical traps with
competent genetic algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), number
511–518, 2001.

[8] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. Linkage problem,
distribution estimation, and bayesian networks. Technical Report
IlliGAL Report No. 98013, llinois Genetic Algorithms Laboratory,
University of Illinois at Urbana-Champaign, Urbana, IL, 1998.

[9] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The bayesian
optimization algorithm. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO-99), 1999.

[10] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. Linkage prob-
lem, distribution estimation, and bayesian networks. Evolutionary
Computation, 8(3):311–341, 2002.

[11] M. Pelikan, K. Sastry, and D. E. Goldberg. iBOA: The incremental
bayesian optimization algorithms. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2008), pages
455–462, 2008.

232 Chapter 5. Probabilistic Algorithms

5.6 Cross-Entropy Method

Cross-Entropy Method, Cross Entropy Method, CEM.

5.6.1 Taxonomy

The Cross-Entropy Method is a probabilistic optimization belonging to
the field of Stochastic Optimization. It is similar to other Stochastic
Optimization and algorithms such as Simulated Annealing (Section 4.2),
and to Estimation of Distribution Algorithms such as the Probabilistic
Incremental Learning Algorithm (Section 5.2).

5.6.2 Inspiration

The Cross-Entropy Method does not have an inspiration. It was de-
veloped as an efficient estimation technique for rare-event probabilities
in discrete event simulation systems and was adapted for use in opti-
mization. The name of the technique comes from the Kullback-Leibler
cross-entropy method for measuring the amount of information (bits)
needed to identify an event from a set of probabilities.

5.6.3 Strategy

The information processing strategy of the algorithm is to sample the
problem space and approximate the distribution of good solutions. This
is achieved by assuming a distribution of the problem space (such
as Gaussian), sampling the problem domain by generating candidate
solutions using the distribution, and updating the distribution based on
the better candidate solutions discovered. Samples are constructed step-
wise (one component at a time) based on the summarized distribution
of good solutions. As the algorithm progresses, the distribution becomes
more refined until it focuses on the area or scope of optimal solutions in
the domain.

5.6.4 Procedure

Algorithm 5.6.1 provides a pseudocode listing of the Cross-Entropy
Method algorithm for minimizing a cost function.

5.6.5 Heuristics

• The Cross-Entropy Method was adapted for combinatorial op-
timization problems, although has been applied to continuous
function optimization as well as noisy simulation problems.

5.6. Cross-Entropy Method 233

Algorithm 5.6.1: Pseudocode for the Cross-Entropy Method.

Input: Problemsize, Samplesnum, UpdateSamplesnum,
Learnrate, V ariancemin

Output: Sbest
Means ← InitializeMeans();1

Variances ← InitializeVariances();2

Sbest ← ∅;3

while Max(Variances) ≤ V ariancemin do4

Samples ← 0;5

for i = 0 to Samplesnum do6

Samples ← GenerateSample(Means, Variances);7

end8

EvaluateSamples(Samples);9

SortSamplesByQuality(Samples);10

if Cost(Samples0) ≤ Cost(Sbest) then11

Sbest ← Samples0;12

end13

Samplesselected ←SelectBestSamples(Samples,14

UpdateSamplesnum);
for i = 0 to Problemsize do15

Meansi ← Meansi + Learnrate × Mean(Samplesselected,16

i);
V ariancesi ← V ariancesi + Learnrate ×17

Variance(Samplesselected, i);
end18

end19

return Sbest;20

• A alpha (α) parameter or learning rate ∈ [0.1] is typically set high,
such as 0.7.

• A smoothing function can be used to further control the updates
the summaries of the distribution(s) of samples from the problem
space. For example, in continuous function optimization a β
parameter may replace α for updating the standard deviation,
calculated at time t as βt = β − β × (1− 1

t)
q, where β is initially

set high ∈ [0.8, 0.99] and q is a small integer ∈ [5, 10].

5.6.6 Code Listing

Listing 5.5 provides an example of the Cross-Entropy Method algorithm
implemented in the Ruby Programming Language. The demonstration
problem is an instance of a continuous function optimization problem

234 Chapter 5. Probabilistic Algorithms

that seeks min f(x) where f =
∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0 and n = 3.

The optimal solution for this basin function is (v0, . . . , vn−1) = 0.0.

The algorithm was implemented based on a description of the Cross-
Entropy Method algorithm for continuous function optimization by
Rubinstein and Kroese in Chapter 5 and Appendix A of their book on
the method [5]. The algorithm maintains means and standard deviations
of the distribution of samples for convenience. The means and standard
deviations are initialized based on random positions in the problem space
and the bounds of the whole problem space respectively. A smoothing
parameter is not used on the standard deviations.

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_variable(minmax)

6 min, max = minmax

7 return min + ((max - min) * rand())

8 end

9

10 def random_gaussian(mean=0.0, stdev=1.0)

11 u1 = u2 = w = 0

12 begin

13 u1 = 2 * rand() - 1

14 u2 = 2 * rand() - 1

15 w = u1 * u1 + u2 * u2

16 end while w >= 1

17 w = Math.sqrt((-2.0 * Math.log(w)) / w)

18 return mean + (u2 * w) * stdev

19 end

20

21 def generate_sample(search_space, means, stdevs)

22 vector = Array.new(search_space.size)

23 search_space.size.times do |i|

24 vector[i] = random_gaussian(means[i], stdevs[i])

25 vector[i] = search_space[i][0] if vector[i] < search_space[i][0]

26 vector[i] = search_space[i][1] if vector[i] > search_space[i][1]

27 end

28 return {:vector=>vector}

29 end

30

31 def mean_attr(samples, i)

32 sum = samples.inject(0.0) do |s,sample|

33 s + sample[:vector][i]

34 end

35 return (sum / samples.size.to_f)

36 end

37

38 def stdev_attr(samples, mean, i)

39 sum = samples.inject(0.0) do |s,sample|

40 s + (sample[:vector][i] - mean)**2.0

41 end

42 return Math.sqrt(sum / samples.size.to_f)

43 end

5.6. Cross-Entropy Method 235

44

45 def update_distribution!(samples, alpha, means, stdevs)

46 means.size.times do |i|

47 means[i] = alpha*means[i] + ((1.0-alpha)*mean_attr(samples, i))

48 stdevs[i] =

alpha*stdevs[i]+((1.0-alpha)*stdev_attr(samples,means[i],i))

49 end

50 end

51

52 def search(bounds, max_iter, num_samples, num_update, learning_rate)

53 means = Array.new(bounds.size){|i| random_variable(bounds[i])}

54 stdevs = Array.new(bounds.size){|i| bounds[i][1]-bounds[i][0]}

55 best = nil

56 max_iter.times do |iter|

57 samples = Array.new(num_samples){generate_sample(bounds, means,

stdevs)}

58 samples.each {|samp| samp[:cost] =

objective_function(samp[:vector])}

59 samples.sort!{|x,y| x[:cost]<=>y[:cost]}

60 best = samples.first if best.nil? or samples.first[:cost] <

best[:cost]

61 selected = samples.first(num_update)

62 update_distribution!(selected, learning_rate, means, stdevs)

63 puts " > iteration=#{iter}, fitness=#{best[:cost]}"

64 end

65 return best

66 end

67

68 if __FILE__ == $0
69 # problem configuration

70 problem_size = 3

71 search_space = Array.new(problem_size) {|i| [-5, 5]}

72 # algorithm configuration

73 max_iter = 100

74 num_samples = 50

75 num_update = 5

76 l_rate = 0.7

77 # execute the algorithm

78 best = search(search_space, max_iter, num_samples, num_update, l_rate)

79 puts "done! Solution: f=#{best[:cost]}, s=#{best[:vector].inspect}"

80 end

Listing 5.5: Cross-Entropy Method in Ruby

5.6.7 References

Primary Sources

The Cross-Entropy method was proposed by Rubinstein in 1997 [2]
for use in optimizing discrete event simulation systems. It was later
generalized by Rubinstein and proposed as an optimization method for
combinatorial function optimization in 1999 [3]. This work was further
elaborated by Rubinstein providing a detailed treatment on the use of
the Cross-Entropy method for combinatorial optimization [4].

236 Chapter 5. Probabilistic Algorithms

Learn More

De Boer et al. provide a detailed presentation of Cross-Entropy method
including its application in rare event simulation, its adaptation to
combinatorial optimization, and example applications to the max-cut,
traveling salesman problem, and a clustering numeric optimization
example [1]. Rubinstein and Kroese provide a thorough presentation of
the approach in their book, summarizing the relevant theory and the
state of the art [5].

5.6.8 Bibliography

[1] P. T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A
tutorial on the cross-entropy method. Annals of Operations Research,
134(1):19–67, 2005.

[2] R. Y. Rubinstein. Optimization of computer simulation models with
rare events. European Journal of Operations Research, 99:89–112,
1997.

[3] R. Y. Rubinstein. The simulated entropy method for combinatorial
and continuous optimization. Methodology and Computing in Applied
Probability, 1(2):127–190, 1999.

[4] R. Y. Rubinstein. Stochastic optimization: algorithms and applica-
tions, chapter Combinatorial optimization, cross-entropy, ants and
rare events, pages 303–364. Springer, 2001.

[5] R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A
Unified Approach to Combinatorial Optimization. Springer, 2004.

Chapter 6

Swarm Algorithms

6.1 Overview

This chapter describes Swarm Algorithms.

6.1.1 Swarm Intelligence

Swarm intelligence is the study of computational systems inspired by
the ‘collective intelligence’. Collective Intelligence emerges through the
cooperation of large numbers of homogeneous agents in the environment.
Examples include schools of fish, flocks of birds, and colonies of ants.
Such intelligence is decentralized, self-organizing and distributed through
out an environment. In nature such systems are commonly used to
solve problems such as effective foraging for food, prey evading, or
colony re-location. The information is typically stored throughout the
participating homogeneous agents, or is stored or communicated in
the environment itself such as through the use of pheromones in ants,
dancing in bees, and proximity in fish and birds.

The paradigm consists of two dominant sub-fields 1) Ant Colony
Optimization that investigates probabilistic algorithms inspired by the
stigmergy and foraging behavior of ants, and 2) Particle Swarm Op-
timization that investigates probabilistic algorithms inspired by the
flocking, schooling and herding. Like evolutionary computation, swarm
intelligence ‘algorithms’ or ‘strategies’ are considered adaptive strategies
and are typically applied to search and optimization domains.

6.1.2 References

Seminal books on the field of Swarm Intelligence include “Swarm Intel-
ligence” by Kennedy, Eberhart and Shi [10], and “Swarm Intelligence:

237

238 Chapter 6. Swarm Algorithms

From Natural to Artificial Systems” by Bonabeau, Dorigo, and Ther-
aulaz [3]. Another excellent text book on the area is “Fundamentals of
Computational Swarm Intelligence” by Engelbrecht [7]. The seminal
book reference for the field of Ant Colony Optimization is “Ant Colony
Optimization” by Dorigo and Stützle [6].

6.1.3 Extensions

There are many other algorithms and classes of algorithm that were not
described from the field of Swarm Intelligence, not limited to:

• Ant Algorithms: such as Max-Min Ant Systems [15] Rank-
Based Ant Systems [4], Elitist Ant Systems [5], Hyper Cube
Ant Colony Optimization [2] Approximate Nondeterministic Tree-
Search (ANTS) [12] and Multiple Ant Colony System [8].

• Bee Algorithms: such as Bee System and Bee Colony Optimiza-
tion [11], the Honey Bee Algorithm [16], and Artificial Bee Colony
Optimization [1, 9].

• Other Social Insects: algorithms inspired by other social insects
besides ants and bees, such as the Firey Algorithm [18] and the
Wasp Swarm Algorithm [14].

• Extensions to Particle Swarm: such as Repulsive Particle
Swarm Optimization [17].

• Bacteria Algorithms: such as the Bacteria Chemotaxis Algo-
rithm [13].

6.1.4 Bibliography

[1] B. Basturk and D. Karaboga. An artificial bee colony (ABC)
algorithm for numeric function optimization. In IEEE Swarm
Intelligence Symposium, 2006.

[2] C. Blum, A. Roli, and M. Dorigo. HC–ACO: The hyper-cube
framework for ant colony optimization. In Proceedings of the Fourth
Metaheuristics International Conference, volume 1, pages 399–403,
2001.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence:
From Natural to Artificial Systems. Oxford University Press US,
1999.

[4] B. Bullnheimer, R. F. Hartl, and C. Strauss. A new rank based
version of the ant system: A computational study. Central European
Journal for Operations Research and Economics, 7(1):25–38, 1999.

6.1. Overview 239

[5] M. Dorigo. The ant system: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and CyberneticsPart
B, 1:1–13, 1996.

[6] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press,
2004.

[7] A. P. Engelbrecht. Fundamentals of Computational Swarm Intelli-
gence. Wiley & Sons, 2006.

[8] L. M. Gambardella, E. Taillard, and G. Agazzi. New Ideas in
Optimization, chapter MACS–VRPTW: A Multiple Ant Colony
System for Vehicle Routing Problems with Time Windows, pages
63–76. McGraw-Hill, 1999.

[9] D. Karaboga. An idea based on honey bee swarm for numerical op-
timization. Technical Report TR06, Erciyes University, Engineering
Faculty, Computer Engineering Department, 2005.

[10] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence.
Morgan Kaufmann, 2001.

[11] P. Lučić and D. Teodorović. Bee system: modeling combinatorial
optimization transportation engineering problems by swarm intelli-
gence. In Preprints of the TRISTAN IV Triennial Symposium on
Transportation Analysis, pages 441–445, 2001.

[12] V. Maniezzo. Approximate nondeterministic tree-search procedures
for the quadratic assignment problem. INFORMS Journal on
Computing, 11(4):358–369, 1999.

[13] S. D. Müller, J. Marchetto, S. Airaghi, and P. Koumoutsakos.
Optimization based on bacterial chemotaxis. IEEE Transactions
on Evolutionary Computation, 6(1):16–29, 2002.

[14] P. C. Pinto, T. A. Runkler, and J. M. Sousa. Wasp swarm algorithm
for dynamic max-sat problems. In Proceedings of the 8th interna-
tional conference on Adaptive and Natural Computing Algorithms,
Part I, pages 350–357. Springer, 2007.

[15] T. Stützle and H. H. Hoos. MAX–MIN ant system, future generation
computer systems. Future Generation Computer Systems, 16:889–
914, 2000.

[16] C. Tovey. The honey bee algorithm: A biological inspired approach
to internet server optimization. Engineering Enterprise, the Alumni
Magazine for ISyE at Georgia Institute of Technology, pages 3–15,
2004.

240 Chapter 6. Swarm Algorithms

[17] O Urfalioglu. Robust estimation of camera rotation, translation
and focal length at high outlier rates. In Proceedings of the 1st
Canadian Conference on Computer and Robot Vision, 2004.

[18] X. S. Yang. Nature-Inspired Metaheuristic Algorithms. Luniver
Press, 2008.

6.2. Particle Swarm Optimization 241

6.2 Particle Swarm Optimization

Particle Swarm Optimization, PSO.

6.2.1 Taxonomy

Particle Swarm Optimization belongs to the field of Swarm Intelli-
gence and Collective Intelligence and is a sub-field of Computational
Intelligence. Particle Swarm Optimization is related to other Swarm
Intelligence algorithms such as Ant Colony Optimization and it is a
baseline algorithm for many variations, too numerous to list.

6.2.2 Inspiration

Particle Swarm Optimization is inspired by the social foraging behavior
of some animals such as flocking behavior of birds and the schooling
behavior of fish.

6.2.3 Metaphor

Particles in the swarm fly through an environment following the fitter
members of the swarm and generally biasing their movement toward
historically good areas of their environment.

6.2.4 Strategy

The goal of the algorithm is to have all the particles locate the optima
in a multi-dimensional hyper-volume. This is achieved by assigning
initially random positions to all particles in the space and small initial
random velocities. The algorithm is executed like a simulation, advancing
the position of each particle in turn based on its velocity, the best
known global position in the problem space and the best position
known to a particle. The objective function is sampled after each
position update. Over time, through a combination of exploration and
exploitation of known good positions in the search space, the particles
cluster or converge together around an optima, or several optima.

6.2.5 Procedure

The Particle Swarm Optimization algorithm is comprised of a collection
of particles that move around the search space influenced by their own
best past location and the best past location of the whole swarm or a
close neighbor. Each iteration a particle’s velocity is updated using:

242 Chapter 6. Swarm Algorithms

vi(t+ 1) = vi(t)+
(
c1 × rand()× (pbesti − pi(t))

)
+(

c2 × rand()× (pgbest − pi(t))
)

where vi(t+ 1) is the new velocity for the ith particle, c1 and c2 are
the weighting coefficients for the personal best and global best positions
respectively, pi(t) is the ith particle’s position at time t, pbesti is the ith

particle’s best known position, and pgbest is the best position known to
the swarm. The rand() function generate a uniformly random variable
∈ [0, 1]. Variants on this update equation consider best positions within
a particles local neighborhood at time t.

A particle’s position is updated using:

pi(t+ 1) = pi(t) + vi(t) (6.1)

Algorithm 6.2.1 provides a pseudocode listing of the Particle Swarm
Optimization algorithm for minimizing a cost function.

6.2.6 Heuristics

• The number of particles should be low, around 20-40

• The speed a particle can move (maximum change in its position
per iteration) should be bounded, such as to a percentage of the
size of the domain.

• The learning factors (biases towards global and personal best
positions) should be between 0 and 4, typically 2.

• A local bias (local neighborhood) factor can be introduced where
neighbors are determined based on Euclidean distance between
particle positions.

• Particles may leave the boundary of the problem space and may
be penalized, be reflected back into the domain or biased to return
back toward a position in the problem domain. Alternatively, a
wrapping strategy may be used at the edge of the domain creating
a loop, torrid or related geometrical structures at the chosen
dimensionality.

• An inertia or momentum coefficient can be introduced to limit the
change in velocity.

6.2. Particle Swarm Optimization 243

Algorithm 6.2.1: Pseudocode for PSO.

Input: ProblemSize, Populationsize
Output: Pg best
Population ← ∅;1

Pg best ← ∅;2

for i = 1 to Populationsize do3

Pvelocity ← RandomVelocity();4

Pposition ← RandomPosition(Populationsize);5

Pp best ← Pposition;6

if Cost(Pp best) ≤ Cost(Pg best) then7

Pg best ← Pp best;8

end9

end10

while ¬StopCondition() do11

foreach P ∈ Population do12

Pvelocity ← UpdateVelocity(Pvelocity, Pg best, Pp best);13

Pposition ← UpdatePosition(Pposition, Pvelocity);14

if Cost(Pposition) ≤ Cost(Pp best) then15

Pp best ← Pposition;16

if Cost(Pp best) ≤ Cost(Pg best) then17

Pg best ← Pp best;18

end19

end20

end21

end22

return Pg best;23

6.2.7 Code Listing

Listing 6.1 provides an example of the Particle Swarm Optimization
algorithm implemented in the Ruby Programming Language. The
demonstration problem is an instance of a continuous function optimiza-
tion that seeks min f(x) where f =

∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0 and n = 3.

The optimal solution for this basin function is (v0, . . . , vn−1) = 0.0. The
algorithm is a conservative version of Particle Swarm Optimization
based on the seminal papers. The implementation limits the velocity
at a pre-defined maximum, and bounds particles to the search space,
reflecting their movement and velocity if the bounds of the space are
exceeded. Particles are influenced by the best position found as well
as their own personal best position. Natural extensions may consider
limiting velocity with an inertia coefficient and including a neighborhood
function for the particles.

1 def objective_function(vector)

244 Chapter 6. Swarm Algorithms

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def create_particle(search_space, vel_space)

12 particle = {}

13 particle[:position] = random_vector(search_space)

14 particle[:cost] = objective_function(particle[:position])

15 particle[:b_position] = Array.new(particle[:position])

16 particle[:b_cost] = particle[:cost]

17 particle[:velocity] = random_vector(vel_space)

18 return particle

19 end

20

21 def get_global_best(population, current_best=nil)

22 population.sort!{|x,y| x[:cost] <=> y[:cost]}

23 best = population.first

24 if current_best.nil? or best[:cost] <= current_best[:cost]

25 current_best = {}

26 current_best[:position] = Array.new(best[:position])

27 current_best[:cost] = best[:cost]

28 end

29 return current_best

30 end

31

32 def update_velocity(particle, gbest, max_v, c1, c2)

33 particle[:velocity].each_with_index do |v,i|

34 v1 = c1 * rand() * (particle[:b_position][i] -

particle[:position][i])

35 v2 = c2 * rand() * (gbest[:position][i] - particle[:position][i])

36 particle[:velocity][i] = v + v1 + v2

37 particle[:velocity][i] = max_v if particle[:velocity][i] > max_v

38 particle[:velocity][i] = -max_v if particle[:velocity][i] < -max_v

39 end

40 end

41

42 def update_position(part, bounds)

43 part[:position].each_with_index do |v,i|

44 part[:position][i] = v + part[:velocity][i]

45 if part[:position][i] > bounds[i][1]

46 part[:position][i]=bounds[i][1]-(part[:position][i]-bounds[i][1]).abs

47 part[:velocity][i] *= -1.0

48 elsif part[:position][i] < bounds[i][0]

49 part[:position][i]=bounds[i][0]+(part[:position][i]-bounds[i][0]).abs

50 part[:velocity][i] *= -1.0

51 end

52 end

53 end

54

55 def update_best_position(particle)

56 return if particle[:cost] > particle[:b_cost]

6.2. Particle Swarm Optimization 245

57 particle[:b_cost] = particle[:cost]

58 particle[:b_position] = Array.new(particle[:position])

59 end

60

61 def search(max_gens, search_space, vel_space, pop_size, max_vel, c1, c2)

62 pop = Array.new(pop_size) {create_particle(search_space, vel_space)}

63 gbest = get_global_best(pop)

64 max_gens.times do |gen|

65 pop.each do |particle|

66 update_velocity(particle, gbest, max_vel, c1, c2)

67 update_position(particle, search_space)

68 particle[:cost] = objective_function(particle[:position])

69 update_best_position(particle)

70 end

71 gbest = get_global_best(pop, gbest)

72 puts " > gen #{gen+1}, fitness=#{gbest[:cost]}"

73 end

74 return gbest

75 end

76

77 if __FILE__ == $0
78 # problem configuration

79 problem_size = 2

80 search_space = Array.new(problem_size) {|i| [-5, 5]}

81 # algorithm configuration

82 vel_space = Array.new(problem_size) {|i| [-1, 1]}

83 max_gens = 100

84 pop_size = 50

85 max_vel = 100.0

86 c1, c2 = 2.0, 2.0

87 # execute the algorithm

88 best = search(max_gens, search_space, vel_space, pop_size, max_vel,

c1,c2)

89 puts "done! Solution: f=#{best[:cost]}, s=#{best[:position].inspect}"

90 end

Listing 6.1: Particle Swarm Optimization in Ruby

6.2.8 References

Primary Sources

Particle Swarm Optimization was described as a stochastic global op-
timization method for continuous functions in 1995 by Eberhart and
Kennedy [1, 3]. This work was motivated as an optimization method
loosely based on the flocking behavioral models of Reynolds [7]. Early
works included the introduction of inertia [8] and early study of social
topologies in the swarm by Kennedy [2].

Learn More

Poli, Kennedy, and Blackwell provide a modern overview of the field
of PSO with detailed coverage of extensions to the baseline technique

246 Chapter 6. Swarm Algorithms

[6]. Poli provides a meta-analysis of PSO publications that focus on
the application the technique, providing a systematic breakdown on
application areas [5]. An excellent book on Swarm Intelligence in
general with detailed coverage of Particle Swarm Optimization is “Swarm
Intelligence” by Kennedy, Eberhart, and Shi [4].

6.2.9 Bibliography

[1] R. C. Eberhart and J. Kennedy. A new optimizer using particle
swarm theory. In Proceedings of the sixth international symposium
on micro machine and human science, pages 39–43, 1995.

[2] J. Kennedy. Small worlds and mega-minds: Effects of neighborhood
topology on particle swarm performance. In Proceedings of the 1999
Congress on Evolutionary Computation, 1999.

[3] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Pro-
ceedings of the IEEE International Conference on Neural Networks,
pages 1942–1948, 1995.

[4] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. Morgan
Kaufmann, 2001.

[5] R. Poli. Analysis of the publications on the applications of particle
swarm optimisation. Journal of Artificial Evolution and Applications,
1:1–10, 2008.

[6] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization
an overview. Swarm Intelligence, 1:33–57, 2007.

[7] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. In Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, pages 25–34, 1987.

[8] Y. Shi and R. C. Eberhart. A modified particle swarm optimizers. In
Proceedings of the IEEE International Conference on Evolutionary
Computation, pages 69–73, 1998.

6.3. Ant System 247

6.3 Ant System

Ant System, AS, Ant Cycle.

6.3.1 Taxonomy

The Ant System algorithm is an example of an Ant Colony Optimiza-
tion method from the field of Swarm Intelligence, Metaheuristics and
Computational Intelligence. Ant System was originally the term used to
refer to a range of Ant based algorithms, where the specific algorithm
implementation was referred to as Ant Cycle. The so-called Ant Cycle
algorithm is now canonically referred to as Ant System. The Ant System
algorithm is the baseline Ant Colony Optimization method for popular
extensions such as Elite Ant System, Rank-based Ant System, Max-Min
Ant System, and Ant Colony System.

6.3.2 Inspiration

The Ant system algorithm is inspired by the foraging behavior of ants,
specifically the pheromone communication between ants regarding a
good path between the colony and a food source in an environment.
This mechanism is called stigmergy.

6.3.3 Metaphor

Ants initially wander randomly around their environment. Once food is
located an ant will begin laying down pheromone in the environment.
Numerous trips between the food and the colony are performed and if
the same route is followed that leads to food then additional pheromone
is laid down. Pheromone decays in the environment, so that older paths
are less likely to be followed. Other ants may discover the same path
to the food and in turn may follow it and also lay down pheromone.
A positive feedback process routes more and more ants to productive
paths that are in turn further refined through use.

6.3.4 Strategy

The objective of the strategy is to exploit historic and heuristic informa-
tion to construct candidate solutions and fold the information learned
from constructing solutions into the history. Solutions are constructed
one discrete piece at a time in a probabilistic step-wise manner. The
probability of selecting a component is determined by the heuristic
contribution of the component to the overall cost of the solution and the
quality of solutions from which the component has historically known
to have been included. History is updated proportional to the quality of

248 Chapter 6. Swarm Algorithms

candidate solutions and is uniformly decreased ensuring the most recent
and useful information is retained.

6.3.5 Procedure

Algorithm 6.3.1 provides a pseudocode listing of the main Ant System
algorithm for minimizing a cost function. The pheromone update process
is described by a single equation that combines the contributions of
all candidate solutions with a decay coefficient to determine the new
pheromone value, as follows:

τi,j ← (1− ρ)× τi,j +

m∑
k=1

∆k
i,j (6.2)

where τi,j represents the pheromone for the component (graph edge)
(i, j), ρ is the decay factor, m is the number of ants, and

∑m
k=1 ∆k

i,j

is the sum of 1
Scost

(maximizing solution cost) for those solutions that
include component i, j. The Pseudocode listing shows this equation
as an equivalent as a two step process of decay followed by update for
simplicity.

The probabilistic step-wise construction of solution makes use of
both history (pheromone) and problem-specific heuristic information to
incrementally construction a solution piece-by-piece. Each component
can only be selected if it has not already been chosen (for most com-
binatorial problems), and for those components that can be selected
from (given the current component i), their probability for selection is
defined as:

Pi,j ←
ταi,j × η

β
i,j∑c

k=1 τ
α
i,k × η

β
i,k

(6.3)

where ηi,j is the maximizing contribution to the overall score of
selecting the component (such as 1.0

distancei,j
for the Traveling Salesman

Problem), α is the heuristic coefficient, τi,j is the pheromone value for
the component, β is the history coefficient, and c is the set of usable
components.

6.3.6 Heuristics

• The Ant Systems algorithm was designed for use with combina-
torial problems such as the TSP, knapsack problem, quadratic
assignment problems, graph coloring problems and many others.

• The history coefficient (α) controls the amount of contribution
history plays in a components probability of selection and is
commonly set to 1.0.

6.3. Ant System 249

Algorithm 6.3.1: Pseudocode for Ant System.

Input: ProblemSize, Populationsize, m, ρ, α, β
Output: Pbest
Pbest ← CreateHeuristicSolution(ProblemSize);1

Pbestcost ← Cost(Sh);2

Pheromone ← InitializePheromone(Pbestcost);3

while ¬StopCondition() do4

Candidates ← ∅;5

for i = 1 to m do6

Si ← ProbabilisticStepwiseConstruction(Pheromone,7

ProblemSize, α, β);
Sicost ← Cost(Si);8

if Sicost ≤ Pbestcost then9

Pbestcost ← Sicost;10

Pbest ← Si;11

end12

Candidates ← Si;13

end14

DecayPheromone(Pheromone, ρ);15

foreach Si ∈ Candidates do16

UpdatePheromone(Pheromone, Si, Sicost);17

end18

end19

return Pbest;20

• The heuristic coefficient (β) controls the amount of contribution
problem-specific heuristic information plays in a components prob-
ability of selection and is commonly between 2 and 5, such as
2.5.

• The decay factor (ρ) controls the rate at which historic information
is lost and is commonly set to 0.5.

• The total number of ants (m) is commonly set to the number of
components in the problem, such as the number of cities in the
TSP.

6.3.7 Code Listing

Listing 6.2 provides an example of the Ant System algorithm imple-
mented in the Ruby Programming Language. The algorithm is applied
to the Berlin52 instance of the Traveling Salesman Problem (TSP),
taken from the TSPLIB. The problem seeks a permutation of the order
to visit cities (called a tour) that minimized the total distance traveled.

250 Chapter 6. Swarm Algorithms

The optimal tour distance for Berlin52 instance is 7542 units. Some
extensions to the algorithm implementation for speed improvements
may consider pre-calculating a distance matrix for all the cities in the
problem, and pre-computing a probability matrix for choices during the
probabilistic step-wise construction of tours.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(permutation, cities)

6 distance =0

7 permutation.each_with_index do |c1, i|

8 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def initialise_pheromone_matrix(num_cities, naive_score)

24 v = num_cities.to_f / naive_score

25 return Array.new(num_cities){|i| Array.new(num_cities, v)}

26 end

27

28 def calculate_choices(cities, last_city, exclude, pheromone, c_heur,

c_hist)

29 choices = []

30 cities.each_with_index do |coord, i|

31 next if exclude.include?(i)

32 prob = {:city=>i}

33 prob[:history] = pheromone[last_city][i] ** c_hist

34 prob[:distance] = euc_2d(cities[last_city], coord)

35 prob[:heuristic] = (1.0/prob[:distance]) ** c_heur

36 prob[:prob] = prob[:history] * prob[:heuristic]

37 choices << prob

38 end

39 choices

40 end

41

42 def select_next_city(choices)

43 sum = choices.inject(0.0){|sum,element| sum + element[:prob]}

44 return choices[rand(choices.size)][:city] if sum == 0.0

45 v = rand()

46 choices.each_with_index do |choice, i|

47 v -= (choice[:prob]/sum)

48 return choice[:city] if v <= 0.0

6.3. Ant System 251

49 end

50 return choices.last[:city]

51 end

52

53 def stepwise_const(cities, phero, c_heur, c_hist)

54 perm = []

55 perm << rand(cities.size)

56 begin

57 choices =

calculate_choices(cities,perm.last,perm,phero,c_heur,c_hist)

58 next_city = select_next_city(choices)

59 perm << next_city

60 end until perm.size == cities.size

61 return perm

62 end

63

64 def decay_pheromone(pheromone, decay_factor)

65 pheromone.each do |array|

66 array.each_with_index do |p, i|

67 array[i] = (1.0 - decay_factor) * p

68 end

69 end

70 end

71

72 def update_pheromone(pheromone, solutions)

73 solutions.each do |other|

74 other[:vector].each_with_index do |x, i|

75 y=(i==other[:vector].size-1) ? other[:vector][0] :

other[:vector][i+1]

76 pheromone[x][y] += (1.0 / other[:cost])

77 pheromone[y][x] += (1.0 / other[:cost])

78 end

79 end

80 end

81

82 def search(cities, max_it, num_ants, decay_factor, c_heur, c_hist)

83 best = {:vector=>random_permutation(cities)}

84 best[:cost] = cost(best[:vector], cities)

85 pheromone = initialise_pheromone_matrix(cities.size, best[:cost])

86 max_it.times do |iter|

87 solutions = []

88 num_ants.times do

89 candidate = {}

90 candidate[:vector] = stepwise_const(cities, pheromone, c_heur,

c_hist)

91 candidate[:cost] = cost(candidate[:vector], cities)

92 best = candidate if candidate[:cost] < best[:cost]

93 solutions << candidate

94 end

95 decay_pheromone(pheromone, decay_factor)

96 update_pheromone(pheromone, solutions)

97 puts " > iteration #{(iter+1)}, best=#{best[:cost]}"

98 end

99 return best

100 end

101

252 Chapter 6. Swarm Algorithms

102 if __FILE__ == $0
103 # problem configuration

104 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

105 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

106 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

107 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

108 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

109 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

110 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

111 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

112 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

113 # algorithm configuration

114 max_it = 50

115 num_ants = 30

116 decay_factor = 0.6

117 c_heur = 2.5

118 c_hist = 1.0

119 # execute the algorithm

120 best = search(berlin52, max_it, num_ants, decay_factor, c_heur,

c_hist)

121 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

122 end

Listing 6.2: Ant System in Ruby

6.3.8 References

Primary Sources

The Ant System was described by Dorigo, Maniezzo, and Colorni in
an early technical report as a class of algorithms and was applied to a
number of standard combinatorial optimization algorithms [4]. A series
of technical reports at this time investigated the class of algorithms
called Ant System and the specific implementation called Ant Cycle.
This effort contributed to Dorigo’s PhD thesis published in Italian [2].
The seminal publication into the investigation of Ant System (with the
implementation still referred to as Ant Cycle) was by Dorigo in 1996 [3].

Learn More

The seminal book on Ant Colony Optimization in general with a detailed
treatment of Ant system is “Ant colony optimization” by Dorigo and
Stützle [5]. An earlier book “Swarm intelligence: from natural to
artificial systems” by Bonabeau, Dorigo, and Theraulaz also provides
an introduction to Swarm Intelligence with a detailed treatment of Ant
System [1].

6.3. Ant System 253

6.3.9 Bibliography

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence:
From Natural to Artificial Systems. Oxford University Press US,
1999.

[2] M. Dorigo. Optimization, Learning and Natural Algorithms (in
Italian). PhD thesis, Dipartimento di Elettronica, Politecnico di
Milano, Milan, Italy, 1992.

[3] M. Dorigo. The ant system: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and CyberneticsPart
B, 1:1–13, 1996.

[4] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search
strategy. Technical report, ipartimento di Elettronica, Politecnico di
Milano, Milano, Italy, 1991.

[5] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press,
2004.

254 Chapter 6. Swarm Algorithms

6.4 Ant Colony System

Ant Colony System, ACS, Ant-Q.

6.4.1 Taxonomy

The Ant Colony System algorithm is an example of an Ant Colony Op-
timization method from the field of Swarm Intelligence, Metaheuristics
and Computational Intelligence. Ant Colony System is an extension
to the Ant System algorithm and is related to other Ant Colony Op-
timization methods such as Elite Ant System, and Rank-based Ant
System.

6.4.2 Inspiration

The Ant Colony System algorithm is inspired by the foraging behavior of
ants, specifically the pheromone communication between ants regarding
a good path between the colony and a food source in an environment.
This mechanism is called stigmergy.

6.4.3 Metaphor

Ants initially wander randomly around their environment. Once food is
located an ant will begin laying down pheromone in the environment.
Numerous trips between the food and the colony are performed and if
the same route is followed that leads to food then additional pheromone
is laid down. Pheromone decays in the environment, so that older paths
are less likely to be followed. Other ants may discover the same path
to the food and in turn may follow it and also lay down pheromone.
A positive feedback process routes more and more ants to productive
paths that are in turn further refined through use.

6.4.4 Strategy

The objective of the strategy is to exploit historic and heuristic informa-
tion to construct candidate solutions and fold the information learned
from constructing solutions into the history. Solutions are constructed
one discrete piece at a time in a probabilistic step-wise manner. The
probability of selecting a component is determined by the heuristic
contribution of the component to the overall cost of the solution and the
quality of solutions from which the component has historically known
to have been included. History is updated proportional to the quality
of the best known solution and is decreased proportional to the usage if
discrete solution components.

6.4. Ant Colony System 255

6.4.5 Procedure

Algorithm 6.4.1 provides a pseudocode listing of the main Ant Colony
System algorithm for minimizing a cost function. The probabilistic step-
wise construction of solution makes use of both history (pheromone)
and problem-specific heuristic information to incrementally construct
a solution piece-by-piece. Each component can only be selected if it
has not already been chosen (for most combinatorial problems), and for
those components that can be selected from given the current component
i, their probability for selection is defined as:

Pi,j ←
ταi,j × η

β
i,j∑c

k=1 τ
α
i,k × η

β
i,k

(6.4)

where ηi,j is the maximizing contribution to the overall score of
selecting the component (such as 1.0

distancei,j
for the Traveling Salesman

Problem), β is the heuristic coefficient (commonly fixed at 1.0), τi,j is
the pheromone value for the component, α is the history coefficient, and
c is the set of usable components. A greediness factor (q0) is used to
influence when to use the above probabilistic component selection and
when to greedily select the best possible component.

A local pheromone update is performed for each solution that is
constructed to dissuade following solutions to use the same components
in the same order, as follows:

τi,j ← (1− σ)× τi,j + σ × τ0i,j (6.5)

where τi,j represents the pheromone for the component (graph edge)
(i, j), σ is the local pheromone factor, and τ0i,j is the initial pheromone
value.

At the end of each iteration, the pheromone is updated and decayed
using the best candidate solution found thus far (or the best candidate
solution found for the iteration), as follows:

τi,j ← (1− ρ)× τi,j + ρ×∆τi, j (6.6)

where τi,j represents the pheromone for the component (graph edge)
(i, j), ρ is the decay factor, and ∆τi, j is the maximizing solution cost
for the best solution found so far if the component ij is used in the
globally best known solution, otherwise it is 0.

6.4.6 Heuristics

• The Ant Colony System algorithm was designed for use with com-
binatorial problems such as the TSP, knapsack problem, quadratic
assignment problems, graph coloring problems and many others.

256 Chapter 6. Swarm Algorithms

Algorithm 6.4.1: Pseudocode for Ant Colony System.

Input: ProblemSize, Populationsize, m, ρ, β, σ, q0
Output: Pbest
Pbest ← CreateHeuristicSolution(ProblemSize);1

Pbestcost ← Cost(Sh);2

Pheromoneinit ← 1.0
ProblemSize×Pbestcost ;3

Pheromone ← InitializePheromone(Pheromoneinit);4

while ¬StopCondition() do5

for i = 1 to m do6

Si ← ConstructSolution(Pheromone, ProblemSize, β,7

q0);
Sicost ← Cost(Si);8

if Sicost ≤ Pbestcost then9

Pbestcost ← Sicost;10

Pbest ← Si;11

end12

LocalUpdateAndDecayPheromone(Pheromone, Si, Sicost,13

σ);
end14

GlobalUpdateAndDecayPheromone(Pheromone, Pbest,15

Pbestcost, ρ);
end16

return Pbest;17

• The local pheromone (history) coefficient (σ) controls the amount
of contribution history plays in a components probability of selec-
tion and is commonly set to 0.1.

• The heuristic coefficient (β) controls the amount of contribution
problem-specific heuristic information plays in a components prob-
ability of selection and is commonly between 2 and 5, such as
2.5.

• The decay factor (ρ) controls the rate at which historic information
is lost and is commonly set to 0.1.

• The greediness factor (q0) is commonly set to 0.9.

• The total number of ants (m) is commonly set low, such as 10.

6.4.7 Code Listing

Listing 6.3 provides an example of the Ant Colony System algorithm
implemented in the Ruby Programming Language. The algorithm is

6.4. Ant Colony System 257

applied to the Berlin52 instance of the Traveling Salesman Problem
(TSP), taken from the TSPLIB. The problem seeks a permutation
of the order to visit cities (called a tour) that minimized the total
distance traveled. The optimal tour distance for Berlin52 instance is
7542 units. Some extensions to the algorithm implementation for speed
improvements may consider pre-calculating a distance matrix for all
the cities in the problem, and pre-computing a probability matrix for
choices during the probabilistic step-wise construction of tours.

