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This paper proposes a statistical methodology for comparing the performance of evolution-
ary computation algorithms. A twofold sampling scheme for collecting performance data is
introduced, and these data are analyzed using bootstrap-based multiple hypothesis testing
procedures. The proposed method is sufficiently flexible to allow the researcher to choose
how performance is measured, does not rely upon distributional assumptions, and can be
extended to analyze many other randomized numeric optimization routines. As a result,
this approach offers a convenient, flexible, and reliable technique for comparing algorithms
in a wide variety of applications.

� 2008 Published by Elsevier Inc.
1. Introduction

Evolutionary algorithms (EAs) [1,9] are used to estimate the solution to difficult optimization problems. EAs are often
hand-crafted to meet the requirements of a particular problem because no single optimization algorithm can solve all prob-
lems competitively [19]. When alternative algorithms are proposed, their relative efficacies should be assessed. Because EAs
follow a stochastic process, statistical analysis is appropriate for algorithm comparison. This paper seeks to provide a general
methodology for comparing the performance of EAs based on statistical sampling and hypothesis testing.

Prior research in the statistical design and analysis of EAs has considered a variety of approaches. Based upon a large
number of experimental trials, Penev and Littlefair [12] demonstrate that the Free Search algorithm improves upon previous
results from a variety of stochastic competitors on several optimization problems. This comparison consists of defining a
number of performance metrics and computing average values for each algorithm. However, like many other evolutionary
computation studies, these results are not statistically analyzed and substantiated. Because of the large sample size and clear
observed differences in their results, we have no reason to doubt the specific findings of the Free Search study. Indeed, a sta-
tistical analysis of these data would likely add weight to the conclusions. In proposing a general framework for statistical
performance comparison of EAs and similar randomized optimization algorithms, we seek to provide an experimental
framework in which the results of similar studies may be assessed according to appropriate statistical tests.

Christensen and Wineberg [3] explain the use of appropriate statistics in artificial intelligence and propose non-paramet-
ric tests to verify the distribution of an EA’s estimate of a function’s optimal value. Flexer [8] proposes general guidelines for
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statistical evaluation of neural networks that can also be applied to EAs. Although a variety of non-parametric tests are avail-
able, these procedures are often limited to specific parameters of interest. For instance, the Mann–Whitney test (also called
Wilcoxon’s rank sum test [16]) may be used to assess the equality of two populations’ medians without requiring any infor-
mation about the data’s distribution. However, such a test is not easily adapted to other parameters, such as the mean dif-
ference between the two populations, the simultaneous comparison of more than two populations at once, or a simultaneous
test of both the median and another parameter of interest. Czarn [4] discuss the use of the analysis of variance (ANOVA) in
comparing the performance of EAs. Similarly, Castillo-Valdivieso et al. [2] and Rojas et al. [17] employ ANOVA methods to
optimize the parameter values in the design of improved EAs for specific optimizations, whereas Franc�ois and Lavergne
[10] rely upon a generalized linear model. However, these procedures all require distributional assumptions that are not nec-
essarily valid and also limit the class of performance metrics that can be used. Because EAs produce results according to com-
plex stochastic processes, often very little is known about the distribution of results across algorithmic trials. We seek to
address this problem by relying solely on empirical data generated from repeated trials of competing EAs. The proposed
methodology employs a bootstrap-based multiple hypothesis testing framework [6,5,15,13] that may be applied to any
parameter of interest, number of simultaneous hypotheses, and data distribution. The resulting procedure establishes an
experimental framework in which EAs may be compared based upon empirical data.

An EA’s initial population (Section 2) consists of a set of starting values for the evolution process. Most previous EA per-
formance comparisons have only considered results for a single initial population or even provided different inputs for each
algorithm studied. Supplying different single inputs to each EA may result in a founder effect, in which a population’s initial
advantage is continually propagated to successive generations. Furthermore, relying upon a single choice of initial popula-
tion can at best determine the plausibility of preferring one candidate EA to another given suitable initial conditions. We can
alleviate these issues by assessing relative performance over each of a representative sample of initial populations.