1 def euc_2d(c1, c2)

2 Math.sqrt((c1[0] - c2[0])**2.0 + (c1[1] - c2[1])**2.0).round

3 end

4

5 def cost(permutation, cities)

6 distance =0

7 permutation.each_with_index do |c1, i|

8 c2 = (i==permutation.size-1) ? permutation[0] : permutation[i+1]

9 distance += euc_2d(cities[c1], cities[c2])

10 end

11 return distance

12 end

13

14 def random_permutation(cities)

15 perm = Array.new(cities.size){|i| i}

16 perm.each_index do |i|

17 r = rand(perm.size-i) + i

18 perm[r], perm[i] = perm[i], perm[r]

19 end

20 return perm

21 end

22

23 def initialise_pheromone_matrix(num_cities, init_pher)

24 return Array.new(num_cities){|i| Array.new(num_cities, init_pher)}

25 end

26

27 def calculate_choices(cities, last_city, exclude, pheromone, c_heur,

c_hist)

28 choices = []

29 cities.each_with_index do |coord, i|

30 next if exclude.include?(i)

31 prob = {:city=>i}

32 prob[:history] = pheromone[last_city][i] ** c_hist

33 prob[:distance] = euc_2d(cities[last_city], coord)

34 prob[:heuristic] = (1.0/prob[:distance]) ** c_heur

35 prob[:prob] = prob[:history] * prob[:heuristic]

36 choices << prob

37 end

38 return choices

39 end

40

41 def prob_select(choices)

42 sum = choices.inject(0.0){|sum,element| sum + element[:prob]}

43 return choices[rand(choices.size)][:city] if sum == 0.0

44 v = rand()

45 choices.each_with_index do |choice, i|

258 Chapter 6. Swarm Algorithms

46 v -= (choice[:prob]/sum)

47 return choice[:city] if v <= 0.0

48 end

49 return choices.last[:city]

50 end

51

52 def greedy_select(choices)

53 return choices.max{|a,b| a[:prob]<=>b[:prob]}[:city]

54 end

55

56 def stepwise_const(cities, phero, c_heur, c_greed)

57 perm = []

58 perm << rand(cities.size)

59 begin

60 choices = calculate_choices(cities, perm.last, perm, phero, c_heur,

1.0)

61 greedy = rand() <= c_greed

62 next_city = (greedy) ? greedy_select(choices) : prob_select(choices)

63 perm << next_city

64 end until perm.size == cities.size

65 return perm

66 end

67

68 def global_update_pheromone(phero, cand, decay)

69 cand[:vector].each_with_index do |x, i|

70 y = (i==cand[:vector].size-1) ? cand[:vector][0] :

cand[:vector][i+1]

71 value = ((1.0-decay)*phero[x][y]) + (decay*(1.0/cand[:cost]))

72 phero[x][y] = value

73 phero[y][x] = value

74 end

75 end

76

77 def local_update_pheromone(pheromone, cand, c_local_phero, init_phero)

78 cand[:vector].each_with_index do |x, i|

79 y = (i==cand[:vector].size-1) ? cand[:vector][0] :

cand[:vector][i+1]

80 value =

((1.0-c_local_phero)*pheromone[x][y])+(c_local_phero*init_phero)

81 pheromone[x][y] = value

82 pheromone[y][x] = value

83 end

84 end

85

86 def search(cities, max_it, num_ants, decay, c_heur, c_local_phero,

c_greed)

87 best = {:vector=>random_permutation(cities)}

88 best[:cost] = cost(best[:vector], cities)

89 init_pheromone = 1.0 / (cities.size.to_f * best[:cost])

90 pheromone = initialise_pheromone_matrix(cities.size, init_pheromone)

91 max_it.times do |iter|

92 solutions = []

93 num_ants.times do

94 cand = {}

95 cand[:vector] = stepwise_const(cities, pheromone, c_heur, c_greed)

96 cand[:cost] = cost(cand[:vector], cities)

6.4. Ant Colony System 259

97 best = cand if cand[:cost] < best[:cost]

98 local_update_pheromone(pheromone, cand, c_local_phero,

init_pheromone)

99 end

100 global_update_pheromone(pheromone, best, decay)

101 puts " > iteration #{(iter+1)}, best=#{best[:cost]}"

102 end

103 return best

104 end

105

106 if __FILE__ == $0
107 # problem configuration

108 berlin52 = [[565,575],[25,185],[345,750],[945,685],[845,655],

109 [880,660],[25,230],[525,1000],[580,1175],[650,1130],[1605,620],

110 [1220,580],[1465,200],[1530,5],[845,680],[725,370],[145,665],

111 [415,635],[510,875],[560,365],[300,465],[520,585],[480,415],

112 [835,625],[975,580],[1215,245],[1320,315],[1250,400],[660,180],

113 [410,250],[420,555],[575,665],[1150,1160],[700,580],[685,595],

114 [685,610],[770,610],[795,645],[720,635],[760,650],[475,960],

115 [95,260],[875,920],[700,500],[555,815],[830,485],[1170,65],

116 [830,610],[605,625],[595,360],[1340,725],[1740,245]]

117 # algorithm configuration

118 max_it = 100

119 num_ants = 10

120 decay = 0.1

121 c_heur = 2.5

122 c_local_phero = 0.1

123 c_greed = 0.9

124 # execute the algorithm

125 best = search(berlin52, max_it, num_ants, decay, c_heur,

c_local_phero, c_greed)

126 puts "Done. Best Solution: c=#{best[:cost]},

v=#{best[:vector].inspect}"

127 end

Listing 6.3: Ant Colony System in Ruby

6.4.8 References

Primary Sources

The algorithm was initially investigated by Dorigo and Gambardella
under the name Ant-Q [2, 6]. It was renamed Ant Colony System and
further investigated first in a technical report by Dorigo and Gambardella
[4], and later published [3].

Learn More

The seminal book on Ant Colony Optimization in general with a detailed
treatment of Ant Colony System is “Ant colony optimization” by Dorigo
and Stützle [5]. An earlier book “Swarm intelligence: from natural to
artificial systems” by Bonabeau, Dorigo, and Theraulaz also provides

260 Chapter 6. Swarm Algorithms

an introduction to Swarm Intelligence with a detailed treatment of Ant
Colony System [1].

6.4.9 Bibliography

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence:
From Natural to Artificial Systems. Oxford University Press US,
1999.

[2] M. Dorigo and L. M. Gambardella. A study of some properties of
ant-q. In H-M. Voigt, W. Ebeling, I. Rechenberg, and H-P. Schwefel,
editors, Proceedings of PPSN IVFourth International Conference
on Parallel Problem Solving From Nature, pages 656–665. Springer-
Verlag, 1996.

[3] M. Dorigo and L. M. Gambardella. Ant colony system : A cooper-
ative learning approach to the traveling salesman problem. IEEE
Transactions on Evolutionary Computation, 1(1):53–66, 1997.

[4] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative
learning approach to the traveling salesman problems. Technical
Report TR/IRIDIA/1996-5, IRIDIA, Université Libre de Bruxelles,
1997.

[5] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press,
2004.

[6] L. Gambardella and M. Dorigo. Ant–Q: A reinforcement learning
approach to the traveling salesman problems. In A. Prieditis and
S. Russell, editors, Proceedings of ML-95, Twelfth International
Conference on Machine Learning, pages 252–260. Morgan Kaufmann,
1995.

6.5. Bees Algorithm 261

6.5 Bees Algorithm

Bees Algorithm, BA.

6.5.1 Taxonomy

The Bees Algorithm beings to Bee Inspired Algorithms and the field
of Swarm Intelligence, and more broadly the fields of Computational
Intelligence and Metaheuristics. The Bees Algorithm is related to other
Bee Inspired Algorithms, such as Bee Colony Optimization, and other
Swarm Intelligence algorithms such as Ant Colony Optimization and
Particle Swarm Optimization.

6.5.2 Inspiration

The Bees Algorithm is inspired by the foraging behavior of honey bees.
Honey bees collect nectar from vast areas around their hive (more than
10 kilometers). Bee Colonies have been observed to send bees to collect
nectar from flower patches relative to the amount of food available at
each patch. Bees communicate with each other at the hive via a waggle
dance that informs other bees in the hive as to the direction, distance,
and quality rating of food sources.

6.5.3 Metaphor

Honey bees collect nectar from flower patches as a food source for the
hive. The hive sends out scout’s that locate patches of flowers, who then
return to the hive and inform other bees about the fitness and location
of a food source via a waggle dance. The scout returns to the flower
patch with follower bees. A small number of scouts continue to search
for new patches, while bees returning from flower patches continue to
communicate the quality of the patch.

6.5.4 Strategy

The information processing objective of the algorithm is to locate and
explore good sites within a problem search space. Scouts are sent out
to randomly sample the problem space and locate good sites. The good
sites are exploited via the application of a local search, where a small
number of good sites are explored more than the others. Good sites are
continually exploited, although many scouts are sent out each iteration
always in search of additional good sites.

262 Chapter 6. Swarm Algorithms

6.5.5 Procedure

Algorithm 6.5.1 provides a pseudocode listing of the Bees Algorithm for
minimizing a cost function.

Algorithm 6.5.1: Pseudocode for the Bees Algorithm.

Input: Problemsize, Beesnum, Sitesnum, EliteSitesnum,
PatchSizeinit, EliteBeesnum, OtherBeesnum

Output: Beebest
Population ← InitializePopulation(Beesnum, Problemsize);1

while ¬StopCondition() do2

EvaluatePopulation(Population);3

Beebest ← GetBestSolution(Population);4

NextGeneration ← ∅;5

Patchsize ← (PatchSizeinit × PatchDecreasefactor);6

Sitesbest ← SelectBestSites(Population, Sitesnum);7

foreach Sitei ∈ Sitesbest do8

RecruitedBeesnum ← ∅;9

if i < EliteSitesnum then10

RecruitedBeesnum ← EliteBeesnum;11

else12

RecruitedBeesnum ← OtherBeesnum;13

end14

Neighborhood ← ∅;15

for j to RecruitedBeesnum do16

Neighborhood ← CreateNeighborhoodBee(Sitei,17

Patchsize);
end18

NextGeneration ← GetBestSolution(Neighborhood);19

end20

RemainingBeesnum ← (Beesnum- Sitesnum);21

for j to RemainingBeesnum do22

NextGeneration ← CreateRandomBee();23

end24

Population ← NextGeneration;25

end26

return Beebest;27

6.5.6 Heuristics

• The Bees Algorithm was developed to be used with continuous
and combinatorial function optimization problems.

• The Patchsize variable is used as the neighborhood size. For

6.5. Bees Algorithm 263

example, in a continuous function optimization problem, each
dimension of a site would be sampled as xi± (rand()×Patchsize).

• The Patchsize variable is decreased each iteration, typically by a
constant amount (such as 0.95).

• The number of elite sites (EliteSitesnum) must be < the number
of sites (Sitesnum), and the number of elite bees (EliteBeesnum)
is traditionally < the number of other bees (OtherBeesnum).

6.5.7 Code Listing

Listing 6.4 provides an example of the Bees Algorithm implemented
in the Ruby Programming Language. The demonstration problem is
an instance of a continuous function optimization that seeks min f(x)
where f =

∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0 and n = 3. The optimal solution

for this basin function is (v0, . . . , vn−1) = 0.0. The algorithm is an
implementation of the Bees Algorithm as described in the seminal paper
[2]. A fixed patch size decrease factor of 0.95 was applied each iteration.

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def create_random_bee(search_space)

12 return {:vector=>random_vector(search_space)}

13 end

14

15 def create_neigh_bee(site, patch_size, search_space)

16 vector = []

17 site.each_with_index do |v,i|

18 v = (rand()<0.5) ? v+rand()*patch_size : v-rand()*patch_size

19 v = search_space[i][0] if v < search_space[i][0]

20 v = search_space[i][1] if v > search_space[i][1]

21 vector << v

22 end

23 bee = {}

24 bee[:vector] = vector

25 return bee

26 end

27

28 def search_neigh(parent, neigh_size, patch_size, search_space)

29 neigh = []

30 neigh_size.times do

31 neigh << create_neigh_bee(parent[:vector], patch_size, search_space)

32 end

33 neigh.each{|bee| bee[:fitness] = objective_function(bee[:vector])}

264 Chapter 6. Swarm Algorithms

34 return neigh.sort{|x,y| x[:fitness]<=>y[:fitness]}.first

35 end

36

37 def create_scout_bees(search_space, num_scouts)

38 return Array.new(num_scouts) do

39 create_random_bee(search_space)

40 end

41 end

42

43 def search(max_gens, search_space, num_bees, num_sites, elite_sites,

patch_size, e_bees, o_bees)

44 best = nil

45 pop = Array.new(num_bees){ create_random_bee(search_space) }

46 max_gens.times do |gen|

47 pop.each{|bee| bee[:fitness] = objective_function(bee[:vector])}

48 pop.sort!{|x,y| x[:fitness]<=>y[:fitness]}

49 best = pop.first if best.nil? or pop.first[:fitness] <

best[:fitness]

50 next_gen = []

51 pop[0...num_sites].each_with_index do |parent, i|

52 neigh_size = (i<elite_sites) ? e_bees : o_bees

53 next_gen << search_neigh(parent, neigh_size, patch_size,

search_space)

54 end

55 scouts = create_scout_bees(search_space, (num_bees-num_sites))

56 pop = next_gen + scouts

57 patch_size = patch_size * 0.95

58 puts " > it=#{gen+1}, patch_size=#{patch_size}, f=#{best[:fitness]}"

59 end

60 return best

61 end

62

63 if __FILE__ == $0
64 # problem configuration

65 problem_size = 3

66 search_space = Array.new(problem_size) {|i| [-5, 5]}

67 # algorithm configuration

68 max_gens = 500

69 num_bees = 45

70 num_sites = 3

71 elite_sites = 1

72 patch_size = 3.0

73 e_bees = 7

74 o_bees = 2

75 # execute the algorithm

76 best = search(max_gens, search_space, num_bees, num_sites,

elite_sites, patch_size, e_bees, o_bees)

77 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:vector].inspect}"

78 end

Listing 6.4: Bees Algorithm in Ruby

6.5. Bees Algorithm 265

6.5.8 References

Primary Sources

The Bees Algorithm was proposed by Pham et al. in a technical report in
2005 [3], and later published [2]. In this work, the algorithm was applied
to standard instances of continuous function optimization problems.

Learn More

The majority of the work on the algorithm has concerned its application
to various problem domains. The following is a selection of popular
application papers: the optimization of linear antenna arrays by Guney
and Onay [1], the optimization of codebook vectors in the Learning
Vector Quantization algorithm for classification by Pham et al. [5],
optimization of neural networks for classification by Pham et al. [6], and
the optimization of clustering methods by Pham et al. [4].

6.5.9 Bibliography

[1] K. Guney and M. Onay. Amplitude-only pattern nulling of lin-
ear antenna arrays with the use of bees algorithm. Progress In
Electromagnetics Research, 70:21–36, 2007.

[2] D. T. Pham, Ghanbarzadeh A., Koc E., Otri S., Rahim S., and
M.Zaidi. The bees algorithm - a novel tool for complex optimisation
problems. In Proceedings of IPROMS 2006 Conference, pages 454–
461, 2006.

[3] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and
M. Zaidi. The bees algorithm. Technical report, Manufacturing
Engineering Centre, Cardiff University, 2005.

[4] D. T. Pham, S. Otri, A. A. Afify, M. Mahmuddin, and H. Al-
Jabbouli. Data clustering using the bees algorithm. In Proc 40th
CIRP International Manufacturing Systems Seminar, 2007.

[5] D. T. Pham, S. Otri, A. Ghanbarzadeh, and E. Koc. Application of
the bees algorithm to the training of learning vector quantisation
networks for control chart pattern recognition. In Proceedings of
Information and Communication Technologies (ICTTA’06), pages
1624–1629, 2006.

[6] D. T. Pham, A. J. Soroka, A. Ghanbarzadeh, E. Koc, S. Otri, and
M. Packianather. Optimising neural networks for identification of
wood defects using the bees algorithm. In Proceedings of the 2006
IEEE International Conference on Industrial Informatics, 2006.

266 Chapter 6. Swarm Algorithms

6.6 Bacterial Foraging Optimization Algo-
rithm

Bacterial Foraging Optimization Algorithm, BFOA, Bacterial Foraging
Optimization, BFO.

6.6.1 Taxonomy

The Bacterial Foraging Optimization Algorithm belongs to the field of
Bacteria Optimization Algorithms and Swarm Optimization, and more
broadly to the fields of Computational Intelligence and Metaheuristics. It
is related to other Bacteria Optimization Algorithms such as the Bacteria
Chemotaxis Algorithm [3], and other Swarm Intelligence algorithms such
as Ant Colony Optimization and Particle Swarm Optimization. There
have been many extensions of the approach that attempt to hybridize
the algorithm with other Computational Intelligence algorithms and
Metaheuristics such as Particle Swarm Optimization, Genetic Algorithm,
and Tabu Search.

6.6.2 Inspiration

The Bacterial Foraging Optimization Algorithm is inspired by the group
foraging behavior of bacteria such as E.coli and M.xanthus. Specifically,
the BFOA is inspired by the chemotaxis behavior of bacteria that will
perceive chemical gradients in the environment (such as nutrients) and
move toward or away from specific signals.

6.6.3 Metaphor

Bacteria perceive the direction to food based on the gradients of chem-
icals in their environment. Similarly, bacteria secrete attracting and
repelling chemicals into the environment and can perceive each other in
a similar way. Using locomotion mechanisms (such as flagella) bacteria
can move around in their environment, sometimes moving chaotically
(tumbling and spinning), and other times moving in a directed manner
that may be referred to as swimming. Bacterial cells are treated like
agents in an environment, using their perception of food and other cells
as motivation to move, and stochastic tumbling and swimming like
movement to re-locate. Depending on the cell-cell interactions, cells
may swarm a food source, and/or may aggressively repel or ignore each
other.

6.6. Bacterial Foraging Optimization Algorithm 267

6.6.4 Strategy

The information processing strategy of the algorithm is to allow cells to
stochastically and collectively swarm toward optima. This is achieved
through a series of three processes on a population of simulated cells: 1)
‘Chemotaxis’ where the cost of cells is derated by the proximity to other
cells and cells move along the manipulated cost surface one at a time
(the majority of the work of the algorithm), 2) ‘Reproduction’ where
only those cells that performed well over their lifetime may contribute
to the next generation, and 3) ‘Elimination-dispersal’ where cells are
discarded and new random samples are inserted with a low probability.

6.6.5 Procedure

Algorithm 6.6.1 provides a pseudocode listing of the Bacterial Foraging
Optimization Algorithm for minimizing a cost function. Algorithm 6.6.2
provides the pseudocode listing for the chemotaxis and swing behaviour
of the BFOA algorithm. A bacteria cost is derated by its interaction
with other cells. This interaction function (g()) is calculated as follows:

g(cellk) =

S∑
i=1

[
− dattr × exp

(
− wattr ×

P∑
m=1

(cellkm − otherim)2
)]

+

S∑
i=1

[
hrepel × exp

(
− wrepel ×

P∑
m=1

cellkm − otherim)2
)]

where cellk is a given cell, dattr and wattr are attraction coefficients,
hrepel and wrepel are repulsion coefficients, S is the number of cells in
the population, P is the number of dimensions on a given cells position
vector.

The remaining parameters of the algorithm are as follows Cellsnum
is the number of cells maintained in the population, Ned is the number
of elimination-dispersal steps, Nre is the number of reproduction steps,
Nc is the number of chemotaxis steps, Ns is the number of swim steps
for a given cell, Stepsize is a random direction vector with the same
number of dimensions as the problem space, and each value ∈ [−1, 1],
and Ped is the probability of a cell being subjected to elimination and
dispersal.

6.6.6 Heuristics

• The algorithm was designed for application to continuous function
optimization problem domains.

268 Chapter 6. Swarm Algorithms

Algorithm 6.6.1: Pseudocode for the BFOA.

Input: Problemsize, Cellsnum, Ned, Nre, Nc, Ns, Stepsize,
dattract, wattract, hrepellant, wrepellant, Ped

Output: Cellbest
Population ← InitializePopulation(Cellsnum, Problemsize);1

for l = 0 to Ned do2

for k = 0 to Nre do3

for j = 0 to Nc do4

ChemotaxisAndSwim(Population, Problemsize,5

Cellsnum, Ns, Stepsize, dattract, wattract, hrepellant,
wrepellant);
foreach Cell ∈ Population do6

if Cost(Cell) ≤ Cost(Cellbest) then7

Cellbest ← Cell;8

end9

end10

end11

SortByCellHealth(Population);12

Selected ← SelectByCellHealth(Population, Cellsnum

2);13

Population ← Selected;14

Population ← Selected;15

end16

foreach Cell ∈ Population do17

if Rand() ≤ Ped then18

Cell ← CreateCellAtRandomLocation();19

end20

end21

end22

return Cellbest;23

• Given the loops in the algorithm, it can be configured numerous
ways to elicit different search behavior. It is common to have a
large number of chemotaxis iterations, and small numbers of the
other iterations.

• The default coefficients for swarming behavior (cell-cell interac-
tions) are as follows dattract = 0.1, wattract = 0.2, hrepellant =
dattract, and wrepellant = 10.

• The step size is commonly a small fraction of the search space,
such as 0.1.

• During reproduction, typically half the population with a low
health metric are discarded, and two copies of each member from

6.6. Bacterial Foraging Optimization Algorithm 269

Algorithm 6.6.2: Pseudocode for the ChemotaxisAndSwim func-
tion.

Input: Population, Problemsize, Cellsnum, Ns, Stepsize, dattract,
wattract, hrepellant, wrepellant

foreach Cell ∈ Population do1

Cellfitness ← Cost(Cell) + Interaction(Cell, Population,2

dattract, wattract, hrepellant, wrepellant);
Cellhealth ← Cellfitness;3

Cell′ ← ∅;4

for i = 0 to Ns do5

RandomStepDirection ← CreateStep(Problemsize);6

Cell′ ← TakeStep(RandomStepDirection, Stepsize);7

Cell′fitness ← Cost(Cell′) + Interaction(Cell′,8

Population, dattract, wattract, hrepellant, wrepellant);
if Cell′fitness > Cellfitness then9

i← Ns;10

else11

Cell ← Cell′;12

Cellhealth ← Cellhealth + Cell′fitness;13

end14

end15

end16

the first (high-health) half of the population are retained.

• The probability of elimination and dispersal (ped) is commonly set
quite large, such as 0.25.

6.6.7 Code Listing

Listing 6.5 provides an example of the Bacterial Foraging Optimization
Algorithm implemented in the Ruby Programming Language. The
demonstration problem is an instance of a continuous function optimiza-
tion that seeks min f(x) where f =

∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0 and n = 2.

The optimal solution for this basin function is (v0, . . . , vn−1) = 0.0. The
algorithm is an implementation based on the description on the seminal
work [4]. The parameters for cell-cell interactions (attraction and repul-
sion) were taken from the paper, and the various loop parameters were
taken from the ‘Swarming Effects’ example.

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x ** 2.0)}

3 end

4

5 def random_vector(minmax)

270 Chapter 6. Swarm Algorithms

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def generate_random_direction(problem_size)

12 bounds = Array.new(problem_size){[-1.0,1.0]}

13 return random_vector(bounds)

14 end

15

16 def compute_cell_interaction(cell, cells, d, w)

17 sum = 0.0

18 cells.each do |other|

19 diff = 0.0

20 cell[:vector].each_index do |i|

21 diff += (cell[:vector][i] - other[:vector][i])**2.0

22 end

23 sum += d * Math.exp(w * diff)

24 end

25 return sum

26 end

27

28 def attract_repel(cell, cells, d_attr, w_attr, h_rep, w_rep)

29 attract = compute_cell_interaction(cell, cells, -d_attr, -w_attr)

30 repel = compute_cell_interaction(cell, cells, h_rep, -w_rep)

31 return attract + repel

32 end

33

34 def evaluate(cell, cells, d_attr, w_attr, h_rep, w_rep)

35 cell[:cost] = objective_function(cell[:vector])

36 cell[:inter] = attract_repel(cell, cells, d_attr, w_attr, h_rep,

w_rep)

37 cell[:fitness] = cell[:cost] + cell[:inter]

38 end

39

40 def tumble_cell(search_space, cell, step_size)

41 step = generate_random_direction(search_space.size)

42 vector = Array.new(search_space.size)

43 vector.each_index do |i|

44 vector[i] = cell[:vector][i] + step_size * step[i]

45 vector[i] = search_space[i][0] if vector[i] < search_space[i][0]

46 vector[i] = search_space[i][1] if vector[i] > search_space[i][1]

47 end

48 return {:vector=>vector}

49 end

50

51 def chemotaxis(cells, search_space, chem_steps, swim_length, step_size,

52 d_attr, w_attr, h_rep, w_rep)

53 best = nil

54 chem_steps.times do |j|

55 moved_cells = []

56 cells.each_with_index do |cell, i|

57 sum_nutrients = 0.0

58 evaluate(cell, cells, d_attr, w_attr, h_rep, w_rep)

59 best = cell if best.nil? or cell[:cost] < best[:cost]

60 sum_nutrients += cell[:fitness]

6.6. Bacterial Foraging Optimization Algorithm 271

61 swim_length.times do |m|

62 new_cell = tumble_cell(search_space, cell, step_size)

63 evaluate(new_cell, cells, d_attr, w_attr, h_rep, w_rep)

64 best = cell if cell[:cost] < best[:cost]

65 break if new_cell[:fitness] > cell[:fitness]

66 cell = new_cell

67 sum_nutrients += cell[:fitness]

68 end

69 cell[:sum_nutrients] = sum_nutrients

70 moved_cells << cell

71 end

72 puts " >> chemo=#{j}, f=#{best[:fitness]}, cost=#{best[:cost]}"

73 cells = moved_cells

74 end

75 return [best, cells]

76 end

77

78 def search(search_space, pop_size, elim_disp_steps, repro_steps,

79 chem_steps, swim_length, step_size, d_attr, w_attr, h_rep, w_rep,

80 p_eliminate)

81 cells = Array.new(pop_size) { {:vector=>random_vector(search_space)} }

82 best = nil

83 elim_disp_steps.times do |l|

84 repro_steps.times do |k|

85 c_best, cells = chemotaxis(cells, search_space, chem_steps,

86 swim_length, step_size, d_attr, w_attr, h_rep, w_rep)

87 best = c_best if best.nil? or c_best[:cost] < best[:cost]

88 puts " > best fitness=#{best[:fitness]}, cost=#{best[:cost]}"

89 cells.sort{|x,y| x[:sum_nutrients]<=>y[:sum_nutrients]}

90 cells = cells.first(pop_size/2) + cells.first(pop_size/2)

91 end

92 cells.each do |cell|

93 if rand() <= p_eliminate

94 cell[:vector] = random_vector(search_space)

95 end

96 end

97 end

98 return best

99 end

100

101 if __FILE__ == $0
102 # problem configuration

103 problem_size = 2

104 search_space = Array.new(problem_size) {|i| [-5, 5]}

105 # algorithm configuration

106 pop_size = 50

107 step_size = 0.1 # Ci

108 elim_disp_steps = 1 # Ned

109 repro_steps = 4 # Nre

110 chem_steps = 70 # Nc

111 swim_length = 4 # Ns

112 p_eliminate = 0.25 # Ped

113 d_attr = 0.1

114 w_attr = 0.2

115 h_rep = d_attr

116 w_rep = 10

272 Chapter 6. Swarm Algorithms

117 # execute the algorithm

118 best = search(search_space, pop_size, elim_disp_steps, repro_steps,

119 chem_steps, swim_length, step_size, d_attr, w_attr, h_rep, w_rep,

120 p_eliminate)

121 puts "done! Solution: c=#{best[:cost]}, v=#{best[:vector].inspect}"

122 end

Listing 6.5: Bacterial Foraging Optimization Algorithm in Ruby

6.6.8 References

Primary Sources

Early work by Liu and Passino considered models of chemotaxis as
optimization for both E.coli and M.xanthus which were applied to
continuous function optimization [2]. This work was consolidated by
Passino who presented the Bacterial Foraging Optimization Algorithm
that included a detailed presentation of the algorithm, heuristics for
configuration, and demonstration applications and behavior dynamics
[4].

Learn More

A detailed summary of social foraging and the BFOA is provided in
the book by Passino [5]. Passino provides a follow-up review of the
background models of chemotaxis as optimization and describes the
equations of the Bacterial Foraging Optimization Algorithm in detail in
a Journal article [6]. Das et al. present the algorithm and its inspiration,
and go on to provide an in depth analysis the dynamics of chemotaxis
using simplified mathematical models [1].

6.6.9 Bibliography

[1] S. Das, A. Biswas, S. Dasgupta, and A. Abraham. Foundations of
Computational Intelligence Volume 3: Global Optimization, chapter
Bacterial Foraging Optimization Algorithm: Theoretical Founda-
tions, Analysis, and Applications, pages 23–55. Springer, 2009.

[2] Y. Liu and K. M. Passino. Biomimicry of social foraging bacteria for
distributed optimization: Models, principles, and emergent behaviors.
Journal of Optimization Theory and Applications, 115(3):603–628,
2002.

[3] S. D. Müller, J. Marchetto, S. Airaghi, and P. Koumoutsakos. Op-
timization based on bacterial chemotaxis. IEEE Transactions on
Evolutionary Computation, 6(1):16–29, 2002.

6.6. Bacterial Foraging Optimization Algorithm 273

[4] K. M. Passino. Biomimicry of bacterial foraging for distributed
optimization and control. IEEE Control Systems Magazine, 22(3):52–
67, 2002.

[5] K. M. Passino. Biomimicry for Optimization, Control, and Automa-
tion, chapter Part V: Foraging. Springer, 2005.

[6] K. M. Passino. Bacterial foraging optimization. International Journal
of Swarm Intelligence Research, 1(1):1–16, 2010.

274 Chapter 6. Swarm Algorithms

Chapter 7

Immune Algorithms

7.1 Overview

This chapter describes Immune Algorithms.

7.1.1 Immune System

Immune Algorithms belong to the Artificial Immune Systems field of
study concerned with computational methods inspired by the process
and mechanisms of the biological immune system.

A simplified description of the immune system is an organ system
intended to protect the host organism from the threats posed to it from
pathogens and toxic substances. Pathogens encompass a range of micro-
organisms such as bacteria, viruses, parasites and pollen. The traditional
perspective regarding the role of the immune system is divided into
two primary tasks: the detection and elimination of pathogen. This
behavior is typically referred to as the differentiation of self (molecules
and cells that belong to the host organisms) from potentially harmful
non-self. More recent perspectives on the role of the system include a
maintenance system [3], and a cognitive system [22].

The architecture of the immune system is such that a series of
defensive layers protect the host. Once a pathogen makes it inside the
host, it must contend with the innate and acquired immune system.
These interrelated immunological sub-systems are comprised of many
types of cells and molecules produced by specialized organs and processes
to address the self-nonself problem at the lowest level using chemical
bonding, where the surfaces of cells and molecules interact with the
surfaces of pathogen.

The adaptive immune system, also referred to as the acquired immune
system, is named such because it is responsible for specializing a defense
for the host organism based on the specific pathogen to which it is

275

276 Chapter 7. Immune Algorithms

exposed. Unlike the innate immune system, the acquired immune
system is present only in vertebrates (animals with a spinal column).
The system retains a memory of exposures which it has encountered.
This memory is recalled on reinfection exhibiting a learned pathogen
identification. This learning process may be divided into two types
of response. The first or primary response occurs when the system
encounters a novel pathogen. The system is slow to respond, potentially
taking a number of weeks to clear the infection. On re-encountering
the same pathogen again, the system exhibits a secondary response,
applying what was learned in the primary response and clearing up
the infection rapidly. The memory the system acquires in the primary
response is typically long lasting, providing pathogenic immunity for the
lifetime of the host, two common examples of which are the chickenpox
and measles. White blood cells called lymphocytes (or leukocytes) are
the most important cell in the acquired immune system. Lymphocytes
are involved in both the identification and elimination of pathogen, and
recirculate within the host organisms body in the blood and lymph (the
fluid that permeates tissue).

7.1.2 Artificial Immune Systems

Artificial Immune Systems (AIS) is a sub-field of Computational Intelli-
gence motivated by immunology (primarily mammalian immunology)
that emerged in the early 1990s (for example [1, 15]), based on the
proposal in the late 1980s to apply theoretical immunological models
to machine learning and automated problem solving (such as [9, 12]).
The early works in the field were inspired by exotic theoretical mod-
els (immune network theory) and were applied to machine learning,
control and optimization problems. The approaches were reminiscent
of paradigms such as Artificial Neural Networks, Genetic Algorithms,
Reinforcement Learning, and Learning Classifier Systems. The most
formative works in giving the field an identity were those that proposed
the immune system as an analogy for information protection systems in
the field of computer security. The classical examples include Forrest
et al.’s Computer Immunity [10, 11] and Kephart’s Immune Anti-Virus
[17, 18]. These works were formative for the field because they provided
an intuitive application domain that captivated a broader audience and
assisted in differentiating the work as an independent sub-field.

Modern Artificial Immune systems are inspired by one of three
sub-fields: clonal selection, negative selection and immune network
algorithms. The techniques are commonly used for clustering, pat-
tern recognition, classification, optimization, and other similar machine
learning problem domains.

The seminal reference for those interested in the field is the text
book by de Castro and Timmis “Artificial Immune Systems: A New

7.1. Overview 277

Computational Intelligence Approach” [8]. This reference text provides
an introduction to immunology with a level of detail appropriate for
a computer scientist, followed by a summary of the state of the art,
algorithms, application areas, and case studies.

7.1.3 Extensions

There are many other algorithms and classes of algorithm that were not
described from the field of Artificial Immune Systems, not limited to:

• Clonal Selection Algorithms: such as the B-Cell Algorithm
[16], the Multi-objective Immune System Algorithm (MSIRA)
[2, 4] and the the Optimization Immune Algorithm (opt-IA, opt-
IMMALG) [5, 6] and the Simple Immunological Algorithm [7].

• Immune Network Algorithms: such as the approach by Tim-
mis used for clustering called the Artificial Immune Network (AIN)
[20] (later extended and renamed the Resource Limited Artificial
Immune System [19, 21].

• Negative Selection Algorithms: such as an adaptive frame-
work called the ARTificial Immune System (ARTIS), with the
application to intrusion detection renamed the Lightweight Intru-
sion Detection System (LISYS) [13, 14].

7.1.4 Bibliography

[1] H. Bersini and F. Varela. Hints for adaptive problem solving gleaned
from immune networks. In Lecture Notes In Computer Science,
pages 343–354. Springer-Verlag, London, UK, 1990.

[2] C. A. Coello Coello and N. C. Cortés. An approach to solve
multiobjective optimization problems based on an artificial immune
system. In P. J. Bentley, editor, First International Conference on
Artificial Immune Systems, pages 212–221, 2002.

[3] I. R. Cohen. Tending Adam’s Garden: Evolving the Cognitive
Immune Self. Academic Press, New York, 2001.

[4] N. C. Cortés and C. A. Coello Coello. Multiobjective optimization
using ideas from the clonal selection principle. In Lecture Notes
in Computer Science, pages 158–170, Berlin / Heidelberg, 2003.
Springer.

[5] V. Cutello and G. Nicosia. An immunological approach to com-
binatorial optimization problems. In J.C. Riquelme and M. Toro,
editors, Lecture Notes In Computer Science, pages 361–370, London,
UK, 2002. Springer-Verlag.

278 Chapter 7. Immune Algorithms

[6] V. Cutello and G. Nicosia. Multiple learning using immune algo-
rithms. In Proceedings of 4th International Conference on Recent
Advances in Soft Computing, RASC 2002, pages 102–107, 2002.

[7] V. Cutello and G. Nicosia. Chapter vi. the clonal selection principle
for in silico and in vivo computing. In Fernando J. Von Zuben,
editor, Recent Developments in Biologically Inspired Computing,
pages 104–146, Hershey, London, Melbourne, Singapore, 2005. Idea
Group Publishing.

[8] L. N. de Castro and J. Timmis. Artificial Immune Systems: A New
Computational Intelligence Approach. Springer, 2002.

[9] J. D. Farmer, N. H. Packard, and Alan S. Perelson. The immune
system, adaptation, and machine learning. Physica D, 22:187–204,
1986.

[10] S. Forrest, S. A. Hofmeyr, and A. Somayaji. Computer immunology.
Communications of the ACM, 40(10):88–96, October 1997.

[11] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-nonself
discrimination in a computer. In Proceedings of the 1992 IEEE Sym-
posium on Security and Privacy, pages 202–212. IEEE Computer
Society Press, 1994.

[12] G. W. Hoffmann. A neural network model based on the analogy
with the immune system. Journal of Theorectical Immunology,
122(1):33–67, September 1986.

[13] S. Hofmeyr and S. Forrest. Immunity by design: An artificial im-
mune system. In J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), volume 2,
pages 1289–1296. Morgan-Kaufmann, 1999.

[14] S. A. Hofmeyr and S. Forrest. Architecture for an artificial immune
system. Evolutionary Computation, 8(4):443–473, 2000.

[15] Y. Ishida. Fully distributed diagnosis by PDP learning algorithm:
towards immune network PDP models. In IJCNN International
Joint Conference on Neural Networks, volume 1, pages 777–782.
IEEE Computer Society, USA, 1990.

[16] J. Kelsey and J. Timmis. Immune inspired somatic contiguous
hypermutation for function optimisation. In Lecture Notes in
Computer Science, pages 207–218. Springer, Berlin / Heidelberg,
2003.

7.1. Overview 279

[17] J. O. Kephart. A biologically inspired immune system for computers.
In P. Maes, editor, Artificial Life IV, pages 130–139. MIT Press,
Cambridge, Massachusetts, USA, 1994.

[18] J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess, G. J.
Tesauro, and S. R. White. Biologically inspired defences against
computer viruses. In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, pages 985–996. Morgan Kauf-
mann Publishers, Inc., 1995.

[19] J. Timmis and M. Neal. Investigating the evolution and stability of
a resource limited artificial immune system. In Workshop Program,
pages 40–41. AAAI Press, USA, 2000.

[20] J. Timmis, M. Neal, and J. Hunt. An artificial immune system for
data analysis. Biosystems, 55(1):143–150, 2000.

[21] J. Timmis and M. J. Neal. A resource limited artificial immune
system for data analysis. Knowledge Based Systems Journal: Special
Issue, 14(3-4):121–130, 2001.

[22] F. J. Varela. A cognitive view of the immune system. World Futures,
42(1-2):31–40, 1994.

280 Chapter 7. Immune Algorithms

7.2 Clonal Selection Algorithm

Clonal Selection Algorithm, CSA, CLONALG.

7.2.1 Taxonomy

The Clonal Selection Algorithm (CLONALG) belongs to the field of
Artificial Immune Systems. It is related to other Clonal Selection Algo-
rithms such as the Artificial Immune Recognition System (Section 7.4),
the B-Cell Algorithm (BCA), and the Multi-objective Immune System
Algorithm (MISA). There are numerious extensions to CLONALG in-
cluding tweaks such as the CLONALG1 and CLONALG2 approaches, a
version for classification called CLONCLAS, and an adaptive version
called Adaptive Clonal Selection (ACS).

7.2.2 Inspiration

The Clonal Selection algorithm is inspired by the Clonal Selection
theory of acquired immunity. The clonal selection theory credited
to Burnet was proposed to account for the behavior and capabilities
of antibodies in the acquired immune system [2, 3]. Inspired itself
by the principles of Darwinian natural selection theory of evolution,
the theory proposes that antigens select-for lymphocytes (both B and
T-cells). When a lymphocyte is selected and binds to an antigenic
determinant, the cell proliferates making many thousands more copies
of itself and differentiates into different cell types (plasma and memory
cells). Plasma cells have a short lifespan and produce vast quantities of
antibody molecules, whereas memory cells live for an extended period
in the host anticipating future recognition of the same determinant.
The important feature of the theory is that when a cell is selected
and proliferates, it is subjected to small copying errors (changes to the
genome called somatic hypermutation) that change the shape of the
expressed receptors and subsequent determinant recognition capabilities
of both the antibodies bound to the lymphocytes cells surface, and the
antibodies that plasma cells produce.

7.2.3 Metaphor

The theory suggests that starting with an initial repertoire of general
immune cells, the system is able to change itself (the compositions and
densities of cells and their receptors) in response to experience with the
environment. Through a blind process of selection and accumulated
variation on the large scale of many billions of cells, the acquired immune
system is capable of acquiring the necessary information to protect the
host organism from the specific pathogenic dangers of the environment.

7.2. Clonal Selection Algorithm 281

It also suggests that the system must anticipate (guess) at the pathogen
to which it will be exposed, and requires exposure to pathogen that
may harm the host before it can acquire the necessary information to
provide a defense.

7.2.4 Strategy

The information processing principles of the clonal selection theory
describe a general learning strategy. This strategy involves a population
of adaptive information units (each representing a problem-solution or
component) subjected to a competitive processes for selection, which
together with the resultant duplication and variation ultimately improves
the adaptive fit of the information units to their environment.

7.2.5 Procedure

Algorithm 7.2.1 provides a pseudocode listing of the Clonal Selection
Algorithm (CLONALG) for minimizing a cost function. The general
CLONALG model involves the selection of antibodies (candidate solu-
tions) based on affinity either by matching against an antigen pattern or
via evaluation of a pattern by a cost function. Selected antibodies are
subjected to cloning proportional to affinity, and the hypermutation of
clones inversely-proportional to clone affinity. The resultant clonal-set
competes with the existent antibody population for membership in
the next generation. In addition, low-affinity population members are
replaced by randomly generated antibodies. The pattern recognition
variation of the algorithm includes the maintenance of a memory solution
set which in its entirety represents a solution to the problem. A binary-
encoding scheme is employed for the binary-pattern recognition and
continuous function optimization examples, and an integer permutation
scheme is employed for the Traveling Salesman Problem (TSP).

7.2.6 Heuristics

• The CLONALG was designed as a general machine learning ap-
proach and has been applied to pattern recognition, function
optimization, and combinatorial optimization problem domains.

• Binary string representations are used and decoded to a represen-
tation suitable for a specific problem domain.

• The number of clones created for each selected member is calcu-
lated as a function of the repertoire size Nc = round(β ·N), where
β is the user parameter Clonerate.

282 Chapter 7. Immune Algorithms

Algorithm 7.2.1: Pseudocode for CLONALG.

Input: Populationsize, Selectionsize, Problemsize,
RandomCellsnum, Clonerate, Mutationrate

Output: Population
Population ← CreateRandomCells(Populationsize,1

Problemsize);
while ¬StopCondition() do2

foreach pi ∈ Population do3

Affinity(pi);4

end5

Populationselect ← Select(Population, Selectionsize);6

Populationclones ← ∅;7

foreach pi ∈ Populationselect do8

Populationclones ← Clone(pi, Clonerate);9

end10

foreach pi ∈ Populationclones do11

Hypermutate(pi, Mutationrate);12

Affinity(pi);13

end14

Population ← Select(Population, Populationclones,15

Populationsize);
Populationrand ← CreateRandomCells(RandomCellsnum);16

Replace(Population, Populationrand);17

end18

return Population;19

• A rank-based affinity-proportionate function is used to determine
the number of clones created for selected members of the popula-
tion for pattern recognition problem instances.

• The number of random antibodies inserted each iteration is typi-
cally very low (1-2).

• Point mutations (bit-flips) are used in the hypermutation opera-
tion.

• The function exp(−ρ · f) is used to determine the probability of
individual component mutation for a given candidate solution,
where f is the candidates affinity (normalized maximizing cost
value), and ρ is the user parameter Mutationrate.

7.2. Clonal Selection Algorithm 283

7.2.7 Code Listing

Listing 7.1 provides an example of the Clonal Selection Algorithm
(CLONALG) implemented in the Ruby Programming Language. The
demonstration problem is an instance of a continuous function optimiza-
tion that seeks min f(x) where f =

∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0 and n = 3.

The optimal solution for this basin function is (v0, . . . , vn−1) = 0.0. The
algorithm is implemented as described by de Castro and Von Zuben for
function optimization [8].