For each particular initial population sampled, two EAs may be compared by testing the null hypothesis of equal perfor-
mance according to a specified performance metric. Student’s t-statistics [11] are commonly used to test the equality of two
population means. However, the parametric t-test assumes that the data are normally distributed. If this assumption is not
valid, the resulting inference may not be meaningful. Therefore, we require a more general and objective framework for sta-
tistical performance comparison of EAs.

Because we are proposing a scientific method for performance comparison, it is important to design an effective exper-
iment that specifies how data are collected and analyzed. To collect data, we propose a twofold sampling scheme to perform
repeated EA trials at each of a representative sample of possible inputs. The candidate EAs’ efficacies are then assessed in a
multiple hypothesis testing framework that relies upon bootstrap resampling [6,5,15,13] to estimate the joint distribution of
the test statistics. This methodology establishes a procedure for EA comparison that can be considered general in the follow-
ing aspects: First, the results do not rely heavily on a single advantageous input. Second, the bootstrap-based testing proce-
dure is applicable to any distribution and requires no a priori model assumptions. Finally, this methodology can be applied to
essentially any function of the data collected, so the researcher is free to choose how performance should be evaluated. The
result is a general framework for performance comparison that may be used to compare EAs or other stochastic optimization
algorithms based upon empirical data.

The paper is organized as follows: Section 2 provides a brief introduction to EAs and presents a twofold sampling scheme
for data collection. Section 3 places performance comparison in a multiple hypothesis testing framework. Section 4 shows
how to use the bootstrap to estimate the test statistics’ underlying distribution. Section 5 introduces a variety of multiple
testing procedures. Section 6 provides an example comparing the performance of two EAs seeking to minimize Ackley’s func-
tion. Section 7 discusses further applications of statistics in EA performance comparison and concludes the paper.
2. Evolutionary algorithms and data collection

An EA’s cost (or objective) function is a map f : RD ! R to be optimized. Any candidate solution is specified by an individual
with a vector of genes (or traits, used interchangeably) y ¼ ðy1; . . . ; yDÞ. Each individual has a corresponding cost given by f ðyÞ.
Given a population of individuals, an EA uses evolutionary mechanisms to successively create offspring, or new individuals. The
evolutionary mechanisms often consist of some combination of selection, reproduction, and mutation operators. The selec-
tion mechanism ranks individuals by cost, determines which individuals shall produce offspring, and assigns individuals to
mating groups. Given a mating group, reproduction combines the genes of individuals within the mating group one or more
times to produce offspring. Finally, the mutation mechanism randomly alters the genetic profile of offspring immediately fol-
lowing conception.

An EA’s initial population (or input, used interchangeably) is a set of individuals that serve as starting values for the algo-
rithm, and its result is given by the minimum observed cost among all individuals produced in G generations. Once the evo-
lutionary mechanisms are specified, one ordered iteration of these processes in sequence is considered one generation, and
the evolution process proceeds for a user-specified number of generations G 2 Zþ.

An EA’s result is determined by a stochastic process with two sources of variation: the initial cost and the algorithm’s
improvements to this cost produced by G generations of the random evolution process. Because an EA’s result depends both
on its initial cost and its efficacy given this initial population, a sample of result data should be collected in a twofold sampling
scheme: we first generate a representative sample of initial populations, and then, for each of these inputs, we perform a
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number of trials of each candidate EA. If we specify the number of generations G, the data are collected via the following
algorithm:

1. Generate M initial populations of H individuals. Each individual is described by a D-dimensional vector of genes. The value
of the dth gene of the hth individual of the mth population is labeled ymhd. When referring to an overall population ym or
single individual ymh within that population, the unnecessary indices will be dropped. Populations of individuals are con-
structed from genes randomly generated from an associated D-dimensional distribution function P. The resulting sample
of individuals, and hence the population samples, are independent and identically distributed (i.i.d.).

2. Because an EA with a particular input follows a stochastic process, we sample results for each of the inputs generated in Step
1. For each initial population ym, perform na; a 2 f1;2g, trials of algorithm a, allowing each trial to iterate for G generations.
Save the ith trial’s result as the [m, i]th entry of an M � na data matrix Xa. The number of generations G will be dropped from
much of the subsequent notation, but it should be emphasized that the data collected are realizations of an experiment con-
ducted by running an EA for G generations, and therefore, this analysis is only valid for the specified value of G.