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x**2.0)}

3 end

4

5 def decode(bitstring, search_space, bits_per_param)

6 vector = []

7 search_space.each_with_index do |bounds, i|

8 off, sum = i*bits_per_param, 0.0

9 param = bitstring[off...(off+bits_per_param)].reverse

10 param.size.times do |j|

11 sum += ((param[j].chr=='1') ? 1.0 : 0.0) * (2.0 ** j.to_f)

12 end

13 min, max = bounds

14 vector << min + ((max-min)/((2.0**bits_per_param.to_f)-1.0)) * sum

15 end

16 return vector

17 end

18

19 def evaluate(pop, search_space, bits_per_param)

20 pop.each do |p|

21 p[:vector] = decode(p[:bitstring], search_space, bits_per_param)

22 p[:cost] = objective_function(p[:vector])

23 end

24 end

25

26 def random_bitstring(num_bits)

27 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

28 end

29

30 def point_mutation(bitstring, rate)

31 child = ""

32 bitstring.size.times do |i|

33 bit = bitstring[i].chr

34 child << ((rand()<rate) ? ((bit=='1') ? "0" : "1") : bit)

35 end

36 return child

37 end

38

39 def calculate_mutation_rate(antibody, mutate_factor=-2.5)

40 return Math.exp(mutate_factor * antibody[:affinity])

41 end

42

43 def num_clones(pop_size, clone_factor)

44 return (pop_size * clone_factor).floor

45 end

284 Chapter 7. Immune Algorithms

46

47 def calculate_affinity(pop)

48 pop.sort!{|x,y| x[:cost]<=>y[:cost]}

49 range = pop.last[:cost] - pop.first[:cost]

50 if range == 0.0

51 pop.each {|p| p[:affinity] = 1.0}

52 else

53 pop.each {|p| p[:affinity] = 1.0-(p[:cost]/range)}

54 end

55 end

56

57 def clone_and_hypermutate(pop, clone_factor)

58 clones = []

59 num_clones = num_clones(pop.size, clone_factor)

60 calculate_affinity(pop)

61 pop.each do |antibody|

62 m_rate = calculate_mutation_rate(antibody)

63 num_clones.times do

64 clone = {}

65 clone[:bitstring] = point_mutation(antibody[:bitstring], m_rate)

66 clones << clone

67 end

68 end

69 return clones

70 end

71

72 def random_insertion(search_space, pop, num_rand, bits_per_param)

73 return pop if num_rand == 0

74 rands = Array.new(num_rand) do |i|

75 {:bitstring=>random_bitstring(search_space.size*bits_per_param)}

76 end

77 evaluate(rands, search_space, bits_per_param)

78 return (pop+rands).sort{|x,y| x[:cost]<=>y[:cost]}.first(pop.size)

79 end

80

81 def search(search_space, max_gens, pop_size, clone_factor, num_rand,

bits_per_param=16)

82 pop = Array.new(pop_size) do |i|

83 {:bitstring=>random_bitstring(search_space.size*bits_per_param)}

84 end

85 evaluate(pop, search_space, bits_per_param)

86 best = pop.min{|x,y| x[:cost]<=>y[:cost]}

87 max_gens.times do |gen|

88 clones = clone_and_hypermutate(pop, clone_factor)

89 evaluate(clones, search_space, bits_per_param)

90 pop = (pop+clones).sort{|x,y| x[:cost]<=>y[:cost]}.first(pop_size)

91 pop = random_insertion(search_space, pop, num_rand, bits_per_param)

92 best = (pop + [best]).min{|x,y| x[:cost]<=>y[:cost]}

93 puts " > gen #{gen+1}, f=#{best[:cost]}, s=#{best[:vector].inspect}"

94 end

95 return best

96 end

97

98 if __FILE__ == $0
99 # problem configuration

100 problem_size = 2

7.2. Clonal Selection Algorithm 285

101 search_space = Array.new(problem_size) {|i| [-5, +5]}

102 # algorithm configuration

103 max_gens = 100

104 pop_size = 100

105 clone_factor = 0.1

106 num_rand = 2

107 # execute the algorithm

108 best = search(search_space, max_gens, pop_size, clone_factor,

num_rand)

109 puts "done! Solution: f=#{best[:cost]}, s=#{best[:vector].inspect}"

110 end

Listing 7.1: CLONALG in Ruby

7.2.8 References

Primary Sources

Hidden at the back of a technical report on the applications of Artificial
Immune Systems de Castro and Von Zuben [6] proposed the Clonal
Selection Algorithm (CSA) as a computational realization of the clonal
selection principle for pattern matching and optimization. The algorithm
was later published [7], and investigated where it was renamed to
CLONALG (CLONal selection ALGorithm) [8].

Learn More

Watkins et al. proposed to exploit the inherent distributedness of the
CLONALG and proposed a parallel version of the pattern recognition
version of the algorithm [10]. White and Garret also investigated the
pattern recognition version of CLONALG and generalized the approach
for the task of binary pattern classification renaming it to Clonal Classi-
fication (CLONCLAS) where their approach was compared to a number
of simple Hamming distance based heuristics [11]. In an attempt to
address concerns of algorithm efficiency, parameterization, and represen-
tation selection for continuous function optimization Garrett proposed
an updated version of CLONALG called Adaptive Clonal Selection
(ACS) [9]. In their book, de Castro and Timmis provide a detailed treat-
ment of CLONALG including a description of the approach (starting
page 79) and a step through of the algorithm (starting page 99) [5].
Cutello and Nicosia provide a study of the clonal selection principle and
algorithms inspired by the theory [4]. Brownlee provides a review of
Clonal Selection algorithms providing a taxonomy, algorithm reviews,
and a broader bibliography [1].

286 Chapter 7. Immune Algorithms

7.2.9 Bibliography

[1] J. Brownlee. Clonal selection algorithms. Technical Report 070209A,
Complex Intelligent Systems Laboratory (CIS), Centre for Infor-
mation Technology Research (CITR), Faculty of Information and
Communication Technologies (ICT), Swinburne University of Tech-
nology, Feb 2007.

[2] F. M. Burnet. A modification of jerne’s theory of antibody produc-
tion using the concept of clonal selection. Australian Journal of
Science, 20:67–69, 1957.

[3] F. M. Burnet. The clonal selection theory of acquired immunity.
Vanderbilt University Press, 1959.

[4] V. Cutello and G. Nicosia. Recent Developments in Biologically
Inspired Computing, chapter Chapter VI. The Clonal Selection
Principle for In Silico and In Vivo Computing, pages 104–146. Idea
Group Publishing, 2005.

[5] L. N. de Castro and J. Timmis. Artificial immune systems: a new
computational intelligence approach. Springer, 2002.

[6] L. N. de Castro and F. J. Von Zuben. Artificial immune systems
- part i: Basic theory and applications. Technical Report TR
DCA 01/99, Department of Computer Engineering and Industrial
Automation, School of Electrical and Computer Engineering, State
University of Campinas, Brazil, 1999.

[7] L. N. de Castro and F. J. Von Zuben. The clonal selection algorithm
with engineering applications. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO ’00), Workshop
on Artificial Immune Systems and Their Applications, pages 36–37,
2000.

[8] L. N. de Castro and F. J. Von Zuben. Learning and optimiza-
tion using the clonal selection principle. IEEE Transactions on
Evolutionary Computation, 6:239–251, 2002.

[9] S. M. Garrett. Parameter-free, adaptive clonal selection. In Congress
on Evolutionary Computing (CEC 2004), pages 1052–1058, 2004.

[10] A. Watkins, X. Bi, and A. Phadke. Parallelizing an immune-
inspired algorithm for efficient pattern recognition. In Intelligent
Engineering Systems through Artificial Neural Networks: Smart
Engineering System Design: Neural Networks, pages 225–230, 2003.

7.2. Clonal Selection Algorithm 287

[11] J. White and S. M. Garrett. Improved pattern recognition with
artificial clonal selection? In Proceedings Artificial Immune Systems:
Second International Conference, ICARIS 2003, pages 181–193,
2003.

288 Chapter 7. Immune Algorithms

7.3 Negative Selection Algorithm

Negative Selection Algorithm, NSA.

7.3.1 Taxonomy

The Negative Selection Algorithm belongs to the field of Artificial
Immune Systems. The algorithm is related to other Artificial Immune
Systems such as the Clonal Selection Algorithm (Section 7.2), and the
Immune Network Algorithm (Section 7.5).

7.3.2 Inspiration

The Negative Selection algorithm is inspired by the self-nonself discrim-
ination behavior observed in the mammalian acquired immune system.
The clonal selection theory of acquired immunity accounts for the adap-
tive behavior of the immune system including the ongoing selection and
proliferation of cells that select-for potentially harmful (and typically
foreign) material in the body. An interesting aspect of this process is
that it is responsible for managing a population of immune cells that
do not select-for the tissues of the body, specifically it does not create
self-reactive immune cells known as auto-immunity. This problem is
known as ‘self-nonself discrimination’ and it involves the preparation
and on going maintenance of a repertoire of immune cells such that
none are auto-immune. This is achieved by a negative selection process
that selects-for and removes those cells that are self-reactive during
cell creation and cell proliferation. This process has been observed in
the preparation of T-lymphocytes, näıve versions of which are matured
using both a positive and negative selection process in the thymus.

7.3.3 Metaphor

The self-nonself discrimination principle suggests that the anticipatory
guesses made in clonal selection are filtered by regions of infeasibility
(protein conformations that bind to self-tissues). Further, the self-nonself
immunological paradigm proposes the modeling of the unknown domain
(encountered pathogen) by modeling the complement of what is known.
This is unintuitive as the natural inclination is to categorize unknown
information by what is different from that which is known, rather than
guessing at the unknown information and filtering those guesses by what
is known.

7.3. Negative Selection Algorithm 289

7.3.4 Strategy

The information processing principles of the self-nonself discrimination
process via negative selection are that of a anomaly and change detection
systems that model the anticipation of variation from what is known.
The principle is achieved by building a model of changes, anomalies,
or unknown (non-normal or non-self) data by generating patterns that
do not match an existing corpus of available (self or normal) patterns.
The prepared non-normal model is then used to either monitor the
existing normal data or streams of new data by seeking matches to the
non-normal patterns.

7.3.5 Procedure

Algorithm 7.3.1 provides a pseudocode listing of the detector genera-
tion procedure for the Negative Selection Algorithm. Algorithm 7.3.2
provides a pseudocode listing of the detector application procedure for
the Negative Selection Algorithm.

Algorithm 7.3.1: Pseudocode for detector generation.

Input: SelfData
Output: Repertoire
Repertoire ← ∅;1

while ¬StopCondition() do2

Detectors ← GenerateRandomDetectors();3

foreach Detectori ∈ Repertoire do4

if ¬Matches(Detectori, SelfData) then5

Repertoire ← Detectori;6

end7

end8

end9

return Repertoire;10

7.3.6 Heuristics

• The Negative Selection Algorithm was designed for change detec-
tion, novelty detection, intrusion detection and similar pattern
recognition and two-class classification problem domains.

• Traditional negative selection algorithms used binary representa-
tions and binary matching rules such as Hamming distance, and
r-contiguous bits.

290 Chapter 7. Immune Algorithms

Algorithm 7.3.2: Pseudocode for detector application.

Input: InputSamples, Repertoire
for Inputi ∈ InputSamples do1

Inputiclass ← “non-self”;2

foreach Detectori ∈ Repertoire do3

if Matches(Inputi, Detectori) then4

Inputiclass ← “self”;5

Break;6

end7

end8

end9

• A data representation should be selected that is most suitable for
a given problem domain, and a matching rule is in turn selected
or tailored to the data representation.

• Detectors can be prepared with no prior knowledge of the problem
domain other than the known (normal or self) dataset.

• The algorithm can be configured to balance between detector
convergence (quality of the matches) and the space complexity
(number of detectors).

• The lack of dependence between detectors means that detector
preparation and application is inherently parallel and suited for a
distributed and parallel implementation, respectively.

7.3.7 Code Listing

Listing 7.2 provides an example of the Negative Selection Algorithm
implemented in the Ruby Programming Language. The demonstration
problem is a two-class classification problem where samples are drawn
from a two-dimensional domain, where xi ∈ [0, 1]. Those samples in
1.0 > xi > 0.5 are classified as self and the rest of the space belongs to
the non-self class. Samples are drawn from the self class and presented
to the algorithm for the preparation of pattern detectors for classifying
unobserved samples from the non-self class. The algorithm creates a set
of detectors that do not match the self data, and are then applied to a
set of randomly generated samples from the domain. The algorithm uses
a real-valued representation. The Euclidean distance function is used
during matching and a minimum distance value is specified as a user
parameter for approximate matches between patterns. The algorithm
includes the additional computationally expensive check for duplicates
in the preparation of the self dataset and the detector set.

7.3. Negative Selection Algorithm 291

1 def random_vector(minmax)

2 return Array.new(minmax.length) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

7 def euclidean_distance(c1, c2)

8 sum = 0.0

9 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

10 return Math.sqrt(sum)

11 end

12

13 def contains?(vector, space)

14 vector.each_with_index do |v,i|

15 return false if v<space[i][0] or v>space[i][1]

16 end

17 return true

18 end

19

20 def matches?(vector, dataset, min_dist)

21 dataset.each do |pattern|

22 dist = euclidean_distance(vector, pattern[:vector])

23 return true if dist <= min_dist

24 end

25 return false

26 end

27

28 def generate_detectors(max_detectors, search_space, self_dataset,

min_dist)

29 detectors = []

30 begin

31 detector = {:vector=>random_vector(search_space)}

32 if !matches?(detector[:vector], self_dataset, min_dist)

33 detectors << detector if !matches?(detector[:vector], detectors,

0.0)

34 end

35 end while detectors.size < max_detectors

36 return detectors

37 end

38

39 def generate_self_dataset(num_records, self_space, search_space)

40 self_dataset = []

41 begin

42 pattern = {}

43 pattern[:vector] = random_vector(search_space)

44 next if matches?(pattern[:vector], self_dataset, 0.0)

45 if contains?(pattern[:vector], self_space)

46 self_dataset << pattern

47 end

48 end while self_dataset.length < num_records

49 return self_dataset

50 end

51

52 def apply_detectors(detectors, bounds, self_dataset, min_dist,

trials=50)

292 Chapter 7. Immune Algorithms

53 correct = 0

54 trials.times do |i|

55 input = {:vector=>random_vector(bounds)}

56 actual = matches?(input[:vector], detectors, min_dist) ? "N" : "S"

57 expected = matches?(input[:vector], self_dataset, min_dist) ? "S" :

"N"

58 correct += 1 if actual==expected

59 puts "#{i+1}/#{trials}: predicted=#{actual}, expected=#{expected}"

60 end

61 puts "Done. Result: #{correct}/#{trials}"

62 return correct

63 end

64

65 def execute(bounds, self_space, max_detect, max_self, min_dist)

66 self_dataset = generate_self_dataset(max_self, self_space, bounds)

67 puts "Done: prepared #{self_dataset.size} self patterns."

68 detectors = generate_detectors(max_detect, bounds, self_dataset,

min_dist)

69 puts "Done: prepared #{detectors.size} detectors."

70 apply_detectors(detectors, bounds, self_dataset, min_dist)

71 return detectors

72 end

73

74 if __FILE__ == $0
75 # problem configuration

76 problem_size = 2

77 search_space = Array.new(problem_size) {[0.0, 1.0]}

78 self_space = Array.new(problem_size) {[0.5, 1.0]}

79 max_self = 150

80 # algorithm configuration

81 max_detectors = 300

82 min_dist = 0.05

83 # execute the algorithm

84 execute(search_space, self_space, max_detectors, max_self, min_dist)

85 end

Listing 7.2: Negative Selection Algorithm in Ruby

7.3.8 References

Primary Sources

The seminal negative selection algorithm was proposed by Forrest, et al.
[5] in which a population of detectors are prepared in the presence of
known information, where those randomly generated detectors that
match against known data are discarded. The population of pattern
guesses in the unknown space then monitors the corpus of known infor-
mation for changes. The algorithm was applied to the monitoring of
files for changes (corruptions and infections by computer viruses), and
later formalized as a change detection algorithm [2, 3].

7.3. Negative Selection Algorithm 293

Learn More

The Negative Selection algorithm has been applied to the monitoring
of changes in the execution behavior of Unix processes [4, 8], and to
monitor changes in remote connections of a network computer (intrusion
detection) [6, 7]. The application of the algorithm has been predomi-
nantly to virus host intrusion detection and their abstracted problems of
classification (two-class) and anomaly detection. Esponda provides some
interesting work showing some compression and privacy benefits provided
by maintaining a negative model (non-self) [1] Ji and Dasgupta provide
a contemporary and detailed review of Negative Selection Algorithms
covering topics such as data representations, matching rules, detector
generation procedures, computational complexity, hybridization, and
theoretical frameworks [9]. Recently, the validity of the application
of negative selection algorithms in high-dimensional spaces has been
questioned, specifically given the scalability of the approach in the face
of the exponential increase in volume within the problem space [10].

7.3.9 Bibliography

[1] C. F. Esponda Darlington. Negative Representations of Information.
PhD thesis, The University of New Mexico, 2005.

[2] P. D’haeseleer. An immunological approach to change detection:
theoretical results. In Proceedings of the 9th IEEE Computer
Security Foundations Workshop, pages 18–26. IEEE Computer
Society, 1996.

[3] P. D’haeseleer, S. Forrest, and P. Helman. An immunological
approach to change detection: algorithms, analysis and implications.
In Proceedings of the IEEE Symposium on Security and Privacy,
pages 110–119, 1996.

[4] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A
sense of self for unix processes. In Proceedings of the 1996 IEEE
Symposium on Security and Privacy, pages 120–128. IEEE Com-
puter Society, 1996.

[5] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-nonself
discrimination in a computer. In Proceedings of the 1992 IEEE Sym-
posium on Security and Privacy, pages 202–212. IEEE Computer
Society Press, 1994.

[6] S. Hofmeyr and S. Forrest. Immunity by design: An artificial im-
mune system. In J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic

294 Chapter 7. Immune Algorithms

and Evolutionary Computation Conference (GECCO), volume 2,
pages 1289–1296. Morgan-Kaufmann, 1999.

[7] S. A. Hofmeyr. An Immunological Model of Distributed Detection
and its Application to Computer Security. PhD thesis, Department
of Computer Sciences, University of New Mexico, 1999.

[8] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection
using sequences of system calls. Journal of Computer Security,
6(3):151–180, 1998.

[9] Z. Ji and D. Dasgupta. Revisiting negative selection algorithms.
Evolutionary Computation, 15(2):223–251, 2007.

[10] T. Stibor. On the Appropriateness of Negative Selection for
Anomaly Detection and Network Intrusion Detection. PhD thesis,
Darmstadt University of Technology, Germany, 2006.

7.4. Artificial Immune Recognition System 295

7.4 Artificial Immune Recognition System

Artificial Immune Recognition System, AIRS.

7.4.1 Taxonomy

The Artificial Immune Recognition System belongs to the field of Artifi-
cial Immune Systems, and more broadly to the field of Computational
Intelligence. It was extended early to the canonical version called the Ar-
tificial Immune Recognition System 2 (AIRS2) and provides the basis for
extensions such as the Parallel Artificial Immune Recognition System [8].
It is related to other Artificial Immune System algorithms such as the
Dendritic Cell Algorithm (Section 7.6), the Clonal Selection Algorithm
(Section 7.2), and the Negative Selection Algorithm (Section 7.3).

7.4.2 Inspiration

The Artificial Immune Recognition System is inspired by the Clonal
Selection theory of acquired immunity. The clonal selection theory
credited to Burnet was proposed to account for the behavior and ca-
pabilities of antibodies in the acquired immune system [1, 2]. Inspired
itself by the principles of Darwinian natural selection theory of evolution,
the theory proposes that antigens select-for lymphocytes (both B and
T-cells). When a lymphocyte is selected and binds to an antigenic
determinant, the cell proliferates making many thousands more copies
of itself and differentiates into different cell types (plasma and memory
cells). Plasma cells have a short lifespan and produce vast quantities of
antibody molecules, whereas memory cells live for an extended period in
the host anticipating future recognition of the same determinant. The
important feature of the theory is that when a cell is selected and pro-
liferates, it is subjected to small copying errors (changes to the genome
called somatic hypermutation) that change the shape of the expressed
receptors. It also affects the subsequent determinant recognition capa-
bilities of both the antibodies bound to the lymphocytes cells surface,
and the antibodies that plasma cells produce.

7.4.3 Metaphor

The theory suggests that starting with an initial repertoire of general
immune cells, the system is able to change itself (the compositions and
densities of cells and their receptors) in response to experience with the
environment. Through a blind process of selection and accumulated
variation on the large scale of many billions of cells, the acquired immune
system is capable of acquiring the necessary information to protect the
host organism from the specific pathogenic dangers of the environment.

296 Chapter 7. Immune Algorithms

It also suggests that the system must anticipate (guess) at the pathogen
to which it will be exposed, and requires exposure to pathogen that
may harm the host before it can acquire the necessary information to
provide a defense.

7.4.4 Strategy

The information processing objective of the technique is to prepare a
set of real-valued vectors to classify patterns. The Artificial Immune
Recognition System maintains a pool of memory cells that are prepared
by exposing the system to a single iteration of the training data. Candi-
date memory cells are prepared when the memory cells are insufficiently
stimulated for a given input pattern. A process of cloning and mutation
of cells occurs for the most stimulated memory cell. The clones compete
with each other for entry into the memory pool based on stimulation and
on the amount of resources each cell is using. This concept of resources
comes from prior work on Artificial Immune Networks, where a single
cell (an Artificial Recognition Ball or ARB) represents a set of similar
cells. Here, a cell’s resources are a function of its stimulation to a given
input pattern and the number of clones it may create.

7.4.5 Procedure

Algorithm 8.6.1 provides a high-level pseudocode for preparing memory
cell vectors using the Artificial Immune Recognition System, specifically
the canonical AIRS2. An affinity (distance) measure between input
patterns must be defined. For real-valued vectors, this is commonly the
Euclidean distance:

dist(x, c) =

n∑
i=1

(xi − ci)2 (7.1)

where n is the number of attributes, x is the input vector and c
is a given cell vector. The variation of cells during cloning (somatic
hypermutation) occurs inversely proportional to the stimulation of a
given cell to an input pattern.

7.4.6 Heuristics

• The AIRS was designed as a supervised algorithm for classification
problem domains.

• The AIRS is non-parametric, meaning that it does not rely on
assumptions about that structure of the function that is is approx-
imating.

7.4. Artificial Immune Recognition System 297

Algorithm 7.4.1: Pseudocode for AIRS2.

Input: InputPatterns, clonerate, mutaterate, stimthresh,
resourcesmax, affinitythresh

Output: Cellsmemory
Cellsmemory ← InitializeMemoryPool(InputPatterns);1

foreach InputPatterni ∈ InputPatterns do2

Stimulate(Cellsmemory, InputPatterns);3

Cellbest ← GetMostStimulated(InputPatterni,4

Cellsmemory);
if Cellclassbest 6= InputPatternclassi then5

Cellsmemory ← CreateNewMemoryCell(InputPatterni);6

else7

Clonesnum ← Cellstimbest × clonerate × mutaterate;8

Cellsclones ← Cellbest;9

for i to Clonesnum do10

Cellsclones ← CloneAndMutate(Cellbest);11

end12

while AverageStimulation(Cellsclones) ≤ stimthresh13

do
foreach Celli ∈ Cellsclones do14

Cellsclones ← CloneAndMutate(Celli);15

end16

Stimulate(Cellsclones, InputPatterns);17

ReducePoolToMaximumResources(Cellsclones,18

resourcesmax);
end19

Cellc ← GetMostStimulated(InputPatterni,20

Cellsclones);
if Cellstimc > Cellstimbest then21

Cellsmemory ← Cellc;22

if Affinity(Cellc, Cellbest) ≤ affinitythresh then23

DeleteCell(Cellbest, Cellsmemory);24

end25

end26

end27

end28

return Cellsmemory;29

• Real-values in input vectors should be normalized such that x ∈
[0, 1).

• Euclidean distance is commonly used to measure the distance
between real-valued vectors (affinity calculation), although other

298 Chapter 7. Immune Algorithms

distance measures may be used (such as dot product), and data spe-
cific distance measures may be required for non-scalar attributes.

• Cells may be initialized with small random values or more com-
monly with values from instances in the training set.

• A cell’s affinity is typically minimizing, where as a cells stimulation
is maximizing and typically ∈ [0, 1].

7.4.7 Code Listing

Listing 7.3 provides an example of the Artificial Immune Recognition Sys-
tem implemented in the Ruby Programming Language. The problem is a
contrived classification problem in a 2-dimensional domain x ∈ [0, 1], y ∈
[0, 1] with two classes: ‘A’ (x ∈ [0, 0.4999999], y ∈ [0, 0.4999999]) and ‘B’
(x ∈ [0.5, 1], y ∈ [0.5, 1]).

The algorithm is an implementation of the AIRS2 algorithm [7]. An
initial pool of memory cells is created, one cell for each class. Euclidean
distance divided by the maximum possible distance in the domain is
taken as the affinity and stimulation is taken as 1.0 − affinity. The
meta-dynamics for memory cells (competition for input patterns) is not
performed and may be added into the implementation as an extension.

1 def random_vector(minmax)

2 return Array.new(minmax.size) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

7 def generate_random_pattern(domain)

8 class_label = domain.keys[rand(domain.keys.size)]

9 pattern = {:label=>class_label}

10 pattern[:vector] = random_vector(domain[class_label])

11 return pattern

12 end

13

14 def create_cell(vector, class_label)

15 return {:label=>class_label, :vector=>vector}

16 end

17

18 def initialize_cells(domain)

19 mem_cells = []

20 domain.keys.each do |key|

21 mem_cells << create_cell(random_vector([[0,1],[0,1]]), key)

22 end

23 return mem_cells

24 end

25

26 def distance(c1, c2)

27 sum = 0.0

28 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

29 return Math.sqrt(sum)

7.4. Artificial Immune Recognition System 299

30 end

31

32 def stimulate(cells, pattern)

33 max_dist = distance([0.0,0.0], [1.0,1.0])

34 cells.each do |cell|

35 cell[:affinity] = distance(cell[:vector], pattern[:vector]) /

max_dist

36 cell[:stimulation] = 1.0 - cell[:affinity]

37 end

38 end

39

40 def get_most_stimulated_cell(mem_cells, pattern)

41 stimulate(mem_cells, pattern)

42 return mem_cells.sort{|x,y| y[:stimulation] <=> x[:stimulation]}.first

43 end

44

45 def mutate_cell(cell, best_match)

46 range = 1.0 - best_match[:stimulation]

47 cell[:vector].each_with_index do |v,i|

48 min = [(v-(range/2.0)), 0.0].max

49 max = [(v+(range/2.0)), 1.0].min

50 cell[:vector][i] = min + (rand() * (max-min))

51 end

52 return cell

53 end

54

55 def create_arb_pool(pattern, best_match, clone_rate, mutate_rate)

56 pool = []

57 pool << create_cell(best_match[:vector], best_match[:label])

58 num_clones = (best_match[:stimulation] * clone_rate *

mutate_rate).round

59 num_clones.times do

60 cell = create_cell(best_match[:vector], best_match[:label])

61 pool << mutate_cell(cell, best_match)

62 end

63 return pool

64 end

65

66 def competition_for_resournces(pool, clone_rate, max_res)

67 pool.each {|cell| cell[:resources] = cell[:stimulation] * clone_rate}

68 pool.sort!{|x,y| x[:resources] <=> y[:resources]}

69 total_resources = pool.inject(0.0){|sum,cell| sum + cell[:resources]}

70 while total_resources > max_res

71 cell = pool.delete_at(pool.size-1)

72 total_resources -= cell[:resources]

73 end

74 end

75

76 def refine_arb_pool(pool, pattern, stim_thresh, clone_rate, max_res)

77 mean_stim, candidate = 0.0, nil

78 begin

79 stimulate(pool, pattern)

80 candidate = pool.sort{|x,y| y[:stimulation] <=>

x[:stimulation]}.first

81 mean_stim = pool.inject(0.0){|s,c| s + c[:stimulation]} / pool.size

82 if mean_stim < stim_thresh

300 Chapter 7. Immune Algorithms

83 candidate = competition_for_resournces(pool, clone_rate, max_res)

84 pool.size.times do |i|

85 cell = create_cell(pool[i][:vector], pool[i][:label])

86 mutate_cell(cell, pool[i])

87 pool << cell

88 end

89 end

90 end until mean_stim >= stim_thresh

91 return candidate

92 end

93

94 def add_candidate_to_memory_pool(candidate, best_match, mem_cells)

95 if candidate[:stimulation] > best_match[:stimulation]

96 mem_cells << candidate

97 end

98 end

99

100 def classify_pattern(mem_cells, pattern)

101 stimulate(mem_cells, pattern)

102 return mem_cells.sort{|x,y| y[:stimulation] <=> x[:stimulation]}.first

103 end

104

105 def train_system(mem_cells, domain, num_patterns, clone_rate,

mutate_rate, stim_thresh, max_res)

106 num_patterns.times do |i|

107 pattern = generate_random_pattern(domain)

108 best_match = get_most_stimulated_cell(mem_cells, pattern)

109 if best_match[:label] != pattern[:label]

110 mem_cells << create_cell(pattern[:vector], pattern[:label])

111 elsif best_match[:stimulation] < 1.0

112 pool = create_arb_pool(pattern, best_match, clone_rate,

mutate_rate)

113 cand = refine_arb_pool(pool,pattern, stim_thresh, clone_rate,

max_res)

114 add_candidate_to_memory_pool(cand, best_match, mem_cells)

115 end

116 puts " > iter=#{i+1}, mem_cells=#{mem_cells.size}"

117 end

118 end

119

120 def test_system(mem_cells, domain, num_trials=50)

121 correct = 0

122 num_trials.times do

123 pattern = generate_random_pattern(domain)

124 best = classify_pattern(mem_cells, pattern)

125 correct += 1 if best[:label] == pattern[:label]

126 end

127 puts "Finished test with a score of #{correct}/#{num_trials}"

128 return correct

129 end

130

131 def execute(domain, num_patterns, clone_rate, mutate_rate, stim_thresh,

max_res)

132 mem_cells = initialize_cells(domain)

133 train_system(mem_cells, domain, num_patterns, clone_rate,

mutate_rate, stim_thresh, max_res)

7.4. Artificial Immune Recognition System 301

134 test_system(mem_cells, domain)

135 return mem_cells

136 end

137

138 if __FILE__ == $0
139 # problem configuration

140 domain = {"A"=>[[0,0.4999999],[0,0.4999999]],"B"=>[[0.5,1],[0.5,1]]}

141 num_patterns = 50

142 # algorithm configuration

143 clone_rate = 10

144 mutate_rate = 2.0

145 stim_thresh = 0.9

146 max_res = 150

147 # execute the algorithm

148 execute(domain, num_patterns, clone_rate, mutate_rate, stim_thresh,

max_res)

149 end

Listing 7.3: AIRS in Ruby

7.4.8 References

Primary Sources

The Artificial Immune Recognition System was proposed in the Masters
work by Watkins [10], and later published [11]. Early works included the
application of the AIRS by Watkins and Boggess to a suite of benchmark
classification problems [6], and a similar study by Goodman and Boggess
comparing to a conceptually similar approach called Learning Vector
Quantization [3].

Learn More

Marwah and Boggess investigated the algorithm seeking issues that
affect the algorithms performance [5]. They compared various variations
of the algorithm with modified resource allocation schemes, tie-handling
within the ARB pool, and ARB pool organization. Watkins and Timmis
proposed a new version of the algorithm called AIRS2 which became
the replacement for AIRS1 [7]. The updates reduced the complexity
of the approach while maintaining the accuracy of the results. An
investigation by Goodman et al. into the so called ‘source of power ’ in
AIRS indicated that perhaps the memory cell maintenance procedures
played an important role [4]. Watkins et al. provide a detailed review of
the technique and its application [9].

302 Chapter 7. Immune Algorithms

7.4.9 Bibliography

[1] F. M. Burnet. A modification of jerne’s theory of antibody produc-
tion using the concept of clonal selection. Australian Journal of
Science, 20:67–69, 1957.

[2] F. M. Burnet. The clonal selection theory of acquired immunity.
Vanderbilt University Press, 1959.

[3] D. E. Goodman Jr., L. Boggess, and A. Watkins. Artificial immune
system classification of multiple-class problems. In A. Buczak,
J. Ghosh, M. Embrechts, O. Ersoy, and S Kercel, editors, Fuzzy
Logic, Evolutionary Programming, Complex Systems and Artificial
Life, volume 12, pages 179–184, New York, 2002. ASME Press.

[4] D. E. Goodman Jr., L. Boggess, and A. Watkins. An investigation
into the source of power for AIRS, an artificial immune classification
systems. In Proceedings of the International Joint Conference on
Neural Networks (IJCNN’03), pages 1678–1683, Portland, Oregon,
USA, 2003.

[5] G. Marwah and L. Boggess. Artificial immune systems for classifi-
cation: Some issues. In First International Conference on Artificial
Immune Systems, pages 149–153, 2002.

[6] A. Watkins and L. Boggess. A new classifier based on resource
limited artificial immune systems. In Part of the 2002 IEEE World
Congress on Computational Intelligence, pages 1546–1551. IEEE,
May 2002.

[7] A. Watkins and J. Timmis. Artificial immune recognition system
(AIRS): Revisions and refinements. In P.J. Bentley, editor, 1st Inter-
national Conference on Artificial Immune Systems (ICARIS2002),
pages 173–181. University of Kent at Canterbury Printing Unit,
UK, 2002.

[8] A. Watkins and J. Timmis. Exploiting parallelism inherent in
AIRS, an artificial immune classifier. In V. Cutello, P. Bentley, and
J. Timmis, editors, Lecture Notes in Computer Science (LNCS),
volume 3239, pages 427–438. Springer-Verlag GmbH, 2004.

[9] A. Watkins, J. Timmis, and L. Boggess. Artificial immune recog-
nition system (AIRS): An immune-inspired supervised learning
algorithms. Genetic Programming and Evolvable Machines, 5(3):291–
317, September 2004.

[10] A. B. Watkins. AIRS: A resource limited artificial immune classifiers.
Master’s thesis, Mississippi State University, USA, 2001.

7.4. Artificial Immune Recognition System 303

[11] A. B. Watkins and L. C. Boggess. A resource limited artificial
immune classifier. In Part of the 2002 IEEE World Congress on
Computational Intelligence held in Honolulu, pages 926–931, USA,
May 2002. IEEE Computer Society.

304 Chapter 7. Immune Algorithms

7.5 Immune Network Algorithm

Artificial Immune Network, aiNet, Optimization Artificial Immune Net-
work, opt-aiNet.

7.5.1 Taxonomy

The Artificial Immune Network algorithm (aiNet) is a Immune Network
Algorithm from the field of Artificial Immune Systems. It is related to
other Artificial Immune System algorithms such as the Clonal Selection
Algorithm (Section 7.2), the Negative Selection Algorithm (Section 7.3),
and the Dendritic Cell Algorithm (Section 7.6). The Artificial Immune
Network algorithm includes the base version and the extension for opti-
mization problems called the Optimization Artificial Immune Network
algorithm (opt-aiNet).

7.5.2 Inspiration

The Artificial Immune Network algorithm is inspired by the Immune
Network theory of the acquired immune system. The clonal selection
theory of acquired immunity accounts for the adaptive behavior of the
immune system including the ongoing selection and proliferation of cells
that select-for potentially harmful (and typically foreign) material in
the body. A concern of the clonal selection theory is that it presumes
that the repertoire of reactive cells remains idle when there are no
pathogen to which to respond. Jerne proposed an Immune Network
Theory (Idiotypic Networks) where immune cells are not at rest in the
absence of pathogen, instead antibody and immune cells recognize and
respond to each other [6–8].

The Immune Network theory proposes that antibody (both free
floating and surface bound) possess idiotopes (surface features) to which
the receptors of other antibody can bind. As a result of receptor interac-
tions, the repertoire becomes dynamic, where receptors continually both
inhibit and excite each other in complex regulatory networks (chains
of receptors). The theory suggests that the clonal selection process
may be triggered by the idiotopes of other immune cells and molecules
in addition to the surface characteristics of pathogen, and that the
maturation process applies both to the receptors themselves and the
idiotopes which they expose.

7.5.3 Metaphor

The immune network theory has interesting resource maintenance and
signaling information processing properties. The classical clonal selection
and negative selection paradigms integrate the accumulative and filtered

7.5. Immune Network Algorithm 305

learning of the acquired immune system, whereas the immune network
theory proposes an additional order of complexity between the cells and
molecules under selection. In addition to cells that interact directly
with pathogen, there are cells that interact with those reactive cells
and with pathogen indirectly, in successive layers such that networks of
activity for higher-order structures such as internal images of pathogen
(promotion), and regulatory networks (so-called anti-idiotopes and anti-
anti-idiotopes).

7.5.4 Strategy

The objective of the immune network process is to prepare a repertoire
of discrete pattern detectors for a given problem domain, where better
performing cells suppress low-affinity (similar) cells in the network. This
principle is achieved through an interactive process of exposing the
population to external information to which it responds with both a
clonal selection response and internal meta-dynamics of intra-population
responses that stabilizes the responses of the population to the external
stimuli.

7.5.5 Procedure

Algorithm 7.5.1 provides a pseudocode listing of the Optimization Ar-
tificial Immune Network algorithm (opt-aiNet) for minimizing a cost
function.

7.5.6 Heuristics

• aiNet is designed for unsupervised clustering, where as the opt-
aiNet extension was designed for pattern recognition and optimiza-
tion, specifically multi-modal function optimization.

• The amount of mutation of clones is proportionate to the affinity
of the parent cell with the cost function (better fitness, lower
mutation).

• The addition of random cells each iteration adds a random-restart
like capability to the algorithms.

• Suppression based on cell similarity provides a mechanism for
reducing redundancy.

• The population size is dynamic, and if it continues to grow it may
be an indication of a problem with many local optima or that the
affinity threshold may needs to be increased.

306 Chapter 7. Immune Algorithms

Algorithm 7.5.1: Pseudocode for opt-aiNet.

Input: Populationsize, ProblemSize, Nclones, Nrandom,
AffinityThreshold

Output: Sbest
Population ← InitializePopulation(Populationsize,1

ProblemSize);
while ¬StopCondition() do2

EvaluatePopulation(Population);3

Sbest ← GetBestSolution(Population);4

Progeny ← ∅;5

Costavg ← CalculateAveragePopulationCost(Population);6

while CalculateAveragePopulationCost(Population) >7

Costavg do
foreach Celli ∈ Population do8

Clones ← CreateClones(Celli, Nclones);9

foreach Clonei ∈ Clones do10

Clonei ←11

MutateRelativeToFitnessOfParent(Clonei,
Celli);

end12

EvaluatePopulation(Clones);13

Progeny ← GetBestSolution(Clones);14

end15

end16

SupressLowAffinityCells(Progeny, AffinityThreshold);17

Progeny ← CreateRandomCells(Nrandom);18

Population ← Progeny;19

end20

return Sbest;21

• Affinity proportionate mutation is performed using c′ = c+ α×
N(1, 0) where α = 1

β × exp(−f), N is a Guassian random number,
and f is the fitness of the parent cell, β controls the decay of the
function and can be set to 100.

• The affinity threshold is problem and representation specific, for
example a AffinityThreshold may be set to an arbitrary value
such as 0.1 on a continuous function domain, or calculated as a
percentage of the size of the problem space.

• The number of random cells inserted may be 40% of the population
size.

• The number of clones created for a cell may be small, such as 10.

7.5. Immune Network Algorithm 307

7.5.7 Code Listing

Listing 7.4 provides an example of the Optimization Artificial Im-
mune Network (opt-aiNet) implemented in the Ruby Programming
Language. The demonstration problem is an instance of a continu-
ous function optimization that seeks min f(x) where f =

∑n
i=1 x

2
i ,

−5.0 ≤ xi ≤ 5.0 and n = 2. The optimal solution for this basin function
is (v0, . . . , vn−1) = 0.0. The algorithm is an implementation based on
the specification by de Castro and Von Zuben [1].

1 def objective_function(vector)

2 return vector.inject(0.0) {|sum, x| sum + (x**2.0)}

3 end

4

5 def random_vector(minmax)

6 return Array.new(minmax.size) do |i|

7 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

8 end

9 end

10

11 def random_gaussian(mean=0.0, stdev=1.0)

12 u1 = u2 = w = 0

13 begin

14 u1 = 2 * rand() - 1

15 u2 = 2 * rand() - 1

16 w = u1 * u1 + u2 * u2

17 end while w >= 1

18 w = Math.sqrt((-2.0 * Math.log(w)) / w)

19 return mean + (u2 * w) * stdev

20 end

21

22 def clone(parent)

23 v = Array.new(parent[:vector].size) {|i| parent[:vector][i]}

24 return {:vector=>v}

25 end

26

27 def mutation_rate(beta, normalized_cost)

28 return (1.0/beta) * Math.exp(-normalized_cost)

29 end

30

31 def mutate(beta, child, normalized_cost)

32 child[:vector].each_with_index do |v, i|

33 alpha = mutation_rate(beta, normalized_cost)

34 child[:vector][i] = v + alpha * random_gaussian()

35 end

36 end

37

38 def clone_cell(beta, num_clones, parent)

39 clones = Array.new(num_clones) {clone(parent)}

40 clones.each {|clone| mutate(beta, clone, parent[:norm_cost])}

41 clones.each{|c| c[:cost] = objective_function(c[:vector])}

42 clones.sort!{|x,y| x[:cost] <=> y[:cost]}

43 return clones.first

44 end

45

308 Chapter 7. Immune Algorithms

46 def calculate_normalized_cost(pop)

47 pop.sort!{|x,y| x[:cost]<=>y[:cost]}

48 range = pop.last[:cost] - pop.first[:cost]

49 if range == 0.0

50 pop.each {|p| p[:norm_cost] = 1.0}

51 else

52 pop.each {|p| p[:norm_cost] = 1.0-(p[:cost]/range)}

53 end

54 end

55

56 def average_cost(pop)

57 sum = pop.inject(0.0){|sum,x| sum + x[:cost]}

58 return sum / pop.size.to_f

59 end

60

61 def distance(c1, c2)

62 sum = 0.0

63 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

64 return Math.sqrt(sum)

65 end

66

67 def get_neighborhood(cell, pop, aff_thresh)

68 neighbors = []

69 pop.each do |p|

70 neighbors << p if distance(p[:vector], cell[:vector]) < aff_thresh

71 end

72 return neighbors

73 end

74

75 def affinity_supress(population, aff_thresh)

76 pop = []

77 population.each do |cell|

78 neighbors = get_neighborhood(cell, population, aff_thresh)

79 neighbors.sort!{|x,y| x[:cost] <=> y[:cost]}

80 pop << cell if neighbors.empty? or cell.equal?(neighbors.first)

81 end

82 return pop

83 end

84

85 def search(search_space, max_gens, pop_size, num_clones, beta,

num_rand, aff_thresh)

86 pop = Array.new(pop_size) {|i| {:vector=>random_vector(search_space)}

}

87 pop.each{|c| c[:cost] = objective_function(c[:vector])}

88 best = nil

89 max_gens.times do |gen|

90 pop.each{|c| c[:cost] = objective_function(c[:vector])}

91 calculate_normalized_cost(pop)

92 pop.sort!{|x,y| x[:cost] <=> y[:cost]}

93 best = pop.first if best.nil? or pop.first[:cost] < best[:cost]

94 avgCost, progeny = average_cost(pop), nil

95 begin

96 progeny=Array.new(pop.size){|i| clone_cell(beta, num_clones,

pop[i])}

97 end until average_cost(progeny) < avgCost

98 pop = affinity_supress(progeny, aff_thresh)

7.5. Immune Network Algorithm 309

99 num_rand.times {pop << {:vector=>random_vector(search_space)}}

100 puts " > gen #{gen+1}, popSize=#{pop.size}, fitness=#{best[:cost]}"

101 end

102 return best

103 end

104

105 if __FILE__ == $0
106 # problem configuration

107 problem_size = 2

108 search_space = Array.new(problem_size) {|i| [-5, +5]}

109 # algorithm configuration

110 max_gens = 150

111 pop_size = 20

112 num_clones = 10

113 beta = 100

114 num_rand = 2

115 aff_thresh = (search_space[0][1]-search_space[0][0])*0.05

116 # execute the algorithm

117 best = search(search_space, max_gens, pop_size, num_clones, beta,

num_rand, aff_thresh)

118 puts "done! Solution: f=#{best[:cost]}, s=#{best[:vector].inspect}"

119 end

Listing 7.4: Optimization Artificial Immune Network in Ruby

7.5.8 References

Primary Sources

Early works, such as Farmer et al. [5] suggested at the exploitation of the
information processing properties of network theory for machine learning.
A seminal network theory based algorithm was proposed by Timmis et al.
for clustering problems called the Artificial Immune Network (AIN) [11]
that was later extended and renamed the Resource Limited Artificial
Immune System [12] and Artificial Immune Network (AINE) [9]. The
Artificial Immune Network (aiNet) algorithm was proposed by de Castro
and Von Zuben that extended the principles of the Artificial Immune
Network (AIN) and the Clonal Selection Algorithm (CLONALG) and
was applied to clustering [2]. The aiNet algorithm was further extended
to optimization domains and renamed opt-aiNet [1].

Learn More

The authors de Castro and Von Zuben provide a detailed presentation
of the aiNet algorithm as a book chapter that includes immunological
theory, a description of the algorithm, and demonstration application to
clustering problem instances [3]. Timmis and Edmonds provide a careful
examination of the opt-aiNet algorithm and propose some modifications
and augmentations to improve its applicability and performance for
multimodal function optimization problem domains [10]. The authors

310 Chapter 7. Immune Algorithms

de Franca, Von Zuben, and de Castro proposed an extension to opt-aiNet
that provided a number of enhancements and adapted its capability for
for dynamic function optimization problems called dopt-aiNet [4].

7.5.9 Bibliography

[1] L. N. de Castro and J. Timmis. An artificial immune network
for multimodal function optimization. In Proceedings of the 2002
Congress on Evolutionary Computation (CEC’02), pages 699–704.
IEEE Computer Society, 2002.

[2] L. N. de Castro and F. J. Von Zuben. An evolutionary immune net-
work for data clustering. In Proceedings Sixth Brazilian Symposium
on Neural Networks, pages 84–89. IEEE Computer Society, 2000.

[3] L. N. de Castro and F. J. Von Zuben. Data Mining: A Heuristic
Approach, chapter Chapter XII: aiNet: An Artificial Immune Net-
work for Data Analysis, pages 231–259. Idea Group Publishing,
2001.

[4] F. O. de França, L. N. de Castro, and F. J. Von Zuben. An
artificial immune network for multimodal function optimization on
dynamic environments. In Genetic And Evolutionary Computation
Conference, pages 289–296. ACM Press, 2005.

[5] J. D. Farmer, N. H. Packard, and Alan S. Perelson. The immune
system, adaptation, and machine learning. Physica D, 22:187–204,
1986.

[6] N. K. Jerne. Clonal selection in a lymphocyte network. In Cellu-
lar Selection and Regulation in the Immune Response, Society of
General Physiologists Series, pages 39–48. Raven Press, 1974.

[7] N. K. Jerne. Towards a network theory of the immune system.
Annales d’immunologie (Annals of Immunology), Institut Pasteur
(Paris, France), Societe Francaise d’Immunologie, 125(C):373–389,
1974.

[8] N. K. Jerne. Idiotypic networks and other preconceived ideas.
Immunological Reviews, 79:5–24, 1984.

[9] T. Knight and J. Timmis. AINE: An immunological approach
to data mining. In T. Lin and Xindon Wu, editors, First IEEE
International Conference on Data Mining (ICDM’01), pages 297–
304. IEEE Computer Society, 2001.

[10] J. Timmis and C. Edmonds. A comment on opt–AINet: An immune
network algorithm for optimisation. In Lecture Notes in Computer
Science, volume 1, pages 308–317. Springer, 2004.

7.5. Immune Network Algorithm 311

[11] J. Timmis, M. Neal, and J. Hunt. An artificial immune system for
data analysis. Biosystems, 55(1):143–150, 2000.

[12] J. Timmis and M. J. Neal. A resource limited artificial immune
system for data analysis. Knowledge Based Systems Journal: Special
Issue, 14(3-4):121–130, 2001.

312 Chapter 7. Immune Algorithms

7.6 Dendritic Cell Algorithm

Dendritic Cell Algorithm, DCA.

7.6.1 Taxonomy

The Dendritic Cell Algorithm belongs to the field of Artificial Immune
Systems, and more broadly to the field of Computational Intelligence.
The Dendritic Cell Algorithm is the basis for extensions such as the
Deterministic Dendritic Cell Algorithm (dDCA) [2]. It is generally
related to other Artificial Immune System algorithms such as the Clonal
Selection Algorithm (Section 7.2), and the Immune Network Algorithm
(Section 7.5).

7.6.2 Inspiration

The Dendritic Cell Algorithm is inspired by the Danger Theory of the
mammalian immune system, and specifically the role and function of
dendritic cells. The Danger Theory was proposed by Matzinger and
suggests that the roles of the acquired immune system is to respond to
signals of danger, rather than discriminating self from non-self [7, 8].
The theory suggests that antigen presenting cells (such as helper T-
cells) activate an alarm signal providing the necessarily co-stimulation
of antigen-specific cells to respond. Dendritic cells are a type of cell
from the innate immune system that respond to some specific forms of
danger signals. There are three main types of dendritic cells: ‘immature’
that collect parts of the antigen and the signals, ‘semi-mature’ that are
immature cells that internally decide that the local signals represent safe
and present the antigen to T-cells resulting in tolerance, and ‘mature’
cells that internally decide that the local signals represent danger and
present the antigen to T-cells resulting in a reactive response.

7.6.3 Strategy

The information processing objective of the algorithm is to prepare a
set of mature dendritic cells (prototypes) that provide context specific
information about how to classify normal and anomalous input patterns.
This is achieved as a system of three asynchronous processes of 1)
migrating sufficiently stimulated immature cells, 2) promoting migrated
cells to semi-mature (safe) or mature (danger) status depending on
their accumulated response, and 3) labeling observed patterns as safe or
dangerous based on the composition of the sub-population of cells that
respond to each pattern.

7.6. Dendritic Cell Algorithm 313

7.6.4 Procedure

Algorithm 7.6.1 provides pseudocode for training a pool of cells in
the Dendritic Cell Algorithm, specifically the Deterministic Dendritic
Cell Algorithm. Mature migrated cells associate their collected input
patterns with anomalies, whereas semi-mature migrated cells associate
their collected input patterns as normal. The resulting migrated cells
can then be used to classify input patterns as normal or anomalous. This
can be done through sampling the cells and using a voting mechanism,
or more elaborate methods such as a ‘mature context antigen value’
(MCAV) that uses M

Ag (where M is the number of mature cells with
the antigen and Ag is the sum of the exposures to the antigen by those
mature cells), which gives a probability of a pattern being an anomaly.

7.6.5 Heuristics

• The Dendritic Cell Algorithm is not specifically a classification
algorithm, it may be considered a data filtering method for use in
anomaly detection problems.

• The canonical algorithm is designed to operate on a single discrete,
categorical or ordinal input and two probabilistic specific signals
indicating the heuristic danger or safety of the input.

• The danger and safe signals are problem specific signals of the
risk that the input pattern is an anomaly or is normal, both
typically ∈ [0, 100].

• The danger and safe signals do not have to be reciprocal, meaning
they may provide conflicting information.

• The system was designed to be used in real-time anomaly detection
problems, not just static problem.

• Each cells migration threshold is set separately, typically ∈ [5, 15]

7.6.6 Code Listing

Listing 7.5 provides an example of the Dendritic Cell Algorithm im-
plemented in the Ruby Programming Language, specifically the Deter-
ministic Dendritic Cell Algorithm (dDCA). The problem is a contrived
anomaly-detection problem with ordinal inputs x ∈ [0, 50) , where
values that divide by 10 with no remainder are considered anomalies.
Probabilistic safe and danger signal functions are provided, suggest-
ing danger signals correctly with P (danger) = 0.70, and safe signals
correctly with P (safe) = 0.95.

314 Chapter 7. Immune Algorithms

Algorithm 7.6.1: Pseudocode for the Dendritic Cell Algorithm.

Input: InputPatterns, iterationsmax, cellsnum,
MigrationThreshbounds

Output: MigratedCells
ImmatureCells ← InitializeCells(cellsnum,1

MigrationThreshbounds);
MigratedCells ← ∅;2

for i = 1 to iterationsmax do3

Pi ← SelectInputPattern(InputPatterns);4

ki ← (Pidanger − 2 × Pisafe);5

cmsi ← (Pidanger + Pisafe);6

foreach Celli ∈ ImmatureCells do7

UpdateCellOutputSignals(Celli, ki, cmsi);8

StoreAntigen(Celli, Piantigen);9

if Cellilifespan ≤ 0 then10

ReInitializeCell(Celli);11

else if Cellicsm ≥ Cellithresh then12

RemoveCell(ImmatureCells, Celli);13

ImmatureCells ←14

CreateNewCell(MigrationThreshbounds);
if Cellik < 0 then15

Cellitype ← Mature;16

else17

Cellitype ← Semimature;18

end19

MigratedCells ← Celli;20

end21

end22

end23

return MigratedCells;24

The algorithm is an implementation of the Deterministic Dendritic
Cell Algorithm (dDCA) as described in [2, 9], with verification from [5].
The algorithm was designed to be executed as three asynchronous pro-
cesses in a real-time or semi-real time environment. For demonstration
purposes, the implementation separated out the three main processes
and executed the sequentially as a training and cell promotion phase
followed by a test (labeling phase).

1 def rand_in_bounds(min, max)

2 return min + ((max-min) * rand())

3 end

4

5 def random_vector(search_space)

7.6. Dendritic Cell Algorithm 315

6 return Array.new(search_space.size) do |i|

7 rand_in_bounds(search_space[i][0], search_space[i][1])

8 end

9 end

10

11 def construct_pattern(class_label, domain, p_safe, p_danger)

12 set = domain[class_label]

13 selection = rand(set.size)

14 pattern = {}

15 pattern[:class_label] = class_label

16 pattern[:input] = set[selection]

17 pattern[:safe] = (rand() * p_safe * 100)

18 pattern[:danger] = (rand() * p_danger * 100)

19 return pattern

20 end

21

22 def generate_pattern(domain, p_anomaly, p_normal, prob_create_anom=0.5)

23 pattern = nil

24 if rand() < prob_create_anom

25 pattern = construct_pattern("Anomaly", domain, 1.0-p_normal,

p_anomaly)

26 puts ">Generated Anomaly [#{pattern[:input]}]"

27 else

28 pattern = construct_pattern("Normal", domain, p_normal,

1.0-p_anomaly)

29 end

30 return pattern

31 end

32

33 def initialize_cell(thresh, cell={})

34 cell[:lifespan] = 1000.0

35 cell[:k] = 0.0

36 cell[:cms] = 0.0

37 cell[:migration_threshold] = rand_in_bounds(thresh[0], thresh[1])

38 cell[:antigen] = {}

39 return cell

40 end

41

42 def store_antigen(cell, input)

43 if cell[:antigen][input].nil?

44 cell[:antigen][input] = 1

45 else

46 cell[:antigen][input] += 1

47 end

48 end

49

50 def expose_cell(cell, cms, k, pattern, threshold)

51 cell[:cms] += cms

52 cell[:k] += k

53 cell[:lifespan] -= cms

54 store_antigen(cell, pattern[:input])

55 initialize_cell(threshold, cell) if cell[:lifespan] <= 0

56 end

57

58 def can_cell_migrate?(cell)

59 return (cell[:cms]>=cell[:migration_threshold] and

316 Chapter 7. Immune Algorithms

!cell[:antigen].empty?)

60 end

61

62 def expose_all_cells(cells, pattern, threshold)

63 migrate = []

64 cms = (pattern[:safe] + pattern[:danger])

65 k = pattern[:danger] - (pattern[:safe] * 2.0)

66 cells.each do |cell|

67 expose_cell(cell, cms, k, pattern, threshold)

68 if can_cell_migrate?(cell)

69 migrate << cell

70 cell[:class_label] = (cell[:k]>0) ? "Anomaly" : "Normal"

71 end

72 end

73 return migrate

74 end

75

76 def train_system(domain, max_iter, num_cells, p_anomaly, p_normal,

thresh)

77 immature_cells = Array.new(num_cells){ initialize_cell(thresh) }

78 migrated = []

79 max_iter.times do |iter|

80 pattern = generate_pattern(domain, p_anomaly, p_normal)

81 migrants = expose_all_cells(immature_cells, pattern, thresh)

82 migrants.each do |cell|

83 immature_cells.delete(cell)

84 immature_cells << initialize_cell(thresh)

85 migrated << cell

86 end

87 puts "> iter=#{iter} new=#{migrants.size},

migrated=#{migrated.size}"

88 end

89 return migrated

90 end

91

92 def classify_pattern(migrated, pattern)

93 input = pattern[:input]

94 num_cells, num_antigen = 0, 0

95 migrated.each do |cell|

96 if cell[:class_label] == "Anomaly" and !cell[:antigen][input].nil?

97 num_cells += 1

98 num_antigen += cell[:antigen][input]

99 end

100 end

101 mcav = num_cells.to_f / num_antigen.to_f

102 return (mcav>0.5) ? "Anomaly" : "Normal"

103 end

104

105 def test_system(migrated, domain, p_anomaly, p_normal, num_trial=100)

106 correct_norm = 0

107 num_trial.times do

108 pattern = construct_pattern("Normal", domain, p_normal,

1.0-p_anomaly)

109 class_label = classify_pattern(migrated, pattern)

110 correct_norm += 1 if class_label == "Normal"

111 end

7.6. Dendritic Cell Algorithm 317

112 puts "Finished testing Normal inputs #{correct_norm}/#{num_trial}"

113 correct_anom = 0

114 num_trial.times do

115 pattern = construct_pattern("Anomaly", domain, 1.0-p_normal,

p_anomaly)

116 class_label = classify_pattern(migrated, pattern)

117 correct_anom += 1 if class_label == "Anomaly"

118 end

119 puts "Finished testing Anomaly inputs #{correct_anom}/#{num_trial}"

120 return [correct_norm, correct_anom]

121 end

122

123 def execute(domain, max_iter, num_cells, p_anom, p_norm, thresh)

124 migrated=train_system(domain, max_iter, num_cells, p_anom, p_norm,

thresh)

125 test_system(migrated, domain, p_anom, p_norm)

126 return migrated

127 end

128

129 if __FILE__ == $0
130 # problem configuration

131 domain = {}

132 domain["Normal"] = Array.new(50){|i| i}

133 domain["Anomaly"] = Array.new(5){|i| (i+1)*10}

134 domain["Normal"] = domain["Normal"] - domain["Anomaly"]

135 p_anomaly = 0.70

136 p_normal = 0.95

137 # algorithm configuration

138 iterations = 100

139 num_cells = 10

140 thresh = [5,15]

141 # execute the algorithm

142 execute(domain, iterations, num_cells, p_anomaly, p_normal, thresh)

143 end

Listing 7.5: Deterministic Dendritic Cell Algorithm in Ruby

7.6.7 References

Primary Sources

The Dendritic Cell Algorithm was proposed by Greensmith, Aickelin
and Cayzer describing the inspiring biological system and providing
experimental results on a classification problem [4]. This work was
followed shortly by a second study into the algorithm by Greensmith,
Twycross, and Aickelin, focusing on computer security instances of
anomaly detection and classification problems [6].

Learn More

The Dendritic Cell Algorithm was the focus of Greensmith’s thesis,
which provides a detailed discussion of the methods abstraction from the

318 Chapter 7. Immune Algorithms

inspiring biological system, and a review of the technique’s limitations
[1]. A formal presentation of the algorithm is provided by Greensmith et
al. [5]. Greensmith and Aickelin proposed the Deterministic Dendritic
Cell Algorithm (dDCA) that seeks to remove some of the stochastic
decisions from the method, and reduce the complexity and to make
it more amenable to analysis [2]. Stibor et al. provide a theoretical
analysis of the Deterministic Dendritic Cell Algorithm, considering
the discrimination boundaries of single dendrite cells in the system [9].
Greensmith and Aickelin provide a detailed overview of the Dendritic
Cell Algorithm focusing on the information processing principles of the
inspiring biological systems as a book chapter [3].

7.6.8 Bibliography

[1] J. Greensmith. The Dendritic Cell Algorithm. PhD thesis, University
of Nottingham, 2007.

[2] J. Greensmith and U. Aickelin. The deterministic dendritic cell
algorithm. In Proceedings of the 7th International Conference on
Artificial Immune Systems (ICARIS 2007), pages 291–302, 2008.

[3] J. Greensmith and U. Aickelin. Human-Centric Information Pro-
cessing Through Granular Modelling, chapter Artificial Dendritic
Cells: Multi-faceted Perspectives, pages 375–395. Springer, 2009.

[4] J. Greensmith, U. Aickelin, and S. Cayzer. Introducing dendritic
cells as a novel immune-inspired algorithm for anomaly detection.
In Proceedings of the Fourth International Conference on Artificial
Immune Systems (ICARIS 2005), pages 153–167, 2005.

[5] J. Greensmith, U. Aickelin, and J. Twycross. Articulation and clarifi-
cation of the dendritic cell algorithm. In Proceedings of the 5th Inter-
national Conference on Artificial Immune Systems (ICARIS 2006),
pages 404–417, 2006.

[6] J. Greensmith, J. Twycross, and U. Aickelin. Dendritic cells for
anomaly detection. In Proceedings of the IEEE Congress on Evolu-
tionary Computation (CEC2006), pages 664–671, 2006.

[7] P. Matzinger. Tolerance, danger, and the extended family. Annual
Review of Immunology, 12:991–1045, 1994.

[8] P. Matzinger. The danger model: A renewed sense of self. Science,
296(5566):301–305, 2002.

[9] T. Stibor, R. Oates, G. Kendall, and J. M. Garibaldi. Geometrical
insights into the dendritic cell algorithms. In Proceedings of the 11th
Annual conference on Genetic and evolutionary computation, 2009.

Chapter 8

Neural Algorithms

8.1 Overview

This chapter describes Neural Algorithms.

8.1.1 Biological Neural Networks

A Biological Neural Network refers to the information processing ele-
ments of the nervous system, organized as a collection of neural cells,
called neurons, that are interconnected in networks and interact with
each other using electrochemical signals. A biological neuron is generally
comprised of an axon which provides the input signals and is connected
to other neurons via synapses. The neuron reacts to input signals
and may produce an output signal on its output connection called the
dendrites.

The study of biological neural networks falls within the domain of
neuroscience which is a branch of biology concerned with the nervous
system. Neuroanatomy is a subject that is concerned with the the
structure and function of groups of neural networks both with regard
to parts of the brain and the structures that lead from and to the
brain from the rest of the body. Neuropsychology is another discipline
concerned with the structure and function of the brain as they relate
to abstract psychological behaviors. For further information, refer to a
good textbook on any of these general topics.

8.1.2 Artificial Neural Networks

The field of Artificial Neural Networks (ANN) is concerned with the
investigation of computational models inspired by theories and obser-
vation of the structure and function of biological networks of neural
cells in the brain. They are generally designed as models for addressing

319

320 Chapter 8. Neural Algorithms

mathematical, computational, and engineering problems. As such, there
is a lot of interdisciplinary research in mathematics, neurobiology and
computer science.

An Artificial Neural Network is generally comprised of a collection
of artificial neurons that are interconnected in order to performs some
computation on input patterns and create output patterns. They are
adaptive systems capable of modifying their internal structure, typically
the weights between nodes in the network, allowing them to be used
for a variety of function approximation problems such as classification,
regression, feature extraction and content addressable memory.

Given that the focus of the field is on performing computation
with networks of discrete computing units, the field is traditionally
called a ‘connectionist’ paradigm of Artificial Intelligence and ‘Neural
Computation’.

There are many types of neural networks, many of which fall into
one of two categories:

• Feed-forward Networks where input is provided on one side
of the network and the signals are propagated forward (in one
direction) through the network structure to the other side where
output signals are read. These networks may be comprised of
one cell, one layer or multiple layers of neurons. Some examples
include the Perceptron, Radial Basis Function Networks, and the
multi-layer perceptron networks.

• Recurrent Networks where cycles in the network are permitted
and the structure may be fully interconnected. Examples include
the Hopfield Network and Bidirectional Associative Memory.

Artificial Neural Network structures are made up of nodes and
weights which typically require training based on samples of patterns
from a problem domain. Some examples of learning strategies include:

• Supervised Learning where the network is exposed to the input
that has a known expected answer. The internal state of the
network is modified to better match the expected result. Examples
of this learning method include the Back-propagation algorithm
and the Hebb rule.

• Unsupervised Learning where the network is exposed to input
patterns from which it must discern meaning and extract features.
The most common type of unsupervised learning is competitive
learning where neurons compete based on the input pattern to pro-
duce an output pattern. Examples include Neural Gas, Learning
Vector Quantization, and the Self-Organizing Map.

8.1. Overview 321

Artificial Neural Networks are typically difficult to configure and
slow to train, but once prepared are very fast in application. They
are generally used for function approximation-based problem domains
and prized for their capabilities of generalization and tolerance to noise.
They are known to have the limitation of being opaque, meaning there
is little explanation to the subject matter expert as to why decisions
were made, only how.

There are many excellent reference texts for the field of Artificial
Neural Networks, some selected texts include: “Neural Networks for Pat-
tern Recognition” by Bishop [1], “Neural Smithing: Supervised Learning
in Feedforward Artificial Neural Networks” by Reed and Marks II [8]
and “An Introduction to Neural Networks” by Gurney [2].

8.1.3 Extensions

There are many other algorithms and classes of algorithm that were not
described from the field of Artificial Neural Networks, not limited to:

• Radial Basis Function Network: A network where activation
functions are controlled by Radial Basis Functions [4].

• Neural Gas: Another self-organizing and unsupervised compet-
itive learning algorithm. Unlike SOM (and more like LVQ), the
nodes are not organized into a lower-dimensional structure, instead
the competitive Hebbian-learning like rule is applied to connect,
order, and adapt nodes in feature space [5–7].

• Hierarchical Temporal Memory: A neural network system
based on models of some of the structural and algorithmic proper-
ties of the neocortex [3].

8.1.4 Bibliography

[1] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, 1995.

[2] K. Gurney. An Introduction to Neural Networks. CRC Press, 1997.

[3] J. Hawkins and S. Blakeslee. On Intelligence. Henry Holt and
Company, 2005.

[4] Robert J. Howlett and L. C. Jain. Radial basis function networks 1:
recent developments in theory and applications. Springer, 2001.

[5] T. Martinetz and K. Schulten. A “neural gas” network learns
topologies. In Artificial Neural Networks, pages 397–402, 1991.

322 Chapter 8. Neural Algorithms

[6] T. Martinetz and K. Schulten. Topology representing networks.
Neural Networks, 7:507–522, 1994.

[7] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. ‘neural-gas’
network for vector quantization and its application to time-series
prediction. IEEE Transactions on Neural Networks, 4:558–569, 1993.

[8] R. D. Reed and R. J. Marks II. Neural Smithing: Supervised Learning
in Feedforward Artificial Neural Networks. Mit Press, 1999.

8.2. Perceptron 323

8.2 Perceptron

Perceptron.

8.2.1 Taxonomy

The Perceptron algorithm belongs to the field of Artificial Neural Net-
works and more broadly Computational Intelligence. It is a single layer
feedforward neural network (single cell network) that inspired many
extensions and variants, not limited to ADALINE and the Widrow-Hoff
learning rules.

8.2.2 Inspiration

The Perceptron is inspired by the information processing of a single
neural cell (called a neuron). A neuron accepts input signals via its axon,
which pass the electrical signal down to the cell body. The dendrites
carry the signal out to synapses, which are the connections of a cell’s
dendrites to other cell’s axons. In a synapse, the electrical activity is
converted into molecular activity (neurotransmitter molecules crossing
the synaptic cleft and binding with receptors). The molecular binding
develops an electrical signal which is passed onto the connected cells
axon.

8.2.3 Strategy

The information processing objective of the technique is to model a given
function by modifying internal weightings of input signals to produce
an expected output signal. The system is trained using a supervised
learning method, where the error between the system’s output and a
known expected output is presented to the system and used to modify
its internal state. State is maintained in a set of weightings on the input
signals. The weights are used to represent an abstraction of the mapping
of input vectors to the output signal for the examples that the system
was exposed to during training.

8.2.4 Procedure

The Perceptron is comprised of a data structure (weights) and separate
procedures for training and applying the structure. The structure is
really just a vector of weights (one for each expected input) and a bias
term.

Algorithm 8.6.1 provides a pseudocode for training the Perceptron.
A weight is initialized for each input plus an additional weight for a

324 Chapter 8. Neural Algorithms

fixed bias constant input that is almost always set to 1.0. The activation
of the network to a given input pattern is calculated as follows:

activation←
n∑
k=1

(
wk × xki

)
+ wbias × 1.0 (8.1)

where n is the number of weights and inputs, xki is the kth attribute
on the ith input pattern, and wbias is the bias weight. The weights are
updated as follows:

wi(t+ 1) = wi(t) + α× (e(t)− a(t))× xi(t) (8.2)

where wi is the ith weight at time t and t+ 1, α is the learning rate,
e(t) and a(t) are the expected and actual output at time t, and xi is
the ith input. This update process is applied to each weight in turn (as
well as the bias weight with its contact input).

Algorithm 8.2.1: Pseudocode for the Perceptron.

Input: ProblemSize, InputPatterns, iterationsmax, learnrate
Output: Weights
Weights ← InitializeWeights(ProblemSize);1

for i = 1 to iterationsmax do2

Patterni ← SelectInputPattern(InputPatterns);3

Activationi ← ActivateNetwork(Patterni, Weights);4

Outputi ← TransferActivation(Activationi);5

UpdateWeights(Patterni, Outputi, learnrate);6

end7

return Weights;8

8.2.5 Heuristics

• The Perceptron can be used to approximate arbitrary linear func-
tions and can be used for regression or classification problems.

• The Perceptron cannot learn a non-linear mapping between the
input and output attributes. The XOR problem is a classical
example of a problem that the Perceptron cannot learn.

• Input and output values should be normalized such that x ∈ [0, 1).

• The learning rate (α ∈ [0, 1]) controls the amount of change each
error has on the system, lower learning rages are common such as
0.1.

8.2. Perceptron 325

• The weights can be updated in an online manner (after the expo-
sure to each input pattern) or in batch (after a fixed number of
patterns have been observed).

• Batch updates are expected to be more stable than online updates
for some complex problems.

• A bias weight is used with a constant input signal to provide
stability to the learning process.

• A step transfer function is commonly used to transfer the activation
to a binary output value 1← activation ≥ 0, otherwise 0.

• It is good practice to expose the system to input patterns in a
different random order each enumeration through the input set.

• The initial weights are typically small random values, typically
∈ [0, 0.5].

8.2.6 Code Listing

Listing 8.1 provides an example of the Perceptron algorithm implemented
in the Ruby Programming Language. The problem is the classical
OR boolean problem, where the inputs of the boolean truth table are
provided as the two inputs and the result of the boolean OR operation
is expected as output.

The algorithm was implemented using an online learning method,
meaning the weights are updated after each input pattern is observed.
A step transfer function is used to convert the activation into a binary
output ∈ {0, 1}. Random samples are taken from the domain to train
the weights, and similarly, random samples are drawn from the domain
to demonstrate what the network has learned. A bias weight is used for
stability with a constant input of 1.0.

1 def random_vector(minmax)

2 return Array.new(minmax.size) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

7 def initialize_weights(problem_size)

8 minmax = Array.new(problem_size + 1) {[-1.0,1.0]}

9 return random_vector(minmax)

10 end

11

12 def update_weights(num_inputs, weights, input, out_exp, out_act, l_rate)

13 num_inputs.times do |i|

14 weights[i] += l_rate * (out_exp - out_act) * input[i]

15 end

16 weights[num_inputs] += l_rate * (out_exp - out_act) * 1.0

326 Chapter 8. Neural Algorithms

17 end

18

19 def activate(weights, vector)

20 sum = weights[weights.size-1] * 1.0

21 vector.each_with_index do |input, i|

22 sum += weights[i] * input

23 end

24 return sum

25 end

26

27 def transfer(activation)

28 return (activation >= 0) ? 1.0 : 0.0

29 end

30

31 def get_output(weights, vector)

32 activation = activate(weights, vector)

33 return transfer(activation)

34 end

35

36 def train_weights(weights, domain, num_inputs, iterations, lrate)

37 iterations.times do |epoch|

38 error = 0.0

39 domain.each do |pattern|

40 input = Array.new(num_inputs) {|k| pattern[k].to_f}

41 output = get_output(weights, input)

42 expected = pattern.last.to_f

43 error += (output - expected).abs

44 update_weights(num_inputs, weights, input, expected, output, lrate)

45 end

46 puts "> epoch=#{epoch}, error=#{error}"

47 end

48 end

49

50 def test_weights(weights, domain, num_inputs)

51 correct = 0

52 domain.each do |pattern|

53 input_vector = Array.new(num_inputs) {|k| pattern[k].to_f}

54 output = get_output(weights, input_vector)

55 correct += 1 if output.round == pattern.last

56 end

57 puts "Finished test with a score of #{correct}/#{domain.size}"

58 return correct

59 end

60

61 def execute(domain, num_inputs, iterations, learning_rate)

62 weights = initialize_weights(num_inputs)

63 train_weights(weights, domain, num_inputs, iterations, learning_rate)

64 test_weights(weights, domain, num_inputs)

65 return weights

66 end

67

68 if __FILE__ == $0
69 # problem configuration

70 or_problem = [[0,0,0], [0,1,1], [1,0,1], [1,1,1]]

71 inputs = 2

72 # algorithm configuration

8.2. Perceptron 327

73 iterations = 20

74 learning_rate = 0.1

75 # execute the algorithm

76 execute(or_problem, inputs, iterations, learning_rate)

77 end

Listing 8.1: Perceptron in Ruby

8.2.7 References

Primary Sources

The Perceptron algorithm was proposed by Rosenblatt in 1958 [3].
Rosenblatt proposed a range of neural network structures and methods.
The ‘Perceptron’ as it is known is in fact a simplification of Rosenblatt’s
models by Minsky and Papert for the purposes of analysis [1]. An early
proof of convergence was provided by Novikoff [2].

Learn More

Minsky and Papert wrote the classical text titled “Perceptrons” in 1969
that is known to have discredited the approach, suggesting it was limited
to linear discrimination, which reduced research in the area for decades
afterward [1].

8.2.8 Bibliography

[1] M. L. Minsky and S. A. Papert. Perceptrons. MIT Press, 1969.

[2] A. B. Novikoff. On convergence proofs on perceptrons. Symposium
on the Mathematical Theory of Automata, 12:615–622, 1962.

[3] F. Rosenblatt. The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. Cornell Aeronautical
Laboratory, Psychological Review, 6:386–408, 1958.

328 Chapter 8. Neural Algorithms

8.3 Back-propagation

Back-propagation, Backpropagation, Error Back Propagation, Backprop,
Delta-rule.

8.3.1 Taxonomy

The Back-propagation algorithm is a supervised learning method for
multi-layer feed-forward networks from the field of Artificial Neural
Networks and more broadly Computational Intelligence. The name
refers to the backward propagation of error during the training of
the network. Back-propagation is the basis for many variations and
extensions for training multi-layer feed-forward networks not limited to
Vogl’s Method (Bold Drive), Delta-Bar-Delta, Quickprop, and Rprop.

8.3.2 Inspiration

Feed-forward neural networks are inspired by the information processing
of one or more neural cells (called a neuron). A neuron accepts input
signals via its axon, which pass the electrical signal down to the cell
body. The dendrites carry the signal out to synapses, which are the
connections of a cell’s dendrites to other cell’s axons. In a synapse, the
electrical activity is converted into molecular activity (neurotransmitter
molecules crossing the synaptic cleft and binding with receptors). The
molecular binding develops an electrical signal which is passed onto the
connected cells axon. The Back-propagation algorithm is a training
regime for multi-layer feed forward neural networks and is not directly
inspired by the learning processes of the biological system.

8.3.3 Strategy

The information processing objective of the technique is to model a given
function by modifying internal weightings of input signals to produce
an expected output signal. The system is trained using a supervised
learning method, where the error between the system’s output and a
known expected output is presented to the system and used to modify
its internal state. State is maintained in a set of weightings on the input
signals. The weights are used to represent an abstraction of the mapping
of input vectors to the output signal for the examples that the system
was exposed to during training. Each layer of the network provides an
abstraction of the information processing of the previous layer, allowing
the combination of sub-functions and higher order modeling.

8.3. Back-propagation 329

8.3.4 Procedure

The Back-propagation algorithm is a method for training the weights
in a multi-layer feed-forward neural network. As such, it requires a
network structure to be defined of one or more layers where one layer
is fully connected to the next layer. A standard network structure is
one input layer, one hidden layer, and one output layer. The method is
primarily concerned with adapting the weights to the calculated error
in the presence of input patterns, and the method is applied backward
from the network output layer through to the input layer.

Algorithm 8.6.1 provides a high-level pseudocode for preparing a
network using the Back-propagation training method. A weight is
initialized for each input plus an additional weight for a fixed bias
constant input that is almost always set to 1.0. The activation of a
single neuron to a given input pattern is calculated as follows:

activation =

(n∑
k=1

wk × xki
)

+ wbias × 1.0 (8.3)

where n is the number of weights and inputs, xki is the kth attribute
on the ith input pattern, and wbias is the bias weight. A logistic transfer
function (sigmoid) is used to calculate the output for a neuron ∈ [0, 1]
and provide nonlinearities between in the input and output signals:

1
1+exp(−a) , where a represents the neuron activation.

The weight updates use the delta rule, specifically a modified delta
rule where error is backwardly propagated through the network, starting
at the output layer and weighted back through the previous layers. The
following describes the back-propagation of error and weight updates
for a single pattern.

An error signal is calculated for each node and propagated back
through the network. For the output nodes this is the sum of the error
between the node outputs and the expected outputs:

esi = (ci − oi)× tdi (8.4)

where esi is the error signal for the ith node, ci is the expected
output and oi is the actual output for the ith node. The td term is the
derivative of the output of the ith node. If the sigmod transfer function
is used, tdi would be oi × (1− oi) For the hidden nodes, the error signal
is the sum of the weighted error signals from the next layer.

esi =

(n∑
k=1

(wik × esk)

)
× tdi (8.5)

where esi is the error signal for the ith node, wik is the weight
between the ith and the kth nodes, and esk is the error signal of the kth
node.

330 Chapter 8. Neural Algorithms

The error derivatives for each weight are calculated by combining
the input to each node and the error signal for the node.

edi =

n∑
k=1

esi × xk (8.6)

where edi is the error derivative for the ith node, esi is the error
signal for the ith node and xk is the input from the kth node in the
previous layer. This process include the bias input that has a constant
value.

Weights are updated in a direction that reduces the error derivative
edi (error assigned to the weight), metered by a learning coefficient.

wi(t+ 1) = wi(t) + (edk × learnrate) (8.7)

where wi(t+ 1) is the updated ith weight, edk is the error derivative
for the kth node and learnrate is an update coefficient parameter.

Algorithm 8.3.1: Pseudocode for Back-propagation.

Input: ProblemSize, InputPatterns, iterationsmax, learnrate
Output: Network
Network ← ConstructNetworkLayers();1

Networkweights ← InitializeWeights(Network, ProblemSize);2

for i = 1 to iterationsmax do3

Patterni ← SelectInputPattern(InputPatterns);4

Outputi ← ForwardPropagate(Patterni, Network);5

BackwardPropagateError(Patterni, Outputi, Network);6

UpdateWeights(Patterni, Outputi, Network, learnrate);7

end8

return Network;9

8.3.5 Heuristics

• The Back-propagation algorithm can be used to train a multi-layer
network to approximate arbitrary non-linear functions and can be
used for regression or classification problems.

• Input and output values should be normalized such that x ∈ [0, 1).

• The weights can be updated in an online manner (after the expo-
sure to each input pattern) or in batch (after a fixed number of
patterns have been observed).

• Batch updates are expected to be more stable than online updates
for some complex problems.

8.3. Back-propagation 331

• A logistic (sigmoid) transfer function is commonly used to transfer
the activation to a binary output value, although other transfer
functions can be used such as the hyperbolic tangent (tanh),
Gaussian, and softmax.

• It is good practice to expose the system to input patterns in a
different random order each enumeration through the input set.

• The initial weights are typically small random values ∈ [0, 0.5].

• Typically a small number of layers are used such as 2-4 given that
the increase in layers result in an increase in the complexity of the
system and the time required to train the weights.

• The learning rate can be varied during training, and it is common
to introduce a momentum term to limit the rate of change.

• The weights of a given network can be initialized with a global opti-
mization method before being refined using the Back-propagation
algorithm.

• One output node is common for regression problems, where as one
output node per class is common for classification problems.

8.3.6 Code Listing

Listing 8.2 provides an example of the Back-propagation algorithm
implemented in the Ruby Programming Language. The problem is the
classical XOR boolean problem, where the inputs of the boolean truth
table are provided as inputs and the result of the boolean XOR operation
is expected as output. This is a classical problem for Back-Propagation
because it was the problem instance referenced by Minsky and Papert
in their analysis of the Perceptron highlighting the limitations of their
simplified models of neural networks [3].

The algorithm was implemented using a batch learning method,
meaning the weights are updated after each epoch of patterns are
observed. A logistic (sigmoid) transfer function is used to convert the
activation into an output signal. Weight updates occur at the end of
each epoch using the accumulated delta’s. A momentum term is used
in conjunction with the past weight update to ensure the last update
influences the current update, reducing large changes.

A three layer network is demonstrated with 2 nodes in the input
layer (two inputs), 2 nodes in the hidden layer and 1 node in the output
layer, which is sufficient for the chosen problem. A bias weight is used
on each neuron for stability with a constant input of 1.0. The learning
process is separated into four steps: forward propagation, backward
propagation of error, calculation of error derivatives (assigning blame

332 Chapter 8. Neural Algorithms

to the weights) and the weight update. This separation facilities easy
extensions such as adding a momentum term and/or weight decay to
the update process.

1 def random_vector(minmax)

2 return Array.new(minmax.size) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

7 def initialize_weights(num_weights)

8 minmax = Array.new(num_weights) {[-rand(),rand()]}

9 return random_vector(minmax)

10 end

11

12 def activate(weights, vector)

13 sum = weights[weights.size-1] * 1.0

14 vector.each_with_index do |input, i|

15 sum += weights[i] * input

16 end

17 return sum

18 end

19

20 def transfer(activation)

21 return 1.0 / (1.0 + Math.exp(-activation))

22 end

23

24 def transfer_derivative(output)

25 return output * (1.0 - output)

26 end

27

28 def forward_propagate(net, vector)

29 net.each_with_index do |layer, i|

30 input=(i==0)? vector :

Array.new(net[i-1].size){|k|net[i-1][k][:output]}

31 layer.each do |neuron|

32 neuron[:activation] = activate(neuron[:weights], input)

33 neuron[:output] = transfer(neuron[:activation])

34 end

35 end

36 return net.last[0][:output]

37 end

38

39 def backward_propagate_error(network, expected_output)

40 network.size.times do |n|

41 index = network.size - 1 - n

42 if index == network.size-1

43 neuron = network[index][0] # assume one node in output layer

44 error = (expected_output - neuron[:output])

45 neuron[:delta] = error * transfer_derivative(neuron[:output])

46 else

47 network[index].each_with_index do |neuron, k|

48 sum = 0.0

49 # only sum errors weighted by connection to the current k'th
neuron

50 network[index+1].each do |next_neuron|

8.3. Back-propagation 333

51 sum += (next_neuron[:weights][k] * next_neuron[:delta])

52 end

53 neuron[:delta] = sum * transfer_derivative(neuron[:output])

54 end

55 end

56 end

57 end

58

59 def calculate_error_derivatives_for_weights(net, vector)

60 net.each_with_index do |layer, i|

61 input=(i==0)? vector :

Array.new(net[i-1].size){|k|net[i-1][k][:output]}

62 layer.each do |neuron|

63 input.each_with_index do |signal, j|

64 neuron[:deriv][j] += neuron[:delta] * signal

65 end

66 neuron[:deriv][-1] += neuron[:delta] * 1.0

67 end

68 end

69 end

70

71 def update_weights(network, lrate, mom=0.8)

72 network.each do |layer|

73 layer.each do |neuron|

74 neuron[:weights].each_with_index do |w, j|

75 delta = (lrate * neuron[:deriv][j]) + (neuron[:last_delta][j] *

mom)

76 neuron[:weights][j] += delta

77 neuron[:last_delta][j] = delta

78 neuron[:deriv][j] = 0.0

79 end

80 end

81 end

82 end

83

84 def train_network(network, domain, num_inputs, iterations, lrate)

85 correct = 0

86 iterations.times do |epoch|

87 domain.each do |pattern|

88 vector,expected=Array.new(num_inputs){|k|pattern[k].to_f},pattern.last

89 output = forward_propagate(network, vector)

90 correct += 1 if output.round == expected

91 backward_propagate_error(network, expected)

92 calculate_error_derivatives_for_weights(network, vector)

93 end

94 update_weights(network, lrate)

95 if (epoch+1).modulo(100) == 0

96 puts "> epoch=#{epoch+1}, Correct=#{correct}/#{100*domain.size}"

97 correct = 0

98 end

99 end

100 end

101

102 def test_network(network, domain, num_inputs)

103 correct = 0

104 domain.each do |pattern|

334 Chapter 8. Neural Algorithms

105 input_vector = Array.new(num_inputs) {|k| pattern[k].to_f}

106 output = forward_propagate(network, input_vector)

107 correct += 1 if output.round == pattern.last

108 end

109 puts "Finished test with a score of #{correct}/#{domain.length}"

110 return correct

111 end

112

113 def create_neuron(num_inputs)

114 return {:weights=>initialize_weights(num_inputs+1),

115 :last_delta=>Array.new(num_inputs+1){0.0},

116 :deriv=>Array.new(num_inputs+1){0.0}}

117 end

118

119 def execute(domain, num_inputs, iterations, num_nodes, lrate)

120 network = []

121 network << Array.new(num_nodes){create_neuron(num_inputs)}

122 network << Array.new(1){create_neuron(network.last.size)}

123 puts "Topology: #{num_inputs} #{network.inject(""){|m,i|m+"#{i.size}

"}}"

124 train_network(network, domain, num_inputs, iterations, lrate)

125 test_network(network, domain, num_inputs)

126 return network

127 end

128

129 if __FILE__ == $0
130 # problem configuration

131 xor = [[0,0,0], [0,1,1], [1,0,1], [1,1,0]]

132 inputs = 2

133 # algorithm configuration

134 learning_rate = 0.3

135 num_hidden_nodes = 4

136 iterations = 2000

137 # execute the algorithm

138 execute(xor, inputs, iterations, num_hidden_nodes, learning_rate)

139 end

Listing 8.2: Back-propagation in Ruby

8.3.7 References

Primary Sources

The backward propagation of error method is credited to Bryson and
Ho in [1]. It was applied to the training of multi-layer networks and
called back-propagation by Rumelhart, Hinton and Williams in 1986
[5, 6]. This effort and the collection of studies edited by Rumelhart and
McClelland helped to define the field of Artificial Neural Networks in
the late 1980s [7, 8].

8.3. Back-propagation 335

Learn More

A seminal book on the approach was “Backpropagation: theory, archi-
tectures, and applications” by Chauvin and Rumelhart that provided
an excellent introduction (chapter 1) but also a collection of studies
applying and extending the approach [2]. Reed and Marks provide
an excellent treatment of feed-forward neural networks called “Neural
Smithing” that includes chapters dedicated to Back-propagation, the
configuration of its parameters, error surface and speed improvements
[4].

8.3.8 Bibliography

[1] A. E. Bryson and Y-C. Ho. Applied optimal control: optimization,
estimation, and control. Taylor & Francis, 1969.

[2] Y. Chauvin and D. E. Rumelhart. Backpropagation: Theory, archi-
tectures, and applications. Routledge, 1995.

[3] M. L. Minsky and S. A. Papert. Perceptrons. MIT Press, 1969.

[4] R. D. Reed and R. J. Marks II. Neural Smithing: Supervised Learning
in Feedforward Artificial Neural Networks. Mit Press, 1999.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
representations by back-propagating errors. Nature, 323:533–536,
1986.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel dis-
tributed processing: explorations in the microstructure of cognition,
vol. 1, chapter Learning internal representations by error propagation,
pages 318–362. MIT Press, 1986.

[7] D. E. Rumelhart and J. L. McClelland. Parallel distributed processing:
explorations in the microstructure of cognition. Foundations, Volume
1. MIT Press, 1986.

[8] D. E. Rumelhart and J. L. McClelland. Parallel distributed processing:
Explorations in the microstructure of cognition. Psychological and
biological models, Volume 2. MIT Press, 1986.

336 Chapter 8. Neural Algorithms

8.4 Hopfield Network

Hopfield Network, HN, Hopfield Model.

8.4.1 Taxonomy

The Hopfield Network is a Neural Network and belongs to the field of
Artificial Neural Networks and Neural Computation. It is a Recurrent
Neural Network and is related to other recurrent networks such as the
Bidirectional Associative Memory (BAM). It is generally related to feed-
forward Artificial Neural Networks such as the Perceptron (Section 8.2)
and the Back-propagation algorithm (Section 8.3).

8.4.2 Inspiration

The Hopfield Network algorithm is inspired by the associated memory
properties of the human brain.

8.4.3 Metaphor

Through the training process, the weights in the network may be thought
to minimize an energy function and slide down an energy surface. In
a trained network, each pattern presented to the network provides an
attractor, where progress is made towards the point of attraction by
propagating information around the network.

8.4.4 Strategy

The information processing objective of the system is to associate the
components of an input pattern with a holistic representation of the
pattern called Content Addressable Memory (CAM). This means that
once trained, the system will recall whole patterns, given a portion or a
noisy version of the input pattern.

8.4.5 Procedure

The Hopfield Network is comprised of a graph data structure with
weighted edges and separate procedures for training and applying the
structure. The network structure is fully connected (a node connects to
all other nodes except itself) and the edges (weights) between the nodes
are bidirectional.

The weights of the network can be learned via a one-shot method
(one-iteration through the patterns) if all patterns to be memorized by
the network are known. Alternatively, the weights can be updated incre-
mentally using the Hebb rule where weights are increased or decreased

8.4. Hopfield Network 337

based on the difference between the actual and the expected output.
The one-shot calculation of the network weights for a single node occurs
as follows:

wi,j =

N∑
k=1

vik × v
j
k (8.8)

where wi,j is the weight between neuron i and j, N is the number
of input patterns, v is the input pattern and vik is the ith attribute on
the kth input pattern.

The propagation of the information through the network can be
asynchronous where a random node is selected each iteration, or syn-
chronously, where the output is calculated for each node before being
applied to the whole network. Propagation of the information continues
until no more changes are made or until a maximum number of iterations
has completed, after which the output pattern from the network can be
read. The activation for a single node is calculated as follows:

ni =

n∑
j=1

wi,j × nj (8.9)

where ni is the activation of the ith neuron, wi,j with the weight
between the nodes i and j, and nj is the output of the jth neuron.
The activation is transferred into an output using a transfer function,
typically a step function as follows:

transfer(ni) =

{
1 if ≥ θ
−1 if < θ

where the threshold θ is typically fixed at 0.

8.4.6 Heuristics

• The Hopfield network may be used to solve the recall problem of
matching cues for an input pattern to an associated pre-learned
pattern.

• The transfer function for turning the activation of a neuron into
an output is typically a step function f(a) ∈ {−1, 1} (preferred),
or more traditionally f(a) ∈ {0, 1}.

• The input vectors are typically normalized to boolean values
x ∈ [−1, 1].

• The network can be propagated asynchronously (where a random
node is selected and output generated), or synchronously (where
the output for all nodes are calculated before being applied).

338 Chapter 8. Neural Algorithms

• Weights can be learned in a one-shot or incremental method based
on how much information is known about the patterns to be
learned.

• All neurons in the network are typically both input and output
neurons, although other network topologies have been investigated
(such as the designation of input and output neurons).

• A Hopfield network has limits on the patterns it can store and
retrieve accurately from memory, described by N < 0.15×n where
N is the number of patterns that can be stored and retrieved and
n is the number of nodes in the network.

8.4.7 Code Listing

Listing 8.3 provides an example of the Hopfield Network algorithm
implemented in the Ruby Programming Language. The problem is an
instance of a recall problem where patters are described in terms of a
3× 3 matrix of binary values (∈ {−1, 1}). Once the network has learned
the patterns, the system is exposed to perturbed versions of the patterns
(with errors introduced) and must respond with the correct pattern.
Two patterns are used in this example, specifically ‘T’, and ‘U’.

The algorithm is an implementation of the Hopfield Network with a
one-shot training method for the network weights, given that all patterns
are already known. The information is propagated through the network
using an asynchronous method, which is repeated for a fixed number of
iterations. The patterns are displayed to the console during the testing
of the network, with the outputs converted from {−1, 1} to {0, 1} for
readability.

1 def random_vector(minmax)

2 return Array.new(minmax.size) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

7 def initialize_weights(problem_size)

8 minmax = Array.new(problem_size) {[-0.5,0.5]}

9 return random_vector(minmax)

10 end

11

12 def create_neuron(num_inputs)

13 neuron = {}

14 neuron[:weights] = initialize_weights(num_inputs)

15 return neuron

16 end

17

18 def transfer(activation)

19 return (activation >= 0) ? 1 : -1

20 end

8.4. Hopfield Network 339

21

22 def propagate_was_change?(neurons)

23 i = rand(neurons.size)

24 activation = 0

25 neurons.each_with_index do |other, j|

26 activation += other[:weights][i]*other[:output] if i!=j

27 end

28 output = transfer(activation)

29 change = output != neurons[i][:output]

30 neurons[i][:output] = output

31 return change

32 end

33

34 def get_output(neurons, pattern, evals=100)

35 vector = pattern.flatten

36 neurons.each_with_index {|neuron,i| neuron[:output] = vector[i]}

37 evals.times { propagate_was_change?(neurons) }

38 return Array.new(neurons.size){|i| neurons[i][:output]}

39 end

40

41 def train_network(neurons, patters)

42 neurons.each_with_index do |neuron, i|

43 for j in ((i+1)...neurons.size) do

44 next if i==j

45 wij = 0.0

46 patters.each do |pattern|

47 vector = pattern.flatten

48 wij += vector[i]*vector[j]

49 end

50 neurons[i][:weights][j] = wij

51 neurons[j][:weights][i] = wij

52 end

53 end

54 end

55

56 def to_binary(vector)

57 return Array.new(vector.size){|i| ((vector[i]==-1) ? 0 : 1)}

58 end

59

60 def print_patterns(provided, expected, actual)

61 p, e, a = to_binary(provided), to_binary(expected), to_binary(actual)

62 p1, p2, p3 = p[0..2].join(', '), p[3..5].join(', '), p[6..8].join(',
')

63 e1, e2, e3 = e[0..2].join(', '), e[3..5].join(', '), e[6..8].join(',
')

64 a1, a2, a3 = a[0..2].join(', '), a[3..5].join(', '), a[6..8].join(',
')

65 puts "Provided Expected Got"

66 puts "#{p1} #{e1} #{a1}"

67 puts "#{p2} #{e2} #{a2}"

68 puts "#{p3} #{e3} #{a3}"

69 end

70

71 def calculate_error(expected, actual)

72 sum = 0

73 expected.each_with_index do |v, i|

340 Chapter 8. Neural Algorithms

74 sum += 1 if expected[i]!=actual[i]

75 end

76 return sum

77 end

78

79 def perturb_pattern(vector, num_errors=1)

80 perturbed = Array.new(vector)

81 indicies = [rand(perturbed.size)]

82 while indicies.size < num_errors do

83 index = rand(perturbed.size)

84 indicies << index if !indicies.include?(index)

85 end

86 indicies.each {|i| perturbed[i] = ((perturbed[i]==1) ? -1 : 1)}

87 return perturbed

88 end

89

90 def test_network(neurons, patterns)

91 error = 0.0

92 patterns.each do |pattern|

93 vector = pattern.flatten

94 perturbed = perturb_pattern(vector)

95 output = get_output(neurons, perturbed)

96 error += calculate_error(vector, output)

97 print_patterns(perturbed, vector, output)

98 end

99 error = error / patterns.size.to_f

100 puts "Final Result: avg pattern error=#{error}"

101 return error

102 end

103

104 def execute(patters, num_inputs)

105 neurons = Array.new(num_inputs) { create_neuron(num_inputs) }

106 train_network(neurons, patters)

107 test_network(neurons, patters)

108 return neurons

109 end

110

111 if __FILE__ == $0
112 # problem configuration

113 num_inputs = 9

114 p1 = [[1,1,1],[-1,1,-1],[-1,1,-1]] # T

115 p2 = [[1,-1,1],[1,-1,1],[1,1,1]] # U

116 patters = [p1, p2]

117 # execute the algorithm

118 execute(patters, num_inputs)

119 end

Listing 8.3: Hopfield Network in Ruby

8.4.8 References

Primary Sources

The Hopfield Network was proposed by Hopfield in 1982 where the
basic model was described and related to an abstraction of the inspiring

8.4. Hopfield Network 341

biological system [2]. This early work was extended by Hopfield to
‘graded’ neurons capable of outputting a continuous value through
use of a logistic (sigmoid) transfer function [3]. An innovative work
by Hopfield and Tank considered the use of the Hopfield network for
solving combinatorial optimization problems, with a specific study into
the system applied to instances of the Traveling Salesman Problem [4].
This was achieved with a large number of neurons and a representation
that decoded the position of each city in the tour as a sub-problem on
which a customized network energy function had to be minimized.

Learn More

Popovici and Boncut provide a summary of the Hopfield Network al-
gorithm with worked examples [5]. Overviews of the Hopfield Network
are provided in most good books on Artificial Neural Networks, such
as [6]. Hertz, Krogh, and Palmer present an in depth study of the field
of Artificial Neural Networks with a detailed treatment of the Hopfield
network from a statistical mechanics perspective [1].

8.4.9 Bibliography

[1] J. Hertz, Krogh A., and R. G. Palmer. Introduction to the theory of
neural computation. Westview Press, 1991.

[2] J. J. Hopfield. Neural networks and physical systems with emergent
collective computational abilities. In Proceedings of the National
Academy of Sciences of the USA, volume 79, pages 2554–2558, April
1982.

[3] J. J. Hopfield. Neurons with graded response have collective compu-
tational properties like those of two-state neurons. In Proceedings
of the National Academy of Sciences, volume 81, pages 3088–3092,
1984.

[4] J. J. Hopfield and D. W. Tank. “neural” computation of decisions
in optimization problems. Biological Cybernetics, 55:141–146, 1985.

[5] N. Popovici and M. Boncut. On the hopfield algorithm. foundations
and examples. General Mathematics, 2:35–50, 2005.

[6] R. Rojas. Neural Networks – A Systematic Introduction, chapter 13.
The Hopfield Model. Springer, 1996.

342 Chapter 8. Neural Algorithms

8.5 Learning Vector Quantization

Learning Vector Quantization, LVQ.

8.5.1 Taxonomy

The Learning Vector Quantization algorithm belongs to the field of
Artificial Neural Networks and Neural Computation. More broadly to the
field of Computational Intelligence. The Learning Vector Quantization
algorithm is a supervised neural network that uses a competitive (winner-
take-all) learning strategy. It is related to other supervised neural
networks such as the Perceptron (Section 8.2) and the Back-propagation
algorithm (Section 8.3). It is related to other competitive learning neural
networks such as the the Self-Organizing Map algorithm (Section 8.6)
that is a similar algorithm for unsupervised learning with the addition
of connections between the neurons. Additionally, LVQ is a baseline
technique that was defined with a few variants LVQ1, LVQ2, LVQ2.1,
LVQ3, OLVQ1, and OLVQ3 as well as many third-party extensions and
refinements too numerous to list.

8.5.2 Inspiration

The Learning Vector Quantization algorithm is related to the Self-
Organizing Map which is in turn inspired by the self-organizing capabil-
ities of neurons in the visual cortex.

8.5.3 Strategy

The information processing objective of the algorithm is to prepare a
set of codebook (or prototype) vectors in the domain of the observed
input data samples and to use these vectors to classify unseen examples.
An initially random pool of vectors is prepared which are then exposed
to training samples. A winner-take-all strategy is employed where
one or more of the most similar vectors to a given input pattern are
selected and adjusted to be closer to the input vector, and in some cases,
further away from the winner for runners up. The repetition of this
process results in the distribution of codebook vectors in the input space
which approximate the underlying distribution of samples from the test
dataset.

8.5.4 Procedure

Vector Quantization is a technique from signal processing where density
functions are approximated with prototype vectors for applications such
as compression. Learning Vector Quantization is similar in principle,

8.5. Learning Vector Quantization 343

although the prototype vectors are learned through a supervised winner-
take-all method.

Algorithm 8.6.1 provides a high-level pseudocode for preparing code-
book vectors using the Learning Vector Quantization method. Codebook
vectors are initialized to small floating point values, or sampled from
an available dataset. The Best Matching Unit (BMU) is the codebook
vector from the pool that has the minimum distance to an input vec-
tor. A distance measure between input patterns must be defined. For
real-valued vectors, this is commonly the Euclidean distance:

dist(x, c) =

n∑
i=1

(xi − ci)2 (8.10)

where n is the number of attributes, x is the input vector and c is a
given codebook vector.

Algorithm 8.5.1: Pseudocode for LVQ1.

Input: ProblemSize, InputPatterns, iterationsmax,
CodebookV ectorsnum, learnrate

Output: CodebookVectors
CodebookVectors ←1

InitializeCodebookVectors(CodebookV ectorsnum,
ProblemSize);
for i = 1 to iterationsmax do2

Patterni ← SelectInputPattern(InputPatterns);3

Bmui ← SelectBestMatchingUnit(Patterni,4

CodebookVectors);
foreach Bmuattributei ∈ Bmui do5

if Bmuclassi ≡ Patternclassi then6

Bmuattributei ← Bmuattributei + learnrate ×7

(Patternattributei − Bmuattributei)
else8

Bmuattributei ← Bmuattributei − learnrate ×9

(Patternattributei − Bmuattributei)
end10

end11

end12

return CodebookVectors;13

8.5.5 Heuristics

• Learning Vector Quantization was designed for classification prob-
lems that have existing data sets that can be used to supervise the

344 Chapter 8. Neural Algorithms

learning by the system. The algorithm does not support regression
problems.

• LVQ is non-parametric, meaning that it does not rely on assump-
tions about that structure of the function that it is approximating.

• Real-values in input vectors should be normalized such that x ∈
[0, 1).

• Euclidean distance is commonly used to measure the distance
between real-valued vectors, although other distance measures
may be used (such as dot product), and data specific distance
measures may be required for non-scalar attributes.

• There should be sufficient training iterations to expose all the
training data to the model multiple times.

• The learning rate is typically linearly decayed over the training
period from an initial value to close to zero.

• The more complex the class distribution, the more codebook
vectors that will be required, some problems may need thousands.

• Multiple passes of the LVQ training algorithm are suggested for
more robust usage, where the first pass has a large learning rate
to prepare the codebook vectors and the second pass has a low
learning rate and runs for a long time (perhaps 10-times more
iterations).

8.5.6 Code Listing

Listing 8.4 provides an example of the Learning Vector Quantization
algorithm implemented in the Ruby Programming Language. The
problem is a contrived classification problem in a 2-dimensional domain
x ∈ [0, 1], y ∈ [0, 1] with two classes: ‘A’ (x ∈ [0, 0.4999999], y ∈
[0, 0.4999999]) and ‘B’ (x ∈ [0.5, 1], y ∈ [0.5, 1]).

The algorithm was implemented using the LVQ1 variant where the
best matching codebook vector is located and moved toward the input
vector if it is the same class, or away if the classes differ. A linear decay
was used for the learning rate that was updated after each pattern was
exposed to the model. The implementation can easily be extended to
the other variants of the method.

1 def random_vector(minmax)

2 return Array.new(minmax.size) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

8.5. Learning Vector Quantization 345

7 def generate_random_pattern(domain)

8 classes = domain.keys

9 selected_class = rand(classes.size)

10 pattern = {:label=>classes[selected_class]}

11 pattern[:vector] = random_vector(domain[classes[selected_class]])

12 return pattern

13 end

14

15 def initialize_vectors(domain, num_vectors)

16 classes = domain.keys

17 codebook_vectors = []

18 num_vectors.times do

19 selected_class = rand(classes.size)

20 codebook = {}

21 codebook[:label] = classes[selected_class]

22 codebook[:vector] = random_vector([[0,1],[0,1]])

23 codebook_vectors << codebook

24 end

25 return codebook_vectors

26 end

27

28 def euclidean_distance(c1, c2)

29 sum = 0.0

30 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

31 return Math.sqrt(sum)

32 end

33

34 def get_best_matching_unit(codebook_vectors, pattern)

35 best, b_dist = nil, nil

36 codebook_vectors.each do |codebook|

37 dist = euclidean_distance(codebook[:vector], pattern[:vector])

38 best,b_dist = codebook,dist if b_dist.nil? or dist<b_dist

39 end

40 return best

41 end

42

43 def update_codebook_vector(bmu, pattern, lrate)

44 bmu[:vector].each_with_index do |v,i|

45 error = pattern[:vector][i]-bmu[:vector][i]

46 if bmu[:label] == pattern[:label]

47 bmu[:vector][i] += lrate * error

48 else

49 bmu[:vector][i] -= lrate * error

50 end

51 end

52 end

53

54 def train_network(codebook_vectors, domain, iterations, learning_rate)

55 iterations.times do |iter|

56 pat = generate_random_pattern(domain)

57 bmu = get_best_matching_unit(codebook_vectors, pat)

58 lrate = learning_rate * (1.0-(iter.to_f/iterations.to_f))

59 if iter.modulo(10)==0

60 puts "> iter=#{iter}, got=#{bmu[:label]}, exp=#{pat[:label]}"

61 end

62 update_codebook_vector(bmu, pat, lrate)

346 Chapter 8. Neural Algorithms

63 end

64 end

65

66 def test_network(codebook_vectors, domain, num_trials=100)

67 correct = 0

68 num_trials.times do

69 pattern = generate_random_pattern(domain)

70 bmu = get_best_matching_unit(codebook_vectors, pattern)

71 correct += 1 if bmu[:label] == pattern[:label]

72 end

73 puts "Done. Score: #{correct}/#{num_trials}"

74 return correct

75 end

76

77 def execute(domain, iterations, num_vectors, learning_rate)

78 codebook_vectors = initialize_vectors(domain, num_vectors)

79 train_network(codebook_vectors, domain, iterations, learning_rate)

80 test_network(codebook_vectors, domain)

81 return codebook_vectors

82 end

83

84 if __FILE__ == $0
85 # problem configuration

86 domain = {"A"=>[[0,0.4999999],[0,0.4999999]],"B"=>[[0.5,1],[0.5,1]]}

87 # algorithm configuration

88 learning_rate = 0.3

89 iterations = 1000

90 num_vectors = 20

91 # execute the algorithm

92 execute(domain, iterations, num_vectors, learning_rate)

93 end

Listing 8.4: Learning Vector Quantization in Ruby

8.5.7 References

Primary Sources

The Learning Vector Quantization algorithm was described by Kohonen
in 1988 [2], and was further described in the same year by Kohonen [1]
and benchmarked by Kohonen, Barna, and Chrisley [5].

Learn More

Kohonen provides a detailed overview of the state of LVQ algorithms
and variants (LVQ1, LVQ2, and LVQ2.1) [3]. The technical report
that comes with the LVQ PAK software (written by Kohonen and his
students) provides both an excellent summary of the technique and
its main variants, as well as summarizing the important considerations
when applying the approach [6]. The seminal book on Learning Vector
Quantization and the Self-Organizing Map is “Self-Organizing Maps”

8.5. Learning Vector Quantization 347

by Kohonen, which includes a chapter (Chapter 6) dedicated to LVQ
and its variants [4].

8.5.8 Bibliography

[1] T. Kohonen. An introduction to neural computing. Neural Networks,
1(1):3–16, 1988.

[2] T. Kohonen. Learning vector quantization. Neural Networks, 1:303,
1988.

[3] T. Kohonen. Improved versions of learning vector quantization. In
IJCNN International Joint Conference on Neural Networks, vol-
ume 1, pages 545–550. IEEE Press, 1990.

[4] T. Kohonen. Self-Organizing Maps. Springer, 1995.

[5] T. Kohonen, G. Barna, and R. Chrisley. Statistical pattern recog-
nition with neural networks: benchmarking studies. In IEEE In-
ternational Conference on Neural Networks, volume 1, pages 61–68,
1988.

[6] T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen, and K. Torkkola.
LVQ–PAK: The learning vector quantization program package. Tech-
nical Report A30, Helsinki University of Technology, Laboratory of
Computer and Information Science, Rakentajanaukio, 1996.

348 Chapter 8. Neural Algorithms

8.6 Self-Organizing Map

Self-Organizing Map, SOM, Self-Organizing Feature Map, SOFM, Ko-
honen Map, Kohonen Network.

8.6.1 Taxonomy

The Self-Organizing Map algorithm belongs to the field of Artificial
Neural Networks and Neural Computation. More broadly it belongs
to the field of Computational Intelligence. The Self-Organizing Map
is an unsupervised neural network that uses a competitive (winner-
take-all) learning strategy. It is related to other unsupervised neural
networks such as the Adaptive Resonance Theory (ART) method. It is
related to other competitive learning neural networks such as the the
Neural Gas Algorithm, and the Learning Vector Quantization algorithm
(Section 8.5), which is a similar algorithm for classification without
connections between the neurons. Additionally, SOM is a baseline
technique that has inspired many variations and extensions, not limited
to the Adaptive-Subspace Self-Organizing Map (ASSOM).

8.6.2 Inspiration

The Self-Organizing Map is inspired by postulated feature maps of
neurons in the brain comprised of feature-sensitive cells that provide
ordered projections between neuronal layers, such as those that may
exist in the retina and cochlea. For example, there are acoustic feature
maps that respond to sounds to which an animal is most frequently
exposed, and tonotopic maps that may be responsible for the order
preservation of acoustic resonances.

8.6.3 Strategy

The information processing objective of the algorithm is to optimally
place a topology (grid or lattice) of codebook or prototype vectors in the
domain of the observed input data samples. An initially random pool
of vectors is prepared which are then exposed to training samples. A
winner-take-all strategy is employed where the most similar vector to a
given input pattern is selected, then the selected vector and neighbors of
the selected vector are updated to closer resemble the input pattern. The
repetition of this process results in the distribution of codebook vectors
in the input space which approximate the underlying distribution of
samples from the test dataset. The result is the mapping of the topology
of codebook vectors to the underlying structure in the input samples
which may be summarized or visualized to reveal topologically preserved
features from the input space in a low-dimensional projection.

8.6. Self-Organizing Map 349

8.6.4 Procedure

The Self-Organizing map is comprised of a collection of codebook vectors
connected together in a topological arrangement, typically a one dimen-
sional line or a two dimensional grid. The codebook vectors themselves
represent prototypes (points) within the domain, whereas the topological
structure imposes an ordering between the vectors during the training
process. The result is a low dimensional projection or approximation of
the problem domain which may be visualized, or from which clusters
may be extracted.

Algorithm 8.6.1 provides a high-level pseudocode for preparing code-
book vectors using the Self-Organizing Map method. Codebook vectors
are initialized to small floating point values, or sampled from the domain.
The Best Matching Unit (BMU) is the codebook vector from the pool
that has the minimum distance to an input vector. A distance measure
between input patterns must be defined. For real-valued vectors, this is
commonly the Euclidean distance:

dist(x, c) =

n∑
i=1

(xi − ci)2 (8.11)

where n is the number of attributes, x is the input vector and c is a
given codebook vector.

The neighbors of the BMU in the topological structure of the network
are selected using a neighborhood size that is linearly decreased during
the training of the network. The BMU and all selected neighbors are
then adjusted toward the input vector using a learning rate that too is
decreased linearly with the training cycles:

ci(t+ 1) = learnrate(t)× (ci(t)− xi) (8.12)

where ci(t) is the ith attribute of a codebook vector at time t,
learnrate is the current learning rate, an xi is the ith attribute of a
input vector.

The neighborhood is typically square (called bubble) where all neigh-
borhood nodes are updated using the same learning rate for the iteration,
or Gaussian where the learning rate is proportional to the neighborhood
distance using a Gaussian distribution (neighbors further away from the
BMU are updated less).

8.6.5 Heuristics

• The Self-Organizing Map was designed for unsupervised learning
problems such as feature extraction, visualization and clustering.
Some extensions of the approach can label the prepared codebook
vectors which can be used for classification.

350 Chapter 8. Neural Algorithms

Algorithm 8.6.1: Pseudocode for the SOM.

Input: InputPatterns, iterationsmax, learninitrate, neighborhood
init
size,

Gridwidth, Gridheight
Output: CodebookVectors
CodebookVectors ← InitializeCodebookVectors(Gridwidth,1

Gridheight, InputPatterns);
for i = 1 to iterationsmax do2

learnirate ← CalculateLearningRate(i, learninitrate);3

neighborhoodisize ← CalculateNeighborhoodSize(i,4

neighborhoodinitsize);
Patterni ← SelectInputPattern(InputPatterns);5

Bmui ← SelectBestMatchingUnit(Patterni,6

CodebookVectors);
Neighborhood ← Bmui;7

Neighborhood ← SelectNeighbors(Bmui, CodebookVectors,8

neighborhoodisize);
foreach V ectori ∈Neighborhood do9

foreach V ectorattributei ∈ V ectori do10

V ectorattributei ← V ectorattributei + learnirate ×11

(Patternattributei − V ectorattributei)
end12

end13

end14

return CodebookVectors;15

• SOM is non-parametric, meaning that it does not rely on assump-
tions about that structure of the function that it is approximating.

• Real-values in input vectors should be normalized such that x ∈
[0, 1).

• Euclidean distance is commonly used to measure the distance
between real-valued vectors, although other distance measures
may be used (such as dot product), and data specific distance
measures may be required for non-scalar attributes.

• There should be sufficient training iterations to expose all the
training data to the model multiple times.

• The more complex the class distribution, the more codebook
vectors that will be required, some problems may need thousands.

• Multiple passes of the SOM training algorithm are suggested for
more robust usage, where the first pass has a large learning rate

8.6. Self-Organizing Map 351

to prepare the codebook vectors and the second pass has a low
learning rate and runs for a long time (perhaps 10-times more
iterations).

• The SOM can be visualized by calculating a Unified Distance
Matrix (U-Matrix) shows highlights the relationships between the
nodes in the chosen topology. A Principle Component Analysis
(PCA) or Sammon’s Mapping can be used to visualize just the
nodes of the network without their inter-relationships.

• A rectangular 2D grid topology is typically used for a SOM,
although toroidal and sphere topologies can be used. Hexagonal
grids have demonstrated better results on some problems and grids
with higher dimensions have been investigated.

• The neuron positions can be updated incrementally or in a batch
model (each epoch of being exposed to all training samples). Batch-
mode training is generally expected to result in a more stable
network.

• The learning rate and neighborhood size parameters typically
decrease linearly with the training iterations, although non-linear
functions may be used.

8.6.6 Code Listing

Listing 8.5 provides an example of the Self-Organizing Map algorithm
implemented in the Ruby Programming Language. The problem is a
feature detection problem, where the network is expected to learn a
predefined shape based on being exposed to samples in the domain. The
domain is two-dimensional x, y ∈ [0, 1], where a shape is pre-defined
as a square in the middle of the domain x, y ∈ [0.3, 0.6]. The system
is initialized to vectors within the domain although is only exposed to
samples within the pre-defined shape during training. The expectation
is that the system will model the shape based on the observed samples.

The algorithm is an implementation of the basic Self-Organizing Map
algorithm based on the description in Chapter 3 of the seminal book on
the technique [5]. The implementation is configured with a 4× 5 grid of
nodes, the Euclidean distance measure is used to determine the BMU
and neighbors, a Bubble neighborhood function is used. Error rates
are presented to the console, and the codebook vectors themselves are
described before and after training. The learning process is incremental
rather than batch, for simplicity.

An extension to this implementation would be to visualize the result-
ing network structure in the domain - shrinking from a mesh that covers
the whole domain, down to a mesh that only covers the pre-defined
shape within the domain.

352 Chapter 8. Neural Algorithms

1 def random_vector(minmax)

2 return Array.new(minmax.size) do |i|

3 minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand())

4 end

5 end

6

7 def initialize_vectors(domain, width, height)

8 codebook_vectors = []

9 width.times do |x|

10 height.times do |y|

11 codebook = {}

12 codebook[:vector] = random_vector(domain)

13 codebook[:coord] = [x,y]

14 codebook_vectors << codebook

15 end

16 end

17 return codebook_vectors

18 end

19

20 def euclidean_distance(c1, c2)

21 sum = 0.0

22 c1.each_index {|i| sum += (c1[i]-c2[i])**2.0}

23 return Math.sqrt(sum)

24 end

25

26 def get_best_matching_unit(codebook_vectors, pattern)

27 best, b_dist = nil, nil

28 codebook_vectors.each do |codebook|

29 dist = euclidean_distance(codebook[:vector], pattern)

30 best,b_dist = codebook,dist if b_dist.nil? or dist<b_dist

31 end

32 return [best, b_dist]

33 end

34

35 def get_vectors_in_neighborhood(bmu, codebook_vectors, neigh_size)

36 neighborhood = []

37 codebook_vectors.each do |other|

38 if euclidean_distance(bmu[:coord], other[:coord]) <= neigh_size

39 neighborhood << other

40 end

41 end

42 return neighborhood

43 end

44

45 def update_codebook_vector(codebook, pattern, lrate)

46 codebook[:vector].each_with_index do |v,i|

47 error = pattern[i]-codebook[:vector][i]

48 codebook[:vector][i] += lrate * error

49 end

50 end

51

52 def train_network(vectors, shape, iterations, l_rate, neighborhood_size)

53 iterations.times do |iter|

54 pattern = random_vector(shape)

55 lrate = l_rate * (1.0-(iter.to_f/iterations.to_f))

8.6. Self-Organizing Map 353

56 neigh_size = neighborhood_size * (1.0-(iter.to_f/iterations.to_f))

57 bmu,dist = get_best_matching_unit(vectors, pattern)

58 neighbors = get_vectors_in_neighborhood(bmu, vectors, neigh_size)

59 neighbors.each do |node|

60 update_codebook_vector(node, pattern, lrate)

61 end

62 puts ">training: neighbors=#{neighbors.size}, bmu_dist=#{dist}"

63 end

64 end

65

66 def summarize_vectors(vectors)

67 minmax = Array.new(vectors.first[:vector].size){[1,0]}

68 vectors.each do |c|

69 c[:vector].each_with_index do |v,i|

70 minmax[i][0] = v if v<minmax[i][0]

71 minmax[i][1] = v if v>minmax[i][1]

72 end

73 end

74 s = ""

75 minmax.each_with_index {|bounds,i| s << "#{i}=#{bounds.inspect} "}

76 puts "Vector details: #{s}"

77 return minmax

78 end

79

80 def test_network(codebook_vectors, shape, num_trials=100)

81 error = 0.0

82 num_trials.times do

83 pattern = random_vector(shape)

84 bmu,dist = get_best_matching_unit(codebook_vectors, pattern)

85 error += dist

86 end

87 error /= num_trials.to_f

88 puts "Finished, average error=#{error}"

89 return error

90 end

91

92 def execute(domain, shape, iterations, l_rate, neigh_size, width,

height)

93 vectors = initialize_vectors(domain, width, height)

94 summarize_vectors(vectors)

95 train_network(vectors, shape, iterations, l_rate, neigh_size)

96 test_network(vectors, shape)

97 summarize_vectors(vectors)

98 return vectors

99 end

100

101 if __FILE__ == $0
102 # problem configuration

103 domain = [[0.0,1.0],[0.0,1.0]]

104 shape = [[0.3,0.6],[0.3,0.6]]

105 # algorithm configuration

106 iterations = 100

107 l_rate = 0.3

108 neigh_size = 5

109 width, height = 4, 5

110 # execute the algorithm

354 Chapter 8. Neural Algorithms

111 execute(domain, shape, iterations, l_rate, neigh_size, width, height)

112 end

Listing 8.5: Self-Organizing Map in Ruby

8.6.7 References

Primary Sources

The Self-Organizing Map was proposed by Kohonen in 1982 in a study
that included the mathematical basis for the approach, summary of
related physiology, and simulation on demonstration problem domains
using one and two dimensional topological structures [3]. This work was
tightly related two other papers published at close to the same time on
topological maps and self-organization [1, 2].

Learn More

Kohonen provides a detailed introduction and summary of the Self-
Organizing Map in a journal article [4]. Kohonen et al. provide a
practical presentation of the algorithm and heuristics for configuration
in the technical report written to accompany the released SOM-PAK
implementation of the algorithm for academic research [6]. The seminal
book on the technique is “Self-Organizing Maps” by Kohonen, which
includes chapters dedicated to the description of the basic approach,
physiological interpretations of the algorithm, variations, and summaries
of application areas [5].

8.6.8 Bibliography

[1] T. Kohonen. Automatic formation of topological maps of patterns in
a self-organizing system. In Proceedings of 2nd Scandinavian Conf.
on Image Analysis, pages 214–220, 1981.

[2] T. Kohonen. Clustering, taxonomy, and topological maps of patterns.
In International Conference on Pattern Recognition, pages 114–128,
1982.

[3] T. Kohonen. Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 43:59–69, 1982.

[4] T. Kohonen. The self-organizing map. Proceedings of the IEEE,
78(9):1464–1480, 1990.

[5] T. Kohonen. Self-Organizing Maps. Springer, 1995.

8.6. Self-Organizing Map 355

[6] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen. SOM–PAK:
The self-organizing map program package. Technical Report A31,
Helsinki University of Technology, Laboratory of Computer and
Information Science, 1996.

356 Chapter 8. Neural Algorithms

Part III

Extensions

357

Chapter 9

Advanced Topics

This chapter discusses a number of advanced topics that may be con-
sidered once one or more of the algorithms described in this book have
been mastered.

The topics in this section consider some practical concerns such as:

• How to implement an algorithm using a different programming
paradigm (Section 9.1).

• How to devise and investigate a new biologically-inspired algorithm
(Section 9.2).

• How to test algorithm implementations to ensure they are imple-
mented correctly (Section 9.3).

• How to visualize problems, algorithm behavior and candidate
solutions (Section 9.4).

• How to direct these algorithms toward practical problem solving
(Section 9.5).

• Issues to consider when benchmarking and comparing the capabil-
ities of algorithms (Section 9.6).

The objective of this chapter is to illustrate the concerns and skills
necessary for taking the algorithms described in this book into the
real-world.

359

360 Chapter 9. Advanced Topics

9.1 Programming Paradigms

This section discusses three standard programming paradigms that may
be used to implement the algorithms described throughput the book:

• Procedural Programming (Section 9.1.1)

• Object-Oriented Programming (Section 9.1.2)

• Flow Programming (Section 9.1.3)

Each paradigm is described and an example implementation is pro-
vided using the Genetic Algorithm (described in Section 3.2) as a
context.

9.1.1 Procedural Programming

This section considers the implementation of algorithms from the Clever
Algorithms project in the Procedural Programming Paradigm.

Description

The procedural programming paradigm (also called imperative program-
ming) is concerned with defining a linear procedure or sequence of pro-
gramming statements. A key feature of the paradigm is the partitioning
of functionality into small discrete re-usable modules called procedures
(subroutines or functions) that act like small programs themselves with
their own scope, inputs and outputs. A procedural code example is
executed from a single point of control or entry point which calls out
into declared procedures, which in turn may call other procedures.

Procedural programming was an early so-called ‘high-level program-
ming paradigm’ (compared to lower-level machine code) and is the most
common and well understood form of programming. Newer paradigms
(such as Object-Oriented programming) and modern businesses pro-
gramming languages (such as C++, Java and C#) are built on the
principles of procedural programming.

All algorithms in this book were implemented using a procedural
programming paradigm in the Ruby Programming Language. A pro-
cedural representation was chosen to provide the most transferrable
instantiation of the algorithm implementations. Many languages support
the procedural paradigm and procedural code examples are expected
to be easily ported to popular paradigms such as object-oriented and
functional.

9.1. Programming Paradigms 361

Example

Listing 3.1 in Section 3.2 provides an example of the Genetic Algorithm
implemented in the Ruby Programming Language using the procedural
programming paradigm.

9.1.2 Object-Oriented Programming

This section considers the implementation of algorithms from the Clever
Algorithms project in the Object-Oriented Programming Paradigm.

Description

The Object-Oriented Programming (OOP) paradigm is concerned with
modeling problems in terms of entities called objects that have attributes
and behaviors (data and methods) and interact with other entities
using message passing (calling methods on other entities). An object
developer defines a class or template for the entity, which is instantiated
or constructed and then may be used in the program.

Objects can extend other objects, inheriting some or all of the at-
tributes and behaviors from the parent providing specific modular reuse.
Objects can be treated as a parent type (an object in its inheritance
tree) allowing the use or application of the objects in the program with-
out the caller knowing the specifics of the behavior or data inside the
object. This general property is called polymorphism, which exploits
the encapsulation of attributes and behavior within objects and their
capability of being treated (viewed or interacted with) as a parent type.

Organizing functionality into objects allows for additional constructs
such as abstract types where functionality is only partially defined and
must be completed by descendant objects, overriding where descending
objects re-define behavior defined in a parent object, and static classes
and behaviors where behavior is executed on the object template rather
than the object instance. For more information on Object-Oriented
programming and software design refer to a good textbook on the
subject, such as Booch [1] or Meyer [3].

There are common ways of solving discrete problems using object-
oriented programs called patterns. They are organizations of behavior
and data that have been abstracted and presented as a solution or
idiom for a class of problem. The Strategy Pattern is an object-oriented
pattern that is suited to implementing an algorithm. This pattern is
intended to encapsulate the behavior of an algorithm as a strategy
object where different strategies can be used interchangeably on a given
context or problem domain. This strategy can be useful in situations
where the performance or capability of a range of different techniques
needs to be assessed on a given problem (such as algorithm racing or

362 Chapter 9. Advanced Topics

bake-offs). Additionally, the problem or context can also be modeled
as an interchangeable object, allowing both algorithms and problems
to be used interchangeably. This method is used in object-oriented
algorithm frameworks. For more information on the strategy pattern or
object-oriented design patterns in general, refer to Gamma et al. [2].

Example

Listing 9.1 provides an example of the Genetic Algorithm implemented
in the Ruby Programming Language using the Object-Oriented Pro-
gramming Paradigm.

The implementation provides general problem and strategy classes
that define their behavioral expectations. A OneMax problem class and
a GeneticAlgorithm strategy class are specified. The algorithm makes
few assumptions of the problem other than it can assess candidate
solutions and determine whether a given solution is optimal. The
problem makes very few assumptions about candidate solutions other
than they are map data structures that contain a binary string and
fitness key-value pairs. The use of the Strategy Pattern allows a new
algorithm to easily be defined to work with the existing problem, and
that new problems could be defined for the Genetic Algorithm to execute.

Note that Ruby does not support abstract classes, so this construct
is simulated by defining methods that raise an exception if they are not
overridden by descendant classes.

1 # A problem template

2 class Problem

3 def assess(candidate_solution)

4 raise "A problem has not been defined"

5 end

6

7 def is_optimal?(candidate_solution)

8 raise "A problem has not been defined"

9 end

10 end

11

12 # An strategy template

13 class Strategy

14 def execute(problem)

15 raise "A strategy has not been defined!"

16 end

17 end

18

19 # An implementation of the OneMax problem using the problem template

20 class OneMax < Problem

21

22 attr_reader :num_bits

23

24 def initialize(num_bits=64)

25 @num_bits = num_bits

26 end

9.1. Programming Paradigms 363

27

28 def assess(candidate_solution)

29 if candidate_solution[:bitstring].length != @num_bits

30 raise "Expected #{@num_bits} in candidate solution."

31 end

32 sum = 0

33 candidate_solution[:bitstring].size.times do |i|

34 sum += 1 if candidate_solution[:bitstring][i].chr =='1'
35 end

36 return sum

37 end

38

39 def is_optimal?(candidate_solution)

40 return candidate_solution[:fitness] == @num_bits

41 end

42 end

43

44 # An implementation of the Genetic algorithm using the strategy template

45 class GeneticAlgorithm < Strategy

46

47 attr_reader :max_generations, :population_size, :p_crossover,

:p_mutation

48

49 def initialize(max_gens=100, pop_size=100, crossover=0.98,

mutation=1.0/64.0)

50 @max_generations = max_gens

51 @population_size = pop_size

52 @p_crossover = crossover

53 @p_mutation = mutation

54 end

55

56 def random_bitstring(num_bits)

57 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

58 end

59

60 def binary_tournament(pop)

61 i, j = rand(pop.size), rand(pop.size)

62 j = rand(pop.size) while j==i

63 return (pop[i][:fitness] > pop[j][:fitness]) ? pop[i] : pop[j]

64 end

65

66 def point_mutation(bitstring)

67 child = ""

68 bitstring.size.times do |i|

69 bit = bitstring[i].chr

70 child << ((rand()<@p_mutation) ? ((bit=='1') ? "0" : "1") : bit)

71 end

72 return child

73 end

74

75 def uniform_crossover(parent1, parent2)

76 return ""+parent1 if rand()>=@p_crossover

77 child = ""

78 parent1.length.times do |i|

79 child << ((rand()<0.5) ? parent1[i].chr : parent2[i].chr)

80 end

364 Chapter 9. Advanced Topics

81 return child

82 end

83

84 def reproduce(selected)

85 children = []

86 selected.each_with_index do |p1, i|

87 p2 = (i.modulo(2)==0) ? selected[i+1] : selected[i-1]

88 p2 = selected[0] if i == selected.size-1

89 child = {}

90 child[:bitstring] = uniform_crossover(p1[:bitstring],

p2[:bitstring])

91 child[:bitstring] = point_mutation(child[:bitstring])

92 children << child

93 break if children.size >= @population_size

94 end

95 return children

96 end

97

98 def execute(problem)

99 population = Array.new(@population_size) do |i|

100 {:bitstring=>random_bitstring(problem.num_bits)}

101 end

102 population.each{|c| c[:fitness] = problem.assess(c)}

103 best = population.sort{|x,y| y[:fitness] <=> x[:fitness]}.first

104 @max_generations.times do |gen|

105 selected = Array.new(population_size){|i|

binary_tournament(population)}

106 children = reproduce(selected)

107 children.each{|c| c[:fitness] = problem.assess(c)}

108 children.sort!{|x,y| y[:fitness] <=> x[:fitness]}

109 best = children.first if children.first[:fitness] >= best[:fitness]

110 population = children

111 puts " > gen #{gen}, best: #{best[:fitness]}, #{best[:bitstring]}"

112 break if problem.is_optimal?(best)

113 end

114 return best

115 end

116 end

117

118 if __FILE__ == $0
119 # problem configuration

120 problem = OneMax.new

121 # algorithm configuration

122 strategy = GeneticAlgorithm.new

123 # execute the algorithm

124 best = strategy.execute(problem)

125 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:bitstring]}"

126 end

Listing 9.1: Genetic Algorithm in Ruby using OOP

9.1.3 Flow Programming

This section considers the implementation of algorithms from the Clever
Algorithms project in the Flow Programming paradigm.

9.1. Programming Paradigms 365

Description

Flow, data-flow, or pipeline programming involves chaining a sequence
of smaller processes together and allowing a flow of information through
the sequence in order to perform the desired computation. Units in
the flow are considered black-boxes that communicate with each other
using message passing. The information that is passed between the
units is considered a stream and a given application may have one or
more streams of potentially varying direction. Discrete information in a
stream is partitioned into information packets which are passed from
unit-to-unit via message buffers, queues or similar data structures.

A flow organization allows computing units to be interchanged readily.
It also allows for variations of the pipeline to be considered with minor
reconfiguration. A flow or pipelining structure is commonly used by
software frameworks for the organization within a given algorithm
implementation, allowing the specification of operators that manipulate
candidate solutions to be varied and interchanged.

For more information on Flow Programming see a good textbook on
the subject, such as Morrison [4].

Example

Listing 9.2 provides an example of the Genetic Algorithm implemented
in the Ruby Programming Language using the Flow Programming
paradigm. Each unit is implemented as an object that executes its logic
within a standalone thread that reads input from the input queue and
writes data to its output queue. The implementation shows four flow
units organized into a cyclic graph where the output queue of one unit
is used as the input of the next unit in the cycle (EvalFlowUnit to
StopConditionUnit to SelectFlowUnit to VariationFlowUnit).

Candidate solutions are the unit of data that is passed around in
the flow between units. When the system is started it does not have
any information to process until a set of random solutions are injected
into the evaluation unit’s input queue. The solution are evaluated and
sent to the stop condition unit where the constraints of the algorithm
execution are tested (optima found or maximum number of evaluations)
and the candidates are passed on to the selection flow unit. The selection
unit collects a predefined number of candidate solutions then passes the
better solutions onto the variation unit. The variation unit performs
crossover and mutation on each pair of candidate solutions and sends
the results to the evaluation unit, completing the cycle.

1 require 'thread'
2

3 # Generic flow unit

4 class FlowUnit

5 attr_reader :queue_in, :queue_out, :thread

366 Chapter 9. Advanced Topics

6

7 def initialize(q_in=Queue.new, q_out=Queue.new)

8 @queue_in, @queue_out = q_in, q_out

9 start()

10 end

11

12 def execute

13 raise "FlowUnit not defined!"

14 end

15

16 def start

17 puts "Starting flow unit: #{self.class.name}!"

18 @thread = Thread.new do

19 execute() while true

20 end

21 end

22 end

23

24 # Evaluation of solutions flow unit

25 class EvalFlowUnit < FlowUnit

26 def onemax(bitstring)

27 sum = 0

28 bitstring.size.times {|i| sum+=1 if bitstring[i].chr=='1'}
29 return sum

30 end

31

32 def execute

33 data = @queue_in.pop

34 data[:fitness] = onemax(data[:bitstring])

35 @queue_out.push(data)

36 end

37 end

38

39 # Stop condition flow unit

40 class StopConditionUnit < FlowUnit

41 attr_reader :best, :num_bits, :max_evaluations, :evals

42

43 def initialize(q_in=Queue.new, q_out=Queue.new,

max_evaluations=10000, num_bits=64)

44 @best, @evals = nil, 0

45 @num_bits = num_bits

46 @max_evaluations = max_evaluations

47 super(q_in, q_out)

48 end

49

50 def execute

51 data = @queue_in.pop

52 if @best.nil? or data[:fitness] > @best[:fitness]

53 @best = data

54 puts " >new best: #{@best[:fitness]}, #{@best[:bitstring]}"

55 end

56 @evals += 1

57 if @best[:fitness]==@num_bits or @evals>=@max_evaluations

58 puts "done! Solution: f=#{@best[:fitness]}, s=#{@best[:bitstring]}"

59 @thread.exit()

60 end

9.1. Programming Paradigms 367

61 @queue_out.push(data)

62 end

63 end

64

65 # Fitness-based selection flow unit

66 class SelectFlowUnit < FlowUnit

67 def initialize(q_in=Queue.new, q_out=Queue.new, pop_size=100)

68 @pop_size = pop_size

69 super(q_in, q_out)

70 end

71

72 def binary_tournament(pop)

73 i, j = rand(pop.size), rand(pop.size)

74 j = rand(pop.size) while j==i

75 return (pop[i][:fitness] > pop[j][:fitness]) ? pop[i] : pop[j]

76 end

77

78 def execute

79 population = Array.new

80 population << @queue_in.pop while population.size < @pop_size

81 @pop_size.times do |i|

82 @queue_out.push(binary_tournament(population))

83 end

84 end

85 end

86

87 # Variation flow unit

88 class VariationFlowUnit < FlowUnit

89 def initialize(q_in=Queue.new, q_out=Queue.new, crossover=0.98,

mutation=1.0/64.0)

90 @p_crossover = crossover

91 @p_mutation = mutation

92 super(q_in, q_out)

93 end

94

95 def uniform_crossover(parent1, parent2)

96 return ""+parent1 if rand()>=@p_crossover

97 child = ""

98 parent1.length.times do |i|

99 child << ((rand()<0.5) ? parent1[i].chr : parent2[i].chr)

100 end

101 return child

102 end

103

104 def point_mutation(bitstring)

105 child = ""

106 bitstring.size.times do |i|

107 bit = bitstring[i].chr

108 child << ((rand()<@p_mutation) ? ((bit=='1') ? "0" : "1") : bit)

109 end

110 return child

111 end

112

113 def reproduce(p1, p2)

114 child = {}

115 child[:bitstring] = uniform_crossover(p1[:bitstring],

368 Chapter 9. Advanced Topics

p2[:bitstring])

116 child[:bitstring] = point_mutation(child[:bitstring])

117 return child

118 end

119

120 def execute

121 parent1 = @queue_in.pop

122 parent2 = @queue_in.pop

123 @queue_out.push(reproduce(parent1, parent2))

124 @queue_out.push(reproduce(parent2, parent1))

125 end

126 end

127

128 def random_bitstring(num_bits)

129 return (0...num_bits).inject(""){|s,i| s<<((rand<0.5) ? "1" : "0")}

130 end

131

132 def search(population_size=100, num_bits=64)

133 # create the pipeline

134 eval = EvalFlowUnit.new

135 stopcondition = StopConditionUnit.new(eval.queue_out)

136 selection = SelectFlowUnit.new(stopcondition.queue_out)

137 variation = VariationFlowUnit.new(selection.queue_out, eval.queue_in)

138 # push random solutions into the pipeline

139 population_size.times do

140 solution = {:bitstring=>random_bitstring(num_bits)}

141 eval.queue_in.push(solution)

142 end

143 stopcondition.thread.join

144 return stopcondition.best

145 end

146

147 if __FILE__ == $0
148 best = search()

149 puts "done! Solution: f=#{best[:fitness]}, s=#{best[:bitstring]}"

150 end

Listing 9.2: Genetic Algorithm in Ruby using the Flow Programming

9.1.4 Other Paradigms

A number of popular and common programming paradigms have been
considered in this section, although many more have not been described.

Many programming paradigms are not appropriate for implementing
algorithms as-is, but may be useful with the algorithm as a component
in a broader system, such as Agent-Oriented Programming where the al-
gorithm may be a procedure available to the agent. Meta-programming
a case where the capabilities of the paradigm may be used for parts
of an algorithm implementation, such as the manipulation of candi-
date programs in Genetic Programming (Section 3.3). Aspect-Oriented
Programming could be layered over an object oriented algorithm imple-
mentation and used to separate the concerns of termination conditions

9.1. Programming Paradigms 369

and best solution logging.
Other programming paradigms provide variations on what has al-

ready been described, such as Functional Programming which would be
similar to the procedural example, and Event-Driven Programming that
would not be too dissimilar in principle to the Flow-Based Program-
ming. Another example is the popular idiom of Map-Reduce which is
an application of functional programming principles organized into a
data flow model.

Finally, there are programming paradigms that are not relevant or
feasible to consider implementing algorithms, such as Logic Program-
ming.

9.1.5 Bibliography

[1] G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen, and
K. Houston. Object-Oriented Analysis and Design with Applications.
Addison-Wesley, 1997.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley,
1995.

[3] B. Meyer. Object-Oriented Software Construction. Prentice Hall,
1997.

[4] J-P. Morrison. Flow-Based Programming: A New Approach to
Application Developments. CreateSpace, 2nd edition, 2010.

370 Chapter 9. Advanced Topics

9.2 Devising New Algorithms

This section provides a discussion of some of the approaches that may
be used to devise new algorithms and systems inspired by biological
systems for addressing mathematical and engineering problems. This
discussion covers:

• An introduction to adaptive systems and complex adaptive systems
as an approach for studying natural phenomenon and deducing
adaptive strategies that may be the basis for algorithms (Sec-
tion 9.2.1).

• An introduction to some frameworks and methodologies for reduc-
ing natural systems into abstract information processing proce-
dures and ultimately algorithms (Section 9.2.2).

• A summary of a methodology that may be used to investigate
a devised adaptive system that considers the trade-off in model
fidelity and descriptive power proposed by Goldberg, a pioneer in
the Evolutionary Computation field (Section 9.2.3).

9.2.1 Adaptive Systems

Many algorithms, such as the Genetic Algorithm have come from the
study and models of complex and adaptive systems. Adaptive systems
research provides a methodology by which these systems can be system-
atically investigated resulting in adaptive plans or strategies that can
provide the basis for new and interesting algorithms.

Holland proposed a formalism in his seminal work on adaptive
systems that provides a general manner in which to define an adaptive
system [7]. Phrasing systems in this way provides a framework under
which adaptive systems may be evaluated and compared relative to each
other, the difficulties and obstacles of investigating specific adaptive
systems are exposed, and the abstracted principles of different system
types may be distilled. This section provides a summary of the Holland’s
seminal adaptive systems formalism and considers clonal selection as an
example of an adaptive plan.

Adaptive Systems Formalism

This section presents a brief review of Holland’s adaptive systems formal-
ism described in [7] (Chapter 2). This presentation focuses particularly
on the terms and their description, and has been hybridized with the
concise presentation of the formalism by De Jong [9] (page 6). The
formalism is divided into sections: 1) Primary Objects summarized in
Table 9.1, and 2) Secondary Objects summarized in Table 9.2. Primary

9.2. Devising New Algorithms 371

Objects are the conventional objects of an adaptive system: the envi-
ronment e, the strategy or adaptive plan that creates solutions in the
environment s, and the utility assigned to created solutions U .

Term Object Description

e Environment The environment of the system undergoing adap-
tation.

s Strategy The adaptive plan which determines successive
structural modifications in response to the envi-
ronment.

U Utility A measure of performance or payoff of different
structures in the environment. Maps a given
solution (A) to a real number evaluation.

Table 9.1: Primary Objects in the adaptive systems formalism.

Secondary Objects extend beyond the primary objects providing the
detail of the formalism. These objects suggest a broader context than
that of the instance specific primary objects, permitting the evaluation
and comparison of sets of objects such as plans (S), environments (E),
search spaces (A), and operators (O).

A given adaptive plan acts in discrete time t, which is a useful
simplification for analysis and computer simulation. A framework for a
given adaptive system requires the definition of a set of strategies S, a
set of environments E, and criterion for ranking strategies X. A given
adaptive plan is specified within this framework given the following
set of objects: a search space A, a set of operators O, and feedback
from the environment I. Holland proposed a series of fundamental
questions when considering the definition for an adaptive system, which
he rephrases within the context of the formalism (see Table 9.3).

Some Examples

Holland provides a series of illustrations rephrasing common adaptive
systems in the context of the formalism [7] (pages 35-36). Examples
include: genetics, economics, game playing, pattern recognition, control,
function optimization, and the central nervous system. The formalism
is applied to investigate his schemata theorem, reproductive plans,
and genetic plans. These foundational models became the field of
Evolutionary Computation (Chapter 3).

From working within the formalism, Holland makes six observa-
tions regarding obstacles that may be encountered whilst investigating
adaptive systems [7] (pages 159-160):

• High cardinality of A: makes searches long and storage of relevant

372 Chapter 9. Advanced Topics

Term Object Description

A Search Space The set of attainable structures, solutions, and
the domain of action for an adaptive plan.

E Environments The range of different environments, where e is
an instance. It may also represent the unknowns
of the strategy about the environment.

O Operators Set of operators applied to an instance of A at
time t (At) to transform it into At+1.

S Strategies Set of plans applicable for a given environment
(where s is an instance), that use operators from
the set O.

X Criterion Used to compare strategies (in the set S), under
the set of environments (E). Takes into account
the efficiency of a plan in different environments.

I Feedback Set of possible environmental inputs and signals
providing dynamic information to the system
about the performance of a particular solution
A in a particular environment E.

M Memory The memory or retained parts of the input his-
tory (I) for a solution (A).

Table 9.2: Secondary Objects in the adaptive systems formalism.

data difficult.

• Appropriateness of credit : knowledge of the properties about
‘successful’ structures is incomplete, making it hard to predict
good future structures from past structures.

• High dimensionality of U on an e: performance is a function of a
large number of variables which is difficult for classical optimization
methods.

• Non-linearity of U on an e: many false optima or false peaks,
resulting in the potential for a lot of wasted computation.

• Mutual interference of search and exploitation: the exploration (ac-
quisition of new information), exploitation (application of known
information) trade-off.

• Relevant non-payoff information: the environment may provide a
lot more information in addition to payoff, some of which may be
relevant to improved performance.

9.2. Devising New Algorithms 373

Question Formal

To what parts of its environment is the organism (system,
organization) adapting?

What is E?

How does the environment act upon the adapting organism
(system, organization)?

What is I?

What structures are undergoing adaptation? What is A?

What are the mechanisms of adaptation? What is O?

What part of the history of its interaction with the envi-
ronment does the organism (system, organization) retain
in addition to that summarized in the structure tested?

What is M?

What limits are there to the adaptive process? What is S?

How are different (hypotheses about) adaptive processes to
be compared?

What is X?

Table 9.3: Questions when investigating adaptive systems, taken from
[7] (pg. 29).

Cavicchio provides perhaps one of the first applications of the for-
malism (after Holland) in his dissertation investigating Holland’s repro-
ductive plans [10] (and to a lesser extent in [11]). The work summarizes
the formalism, presenting essentially the same framework, although
he provides a specialization of the search space A. The search space
is broken down into a representation (codes), solutions (devices), and
a mapping function from representation to solutions. The variation
highlights the restriction the representation and mapping have on the
designs available to the adaptive plan. Further, such mappings may not
be one-to-one, there may be many instances in the representation space
that map to the same solution (or the reverse).

Although not explicitly defined, Holland’s specification of structures
A is clear in pointing out that the structures are not bound to a level of
abstraction; the definition covers structures at all levels. Nevertheless,
Cavicchio’s specialization for a representation-solution mapping was
demonstrated to be useful in his exploration of reproductive plans (early
Genetic Algorithms). He proposed that an adaptive system is first order
if the utility function U for structures on an environment encompasses
feedback I.

Cavicchio described the potential independence (component-wise)
and linearity of the utility function with respect to the representation
used. De Jong also employed the formalism to investigate reproductive
plans in his dissertation research [9]. He indicated that the formalism
covers the essential characteristics of adaptation, where the performance
of a solution is a function of its characteristics and its environment.

374 Chapter 9. Advanced Topics

Adaptation is defined as a strategy for generating better-performing
solutions to a problem by reducing initial uncertainty about the environ-
ment via feedback from the evaluation of individual solutions. De Jong
used the formalism to define a series of genetic reproductive plans, which
he investigated in the context of function optimization.

Complex Adaptive Systems

Adaptive strategies are typically complex because they result in irre-
ducible emergent behaviors that occur as a result of the non-linear
interactions of system components. The study of Complex Adaptive
Systems (CAS) is the study of high-level abstractions of natural and
artificial systems that are generally impervious to traditional analy-
sis techniques. Macroscopic patterns emerge from the dynamic and
non-linear interactions of the system’s low-level (microscopic) adaptive
agents. The emergent patterns are more than the sum of their parts.
As such, traditional reductionist methodologies fail to describe how
the macroscopic patterns emerge. Holistic and totalistic investigatory
approaches are applied that relate the simple rules and interactions of
the simple adaptive agents to their emergent effects in a ‘bottom-up’
manner.

Some relevant examples of CAS include: the development of embryos,
ecologies, genetic evolution, thinking and learning in the brain, weather
systems, social systems, insect swarms, bacteria becoming resistant to
an antibiotic, and the function of the adaptive immune system.

The field of CAS was founded at the Santa Fe Institute (SFI), in the
late 1980s by a group of physicists, economists, and others interested
in the study of complex systems in which the agents of those systems
change [1]. One of the most significant contributors to the inception
of the field from the perspective of adaptation was Holland. He was
interested in the question of how computers could be programmed so
that problem-solving capabilities are built up by specifying: “what is
to be done” (inductive information processing) rather than “how to
do it” (deductive information processing). In the 1992 reprint of his
book he provided a summary of CAS with a computational example
called ECHO [7]. His work on CAS was expanded in a later book which
provided an in depth study of the topic [8].

There is no clear definition of a Complex Adaptive System, rather
sets of parsimonious principles and properties, many different researches
in the field defining their own nomenclature. Popular definitions beyond
Holland’s work include that of Gell-Mann [4] and Arthur [2].

9.2. Devising New Algorithms 375

9.2.2 Biologically Inspired Algorithms

Explicit methodologies have been devised and used for investigating nat-
ural systems with the intent of devising new computational intelligence
techniques. This section introduces two such methodologies taken from
the field of Artificial Immune Systems (Chapter 7).

Conceptual Framework

Although the progression from an inspiring biological system to an
inspired computation system may appear to be an intuitive process,
it can involve problems of standardization of nomenclature, effective
abstraction and departure from biology, and rigor. Stepney, et al.
caution that by following a process that lacks the detail of modeling,
one may fall into the trap of reasoning by metaphor [12–14].

Besides the lack of rigor, the trap suggests that such reasoning and
lack of objective analysis limits and biases the suitability and applica-
bility of resultant algorithms. They propose that many algorithms in
the field of Artificial Immune Systems (and beyond) have succumbed to
this trap. This observation resulted in the development and application
of a conceptual framework to provide a general process that may be
applied in the field of Biological Inspired Computation toward realizing
Biological Inspired Computational Intelligence systems.

The conceptual framework is comprised of the following actors and
steps:

1. Biological System: The driving motivation for the work that
possesses some innate information processing qualities.

2. Probes: Observations and experiments that provide a partial or
noisy perspective of the biological system.

3. Models: From probes, abstract and simplified models of the infor-
mation processing qualities of the system are built and validated.

4. Framework : Built and validated analytical computational frame-
works. Validation may use mathematical analysis, benchmark
problems, and engineering demonstration.

5. Algorithms: The framework provides the principles for designing
and analyzing algorithms that may be general and applicable to
domains unrelated to the biological motivation.

Immunology as Information Processing

Forrest and Hofmeyr summarized their AIS research efforts at the Uni-
versity of New Mexico and the Santa Fe Institute as “immunology as

376 Chapter 9. Advanced Topics

information processing” [3]. They define information as spatio-temporal
patterns that can be abstracted and described independent of the bio-
logical system and information processing as computation with these
patterns. They proposed that such patterns are encoded in the proteins
and other molecules of the immune system, and that they govern the
behavior of the biological system. They suggest that their information
processing perspective can be contrasted with the conventional struc-
tural perspective of cellular interactions as mechanical devices. They
consider a simple four-step procedure for the investigation of immunol-
ogy as information processing, transitioning from the biological system
to a usable computational tool:

1. Identify a specific mechanism that appears to be interesting com-
putationally.

2. Write a computer program that implements or models the mecha-
nism.

3. Study its properties through simulation and mathematical analysis.

4. Demonstrate capabilities either by applying the model to a biologi-
cal question of interest or by showing how it can be used profitably
in a computer science setting.

The procedure is similar to the outlined in the conceptual framework
for Biologically Inspired Algorithms in that in addition to identifying
biological mechanisms (input) and demonstrating a resultant algorithms
(output), the procedure 1) highlights the need for abstraction involving
modeling the identified mechanism, and 2) highlights the need to analyze
the models and abstractions. The procedure of Forrest and Hofmeyr
can be used to specialize the conceptual framework of Stepney et al. by
clearly specifying the immunological information processing focus.

9.2.3 Modeling a New Strategy

Once an abstract information processing system is devised it must be
investigated in a systematic manner. There are a range of modeling
techniques for such a system from weak and rapid to realize to strong
and slow to realize. This section considers the trade-off’s in modeling
an adaptive technique.

Engineers and Mathematicians

Goldberg describes the airplane and other products of engineering as
material machines, and distinguishes them from the engineering of
genetic algorithms and other adaptive systems as conceptual machines.

9.2. Devising New Algorithms 377

He argues the methodological distinction between the two is counter-
productive and harmful from the perspective of conceptual machines,
specifically that the methodology of the material is equally applicable
to that of the conceptual [5].

The obsession of mathematical rigor in computer science, although
extremely valuable, is not effective in the investigation of adaptive
systems given their complexity. Goldberg sites the airplane as an
example where the engineering invention is used and trusted without a
formal proof that the invention works (that an airplane can fly).1

This defense leads to what Goldberg refers to the economy of de-
sign, which is demonstrated with a trade-off that distinguishes ‘model
description’ (mathematician-scientists) that is concerned with model
fidelity, and model prescription (engineer-inventor) that is concerned
with a working product. In descriptive modeling the model is the thing
whereas in ‘prescriptive modeling’, the object is the thing. In the latter,
the model (and thus its utility) serves the object, in the former model
accuracy may be of primary concern. This economy of modeling pro-
vides a perspective that distinguishes the needs of the prescriptive and
descriptive fields of investigation.

The mathematician-scientist is interested in increasing model accu-
racy at the expense of speed (slow), whereas the engineer may require
a marginally predictive (less accurate) model relatively quickly. This
trade-off between high-cost high-accuracy models and low-cost low-
fidelity models is what may be referred to as the modeling spectrum that
assists in selecting an appropriate level of modeling. Goldberg proposes
that the field of Genetic Algorithms expend too much effort at either
ends of this spectrum. There is much work where there is an obsession
with blind-prototyping many different tweaks in the hope of striking it
lucky with the right mechanism, operator, or parameter. Alternatively,
there is also an obsession with detailed mathematical models such as
differential equations and Markov chains. The middle ground of the
spectrum, what Goldberg refers to as little models is a valuable economic
modeling consideration for the investigation of conceptual machines to
“do good science through good engineering”.

Methodology

The methodology has been referred to as post-modern systems engineer-
ing and is referred to by Goldberg as a methodology of innovation [6].
The core principles of the process are as follows:

1. Decomposition: Decompose the large problem approximately and
intuitively, breaking into quasi-separate sub-problems (as separate

1Goldberg is quick to point out that sets of equations do exist for various aspects
of flight, although no integrated mathematical proof for airplane flight exists.

378 Chapter 9. Advanced Topics

as possible).

2. Modeling : Investigate each sub-problem separately (or as sepa-
rate as possible) using empirical testing coupled with adequately
predictive, low-cost models.

3. Integration: Assemble the sub-solutions and test the overall in-
vention, paying attention to unforeseen interactions between the
sub-problems.

Decomposition Problem decomposition and decomposition design is
an axiom of reductionism and is at the very heart of problem solving
in computer science. In the context of adaptive systems, one may
consider the base or medium on which the system is performing its
computation mechanisms the so-called building blocks of information
processing. A structural decomposition may involve the architecture
and data structures of the system. Additionally, one may also consider
a functional breakdown of mechanisms such as the operators applied at
each discrete step of an algorithmic process. The reductions achieved
provide the basis of investigation and modeling.

Small Models Given the principle of the economy of modeling pre-
sented as a spectrum, one may extend the description of each of the
five presented model types. Small Models refers to the middle of the
spectrum, specifically to the application of dimensional and facet-wise
models. These are mid-range quantitative models that make accurate
prediction over a limited range of states at moderate cost. Once derived,
this class of models generally require a small amount of formal manipu-
lation and large amounts of data for calibration and verification. The
following summarizes the modeling spectrum:

• Unarticulated Wisdom: (low-cost, high-error) Intuition, what is
used when there is nothing else.

• Articulated Qualitative Models : Descriptions of mechanisms, graph-
ical representations of processes and/or relationships, empirical
observation or statistical data collection and analysis.

• Dimensional Models: Investigate dimensionless parameters of the
system.

• Facet-wise Models: Investigation of a decomposition element of a
model in relative isolation.

• Equations of Motion: (high-cost, low-error) Differential equations
and Markov chains.

9.2. Devising New Algorithms 379

Facet-wise models are an exercise in simple mathematics that may
be used to investigate a decomposition element of a model in relative
isolation. They are based on the idea of bracketing high-order phe-
nomena by simplifying or making assumptions about the state of the
system. An example used by Goldberg from fluid mechanics is a series
of equations that simplify the model by assuming that a fluid or gas has
no viscosity, which matches no known substance. A common criticism of
this modeling approach is “system X doesn’t work like that, the model is
unrealistic.” The source of such concerns with adaptive systems is that
their interactions are typically high-dimensional and non-linear. Gold-
berg’s response is that for a given poorly understood area of research,
any ‘useful’ model is better than no model. Dimensional analysis or the
so-called dimensional reasoning and scaling laws are another common
conceptual tool in engineering and the sciences. Such models may be
used to investigate dimensionless parameters of the system, which may
be considered the formalization of the systemic behaviors.

Integration Integration is a unification process of combining the
findings of various models together to form a patch-quilt coherent theory
of the system. Integration is not limited to holistic unification, and
one may address specific hypothesis regarding the system resulting in
conclusions about existing systems and design decisions pertaining to
the next generation of systems.

Application In addition to elucidating the methodology, Goldberg
specifies a series of five useful heuristics for the application of the
methodology (taken from [5], page 8):

1. Keep the goal of a working conceptual machine in mind. Experi-
menters commonly get side tracked by experimental design and
statistical verification; theoreticians get side tracked with notions
of mathematical rigor and model fidelity.

2. Decompose the design ruthlessly. One cannot address the analytical
analysis of a system like a Genetic Algorithm in one big ‘gulp’.

3. Use facet-wise models with almost reckless abandon. One should
build easy models that can be solved by bracketing everything
that gets in the way.

4. Integrate facet-wise models using dimensional arguments. One can
combine many small models together in a patch-quilt manner and
defend the results of such models using dimensional analysis.

5. Build high-order models when small models become inadequate.
Add complexity to models as complexity is needed (economy of
modeling).

380 Chapter 9. Advanced Topics

9.2.4 Bibliography

[1] P. W. Anderson, K. J. Arrow, and D. Pines. Proceedings of The
Santa Fe Institute Studies in the Sciences of Complexity - Econ-
omy As an Evolving Complex System. Addison Wesley Publishing
Company, USA, 1988.

[2] W. B. Arthur. Introduction: Process and emergence in the economy.
In S. Durlauf and D. A. Lane, editors, The Economy as an Evolving
Complex System II, volume Volume XXVII. Addison-Wesley Pub.
Co, Reading, Mass, USA, 1997.

[3] S. Forrest and S. A. Hofmeyr. Immunology as information pro-
cessing. In Design Principles for the Immune System and Other
Distributed Autonomous Systems, pages 361–388. Oxford University
Press, New York, 2001.

[4] M. Gell-Mann. Complex adaptive systems. In D. Pines and
D. Meltzer, editors, Complexity: metaphors, models, and reality,
pages 17–45. Addison-Wesley, USA, 1994.

[5] D. E. Goldberg. From genetic and evolutionary optimization to
the design of conceptual machines. Evolutionary Optimization,
1(1):1–12, 1999.

[6] D. E. Goldberg. The design of innovating machines: A fundamental
discipline for a postmodern systems engineering. In Engineering
Systems Symposium. MIT Engineering Systems Division, USA,
2004.

[7] J. H. Holland. Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and arti-
ficial intelligence. University of Michigan Press, 1975.

[8] J. H. Holland. Hidden Order: How Adaptation Builds Complexity.
Addison Wesley Publishing Company, USA, 1995.

[9] K. A. De Jong. An analysis of the behavior of a class of genetic
adaptive systems. PhD thesis, University of Michigan Ann Arbor,
MI, USA, 1975.

[10] D. J. Cavicchio Jr. Adaptive Search Using Simulated Evolution.
PhD thesis, The University of Michigan, 1970.

[11] D. J. Cavicchio Jr. Reproductive adaptive plans. In Proceedings of
the ACM annual conference, volume 1, New York, NY, USA, 1972.
ACM.

9.2. Devising New Algorithms 381

[12] S. Stepney, R. E. Smith, J. Timmis, and A. M. Tyrrell. Towards a
conceptual framework for artificial immune systems. In V. Cutello,
P. J. Bentley, and J. Timmis, editors, Lecture Notes in Computer
Science, pages 53–64. Springer-Verlag, Germany, 2004.

[13] S. Stepney, R. E. Smith, J. Timmis, A. M. Tyrrell, M. J. Neal,
and A. N. W. Hone. Conceptual frameworks for artificial im-
mune systems. International Journal of Unconventional Computing,
1(3):315–338, July 2005.

[14] J. Twycross and U. Aickelin. Towards a conceptual framework for
innate immunity. In Lecture Notes in Computer Science, pages
112–125. Springer, Germany, 2005.

382 Chapter 9. Advanced Topics

9.3 Testing Algorithms

This section provides an introduction to software testing and the testing
of Artificial Intelligence algorithms. Section 9.3.1 introduces software
testing and focuses on a type of testing relevant to algorithms called
unit testing. Section 9.3.2 provides a specific example of an algorithm
and a prepared suite of unit tests, and Section 9.3.3 provides some
rules-of-thumb for testing algorithms in general.

9.3.1 Software Testing

Software testing in the field of Software Engineering is a process in
the life-cycle of a software project that verifies that the product or
service meets quality expectations and validates that software meets
the requirements specification. Software testing is intended to locate
defects in a program, although a given testing method cannot guarantee
to locate all defects. As such, it is common for an application to be
subjected to a range of testing methodologies throughout the software
life-cycle, such as unit testing during development, integration testing
once modules and systems are completed, and user acceptance testing
to allow the stakeholders to determine if their needs have been met.

Unit testing is a type of software testing that involves the preparation
of well-defined procedural tests of discrete functionality of a program
that provide confidence that a module or function behaves as intended.
Unit tests are referred to as ‘white-box’ tests (contrasted to ‘black-
box’ tests) because they are written with full knowledge of the internal
structure of the functions and modules under tests. Unit tests are
typically prepared by the developer that wrote the code under test and
are commonly automated, themselves written as small programmers
that are executed by a unit testing framework (such as JUnit for Java or
the Test framework in Ruby). The objective is not to test each path of
execution within a unit (called complete-test or complete-code coverage),
but instead to focus tests on areas of risk, uncertainty, or criticality.
Each test focuses on one aspect of the code (test one thing) and are
commonly organized into test suites of commonality.

Some of the benefits of unit testing include:

• Documentation: The preparation of a suite of tests for a given
system provide a type of programming documentation highlighting
the expected behavior of functions and modules and providing
examples of how to interact with key components.

• Readability : Unit testing encourages a programming style of small
modules, clear input and output and fewer inter-component de-
pendencies. Code written for easy of testing (testability) may be
easier to read and follow.

9.3. Testing Algorithms 383

• Regression: Together, the suite of tests can be executed as a
regression-test of the system. The automation of the tests means
that any defects caused by changes to the code can easily be
identified. When a defect is found that slipped through, a new
test can be written to ensure it will be identified in the future.

Unit tests were traditionally written after the program was completed.
A popular alternative is to prepare the tests before the functionality of
the application is prepared, called Test-First or Test-Driven Development
(TDD). In this method, the tests are written and executed, failing until
the application functionality is written to make the test pass. The early
preparation of tests allow the programmer to consider the behavior
required from the program and the interfaces and functions the program
needs to expose before they are written.

The concerns of software testing are very relevant to the development,
investigation, and application of Metaheuristic and Computational In-
telligence algorithms. In particular, the strong culture of empirical
investigation and prototype-based development demands a baseline level
of trust in the systems that are presented in articles and papers. Trust
can be instilled in an algorithm by assessing the quality of the algorithm
implementation itself. Unit testing is lightweight (requiring only the
writing of automated test code) and meets the needs of promoting qual-
ity and trust in the code while prototyping and developing algorithms.
It is strongly suggested as a step in the process of empirical algorithm
research in the fields of Metaheuristics, Computational Intelligence, and
Biologically Inspired Computation.

9.3.2 Unit Testing Example

This section provides an example of an algorithm and its associated unit
tests as an illustration of the presented concepts. The implementation
of the Genetic Algorithm is discussed from the perspective of algorithm
testing and an example set of unit tests for the Genetic Algorithm
implementation are presented as a case study.

Algorithm

Listing 3.1 in Section 3.2 provides the source code for the Genetic Algo-
rithm in the Ruby Programming Language. Important considerations
when in using the Ruby test framework, is ensuring that the functions of
the algorithm are exposed for testing and that the algorithm demonstra-
tion itself does not execute. This is achieved through the use of the (if
FILE == $0) condition, which ensures the example only executes

when the file is called directly, allowing the functions to be imported
and executed independently by a unit test script. The algorithm is

384 Chapter 9. Advanced Topics

very modular with its behavior partitioned into small functions, most of
which are independently testable.

The reproduce function has some dependencies although its orches-
tration of sub-functions is still testable. The search function is the
only monolithic function, which both depends on all other functions in
the implementation (directly or indirectly) and hence is difficult to unit
test. At best, the search function may be a case for system testing
addressing functional requirements, such as “does the algorithm deliver
optimized solutions”.

Unit Tests

Listing 9.3 provides the TC GeneticAlgorithm class that makes use of
the built-in Ruby unit testing framework by extending the TestCase

class. The listing provides an example of ten unit tests for six of the
functions in the Genetic Algorithm implementation. Two types of unit
tests are provided:

• Deterministic: Directly test the function in question, address-
ing questions such as: does onemax add correctly? and does
point mutation behave correctly?

• Probabilistic: Test the probabilistic properties of the function in
question, addressing questions such as: does random bitstring

provide an expected 50/50 mixture of 1s and 0s over a large number
of cases? and does point mutation make an expected number of
changes over a large number of cases?

The tests for probabilistic expectations is a weaker form of unit
testing that can be used to either provide additional confidence to
deterministically tested functions, or to be used as a last resort when
direct methods cannot be used.

Given that a unit test should ‘test one thing’ it is common for a given
function to have more than one unit tests. The reproduce function is a
good example of this with three tests in the suite. This is because it is
a larger function with behavior called in dependent functions which is
varied based on parameters.

1 class TC_GeneticAlgorithm < Test::Unit::TestCase

2

3 # test that the objective function behaves as expected

4 def test_onemax

5 assert_equal(0, onemax("0000"))

6 assert_equal(4, onemax("1111"))

7 assert_equal(2, onemax("1010"))

8 end

9

10 # test the creation of random strings

9.3. Testing Algorithms 385

11 def test_random_bitstring

12 assert_equal(10, random_bitstring(10).size)

13 assert_equal(0, random_bitstring(10).delete('0').delete('1').size)
14 end

15

16 # test the approximate proportion of 1's and 0's
17 def test_random_bitstring_ratio

18 s = random_bitstring(1000)

19 assert_in_delta(0.5, (s.delete('1').size/1000.0), 0.05)

20 assert_in_delta(0.5, (s.delete('0').size/1000.0), 0.05)

21 end

22

23 # test that members of the population are selected

24 def test_binary_tournament

25 pop = Array.new(10) {|i| {:fitness=>i} }

26 10.times {assert(pop.include?(binary_tournament(pop)))}

27 end

28

29 # test point mutations at the limits

30 def test_point_mutation

31 assert_equal("0000000000", point_mutation("0000000000", 0))

32 assert_equal("1111111111", point_mutation("1111111111", 0))

33 assert_equal("1111111111", point_mutation("0000000000", 1))

34 assert_equal("0000000000", point_mutation("1111111111", 1))

35 end

36

37 # test that the observed changes approximate the intended probability

38 def test_point_mutation_ratio

39 changes = 0

40 100.times do

41 s = point_mutation("0000000000", 0.5)

42 changes += (10 - s.delete('1').size)
43 end

44 assert_in_delta(0.5, changes.to_f/(100*10), 0.05)

45 end

46

47 # test cloning with crossover

48 def test_crossover_clone

49 p1, p2 = "0000000000", "1111111111"

50 100.times do

51 s = crossover(p1, p2, 0)

52 assert_equal(p1, s)

53 assert_not_same(p1, s)

54 end

55 end

56

57 # test recombination with crossover

58 def test_crossover_recombine

59 p1, p2 = "0000000000", "1111111111"

60 100.times do

61 s = crossover(p1, p2, 1)

62 assert_equal(p1.size, s.size)

63 assert_not_equal(p1, s)

64 assert_not_equal(p2, s)

65 s.size.times {|i| assert((p1[i]==s[i]) || (p2[i]==s[i])) }

66 end

386 Chapter 9. Advanced Topics

67 end

68

69 # test odd sized population

70 def test_reproduce_odd

71 pop = Array.new(9) {|i| {:fitness=>i,:bitstring=>"0000000000"} }

72 children = reproduce(pop, pop.size, 0, 1)

73 assert_equal(9, children.size)

74 end

75

76 # test reproduce size mismatch

77 def test_reproduce_mismatch

78 pop = Array.new(10) {|i| {:fitness=>i,:bitstring=>"0000000000"} }

79 children = reproduce(pop, 9, 0, 0)

80 assert_equal(9, children.size)

81 end

82 end

Listing 9.3: Unit Tests for the Genetic Algorithm in Ruby

9.3.3 Rules-of-Thumb

Unit testing is easy, although writing good unit tests is difficult given the
complex relationship the tests have with the code under test. Testing
Metaheuristics and Computational Intelligence algorithms is harder
again given their probabilistic nature and their ability to ‘work in spite
of you’, that is, provide some kind of result even when implemented
with defects.

The following guidelines may help when unit testing an algorithm:

• Start Small : Some unit tests are better than no unit test and each
additional test can improve the trust and the quality of the code.
For an existing algorithm implementation, start by writing a test
for a small and simple behavior and slowly build up a test suite.

• Test one thing : Each test should focus on verifying the behavior
of one aspect of one unit of code. Writing concise and behavior-
focused unit tests are the objective of the methodology.

• Test once: A behavior or expectation only needs to be tested once,
do not repeat a test each time a given unit is tested.

• Don’t forget the I/O : Remember to test the inputs and outputs of
a unit of code, specifically the pre-conditions and post-conditions.
It can be easy to focus on the decision points within a unit and
forget its primary purpose.

• Write code for testability : The tests should help to shape the code
they test. Write small functions or modules, think about testing
while writing code (or write tests first), and refactor code (update
code after the fact) to make it easier to test.

9.3. Testing Algorithms 387

• Function independence: Attempt to limit the direct dependence
between functions, modules, objects and other constructs. This is
related to testability and writing small functions although suggests
limits on how much interaction there is between units of code in
the algorithm. Less dependence means less side-effects of a given
unit of code and ultimately less complicated tests.

• Test Independence: Test should be independent from each other.
Frameworks provide hooks to set-up and tear-down state prior to
the execution of each test, there should be no needed to have one
test prepare data or state for other tests. Tests should be able to
execute independently and in any order.

• Test your own code: Avoid writing tests that verify the behavior
of framework or library code, such as the randomness of a random
number generator or whether a math or string function behaves
as expected. Focus on writing test for the manipulation of data
performed by the code you have written.

• Probabilistic testing : Metaheuristics and Computational Intelli-
gence algorithms generally make use of stochastic or probabilistic
decisions. This means that some behaviors are not deterministic
and are more difficult to test. As with the example, write prob-
abilistic tests to verify that such processes behave as intended.
Given that probabilistic tests are weaker than deterministic tests,
consider writing deterministic tests first. A probabilistic behavior
can be made deterministic by replacing the random number gener-
ator with a proxy that returns deterministic values, called a mock.
This level of testing may require further impact to the original
code to allow for dependent modules and objects to be mocked.

• Consider test-first : Writing the tests first can help to crystallize
expectations when implementing an algorithm from the literature,
and help to solidify thoughts when developing or prototyping a
new idea.

9.3.4 References

For more information on software testing, consult a good book on
software engineering. Two good books dedicated to testing are “Beautiful
Testing: Leading Professionals Reveal How They Improve Software” that
provides a compendium of best practices from professional programers
and testers [2], and “Software testing” by Patton that provides a more
traditional treatment [4].

Unit testing is covered in good books on software engineering or
software testing. Two good books that focus on unit testing include

388 Chapter 9. Advanced Topics

“Test Driven Development: By Example” on the TDD methodology by
Beck, a pioneer of Extreme Programming and Test Drive Development
[1] and “Pragmatic unit testing in Java with JUnit” by Hunt and Thomas
[3].

9.3.5 Bibliography

[1] K. Beck. Test Driven Development: By Example. Addison-Wesley
Professional, 2002.

[2] A. Goucher and T. Riley, editors. Beautiful Testing: Leading Profes-
sionals Reveal How They Improve Software. O’Reilly Media, 2009.

[3] A. Hunt and D. Thomas. Pragmatic unit testing in Java with JUnit.
Pragmatic Bookshelf, 2003.

[4] R. Patton. Software testing. Sams, 2nd edition, 2005.

9.4. Visualizing Algorithms 389

9.4 Visualizing Algorithms

This section considers the role of visualization in the development and ap-
plication of algorithms from the fields of Metaheuristics, Computational
Intelligence, and Biologically Inspired Computation. Visualization can
be a powerful technique for exploring the spatial relationships between
data (such as an algorithm’s performance over time) and investigatory
tool (such as plotting an objective problem domain or search space).
Visualization can also provide a weak form of algorithm testing, provid-
ing observations of efficiency or efficacy that may be indicative of the
expected algorithm behavior.

This section provides a discussion of the techniques and methods
that may be used to explore and evaluate the problems and algorithms
described throughout this book. The discussion and examples in this
section are primarily focused on function optimization problems, al-
though the principles of visualization as exploration (and a weak form
of algorithm testing) are generally applicable to function approximation
problem instances.

9.4.1 Gnuplot

Gnuplot is a free open source command line tool used to generate plots
from data. It supports a large number of different plot types and provides
seemingly limitless configurability. Plots are shown to the screen by
default, but the tool can easily be configured to generate image files as
well as LATEX, PostScript and PDF documents.

Gnuplot can be downloaded from the website2 that also provides
many demonstrations of different plot types with sample scripts showing
how the plots were created. There are many tutorials and examples on
the web, and help is provided inside the Gnuplot software by typing
help followed by the command name (for example: help plot). For
a more comprehensive reference on Gnuplot, see Janert’s introductory
book to the software, “Gnuplot in Action” [1].

Gnuplot was chosen for the demonstrations in this section as useful
plots can be created with a minimum number of commands. Additionally,
it is easily integrated into a range of scripting languages is supported
on a range of modern operating systems. All examples in this section
include both the resulting plot and the script used to generate it. The
scripts may be typed directly into the Gnuplot interpreter or into a file
which is processed by the Gnuplot command line tool. The examples in
this section provide a useful starting point for visualizing the problems
and algorithms described throughout this book.

2Gnuplot URL: http://www.gnuplot.info

http://www.gnuplot.info

390 Chapter 9. Advanced Topics

9.4.2 Plotting Problems

The visualization of the problem under study is an excellent start in
learning about a given domain. A simple spatial representation of the
search space or objective function can help to motivate the selection
and configuration of an appropriate technique.

The visualization method is specific to the problem type and in-
stance being considered. This section provides examples of visualizing
problems from the fields of continuous and combinatorial function opti-
mization, two classes of problems that appear frequently in the described
algorithms.

Continuous Function Optimization

A continuous function optimization problem is typically visualized in two
dimensions as a line where x = input, y = f(input) or three dimensions
as a surface where x, y = input, z = f(input).

Some functions may have many more dimensions, which if the func-
tion is linearly separable can be visualized in lower dimensions. Functions
that are not linearly-separable may be able to make use of projection
techniques such as Principle Component Analysis (PCA). For example,
preparing a stratified sample of the search space as vectors with associ-
ated cost function value and using PCA to project the vectors onto a
two-dimensional plane for visualization.

Similarly, the range of each variable input to the function may be
large. This may mean that some of the complexity or detail may be
lost when the function is visualized as a line or surface. An indication
of this detail may be achieved by creating spot-sample plots of narrow
sub-sections of the function.

Figure 9.1 provides an example of the Basin function in one dimension.
The Basin function is a continuous function optimization that seeks
min f(x) where f =

∑n
i=1 x

2
i , −5.0 ≤ xi ≤ 5.0. The optimal solution for

this function is (v0, . . . , vn−1) = 0.0. Listing 9.4 provides the Gnuplot
script used to prepare the plot (n = 1).

1 set xrange [-5:5]

2 plot x*x

Listing 9.4: Gnuplot script for plotting a function in one-dimension.

Figure 9.2 provides an example of the basin function in two-dimensions
as a three-dimensional surface plot. Listing 9.5 provides the Gnuplot
script used to prepare the surface plot.

1 set xrange [-5:5]

2 set yrange [-5:5]

3 set zrange [0:50]

4 splot x*x+y*y

9.4. Visualizing Algorithms 391

0

5

10

15

20

25

-4 -2 0 2 4

Figure 9.1: Plot of the Basin function in one-dimension.

-4 -2
0

2
4 -4

-2
0

2
4

0
10
20
30
40
50

Figure 9.2: Plot of the Basin function in two-dimensions.

392 Chapter 9. Advanced Topics

Listing 9.5: Gnuplot script for plotting a function in two-dimensions

Both plots show the optimum in the center of the domain at x = 0.0
in one-dimension and x, y = 0.0 in two-dimensions.

Traveling Salesman Problem

The Traveling Salesman Problem (TSP) description is comprised of
a list of cities, each with a different coordinate (at least in the case
of the symmetric TSP). This can easily be visualized as a map if the
coordinates at latitudes and longitudes, or as a scatter plot.

A second possible visualization is to prepare a distance matrix
(distance between each point and all other points) and visualize the
matrix directly, with each cell shaded relative to the distances of all
other cells (largest distances darker and the shorter distances lighter).
The light areas in the matrix highlight short or possible nearest-neighbor
cities.

Figure 9.3 provides a scatter plot of the Berlin52 TSP used through
out the algorithm descriptions in this book. The Berlin52 problem seeks
a permutation of the order to visit cities (called a tour) that minimize
the total distance traveled. The optimal tour distance for Berlin52 is
7542 units.

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200 1400 1600 1800

+

+

+
+++

+

+

+
+

+
+

+

+

+

+

+ +

+

+

+

+

+

+
+

+
+

+

+
+

+

+

+

+++ +
+++

+

+

+

+

+

+

+

++

+

+

+

Figure 9.3: Plot of the cities of the Berlin52 TSP.

9.4. Visualizing Algorithms 393

Listing 9.6 provides the Gnuplot script used to prepare the plot,
where berlin52.tsp is a file that contains a listing of the coordinates of
all cities, one city per line separated by white space. Listing 9.7 provides
a snippet of the first five lines of the berlin52.tsp file.

1 plot "berlin52.tsp"

Listing 9.6: Gnuplot script for plotting the Berlin52 TSP.

1 565.0 575.0

2 25.0 185.0

3 345.0 750.0

4 945.0 685.0

5 845.0 655.0

6 ...

Listing 9.7: Snippet of the berlin52.tsp file.

The scatter plot shows some clustering of points toward the middle
of the domain as well as many points spaced out near the periphery of
the plot. An optimal solution is not obvious from looking at the plot,
although one can see the potential for nearest-neighbor heuristics and
importance of structure preserving operations on candidate solutions.

9.4.3 Plotting Algorithm Performance

Visualizing the performance of an algorithm can give indications that
it is converging (implemented correctly) and provide insight into its
dynamic behavior. Many algorithms are very simple to implement but
exhibit complex dynamic behavior that is difficult to model and predict
beforehand. An understanding of such behavior and the effects of chang-
ing an algorithm’s parameters can be understood through systematic
and methodological investigation. Exploring parameter configurations
and plots of an algorithm’s performance can give a quick first-pass
approximation of the algorithms capability and potentially highlight
fruitful areas for focused investigation.

Two quite different perspectives on visualizing algorithm performance
are: a single algorithm run and a comparison between multiple algorithm
runs. The visualization of algorithm runs is explored in this section in
the context of the Genetic Algorithm applied to a binary optimization
problem called OneMax (see Section 3.2).

Single Algorithm Run

The performance of an algorithm over the course of a single run can easily
be visualized as a line graph, regardless of the specific measures used.

394 Chapter 9. Advanced Topics

The graph can be prepared after algorithm execution has completed,
although, many algorithm frameworks provide dynamic line graphs.

Figure 9.4 provides an example line graph, showing the quality of the
best candidate solution located by the Genetic Algorithm each generation
for a single run applied to a 64-bit OneMax problem. Listing 9.8 provides
the Gnuplot script used to prepare the plot, where ga1.txt is a text file
that provides the fitness of the best solution each algorithm iteration
on a new line. Listing 9.9 provides a snippet of the first five lines of the
ga1.txt file.

46

48

50

52

54

56

58

60

62

64

0 5 10 15 20 25 30
++

+
++

+

++
++

+
+

+++

++
++++

+
+

+++++
+

Figure 9.4: Line graph of the best solution found by the Genetic Algo-
rithm.

1 set yrange [45:64]

2 plot "ga1.txt" with linespoints

Listing 9.8: Gnuplot script for creating a line graph.

1 45

2 45

3 47

4 48

5 48

6 ...

Listing 9.9: Snippet of the ga1.txt file.

9.4. Visualizing Algorithms 395

Multiple Algorithm Runs

Multiple algorithm runs can provide insight into the tendency of an
algorithm or algorithm configuration on a problem, given the stochastic
processes that underlie many of these techniques. For example, a
collection of the best result observed over a number of runs may be
taken as a distribution indicating the capability of an algorithm for
solving a given instance of a problem. This distribution may be visualized
directly.

Figure 9.5 provides a histogram plot showing the best solutions found
and the number of times they were located by Genetic Algorithm over
100 runs on a 300-bit OneMax function.

0

2

4

6

8

10

12

14

16

276 278 280 282 284 286 288 290

Figure 9.5: Histogram of the best solutions found by a Genetic Algo-
rithm.

Listing 9.10 provide the Gnuplot script used to prepare the plot,
where ga2.histogram.txt is a text file that contains discrete fitness
values and the number of times it was discovered by the algorithm over
100 runs.

1 set yrange [0:17]

2 set xrange [275:290]

3 plot "ga2.histogram.txt" with boxes

Listing 9.10: Gnuplot script for creating a histogram.

Listing 9.11 provides a snippet of the first five lines of the ga2.histogram.txt
file.

396 Chapter 9. Advanced Topics

1 276 3

2 277 3

3 278 3

4 279 14

5 280 11

6 ...

Listing 9.11: Snippet of the ga2.histogram.txt file.

Multiple Distributions of Algorithm Runs

Algorithms can be compared against each other based on the distribu-
tions of algorithm performance over a number of runs. This comparison
usually takes the form of statistical tests that can make meaningful
statements about the differences between distributions. A visualiza-
tion of the relative difference between the distributions can aid in an
interpretation of such statistical measures.

A compact way for representing a distribution is to use a box-and-
whisker plot that partitions the data into quartiles, showing the central
tendency of the distribution, the middle mass of the data (the second and
third quartiles), the limits of the distribution and any outliers. Algorithm
run distributions may be summarized as a box-and-whisker plots and
plotted together to spatially show relative performance relationships.

Figure 9.6 provides box-and-whisker plots of the best score distribu-
tion of 100 runs for the Genetic Algorithm applied to a 300-bit OneMax
problem with three different mutation configurations. The measure
collected from each run was the quality of the best candidate solution
found.

Listing 9.12 provide the Gnuplot script used to prepare the plot,
where the file boxplots1.txt contains summaries of the results one
run per line, each each line containing the min, first, second, and third
quartiles and the max values separated by a space. Listing 9.13 provides
a complete listing of the three lines of the boxplots1.txt file.

1 set bars 15.0

2 set xrange [-1:3]

3 plot 'boxplots1.txt' using 0:2:1:5:4 with candlesticks whiskerbars 0.5

Listing 9.12: Gnuplot script for creating a Box-and-whisker plot.

1 251.0 261.0 263.0 266.0 277.0

2 214.0 218.0 220.0 224.0 234.0

3 176.0 180.0 182.0 184.0 192.0

Listing 9.13: Complete listing of the boxplots1.txt file.

9.4. Visualizing Algorithms 397

160

180

200

220

240

260

280

-1 -0.5 0 0.5 1 1.5 2 2.5 3

Figure 9.6: Box-and-whisker plots of the Genetic Algorithm’s perfor-
mance.

9.4.4 Plotting Candidate Solutions

Visualizing candidate solutions can provide an insight into the com-
plexity of the problem and the behavior of an algorithm. This section
provides examples of visualizing candidate solutions in the context of
their problem domains from both continuous and combinatorial function
optimization.

Continuous Function Optimization

Visualizing candidate solutions from a continuous function optimization
domain at periodic times over the course of a run can provide an indica-
tion of the algorithms behavior in moving through a search space. In
low dimensions (such as one or two dimensions) this can provide quali-
tative insights into the relationship between algorithm configurations
and behavior.

Figure 9.7 provides a plot of the best solution found each iteration
by the Particle Swarm Optimization algorithm on the Basin function
in two dimensions (see Section 6.2). The positions of the candidate
solutions are projected on top of a heat map of the Basin function in
two-dimensions, with the gradient representing the cost of solutions at
each point. Listing 9.14 provides the Gnuplot script used to prepare the
plot, where pso1.txt is a file that contains the coordinates of the best

398 Chapter 9. Advanced Topics

solution found by the algorithm, with one coordinate per line separated
by a space. Listing 9.15 provides a snippet of the first five lines of the
pso1.txt file.

-4 -2 0 2 4

-4

-2

 0

 2

 4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

Figure 9.7: Heat map plot showing selected samples in the domain.

1 set xrange [-5:5]

2 set yrange [-5:5]

3 set pm3d map

4 set palette gray negative

5 set samples 20

6 set isosamples 20

7 splot x*x+y*y, "pso1.txt" using 1:2:(0) with points

Listing 9.14: Gnuplot script use to create a heat map and selected
samples.

1 -3.9986483808224222 3.8910758979126956 31.12966051677087

2 -3.838580364459159 3.266132168962991 25.402318559546302

3 -3.678512348095896 2.6411884400132863 20.507329470753803

4 -3.518444331732633 2.0162447110635817 16.44469325039336

5 -3.35837631536937 1.391300982113877 13.214409898464986

6 ...

Listing 9.15: Snippet of the pso1.txt file.

9.4. Visualizing Algorithms 399

Traveling Salesman Problem

Visualizing the results of a combinatorial optimization can provide insight
into the areas of the problem that a selected technique is handling well,
or poorly. Candidate solutions can be visualized over the course of a
run to observe how the complexity of solutions found by a technique
change over time. Alternatively, the best candidate solutions can be
visualized at the end of a run.

Candidate solutions for the TSP are easily visualized as tours (order
of city visits) in the context of the city coordinates of the problem
definition.

Figure 9.8 provides a plot of an example Nearest-Neighbor solution
for the Berlin52 TSP. A Nearest-Neighbor solution is constructed by
randomly selecting the first city in the tour then selecting the next
city in the tour with the minimum distance to the current city until a
complete tour is created.

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200 1400 1600 1800

+
+

+
+

+
+

+++

+

+

+

+
+

++ +

+

+++
+++

+++
++++

+

+

+
+++

+

+

+
+ +

+

+

+

+
+

+

+

+

+

+

+

Figure 9.8: Plot of a Nearest-Neighbor tour for the Berlin52 TSP.

Listing 9.16 provides the Gnuplot script used to prepare the plot,
where berlin52.nn.tour is a file that contains a listing of the coordi-
nates of all cities separated by white space in order that the cities are
visited with one city per line. The first city in the tour is repeated as the
last city in the tour to provide a closed polygon in the plot. Listing 9.17
provides a snippet of the first five lines of the berlin52.nn.tour file.

1 plot "berlin52.nn.tour" with linespoints

400 Chapter 9. Advanced Topics

Listing 9.16: Gnuplot script for plotting a tour for a TSP.

1 475 960

2 525 1000

3 510 875

4 555 815

5 575 665

6 ...

Listing 9.17: Snippet of the berlin52.nn.tour file.

Figure 9.9 provides a plot of the known optimal solution for the
Berlin52 Traveling Salesman problem.

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200 1400 1600 1800

+
+

+

+
+

+
+

+
+

+

+

+

+

+

+

+

+

+
+

+

++

++++++
+

+
+++++

+ +

+

+

++
+

+
+
++

+

+

+

+

+ ++

Figure 9.9: Plot of the optimal tour for the Berlin52 TSP.

Listing 9.18 provides the Gnuplot script used to prepare the plot,
where berlin52.optimal is a file that contains a listing of the coordi-
nates of all cities in order that the cities are visited with one city per
line separated by white space. The first city in the tour is repeated as
the last city in the tour to provide a closed polygon in the plot.

1 plot "berlin52.optimal" with linespoints

Listing 9.18: Gnuplot script for plotting a tour for a TSP.

Listing 9.19 provides a snippet of the first five lines of the berlin52.optimal
file.

9.4. Visualizing Algorithms 401

1 565.0 575.0

2 605.0 625.0

3 575.0 665.0

4 555.0 815.0

5 510.0 875.0

6 ...

Listing 9.19: Snippet of the berlin52.optimal file.

9.4.5 Bibliography

[1] P. Janert. Gnuplot in Action: Understanding Data with Graphs.
Manning Publications, 2009.

402 Chapter 9. Advanced Topics

9.5 Problem Solving Strategies

The field of Data Mining has clear methodologies that guide a practi-
tioner to solve problems, such as Knowledge Discovery in Databases
(KDD) [16]. Metaheuristics and Computational Intelligence algorithms
have no such methodology.3

This section describes some of the considerations when applying
algorithms from the fields of Metaheuristics, Computational Intelligence,
and Biologically Inspired Computation to practical problem domains.
This discussion includes:

• The suitability of application of a given technique to a given
problem and the transferability of algorithm and problem features
(Section 9.5.1)

• The distinction between strong and weak methods which use
more or less problem specific information respectively, and the
continuum between these extremes (Section 9.5.2).

• A summary of problem solving strategies that suggest different
ways of applying a given technique to the function optimization
and approximation fields (Section 9.5.3).

9.5.1 Suitability of Application

From a problem-solving perspective, the tools that emerge from the field
of Computational Intelligence are generally assessed with regard to their
utility as efficiently or effectively solving problems. An important lesson
from the No-Free-Lunch Theorem was to bound claims of applicability
(see Section subsec:nfl), that is to consider the suitability of a given
strategy with regard to the feature overlap with the attributes of a given
problem domain. From a Computational Intelligence perspective, one
may consider the architecture, processes, and constraints of a given
strategy as the features of an approach.

The suitability of the application of a particular approach to a prob-
lem takes into considerations concerns such as the appropriateness (can
the approach address the problem), the feasibility (available resources
and related efficiency concerns), and the flexibility (ability to address
unexpected or unintended effects). This section summarizes a general
methodology toward addressing the problem of suitability in the con-
text of Computational Intelligence tools. This methodology involves 1)
the systematic elicitation of system and problem features, and 2) the
consideration of the overlap of problem-problem, algorithm-algorithm,
and problem-algorithm overlap of feature sets.

3Some methods can be used for classification and regression and as such may fit
into methodologies such as KDD.

9.5. Problem Solving Strategies 403

Systematic Feature Elicitation

A feature of a system (tool, strategy, model) or a problem is a distinctive
element or property that may be used to differentiate it from similar
and/or related cases. Examples may include functional concerns such
as: processes, data structures, architectures, and constraints, as well
as emergent concerns that may have a more subjective quality such
as general behaviors, organizations, and higher-order structures. The
process of the elicitation of features may be taken from a system or
problem perspective:

• System Perspective: This requires a strong focus on the lower level
functional elements and investigations that work toward correlat-
ing specific controlled procedures towards predictable emergent
behaviors.

• Problem Perspective: May require both a generalization of the
specific case to the general problem case, as well as a functional
or logical decomposition into constituent parts.

Problem generalization and functional decomposition are important
and commonly used patterns for problem solving in the broader fields
of Artificial Intelligence and Machine Learning. The promotion of
simplification and modularity can reduce the cost and complexity of
achieving solutions [10, 43].

Feature Overlap

Overlap in elicited features may be considered from three important
perspectives: between systems, between problems, and between a system
and a problem. Further, such overlap may be considered at different
levels of detail with regard to generalized problem solving strategies and
problem definitions. These overlap cases are considered as follows:

• System Overlap defines the suitability of comparing one system
to another, referred to as comparability. For example, systems
may be considered for the same general problems and compared
in terms of theoretical or empirical capability, the results of which
may only be meaningful if the systems are significantly similar to
each other as assessed in terms of feature overlap.

• Problem Overlap defines the suitability of comparing one problem
to another, referred to as transferability. From a systems focus,
transferability refers to the capability of a technique on a given
problem to be successfully applied to another problem, the result
of which is only meaningful if there is a strong overlap between
the problems under consideration.

404 Chapter 9. Advanced Topics

• System-Problem Overlap defines the suitability of a system on a
given problem, referred to as applicability. For example, a system is
considered suitable for a given problem if it has a significant overlap
in capabilities with the requirements of the problem definition.

Such mappings are imprecise given the subjective assessment and
complexity required in both the elicitation and consideration overlap
of the of features, the hardest of which is expected to be the mapping
between systems and problems. The mapping of salient features of
algorithms and problems was proposed as an important reconciliation of
the No-Free-Lunch Theorem by Wolpert and Macready [58], although the
important difference of this approach is that the system and algorithm
are given prior to the assessment. In their first work on the theorem,
Wolpert and Macready specifically propose the elicitation of the features
from a problem-first perspective, for which specialized algorithms can
be defined [57]. Therefore, this methodology of suitability may be
considered a generalization of this reconciliation suitable for the altered
Computational Intelligence (strategy first) perspective on Artificial
Intelligence.

9.5.2 Strong and Weak Methods

Generally, the methods from the fields of Metaheuristics, Computational
Intelligence, and Biologically Inspired Computation may be considered
weak methods. They are general purpose and are typically considered
black-box solvers for a range of problem domains. The stronger the
method, the more that must be known about the problem domain.
Rather than discriminating techniques into weak and strong it is more
useful to consider a continuum of methods from pure block box tech-
niques that have few assumptions about the problem domain, to strong
methods that exploit most or all of the problem specific information
available.

For example, the Traveling Salesman Problem is an example of a
combinatorial optimization problem. A näıve (such a Random Search)
black box method may simply explore permutations of the cities. Slightly
stronger methods may initialize the search with a heuristic-generated
technique (such as nearest neighbor) and explore the search space using
a variation method that also exploits heuristic information about the
domain (such as a 2-opt variation). Continuing along this theme, a
stochastic method may explore the search space using a combination of
probabilistic and heuristic information (such as Ant Colony Optimization
algorithms). At the other end of the scale the stochastic elements are
decreased or removed until one is left with pure heuristic methods such
as the Lin-Kernighan heuristic [31] and exact algorithms from linear
and dynamic programming that focus on the structure and nature of

9.5. Problem Solving Strategies 405

the problem [55].
Approaching a problem is not as simple as selecting the strongest

method available and solving it. The following describes two potential
strategies:

• Start Strong : Select the strongest technique available and apply it
to the problem. Difficult problems can be resistant to traditional
methods for many intrinsic and extrinsic reasons. Use products
from a strong technique (best solution found, heuristics) to seed
the next weaker method in line.

• Start Weak : Strong methods do not exist for all problems, and if
they do exist, the computation, skill, and/or time resources may
not be available to exploit them. Start with a weak technique and
use it to learn about the problem domain. Use this information
to make better decisions about subsequent techniques to try that
can exploit what has been learned.

In a real-world engineering or business scenario, the objective is to
solve a problem or achieve the best possible solution to the problem
within the operating constraints. Concerns of algorithm and technique
purity become less important than they may be in their respective
fields of research. Both of the above strategies suggest an iterative
methodology, where the product or knowledge gained from one technique
may be used to prime a subsequent stronger or weaker technique.

9.5.3 Domain-Specific Strategies

An algorithm may be considered a strategy for problem solving. There
are a wide range of ways in which a given algorithm can be used to solve
a problem. Function Optimization and Function Approximation were
presented as two general classes of problems to which the algorithms from
the fields of Metaheuristics, Computational Intelligence, and Biologically
Inspired Computation are applied. This section reviews general problem
problem solving strategies that may be adopted for a given technique in
each of these general problem domains.

Function Optimization

This section reviews a select set of strategies for addressing optimization
problems from the field of Metaheuristics and Computational Intelligence
to provide general insight into the state of the interaction between
stochastic algorithms and the field of optimization. This section draws
heavily from the field of Evolutionary Computation, Swarm Intelligence,
and related Computational Intelligence sub-fields.

406 Chapter 9. Advanced Topics

Global and Local Optimization Global Optimization refers to
seeking a globally optimal structure or approximation thereof in a given
problem domain. Global is differentiated from Local Optimization
in that the latter focuses on locating an optimal structure within a
constrained region of the decision variable search space, such as a single
peak or valley (basin of attraction). In the literature, global optimization
problems refers to the class of optimization problems that generally
cannot be addressed through more conventional approaches such as
gradient descent methods (that require mathematical derivatives) and
pattern search (that can get ‘stuck’ in local optima and never converge)
[41, 53].

A global search strategy provides the benefit of making few if any
assumptions about where promising areas of the search space may be,
potentially highlighting unintuitive combinations of parameters. A local
search strategy provides the benefit of focus and refinement of an existing
candidate solution. It is common to apply a local search method to the
solutions located by a global search procedure as a refinement strategy
(such as using a Hill Climber (Section 2.4) after a Genetic Algorithm
(Section 3.2)), and some methods have both techniques built in (such as
GRASP in Section 2.8).

Parallel Optimization A natural step toward addressing difficult
(large and rugged cost landscapes) is to exploit parallel and distributed
hardware, to get an improved result in the same amount of time, the
same result in less time, or both [12]. Towards unifying the myriad
of approaches and hardware configurations, a general consensus and
taxonomy has been defined by the Parallel Evolutionary Algorithms
(PEA) and Parallel Metaheuristics fields that considers the ratio of
communication to computation called granularity [4, 11].

This taxonomy is presented concisely by Alba and Tomassini as a plot
or trade-off of three concerns: 1) the number of sub-populations (models
or parallel strategies working on the problem), 2) the coupling between
the sub-populations (frequency and amplitude of communication), and
3) the size of the sub-populations (size or extent of the sub-models) [5].

Two important and relevant findings from the narrower field of
Parallel Evolutionary Algorithms include 1) that tight coupling (frequent
inter-system migration of candidate solutions) between coarse-grained
models typically results in worse performance than a non-distributed
approach [6], and 2) that loose coupling (infrequent migration) between
coarse-grained models has been consistently shown to provide a super-
linear increase in performance [3, 7, 11].

Cooperative Search This is a more general approach that considers
the use of multiple models that work together to address a difficult

9.5. Problem Solving Strategies 407

optimization problems. Durfee et al. consider so-called Cooperative
Distributed Problem Solving (CDPS) in which a network of loosely
coupled solvers are employed to address complex distributed problems.
In such systems, it is desirable to match the processing capabilities of the
solver to the attributes of the problem. For example, a given problem
may have spatially distributed, functionally distributed, or temporally
distributed sub-problems to which a centralized and monolithic system
may not be suitable.

Lesser [30] considers CDPS and proposes such models perform dis-
tributed search on dependent or independent and potentially overlapping
sub-problems as a motivating perspective for conducting research into
Distributed Artificial Intelligence (DAI)4. Lesser points out that in real
world applications, it is hard to get a optimal mapping between the allo-
cated resources and the needs or availability of information for a given
problem, suggesting that such problems may be caused by a mismatch
in processing times and/or number of sub-problems, interdependencies
between sub-problems, and local experts whose expertise cannot be ef-
fectively communicated. For a more detail on the relationships between
parallel and cooperative search, El-Abd and Kamel provide a rigorous
taxonomy [15].

Hybrid Search Hybrid Search is a perspective on optimization that
focuses on the use of multiple and likely different approaches either
sequentially (as in the canonical global and local search case), or in
parallel (such as in Cooperative Search). For example in this latter
case, it is common in the field of PEA to encourage different levels of
exploration and exploitation across island populations by varying the
operators or operator configurations used [2, 51].

Talbi proposed a detailed 4-level taxonomy of Hybrid Metaheuristics
that concerns parallel and cooperating approaches [50]. The taxonomy
encompasses parallel and cooperative considerations for optimization
and focuses on the discriminating features in the lowest level such as
heterogeneity, and specialization of approaches.

Functional Decomposition Three examples of a functional decom-
position of optimization include 1) multiple objectives, 2) multiple
constraints, and 3) partitions of the decision variable search space.

Multi-Objective Optimization (MOO) is a sub-field that is concerned
with the optimization of two or more objective functions. A solution to
a MOO conventionally involves locating and returning a set of candidate
solutions called the non-dominated set [13]. The Pareto optimal set, is
the set of optimal non-dominated solutions. For a given problem no

4This perspective provided the basis for what became the field of Multi-Agent
Systems (MAS).

408 Chapter 9. Advanced Topics

feasible solution exists that dominates a Pareto optimal solution. All
solutions that are Pareto optimal belong to the Pareto set, and the
points that these solutions map to in the objective space is called the
Pareto front. The complexity with MOO problems is in the typically
unknown dependencies between decision variables across objectives, that
in the case of conflicts, must be traded off (Purshouse and Fleming
provide a taxonomy of such complexity [42]).

Constraint Satisfaction Problem’s (CSP) involve the optimization of
decision variables under a set of constraints. The principle complexity
in such problems is in locating structures that are feasible or violate the
least number of constraints, optimizing such feasibility [27, 54].

Search Space Partitioning involves partitioning of the decision vari-
able search space (for example see Multispace Search by Gu et al.
[14, 21, 22]). This is a critical consideration given that for equal-sized
dimensional bounds on parameters, an increase in decision variables
results in an exponential increase in the volume of the space to search.

Availability Decomposition Optimization problems may be par-
titioned by the concerns of temporal and spatial distribution of 1)
information availability, and 2) computation availability. An interesting
area of research regarding variable information availability for optimiza-
tion problems is called Interactive Evolutionary Computation, in which
one or a collection of human operators dynamically interact with an
optimization process [49]. Example problem domains include but are
not limited to computer graphics, industrial design, image processing,
and drug design.

There is an increasing demand to exploit clusters of heterogeneous
workstations to complete large-scale distributed computation tasks like
optimization, typically in an opportunistic manner such as when in-
dividual machines are underutilized. The effect is that optimization
strategies such as random partitioning of the search space (indepen-
dent non-interacting processing) are required to take advantage of such
environments for optimization problems [32, 46].

Meta Optimization One may optimize at a level above that con-
sidered in previous sections. Specifically, 1) the iterative generation
of an inductive model called multiple restart optimization, and 2) the
optimization of the parameters of the process that generates an induc-
tive model of an optimization problem. Multiple or iterative restarts
involves multiple independent algorithm executions from different (ran-
dom) starting conditions. It is generally considered as a method for
achieving an improved result in difficult optimization problems where
a given strategy is deceived by local or false optima [24, 34], typically
requiring a restart schedule [17].

9.5. Problem Solving Strategies 409

A second and well studied form of meta optimization involves the
optimization of the search process itself. Classical examples include the
self-adaptation of mutation parameters (step sizes) in the Evolutionary
Strategies (ES) and Evolutionary Programming (EP) approaches. Smith
and Fogarty provided a review of genetic algorithms with adaptive
strategies including a taxonomy in which the meta-adaptations are
applied at one of three levels: 1) the population (adapting the overall
sampling strategy), 2) the individual (adapting the creation of new
samples in the decision variable space), and 3) components (modifying
component contributions and/or individual step sizes as in ES and EP)
[48].

Function Approximation

This section reviews a select set of strategies for addressing Function
Approximation problems from the fields of Artificial Intelligence and
Computational Intelligence to provide general insight into the state of
the interaction between stochastic algorithms and the field. The review
draws heavily from the fields of Artificial Neural Networks, specifically
Competitive Learning, as well as related inductive Machine Learning
fields such as Instance Based Learning.

Vector Quantization Vector Quantization (VQ) refers to a method
of approximating a target function using a set of exemplar (prototype
or codebook) vectors. The exemplars represent a discrete subset of the
problem, generally restricted to the features of interest using the natural
representation of the observations in the problem space, typically an
an unconstrained n-dimensional real valued space. The VQ method
provides the advantage of a non-parametric model of a target function
(like instance-based and lazy learning such as the k-Nearest-Neighbor
method (kNN)) using a symbolic representation that is meaningful in
the domain (like tree-based approaches).

The promotion of compression addresses the storage and retrieval
concerns of kNN, although the selection of codebook vectors (the so-
called quantization problem) is a hard problem that is known to be
NP-complete [18]. More recently Kuncheva and Bezdek have worked
towards unifying quantization methods in the application to classification
problems, referring to the approaches as Nearest Prototype Classifiers
(NPC) and proposing a generalized nearest prototype classifier [28, 29].

Parallelization Instance-based approaches are inherently parallel
given the generally discrete independent nature in which they are used,
specifically in a case or per-query manner. As such, parallel hardware
can be exploited in the preparation of the corpus of prototypes (parallel

410 Chapter 9. Advanced Topics

preparation), and more so in the application of the corpus given its read-
only usage [1, 35, 39]. With regard to vector quantization specifically,
there is an industry centered around the design and development of VQ
and WTA algorithms and circuits given their usage to compress digital
audio and video data [36, 38].

Cooperative Methods Classical cooperative methods in the broader
field of statistical machine learning are referred to as Ensemble Methods
[37, 40] or more recently Multiclassifier Systems [20].

Boosting is based on the principle of combining a set of quasi-
independent weak learners that collectively are as effective as a single
strong learner [26, 44]. The seminal approach is called Adaptive Boost-
ing (AdaBoost) that involves the preparation of a series of classifiers,
where subsequent classifiers are prepared for the observations that are
misclassified by the proceeding classifier models (creation of specialists)
[45].

Bootstrap Aggregation (bagging) involves partitioning the observa-
tions into N randomly chosen subsets (with re-selection), and training
a different model on each [9]. Although robust to noisy datasets, the
approach requires careful consideration as to the consensus mechanism
between the independent models for decision making.

Stacked Generalization (stacking) involves creating a sequence of
models of generally different types arranged into a stack, where subse-
quently added models generalize the behavior (success or failure) of the
model before it with the intent of correcting erroneous decision making
[52, 56].

Functional Decomposition As demonstrated, it is common in en-
semble methods to partition the dataset either explicitly or implicitly
to improve the approximation of the underlying target function. A first
important decomposition involves partitioning the problem space into
sub-spaces based on the attributes, regular groups of attributes called
features, and decision attributes such as class labels. A popular method
for attribute-based partitioning is called the Random Subspace Method,
involving the random partitioning of attributes to which specialized
model is prepared for each (commonly used on tree-based approaches)
[23].

A related approach involves a hierarchical partitioning of attributes
space into sub-vectors (sub-spaces) used to improve VQ-based com-
pression [19]. Another important functional decomposition methods
involve the partitioning of the set of observations. The are many ways
in which observations may be divided, although common approaches
include pre-processing using clustering techniques to divide the set into
natural groups, additional statistical approaches that partition based

9.5. Problem Solving Strategies 411

on central tendency and outliers, and re-sampling methods that are
required to reduce the volume of observations.

Availability Decomposition The availability observations required
to address function approximation in real-world problem domains moti-
vate the current state of the art in Distributed Data Mining (DDM, or
sometimes Collective Data Mining), Parallel Data Mining (PDM), and
Distributed Knowledge Discovery in Database (DKDD) [25]. The gen-
eral information availability concerns include 1) the intractable volume of
observations, and 2) the spatial (geographical) and temporal distribution
of information [59]. In many real-world problems it is infeasible to
centralize relevant observations for modeling, requiring scalable, load
balancing, and incremental acquisition of information [47].

Meta-Approximation The so-called ensemble or multiple-classifier
methods may be considered meta approximation approaches as they are
not specific to a given modeling technique. As with function optimization,
meta-approaches may be divided into restart methods and meta-learning
algorithms. The use of restart methods is a standard practice for
connectionist approaches, and more generally in approaches that use
random starting conditions and a gradient or local search method of
refinement.

The method provides an opportunity for over-coming local optima
in the error-response surface, when there is an unknown time remaining
until convergence [33], and can exploit parallel hardware to provide
a speed advantage [8]. Ensemble methods and variants are examples
of meta approximation approaches, as well as the use of consensus
classifiers (gate networks in mixtures of experts) to integrate and weight
the decision making properties from ensembles.

9.5.4 Bibliography

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational
issues, methodological variations, and system approaches. Artificial
Intelligence Communications, 7(1):39–59, 1994.

[2] P. Adamidis, P. Adamidis, and V. Petridis. Co–operating popu-
lations with different evolution behaviours. In V. Petridis, editor,
Proceedings IEEE International Conference on Evolutionary Com-
putation, pages 188–191, 1996.

[3] E. Alba. Parallel evolutionary algorithms can achieve super-linear
performance. Information Processing Letters, 82:7–13, 2002.

[4] E. Alba. Parallel Metaheuristics: A New Class of Algorithms. John
Wiley, 2005.

412 Chapter 9. Advanced Topics

[5] E. Alba and M. Tomassini. Parallelism and evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 6(5):443–462,
2002.

[6] E. Alba and J. M. Troya. Influence of the migration policy in
parallel distributed gas with structured and panmictic populations.
Applied Intelligence, 12:163–181, 2000.

[7] T. C. Belding. The distributed genetic algorithm revisited. In Pro-
ceedings of the 6th International Conference on Genetic Algorithms,
1995.

[8] A. Di Blas, A. Jagota, and R. Hughey. Optimizing neural networks
on SIMD parallel computers. Parallel Computing, 31:97–115, 2005.

[9] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140,
1996.

[10] R. Brooks. A robust layered control system for a mobile robot.
IEEE Journal Of Robotics And Automation, 2(1):14–23, 1986.

[11] E. Cantú-Paz. Efficient and Accurate Parallel Genetic Algorithms.
Kluwer Academic Publishers (Springer), 2000.

[12] T. G. Crainic and N. Hail. Parallel metaheuristics applications. In
Parallel Metaheuristics. John Wiley & Sons, Inc., 2005.

[13] K. Deb. Multi-Objective Optimization Using Evolutionary Algo-
rithms. John Wiley and Sons, 2001.

[14] B. Du, J. Gu, W. Wang, and D. H. K. Tsang. Multispace search for
minimizing the maximum nodal degree. In J. Gu, editor, Proceedings
Sixth International Conference on Computer Communications and
Networks, pages 364–367, 1997.

[15] M. El-Abd and M. Kamel. A taxonomy of cooperative search
algorithms. In Hybrid Metaheuristics, 2005.

[16] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process
for extracting useful knowledge from volumes of data. Communica-
tions of the ACM, 39(11):27–34, 1996.

[17] A. S. Fukunaga. Restart scheduling for genetic algorithms. In
Parallel Problem Solving from Nature - PPSN V, pages 357–366,
1998.

[18] M. Garey, D. Johnson, and H. Witsenhausen. The complexity of
the generalized Lloyd–Max problem (corresp.). IEEE Transactions
on Information Theory, 28(2):255–256, Mar 1982.

9.5. Problem Solving Strategies 413

[19] A. Gersho, A. Gersho, and Y. Shoham. Hierarchical vector quantiza-
tion of speech with dynamic codebook allocation. In Y. Shoham, ed-
itor, Proceedings of the IEEE International Conference on ICASSP
’84. Acoustics, Speech, and Signal Processing, volume 9, pages
416–419, 1984.

[20] J. Ghosh. Multiclassifier systems: Back to the future. In Proceedings
of the Third International Workshop on Multiple Classifier Systems,
2002.

[21] J. Gu. Multispace search: A new optimization approach. In
Algorithms and Computation, 1994.

[22] J. Gu. Multispace search for satisfiability and NP–Hard problems.
In Satisfiability Problem: Theory and Applications : DIMACS
Workshop, 1997.

[23] T. K. Ho. The random subspace method for constructing decision
forests. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20:832–844, 1998.

[24] X. Hu, R. Shonkwiler, and M. Spruill. Random restarts in global
optimization. Technical Report 110592-015, School of Mathematics,
Georgia Institute of Technology, January 1994.

[25] H. Kargupta and P. Chan. Advances in Distributed and Parallel
Knowledge Discovery. AAAI Press/MIT Press, 2000.

[26] M. Kearns. Thoughts on hypothesis boosting. Unpublished
manuscript, 1988.

[27] V. Kumar. Algorithms for constraint–satisfaction problems : a
survey. The AI magazine (AI mag.), 13:32–44, 1992.

[28] L. Kuncheva and J. Bezdek. An integrated framework for general-
ized nearest prototype classifier design. Int. Journal of Uncertaintly,
Fuzziness and Knowledge-Based Systems, 6:437–457, 1998.

[29] L. I. Kuncheva and J. C. Bezdek. Nearest prototype classification:
clustering, genetic algorithms, or random search? IEEE Transac-
tions on Systems, Man and Cybernetics, Part C, 28(1):160–164,
1998.

[30] V. R. Lesser. An overview of DAI: Viewing distributed AI
as distributed search. Journal of Japanese Society for Artifi-
cial Intelligence-Special Issue on Distributed Artificial Intelligence,
5(4):392–400, January 1990.

414 Chapter 9. Advanced Topics

[31] S. Lin and B. W Kernighan. An effective heuristic algorithm for
the traveling-salesman problems. Operations Research, 21:498–516,
1973.

[32] P. Liu and D. W. Wang. Reduction optimization in heterogeneous
cluster environments. In D-W. Wang, editor, Proceedings 14th In-
ternational Parallel and Distributed Processing Symposium IPDPS
2000, pages 477–482, 2000.

[33] M. Magdon-Ismail and A. F. Atiya. The early restart algorithm.
Neural Computation, 12:1303–1312, 2000.

[34] M. Muselli. A theoretical approach to restart in global optimization.
Journal of Global Optimization, 10:1–16, 1997.

[35] M. V. Nagendra Prasad, V. R. Lesser, and S. E. Lander. Retrieval
and reasoning in distributed case bases. Journal of Visual Com-
munication and Image Representation, Special Issue on Digital
Libraries, 7(1):74–87, 1996.

[36] A. Nakada, T. Shibata, M. Konda, T. Morimoto, and T. Ohmi. A
fully parallel vector-quantization processor for real-time motion-
picture compression. IEEE Journal of Solid-State Circuits,
34(6):822–830, 1999.

[37] D. Opitz and R. Maclin. Popular ensemble methods: An empirical
study. Journal of Artificial Intelligence Research, 11:169–198, 1999.

[38] K. K. Parhi, F. H. Wu, and K. Genesan. Sequential and parallel
neural network vector quantizers. IEEE Transactions on Computers,
43(1):104–109, 1994.

[39] E. Plaza, J. Lluis, and A. F. Martin. Cooperative case-based
reasoning. In Distributed Artificial Intelligence Meets Machine
Learning Learning in Multi-Agent Environments, 1997.

[40] R. Polikar. Ensemble based systems in decision making. IEEE
Circuits and Systems Magazine, 6(3):21–45, 2006.

[41] W. L. Price. A controlled random search procedure for global
optimisation. The Computer Journal, 20(4):367–370, 1977.

[42] R. C. Purshouse and P. J. Fleming. Conflict, harmony, and indepen-
dence: Relationships in evolutionary multi-criterion optimisation.
In Proceedings of the Second International Conference on Evolu-
tionary Multi-Criterion Optimization (EMO), pages 16–30, 2003.

[43] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, third edition, 2009.

9.5. Problem Solving Strategies 415

[44] R. E. Schapire. The strength of weak learnability. Machine Learning,
5(2):197–227, 1992.

[45] R. E. Schapire. The boosting approach to machine learning: An
overview. In D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick,
and B. Yu, editors, Nonlinear Estimation and Classification, 2003.

[46] T. Schnekenburger. Parallel randomized algorithms in heteroge-
neous environments. In Int. Conference on Systems Engineering,
1993.

[47] D. Skillicorn. Strategies for parallel data mining. IEEE Concur-
rency, 7(4):26–35, 1999.

[48] J. E. Smith and T. C. Fogarty. Operator and parameter adaptation
in genetic algorithms. Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 1:81–87, 1997.

[49] H. Takagi. Interactive evolutionary computation: Fusion of the
capabilities of EC optimization and human evaluations. Proceedings
of the IEEE, 89(9):1275–1296, September 2001.

[50] E. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuris-
tics, 8:541–564, 2001.

[51] R. Tanese. Distributed genetic algorithms. In Proceedings of the
third international conference on Genetic algorithms, pages 434–439.
Morgan Kaufmann Publishers Inc., 1989.

[52] K. M. Ting and I. H. Witten. Issues in stacked generalization.
Journal of Artificial Intelligence Research, 10:271–289, 1999.

[53] A. Törn, M. M. Ali, and S. Viitanen. Stochastic global optimiza-
tion: Problem classes and solution techniques. Journal of Global
Optimization, 14:437–447, 1999.

[54] E. Tsang. Foundations of Constraint Satisfaction. Academic Press,
1993.

[55] G. J. Woeginger. Exact algorithms for NP–hard problems: A sur-
veys. Combinatorial Optimization – Eureka, You Shrink!, 2570:185–
207, 2003.

[56] D. H. Wolpert. Stacked generalization. Neural Networks, 5(LA-UR-
90-3460):241–259, 1992.

[57] D. H. Wolpert and W. G. Macready. No free lunch theorems for
search. Technical report, Santa Fe Institute, Sante Fe, NM, USA,
1995.

416 Chapter 9. Advanced Topics

[58] D. H. Wolpert and W. G. Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation,
1(67):67–82, 1997.

[59] M. J. Zaki. Parallel and distributed data mining: An introduction.
In Revised Papers from Large-Scale Parallel Data Mining, Workshop
on Large-Scale Parallel KDD Systems, SIGKDD, pages 1–23, 1999.

9.6. Benchmarking Algorithms 417

9.6 Benchmarking Algorithms

When it comes to evaluating an optimization algorithm, every researcher
has their own thoughts on the way it should be done. Unfortunately,
many empirical evaluations of optimization algorithms are performed and
reported without addressing basic experimental design considerations.
This section provides a summary of the literature on experimental
design and empirical algorithm comparison methodology. This summary
contains rules of thumb and the seeds of best practice when attempting
to configure and compare optimization algorithms, specifically in the
face of the no-free-lunch theorem.

9.6.1 Issues of Benchmarking Methodology

Empirically comparing the performance of algorithms on optimization
problem instances is a staple for the fields of Heuristics and Biologi-
cally Inspired Computation, and the problems of effective comparison
methodology have been discussed since the inception of these fields.
Johnson suggests that the coding of an algorithm is the easy part of the
process; the difficult work is getting meaningful and publishable results
[24]. He goes on to provide a very through list of questions to consider
before racing algorithms, as well as what he describes as his “pet peeves”
within the field of empirical algorithm research.

Hooker [22] (among others) practically condemns what he refers to as
competitive testing of heuristic algorithms, calling it “fundamentally anti-
intellectual”. He goes on to strongly encourage a rigorous methodology
of what he refers to as scientific testing where the aim is to investigate
algorithmic behaviors.

Barr, Golden et al. [1] list a number of properties worthy of a heuristic
method making a contribution, which can be paraphrased as; efficiency,
efficacy, robustness, complexity, impact, generalizability, and innovation.
This is interesting given that many (perhaps a majority) of conference
papers focus on solution quality alone (one aspect of efficacy). In their
classical work on reporting empirical results of heuristics Barr, Golden
et al. specify a loose experimental setup methodology with the following
steps:

1. Define the goals of the experiment.

2. Select measure of performance and factors to explore.

3. Design and execute the experiment.

4. Analyze the data and draw conclusions.

5. Report the experimental results.

418 Chapter 9. Advanced Topics

They then suggest eight guidelines for reporting results, in summary
they are; reproducibility, specify all influential factors (code, computing
environment, etc), be precise regarding measures, specify parameters,
use statistical experimental design, compare with other methods, reduce
variability of results, and ensure results are comprehensive. They then
clarify these points with examples.

Peer, Engelbrecht et al. [32] summarize the problems of algorithm
benchmarking (with a bias toward particle swarm optimization) to the
following points: duplication of effort, insufficient testing, failure to
test against state-of-the-art, poor choice of parameters, conflicting re-
sults, and invalid statistical inference. Eiben and Jelasity [14] sight
four problems with the state of benchmarking evolutionary algorithms;
1) test instances are chosen ad hoc from the literature, 2) results are
provided without regard to research objectives, 3) scope of generalized
performance is generally too broad, and 4) results are hard to repro-
duce. Gent and Walsh provide a summary of simple dos and don’ts for
experimentally analyzing algorithms [20]. For an excellent introduction
to empirical research and experimental design in artificial intelligence
see Cohen’s book “Empirical Methods for Artificial Intelligence” [10].

The theme of the classical works on algorithm testing methodology
is that there is a lack of rigor in the field. The following sections will
discuss three main problem areas to consider before benchmarking,
namely 1) treating algorithms as complex systems that need to be tuned
before applied, 2) considerations when selecting problem instances for
benchmarking, and 3) the selection of measures of performance and
statistical procedures for testing experimental hypotheses. A final section
4) covers additional best practices to consider.

9.6.2 Selecting Algorithm Parameters

Optimization algorithms are parameterized, although in the majority
of cases the effect of adjusting algorithm parameters is not fully un-
derstood. This is because unknown non-linear dependencies commonly
exist between the variables resulting in the algorithm being considered
a complex system. Further, one must be careful when generalizing the
performance of parameters across problem instances, problem classes,
and domains. Finally, given that algorithm parameters are typically
a mixture of real and integer numbers, exhaustively enumerating the
parameter space of an algorithm is commonly intractable.

There are many solutions to this problem such as self-adaptive
parameters, meta-algorithms (for searching for good parameter values),
and methods of performing sensitivity analysis over parameter ranges. A
good introduction to the parameterization of genetic algorithms is Lobo,
Lima et al. [27]. The best and self-evident place to start (although often
ignored [14]) is to investigate the literature and see what parameters

9.6. Benchmarking Algorithms 419

been used historically. Although not a robust solution, it may prove
to be a useful starting point for further investigation. The traditional
approach is to run an algorithm on a large number of test instances
and generalize the results [37]. We, as a field, haven’t really come
much further than this historical methodology other than perhaps the
application of more and differing statistical methods to decrease effort
and better support findings.

A promising area of study involves treating the algorithm as a
complex system, where problem instances may become yet another
parameter of the model [7, 36]. From here, sensitivity analysis can be
performed in conjunction with statistical methods to discover parameters
that have the greatest effect [8] and perhaps generalize model behaviors.

Francois and Lavergne [18] mention the deficiencies of the traditional
trial-and-error and experienced-practitioner approaches to parameter
tuning, further suggesting that seeking general rules for parameteriza-
tion will lead to optimization algorithms that offer neither convergent
or efficient behaviors. They offer a statistical model for evolutionary
algorithms that describes a functional relationship between algorithm
parameters and performance. Nannen and Eiben [29, 30] propose a
statistical approach called REVAC (previously Calibration and Rele-
vance Estimation) to estimating the relevance of parameters in a genetic
algorithm. Coy, Golden et al. [12] use a statistical steepest decent
method procedure for locating good parameters for metaheuristics on
many different combinatorial problem instances.

Bartz-Beielstein [3] used a statistical experimental design method-
ology to investigate the parameterization of the Evolutionary Strategy
(ES) algorithm. A sequential statistical methodology is proposed by
Bartz-Beielstein, Parsopoulos et al. [4] for investigating the parameteri-
zation and comparisons between the Particle Swarm Optimization (PSO)
algorithm, the Nelder-Mead Simplex Algorithm (direct search), and the
Quasi-Newton algorithm (derivative-based). Finally, an approach that is
popular within the metaheuristic and Ant Colony Optimization (ACO)
community is to use automated Monte Carlo and statistical procedures
for sampling discretized parameter space of algorithms on benchmark
problem instances [6]. Similar racing procedures have also been applied
to evolutionary algorithms [41].

9.6.3 Problem Instances

This section focuses on issues related to the selection of function opti-
mization test instances, but the general theme of cautiously selecting
problem instances is generally applicable.

Common lists of test instances include; De Jong [25], Fogel [17], and
Schwefel [38]. Yao, Lui et al. [40] list many canonical test instances as
does Schaffer, Caruana et al. [37]. Gallagher and Yuan [19] review test

420 Chapter 9. Advanced Topics

function generators and propose a tunable mixture of Gaussians test
problem generators. Finally, McNish [28] proposes using fractal-based
test problem generators via a web interface.

The division of test problems into classes is another axiom of modern
optimization algorithm research, although the issues with this methodol-
ogy are the taxonomic criterion for problem classes and on the selection
of problem instances for classes.

Eiben and Jelasity [14] strongly support the division of problem
instances into categories and encourage the evaluation of optimization
algorithms over a large number of test instances. They suggest classes
could be natural (taken from the real world), or artificial (simplified
or generated). In their paper on understanding the interactions of GA
parameters, Deb and Agrawal [13] propose four structural properties
of problems for testing genetic algorithms; multi-modality, deception,
isolation, and collateral noise. Yao, Lui et al. [40] divide their large
test dataset into the categories of unimodal, ‘multimodal-many local
optima’, and ‘multimodal-few local optima’. Whitley, Rana et al. [39]
provide a detailed study on the problems of selecting test instances for
genetic algorithms. They suggest that difficult problem instances should
be non-linear, non-separable, and non-symmetric.

English [15] suggests that many functions in the field of EC are
selected based on structures in the response surface (as demonstrated
in the above examples), and that they inherently contain a strong
Euclidean bias. The implication is that the algorithms already have
some a priori knowledge about the domain built into them and that
results are always reported on a restricted problem set. This is a reminder
that instances are selected to demonstrate algorithmic behavior, rather
than performance.

9.6.4 Measures and Statistical Methods

There are many ways to measure the performance of an optimization
algorithm for a problem instance, although the most common involves
a quality (efficacy) measure of solution(s) found (see the following for
lists and discussion of common performance measures [1, 4, 5, 14, 23]).
Most biologically inspired optimization algorithms have a stochastic
element, typically in their starting position(s) and in the probabilistic
decisions made during sampling of the domain. Thus, the performance
measurements must be repeated a number of times to account for the
stochastic variance, which could also be a measure of comparison between
algorithms.

Irrespective of the measures used, sound statistical experimental
design requires the specification of 1) a null hypothesis (no change),
2) alternative hypotheses (difference, directional difference), and 3)
acceptance or rejection criteria for the hypothesis. The null hypothesis is

9.6. Benchmarking Algorithms 421

commonly stated as the equality between two or more central tendencies
(mean or medians) of a quality measure in a typical case of comparing
stochastic-based optimization algorithms on a problem instance.

Peer, Engelbrech et al. [32] and Birattari and Dorigo [5] provide
a basic introduction (suitable for an algorithm-practitioner) into the
appropriateness of various statistical tests for algorithm comparisons.
For a good introduction to statistics and data analysis see Peck et al. [31],
for an introduction to non-parametric methods see Holander and Wolfe
[21], and for a detailed presentation of parametric and nonparametric
methods and their suitability of application see Sheskin [23]. For an
excellent open source software package for performing statistical analysis
on data see the R Project.5

To summarize, parametric statistical methods are used for inter-
val and ratio data (like a real-valued performance measure), and non-
parametric methods are used for ordinal, categorical and rank-based
data. Interval data is typically converted to ordinal data when salient
constraints of desired parametric tests (such as assumed normality of
distribution) are broken such that the less powerful nonparametric tests
can be used. The use of nonparametric statistical tests may be preferred
as some authors [9, 32] claim the distribution of cost values are very
asymmetric and/or not Gaussian. It is important to remember that
most parametric tests degrade gracefully.

Chiarandini, Basso et al. [9] provide an excellent case study for using
the permutation test (a nonparametric statistical method) to compare
stochastic optimizers by running each algorithm once per problem
instance, and multiple times per problem instance. While rigorous, their
method appears quite complex and their results are difficult to interpret.

Barrett, Marathe et al. [2] provide a rigorous example of applying
the parametric test Analysis of Variance (ANOVA) of three different
heuristic methods on a small sample of scenarios. Reeves and Write
[34, 35] also provide an example of using ANOVA in their investigation
into epistasis on genetic algorithms. In their tutorial on the experimental
investigation of heuristic methods, Rardin and Uzsoy [33] warn against
the use of statistical methods, claiming their rigidity as a problem,
and the importance of practical significance over that of statistical
significance. They go on in the face of their own objections to provide
an example of using ANOVA to analyze the results of an illustrative
case study.

Finally, Peer, Engelbrech et al. [32] highlight a number of case study
example papers that use statistical methods inappropriately. In their
OptiBench system and method, algorithm results are standardized,
ranked according to three criteria and compared using the Wilcoxon
Rank-Sum test, a non-parametric alternative to the Student-T test that

5R Project is online at http://www.r-project.org

http://www.r-project.org

422 Chapter 9. Advanced Topics

is commonly used.

9.6.5 Other

Another pervasive problem in the field of optimization is the repro-
ducibility (implementation) of an algorithm. An excellent solution to
this problem is making source code available by creating or collaborat-
ing with open-source software projects. This behavior may result in
implementation standardization, a reduction in the duplication of effort
for experimentation and repeatability, and perhaps more experimental
accountability [14, 32].

Peer, Engelbrech et al. [32] stress the need to compare to the state-
of-the-art implementations rather than the historic canonical implemen-
tations to give a fair and meaningful evaluation of performance.

Another area that is often neglected is that of algorithm descriptions,
particularly in regard to reproducibility. Pseudocode is often used,
although (in most cases) in an inconsistent manner and almost always
without reference to a recognized pseudocode standard or mathemat-
ical notation. Many examples are a mix of programming languages,
English descriptions and mathematical notation, making them difficult
to follow, and commonly impossible to implement in software due to
incompleteness and ambiguity.

An excellent tool for comparing optimization algorithms in terms
of their asymptotic behavior from the field of computation complexity
is the Big-O notation [11]. In addition to clarifying aspects of the
algorithm, it provides a problem independent way of characterizing an
algorithms space and or time complexity.

9.6.6 Summary

It is clear that there is no silver bullet to experimental design for
empirically evaluating and comparing optimization algorithms, although
there are as many methods and options as there are publications on
the topic. The field of stochastic optimization has not yet agreed upon
general methods of application like the field of data mining (processes
such as Knowledge Discovery in Databases (KDD) [16]). Although
these processes are not experimental methods for comparing machine
learning algorithms, they do provide a general model to encourage
the practitioner to consider important issues before application of an
approach.

Finally, it is worth pointing out a somewhat controversially titled
paper by De Jong [26] that provides a reminder that although the
genetic algorithm has been shown to solve function optimization, it is
not innately a function optimizer, and function optimization is only a
demonstration of this complex adaptive system’s ability to learn. It is a

9.6. Benchmarking Algorithms 423

reminder to be careful not to link an approach too tightly with a domain,
particularly if the domain was chosen for demonstration purposes.

9.6.7 Bibliography

[1] R. Barr, B. Golden, J. Kelly, M. Rescende, and W. Stewart. De-
signing and reporting on computational experiments with heuristic
methods. Journal of Heuristics, 1:9–32, 1995.

[2] C. L. Barrett, A. Marathe, M. V. Marathe, D. Cook, G. Hicks,
V. Faber, A. Srinivasan, Y. J. Sussmann, and H. Thornquist. Sta-
tistical analysis of algorithms: A case study of market-clearing
mechanisms in the power industry. Journal of Graph Algorithms
and Applications, 7(1):3–31, 2003.

[3] T. Bartz-Beielstein. Experimental analysis of evolution strate-
gies – overview and comprehensive introduction. Technical report,
Computational Intelligence, University of Dortmund, 2003.

[4] T. Bartz-Beielstein, K. E. Parsopoulos, and M. N. Vrahatis. Design
and analysis of optimization algorithms using computational statis-
tics. Applied Numerical Analysis & Computational Mathematics,
1(2):413–433, 2004.

[5] M. Birattari and M. Dorigo. How to assess and report the perfor-
mance of a stochastic algorithm on a benchmark problem: Mean
or best result on a number of runs? Technical report, IRIDIA,
Universite Libre de Bruxelles, Brussels, Belgium, 2005.

[6] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing
algorithm for configuring metaheuristics. In Proceedings of the
Genetic and Evolutionary Computation Conference, pages 11–18.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[7] F. Campolongo, A. Saltelli, and S. Tarantola. Sensitivity anaysis
as an ingredient of modeling. A Review Journal of The Institute of
Mathematical Statistics., 15(4):377–395, 2000.

[8] K. Chan, A. Saltelli, and S. Tarantola. Sensitivity analysis of model
output: variance-based methods make the difference. In Proceedings
of the 29th conference on Winter simulation (Winter Simulation
Conference), pages 261–268. ACM Press, New York, NY, USA,
1997.

[9] M. Chiarandini, D. Basso, and T. Stützle. Statistical methods
for the comparison of stochastic optimizers. In M. Gendreau,

424 Chapter 9. Advanced Topics

P. Greistorfer, W. J. Gutjahr, R. F. Hartl, and M. Reimann, edi-
tors, MIC2005: Proceedings of the 6th Metaheuristics International
Conference, pages 189–196, 2005.

[10] P. R. Cohen. Empirical Methods for Artificial Intelligence. The
MIT Press, Cambridge, Massachusetts, USA; London, England,
1995.

[11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-
duction to Algorithms. MIT Press and McGraw-Hill, 2001.

[12] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil. Using ex-
perimental design to find effective parameter settings for heuristics.
Journal of Heuristics, 7(1):77–97, 2001.

[13] K. Deb and S. Agrawal. Understanding interactions among genetic
algorithm parameters. In Colin R. Reeves, editor, Proceedings of
the Fifth Workshop on Foundations of Genetic Algorithms (FOGA),
pages 265–286. Morgan Kaufmann, 1999.

[14] A. E. Eiben and M. Jelasity. A critical note on experimental
research methodology in ec. In Proceedings of the 2002 Congress
on Evolutionary Computation (CEC ’02), volume 1, pages 582–587.
IEEE Press, USA, 2002.

[15] T. M. English. Evaluation of evolutionary and genetic optimizers:
No free lunch. In Evolutionary Programming V: Proceedings of
the Fifth Annual Conference on Evolutionary Programming, pages
163–169. MIT Press, USA, 1996.

[16] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process
for extracting useful knowledge from volumes of data. Communica-
tions of the ACM, 39(11):27–34, 1996.

[17] D. B. Fogel. Evolutionary computation: Toward a new philosophy
of machine intelligence. IEEE Press, 1995.

[18] O. François and C. Lavergne. Design of evolutionary algorithms
– a statistical perspective. IEEE Transactions on Evolutionary
Computation, 5(2):129–148, April 2001.

[19] M. Gallagher and B. Yuan. A general-purpose tunable land-
scape generator. IEEE Transactions on Evolutionary Computation,
10(5):590–603, October 2006.

[20] I. Gent and T. Walsh. How not to do it. In Presented at the AAAI
Workshop on Experimental Evaluation of Reasoning and Search
Methods. 1994.

9.6. Benchmarking Algorithms 425

[21] M. Hollander and D. A. Wolfe. Nonparametric Statistical Methods.
John Wiley & Sons, Inc., Canada, 1999.

[22] J. N. Hooker. Testing heuristics: We have it all wrong. Journal of
Heuristics, 1(1):33–42, September 1995.

[23] E. J. Hughes. Assessing robustness of optimisation performance for
problems with expensive evaluation functions. In IEEE Congress
on Evolutionary Computation (CEC 2006), pages 2920–2927. IEEE
Press, USA, 2006.

[24] D. S. Johnson. A theoreticians guide for experimental analysis
of algorithms. In D. S. Johnson and C. C. McGeoch, editors,
Proceedings of the 5th and 6th DIMACS Implementation Challenges,
pages 215–250. American Mathematical Society, 2002.

[25] K. A. De Jong. An analysis of the behavior of a class of genetic
adaptive systems. PhD thesis, University of Michigan Ann Arbor,
MI, USA, 1975.

[26] K. A. De Jong. Genetic algorithms are NOT function optimizers.
In Proceedings of the Second Workshop on Foundations of Genetic
Algorithms, pages 5–17. Morgan Kaufmann, 1992.

[27] F. G. Lobo, C. F. Lima, and Z. Michalewicz. Parameter Setting in
Evolutionary Algorithms. Springer, 2007.

[28] C. MacNish. Benchmarking evolutionary algorithms: The Huygens
suite. In F. Rothlauf, editor, Late breaking paper at Genetic and
Evolutionary Computation Conference, Washington, D.C., USA,
25-29 June 2005.

[29] V. Nannen and A. E. Eiben. A method for parameter calibration and
relevance estimation in evolutionary algorithms. In Proceedings of
the 8th annual conference on Genetic and evolutionary computation,
pages 183–190. ACM Press, New York, NY, USA, 2006.

[30] V. Nannen and A. E. Eiben. Relevance estimation and value
calibration of evolutionary algorithm parameters. In Joint Interna-
tional Conference for Artificial Intelligence (IJCAI), pages 975–980.
Morgan Kaufmann Publishers Inc., 2007.

[31] R. Peck, C. Olsen, and J. Devore. Introduction to Statistics and
Data Analysis. Duxbury Publishing, USA, 2005.

[32] E. S. Peer, A. P. Engelbrecht, and F. van den Bergh. CIRGUP
OptiBench: A statistically sound framework for benchmarking
optimisation algorithms. In The 2003 Congress on Evolutionary
Computation, volume 4, pages 2386–2392. IEEE Press, USA, 2003.

426 Chapter 9. Advanced Topics

[33] R. L. Rardin and R. Uzsoy. Experimental evaluation of heuristic
optimization algorithms: A tutorial. Journal of Heuristics, 7(3):261–
304, May 2001.

[34] C. Reeves and C. Wright. An experimental design perspective on
genetic algorithms. In M. D. Vose, editor, Foundations of Genetic
Algorithms 3, pages 7–22. Morgan Kaufmann, San Francisco, CA,
USA, 1995.

[35] C. R. Reeves and C. C. Wright. Epistasis in genetic algorithms:
An experimental design perspective. In Proceedings of the 6th
International Conference on Genetic Algorithms, pages 217–224.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995.

[36] A. Saltelli. Making best use of model evaluations to compute
sensitivity indices. Computer Physics Communications, 145(2):280–
297, 2002.

[37] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and Rajarshi Das.
A study of control parameters affecting online performance of
genetic algorithms for function optimization. In Proceedings of the
third international conference on Genetic algorithms, pages 51–60.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989.

[38] H-P. Schwefel. Evolution and optimum seeking. Wiley, New York,
USA, 1995.

[39] D. Whitley, S. Rana, J. Dzubera, and K E. Mathias. Evaluating
evolutionary algorithms. Artificial Intelligence - Special volume on
empirical methods, 85(1-2):245–276, 1996.

[40] X. Yao, Y. Liu, and G. Lin. Evolutionary programming made
faster. IEEE Transactions on Evolutionary Computation, 3(2):82–
102, 1999.

[41] B. Yuan and M. Gallagher. Statistical racing techniques for im-
proved empirical evaluation of evolutionary algorithms. In Problem
Solving From Nature, volume 3242, pages 171–181. Springer, 2004.

Part IV

Appendix

427

Appendix A

Ruby: Quick-Start
Guide

A.1 Overview

All code examples in this book are provided in the Ruby programming
language. This appendix provides a high-level introduction to the Ruby
programming language. This guide is intended for programmers of an
existing procedural language (such as Python, Java, C, C++, C#) to
learn enough Ruby to be able to interpret and modify the code examples
provided in the Clever Algorithms project.

A.2 Language Basics

This section summarizes the basics of the language, including variables,
flow control, data structures, and functions.

A.2.1 Ruby Files

Ruby is an interpreted language, meaning that programs are typed as
text into a .rb file which is parsed and executed at the time the script
is run. For example, the following snippet shows how to invoke the
Ruby interpreter on a script in the file genetic algorithm.rb from the
command line: ruby genetic algorithm.rb

Ruby scripts are written in ASCII text and are parsed and executed
in a linear manner (top to bottom). A script can define functionality
(as modules, functions, and classes) and invoke functionality (such as
calling a function).

429

430 A. Ruby: Quick-Start Guide

Comments in Ruby are defined by a # character, after which the
remainder of the line is ignored. The only exception is in strings, where
the character can have a special meaning.

The Ruby interpreter can be used in an interactive manner by typing
out a Ruby script directly. This can be useful for testing specific behavior.
For example, it is encouraged that you open the Ruby interpreter and
follow along this guide by typing out the examples. The Ruby interpreter
can be opened from the command line by typing irb and exited again
by typing exit from within the interpreter.

A.2.2 Variables

A variable holds a piece of information such as an integer, a scalar,
boolean, or a string.

1 a = 1 # a holds the integer value '1'
2 b = 2.2 # b holds the floating point value '2.2'
3 c = false # c holds the boolean value false

4 d = "hello, world" # d holds the string value 'hello, world'

Ruby has a number of different data types (such as numbers and
strings) although it does not enforce the type safety of variables. Instead
it uses ‘duck typing’, where as long as the value of a variable responds
appropriately to messages it receives, the interpreter is happy.

Strings can be constructed from static text as well as the values of
variables. The following example defines a variable and then defines a
string that contains the variable. The #{} is a special sequence that
informs the interrupter to evaluate the contents of inside the brackets,
in this case to evaluate the variable n, which happens to be assigned
the value 55.

1 n = 55 # an integer

2 s = "The number is: #{n}" # => The number is: 55

The values of variables can be compared using the == for equality
and != for inequality. The following provides an example of testing the
equality of two variables and assigning the boolean (true or false) result
to a third variable.

1 a = 1

2 b = 2

3 c = (a == b) # false

Ruby supports the classical && and || for AND and OR, but it also
supports the and and or keywords themselves.

1 a = 1

2 b = 2

3 c = a==1 and b==2 # true

A.2. Language Basics 431

A.2.3 Flow Control

A script is a sequence of statements that invoke pre-defined functionality.
There are structures for manipulating the flow of control within the
script, such as conditional statements and loops.

Conditional statements can take the traditional forms of if condition
then action, with the standard variants of if-then-else and if-then-elseif.
For example:

1 a = 1

2 b = 2

3 if(a == b)

4 a += 1 # equivalent to a = a + 1

5 elsif a == 1 # brackets around conditions are optional

6 a = 1 # this line is executed

7 else

8 a = 0

9 end

Conditional statements can also be added to the end of statements.
For example, a variable can be assigned a value only if a condition holds,
defined all on one line.

1 a = 2

2 b = 99 if a == 2 # b => 99

Loops allow a set of statements to be repeatedly executed until a
condition is met or while a condition is not met.

1 a = 0

2 while a < 10 # condition before the statements

3 puts a += 1

4 end

1 b = 10

2 begin

3 puts b -= 1

4 end until b==0 # condition after the statements

As with the if conditions, the loops can be added to the end of
statements allowing a loop on a single line.

1 a = 0

2 puts a += 1 while a<10

A.2.4 Arrays and Hashs

An array is a linear collection of variables and can be defined by creating
a new Array object.

1 a = [] # define a new array implicitly

2 a = Array.new # explicitly create a new array

3 a = Array.new(10) # create a new array with space for 10 items

432 A. Ruby: Quick-Start Guide

The contents of an array can be accessed by the index of the element.

1 a = [1, 2, 3] # inline declaration and definition of an array

2 b = a[0] # first element, equivalent to a.first

Arrays are also not fix-sized and elements can be added and deleted
dynamically.

1 a = [1, 2, 3] # inline declaration and definition of an array

2 a << 4 # => [1, 2, 3, 4]

3 a.delete_at(0) # => returns 1, a is now [2, 3, 4]

A hash is an associative array, where values can be stored and
accessed using a key. A key can be an object (such as a string) or a
symbol.

1 h = {} # empty hash

2 h = Hash.new

3

4 h = {"A"=>1, "B"=>2} # string keys

5 a = h["A"] # => 1

1 h = {:a=>1, :b=>2} # label keys

2 a = h[:a] # => 1

3 h[:c] = 3 # add new key-value combination

4 h[:d] # => nil as there is no value

A.2.5 Functions and Blocks

The puts function can be used to write a line to the console.

1 puts("Testing 1, 2, 3") # => Testing 1, 2, 3

2 puts "Testing 4, 5, 6" # note brackets are not required for the function

call

Functions allow a program to be partitioned into discrete actions
and pre-defined and reusable. The following is an example of a simple
function.

1 def test_function()

2 puts "Test!"

3 end

4

5 puts test_function # => Test!

A function can take a list of variables called function arguments.

1 def test_function(a)

2 puts "Test: #{a}"

3 end

4

5 puts test_function("me") # => Test: me

A.3. Ruby Idioms 433

Function arguments can have default values, meaning that if the
argument is not provided in a call to the function, the default is used.

1 def test_function(a="me")

2 puts "Test: #{a}"

3 end

4

5 puts test_function() # => Test: me

6 puts test_function("you") # => Test: you

A function can return a variable, called a return value.

1 def square(x)

2 return x**2 # note the ** is a power-of operator in Ruby

3 end

4

5 puts square(3) # => 9

A block is a collection of statements that can be treated as a single
unit. A block can be provided to a function and it can be provided with
parameters. A block can be defined using curly brackets {} or the do

and end keywords. Parameters to a block are signified by |var|.

The following example shows an array with a block passed to the
constructor of the Array object that accepts a parameter of the current
array index being initialized and returns the value with which to initialize
the array.

1 b = Array.new(10) {|i| i} # define a new array initialized 0..9

2

3 # do...end block

4 b = Array.new(10) do |i| # => [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

5 i * i

6 end

Everything is an object in Ruby, even numbers, and as such every-
thing has some behaviors defined. For example, an integer has a .times

function that can be called that takes a block as a parameter, executing
the block the integer number of times.

1 10.times {|i| puts i} # prints 0..9 each on a new line

A.3 Ruby Idioms

There are standard patterns for performing certain tasks in Ruby, such
as assignment and enumerating. This section presents the common
Ruby idioms used throughout the code examples in this book.

434 A. Ruby: Quick-Start Guide

A.3.1 Assignment

Assignment is the definition of variables (setting a variable to a value).
Ruby allows mass assignment, for example, multiple variables can be
assigned to respective values on a single line.

1 a,b,c = 1,2,3

Ruby also has special support for arrays, where variables can be mass-
assigned from the values in an array. This can be useful if a function
returns an array of values which are mass assigned to a collection of
variables.

1 a, b, c = [1, 2, 3]

2

3 def get_min_max(vector)

4 return [vector.min, vector.max]

5 end

6

7 v = [1,2,3,4,5]

8 min, max = get_min_max(v) # => 1, 5

A.3.2 Enumerating

Those collections that are enumerable, such as arrays, provide convenient
functions for visiting each value in the collection. A very common idiom
is the use of the .each and .each with index functions on a collection
which accepts a block. These functions are typically used with an in-line
block {} so that they fit onto one line.

1 [1,2,3,4,5].each {|v| puts v} # in-line block

2

3 # a do...end block

4 [1,2,3,4,5].each_with_index do |v,i|

5 puts "#{i} = #{v}"

6 end

The sort function is a very heavily-used enumeration function. It
returns a copy of the collection that is sorted.

1 a = [3, 2, 4, 1]

2 a = a.sort # => [1, 2, 3, 4]

There are a few versions of the sort function including a version that
takes a block. This version of the sort function can be used to sort the
variables in the collection using something other than the actual direct
values in the array. This is heavily used in code examples to sort arrays
of hash maps by a particular key-value pair. The <=> operator is used
to compare two values together, returning a -1, 0, or 1 if the first value
is smaller, the same, or larger than the second.

A.4. Bibliography 435

1 a = {:quality=>2, :quality=>3, :quality=>1}

2 a = a.sort {|x,y| x[:quality]<=>y[:quality] } # => ordered by quality

A.3.3 Function Names

Given that everything is an object, executing a function on a object
(a behavior) can be thought of as sending a message to that object.
For some messages sent to objects, there is a convention to adjust the
function name accordingly. For example, functions that ask a question
of an object (return a boolean) have a question mark (?) on the end of
the function name. Those functions that change the internal state of an
object (its data) have an exclamation mark on the end (!). When working
with an imperative script (a script without objects) this convention
applies to the data provided as function arguments.

1 def is_rich?(amount)

2 return amount >= 1000

3 end

4 puts is_rich?(99) # => false

5

6 def square_vector!(vector)

7 vector.each_with_index {|v,i| vector[i] = v**2}

8 end

9 v = [2,2]

10 square_vector!(v)

11 puts v.inspect # => [4,4]

A.3.4 Conclusions

This quick-start guide has only scratched the surface of the Ruby Pro-
gramming Language. Please refer to one of the referenced textbooks on
the language for a more detailed introduction to this powerful and fun
programming language [1, 2].

A.4 Bibliography

[1] D. Flanagan and Y. Matsumoto. The Ruby Programming Language.
O’Reilly Media, 2008.

[2] D. Thomas, C. Fowler, and A. Hunt. Programming Ruby: The Prag-
matic Programmers’ Guide. Pragmatic Bookshelf, second edition,
2004.

436 A. Ruby: Quick-Start Guide

Errata

Revision 2

page 43–47 Typo’s of Multi-Restart. Thanks to Stephan Williams.

Revision 1

page 9 Typo in Metaheuristics section of the Introduction. Thanks to Leif
Wickland.

page 11 Typo in Function Optimization section of the Introduction. Thanks
to John Wise and Patrick Boehnke.

page 11 Typo’s in the Function Approximation section of the Introduction.
Thanks to Patrick Boehnke.

page 13 Typo in the Function Approximation section of the Introduction.
Thanks to Patrick Boehnke.

page 32 Typo in References section of Random Search.

page 37 Fixed bug with step size in Adaptive Random Search implemen-
tation. Thanks to Zach Scott.

page 43 Typo in Taxonomy section of Iterated Local Search. Thanks to
Diego Noble.

page 69 Bug in recombine function of the Scatter Search algorithm. Thanks
to Markus Stokmaier.

page 111 Bug in the init population function of the Evolution Strategies
algorithm. Thanks to Lai Yu-Hsuan.

page 129 Bug in the one point crossover function of the Grammatical
Evolution implementation. Thanks to Mark Chenoweth.

page 234 Fixed ambiguous pseudo code description of Particle Swarm Opti-
mization. Thanks to Stefan Pauleweit.

page 235 Fixed a bug in the get global best function of the Particle Swarm
Optimization implementation. Thanks to Paul Chinnery.

page 237 Improved reference 3 for Particle Swarm Optimization. Thanks to
Diego Noble.

437

438 Errata

page 242 Fixed a bug in the search function of the Ant System implemen-
tation. Thanks to Andrew Myers.

page 330 Typo in taxonomy of LVQ algorithm. Thanks to Jason Davies.

page 393 Typo in Function Approximation section. Thanks to Diego Noble.

page 400 Typo in subsection 9.6.1. Thanks to Diego Noble.

page 402 Typo in subsection 9.6.2. Thanks to Diego Noble.

page 415 Changed equality to assignment in Ruby flow control example in
Appendix A. Thanks to Donald Doherty.

page 413 Typo in Overview section in Appendix A. Thanks to Martin-Louis
Bright.

page 413 Typo in Ruby Files section in Appendix A. Thanks to Brook
Tamir.

page 414 Typos in Variables section in Appendix A. Thanks to Brook Tamir.

page 415 Typos in Flow Control and Arrays sections in Appendix A. Thanks
to Brook Tamir.

page 416 Typos in Arrays and Function and Blocks sections in Appendix A.
Thanks to Brook Tamir.

page 417 Typos in Function and Blocks section in Appendix A. Thanks to
Brook Tamir.

page 418 Typos in Enumerating section in Appendix A. Thanks to Brook
Tamir.

page 419 Typo in Conclusions section in Appendix A. Thanks to Brook
Tamir.

Index

Adaptive Immune System, 239
Adaptive Random Search, 29
Adaptive Systems, 324

Examples, 325
Formalism, 324

aiNet, 261
AIRS, 254
Ant Colony Optimization, 205, 213,

219
Ant Colony System, 219
Ant Cycle, 213
Ant System, 213
Ant-Q, 219
Artificial Immune Network, 261
Artificial Immune Recognition Sys-

tem, 254
Artificial Immune Systems, 8, 239
Artificial Intelligence, 3

Neat, 5
References, 21
Scruffy, 5

Artificial Neural Networks, 7, 275

Back-propagation, 283
Bacterial Foraging Optimization Al-

gorithm, 231
Bandit Problems, 16
Bayesian Optimization Algorithm, 193
Bees Algorithm, 226
Benchmark Measures, 367
Benchmark Problems, 366
Benchmarking, 364

Issues, 364
Measures, 367
Parameters, 365
Problem Instances, 366

Biologically Inspired Computation, 6
Frameworks, 329
Modeling, 330
References, 21

Black Box Algorithms, 14
Blind Search, 26
BOA, 193
Boosting, 362

Bootstrap Aggregation, 362

cGA, 189
Clever Algorithms, 9

Algorithm Selection, 9
Taxonomy, 17
Template, 17

Clonal Selection Algorithm, 242
CLONALG, 242
Collective Intelligence, 205
Compact Genetic Algorithm, 189
Complex Adaptive Systems, 328
Computation with Biology, 6
Computational Intelligence, 6

References, 21
Computationally Motivated Biology,

6
Constraint Satisfaction, 360
Cooperative Search, 358
Cross-Entropy Method, 200
Cultural Algorithm, 166

Dendritic Cell Algorithm, 268
Differential Evolution, 100
Domain-Specific Strategies, 357

Error Back-propagation, 283
Estimation of Distribution Algorithms,

179
Evolution, 77
Evolution Strategies, 95
Evolutionary Algorithms, 77
Evolutionary Computation, 7, 77
Evolutionary Programming, 105
Extremal Optimization, 155

Feed-forward Networks, 276
Flow Programming, 318
Function Approximation, 12, 361

Cooperative, 362
Decomposition, 362
Definition, 12
Meta, 363
Parallelization, 361

439

440 INDEX

Subfields, 12
Vector Quantization, 361

Function Optimization, 10, 357
Cooperative, 358
Decomposition, 359
Definition, 11
Global and Local, 358
Hybrid, 359
Meta, 360
Parallel, 358
Subfields, 11

Fuzzy Intelligence, 7

Gene Expression Programming, 117
Genetic Algorithm, 80
Genetic Programming, 86
Global and Local Optimization, 358
Gnuplot, 341

Box-and-whisker, 348
Heat map, 349
Histogram, 347
Line, 345
Scatter Plot, 344
Surface, 342

Grammatical Evolution, 110
GRASP, 53
Greedy Randomized Adaptive Search,

53
Guided Local Search, 43

Harmony Search, 161
Hill Climbing, 34
Hopfield Network, 291

Immune Algorithms, 239
Inductive Learning, 16
Iterated Local Search, 38

Kohonen Network, 303

Learning Classifier System, 124
Learning Vector Quantization, 297

Markov Chain, 15
Markov Chain Monte Carlo, 15
Memetic Algorithm, 172
Metaheuristics, 8

References, 22
Monte Carlo, 15
Multi-Objective Optimization, 359

Natural Computation, 5
Natural Selection, 77
Negative Selection Algorithm, 248
Neural Algorithms, 275
Neural Computation, 275

Neural Networks, 275
New Algorithms, 324
No Free Lunch Theorem, 14
Non-dominated Sorting Genetic Algo-

rithm, 134
NSGA-II, 134

Object-Oriented Programming, 315
opt-aiNet, 261

Parallel Optimization, 358
Pareto Front, 359
Pareto Optimal, 359
Particle Swarm Optimization, 205, 207
PBIL, 181
Perceptron, 278
Physical Algorithms, 149
Population Model-Building Genetic

Algorithms, 179
Population-Based Incremental Learn-

ing, 181
Probabilistic Algorithms, 179
Problem Solving Strategies, 354
Procedural Programming, 314
Programming Paradigms, 314

Racing Algorithms, 364
Random Mutation Hill Climbing, 34
Random Search, 26
Reactive Tabu Search, 69
Recurrent Networks, 276
Ruby, 373

Arrays and Hashs, 375
Download, 19
Enumerating, 378
Flow Control, 375
Function Names, 379
Functions and Blocks, 376
Idioms, 377
Language Basics, 373
References, 22, 379
Versions, 19

Scatter Search, 58
Search Space Partitioning, 360
Selecting Algorithm Parameters, 365
Self-Organizing Map, 303
Simulated Annealing, 150
Software Testing, 334
SPEA2, 141
Stacked Generalization, 362
Statistical Methods, 367
Stochastic Algorithms, 25
Stochastic Global Optimization, 25
Stochastic Hill Climbing, 34
Stochastic Optimization, 15

INDEX 441

Strength Pareto Evolutionary Algo-
rithm, 141

Strong and Weak Methods, 356
Suitability of Application, 354
Supervised Learning, 276
Swarm Algorithms, 205
Swarm Intelligence, 7, 205

Taboo Search, 64
Tabu Search, 64
Testing Algorithms, 334

UMDA, 185
Unconventional Optimization, 13
Unit Testing, 334

Definition, 334
Example, 335
Heuristics, 338
References, 339

Univariate Marginal Distribution Al-
gorithm, 185

Unsupervised Learning, 276

Variable Neighborhood Search, 48
Vector Quantization, 361
Visualizing Algorithms, 341

	Foreword
	Preface
	I Background
	Introduction
	What is AI
	Problem Domains
	Unconventional Optimization
	Book Organization
	How to Read this Book
	Further Reading
	Bibliography

	II Algorithms
	Stochastic Algorithms
	Overview
	Random Search
	Adaptive Random Search
	Stochastic Hill Climbing
	Iterated Local Search
	Guided Local Search
	Variable Neighborhood Search
	Greedy Randomized Adaptive Search
	Scatter Search
	Tabu Search
	Reactive Tabu Search

	Evolutionary Algorithms
	Overview
	Genetic Algorithm
	Genetic Programming
	Evolution Strategies
	Differential Evolution
	Evolutionary Programming
	Grammatical Evolution
	Gene Expression Programming
	Learning Classifier System
	Non-dominated Sorting Genetic Algorithm
	Strength Pareto Evolutionary Algorithm

	Physical Algorithms
	Overview
	Simulated Annealing
	Extremal Optimization
	Harmony Search
	Cultural Algorithm
	Memetic Algorithm

	Probabilistic Algorithms
	Overview
	Population-Based Incremental Learning
	Univariate Marginal Distribution Algorithm
	Compact Genetic Algorithm
	Bayesian Optimization Algorithm
	Cross-Entropy Method

	Swarm Algorithms
	Overview
	Particle Swarm Optimization
	Ant System
	Ant Colony System
	Bees Algorithm
	Bacterial Foraging Optimization Algorithm

	Immune Algorithms
	Overview
	Clonal Selection Algorithm
	Negative Selection Algorithm
	Artificial Immune Recognition System
	Immune Network Algorithm
	Dendritic Cell Algorithm

	Neural Algorithms
	Overview
	Perceptron
	Back-propagation
	Hopfield Network
	Learning Vector Quantization
	Self-Organizing Map

	III Extensions
	Advanced Topics
	Programming Paradigms
	Devising New Algorithms
	Testing Algorithms
	Visualizing Algorithms
	Problem Solving Strategies
	Benchmarking Algorithms

	IV Appendix
	Ruby: Quick-Start Guide
	Overview
	Language Basics
	Ruby Idioms
	Bibliography

	Errata
	Index