The values na specify the sample size, and M represents the number of hypotheses, each of which correspond to an initial
population. In general, one should collect as much data as possible given the computational constraints of the problem. In
designing a performance comparison, the sample size should be selected by considering the variability of each EA’s perfor-
mance data. Choosing the sample size in terms of a pre-specified margin of error is a standard procedure in tests of a single
hypothesis but is currently an open problem in multiple hypothesis testing applications.

3. Multiple hypothesis testing framework

For any comparison, we must first specify the theoretical parameter of interest laðymÞ, which in this setting is an EA’s mea-
sure of performance given initial population ym and the number of generations G. A typical choice for laðymÞ is the EA’s exp-
ected result after G generations. This parameter is estimated by a statistic l̂aðymÞ, which is just a function of the observed
data Xa. When the expected result is the parameter of interest, the corresponding estimator is the sample mean:
l̂aðymÞ ¼
1
na

Xna

i¼1

Xa½m; i�; m ¼ 1; . . . ;M; a ¼ 1;2 ð1Þ
and the estimated variance of the result is
r̂2
aðymÞ ¼

1
na

Xna

i¼1

ðXa½m; i� � l̂aðymÞÞ
2; m ¼ 1; . . . ;M; a ¼ 1;2: ð2Þ
It should be noted that the numerator of (2) may also be divided by na � 1 if so desired, but the convention of bootstrap var-
iance estimates typically divides by na [7].

A multiple hypothesis testing framework is needed to compare algorithmic performance based on the data collected in
Section 2. The null hypothesis can take many forms depending on the researcher’s priorities. For example, one may wish to
show that a new algorithm’s expected optimal cost after G generations is greater than that of an established standard or that
its performance falls in a particular range. Typically we wish to demonstrate that the candidate EAs differ significantly in
performance given an initial population, so a skeptical null hypothesis would assume for each input that no difference in
performance exists between the two algorithms. This corresponds to the multiple null hypotheses
Hm : l1ðymÞ � l2ðymÞ ¼ 0; m ¼ 1; . . . ;M: ð3Þ
We then test (3) at multiple significance levels a (e.g. FWER 0.05 – Section 5). To do so, we must construct test statistics and
corresponding decision rules that reject the null hypotheses when the test statistics exceed to-be-determined cut-offs. We
test each component null hypothesis using a two-sample t-statistic:
tm ¼
l̂1ðymÞ � l̂2ðymÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̂2
1ðymÞ
n1
þ r̂2

2ðymÞ
n2

q ; m ¼ 1; . . . ;M: ð4Þ
In order to specify cut-offs that probabilistically control a suitably defined Type I error rate (Section 5), we must estimate the
underlying joint distribution of (4). When the data are assumed to follow a normal distribution, Student’s t-distribution is
appropriate for the marginal distributions of (4). However, if this assumption is not valid, the test statistics may not follow
any mathematically simple distribution. Under either of these circumstances, the joint distribution of (4) can be estimated
using the bootstrap.

4. Using the bootstrap in hypothesis testing

The bootstrap is a simulation-based resampling method that uses the data collected to estimate a statistic’s distribution
in a mathematically simple but computationally intensive way. This estimate is consistent, asymptotically efficient, and does
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not rely upon parametric assumptions, so it is widely applicable to many problems in statistical inference [7]. In the setting
of hypothesis testing, we can estimate the underlying joint distribution of (4) via the following algorithm [6,5,15,13]:

1. Specify a number B 2 Zþ (typically at least 10,000 for multiple hypothesis testing) of bootstrap iterations.
2. Let n ¼ n1 þ n2. Concatenate the columns of X1 and X2 to form an M � n data matrix X. For each b 2 f1; . . . ;Bg, sample n

columns at random with replacement from X and store this resampling in an M � n matrix X#b.
3. For b ¼ 1; . . . ;B, compute bootstrap test statistics on each resampled matrix X#b. To do so, treat the first n1 columns of X#b

as if it were the data set X1 and the last n2 columns as X2. Then apply (4) to these subsets of X#b to compute a vector of M
test statistics from the resampled data. Because this procedure is repeated for each of the B bootstrap iterations, these test
statistics may be stored in an M � B matrix T. The reader may refer to [6,5,13,15] for further details.

4. Obtain an M � B matrix Z by shifting T about its row means and scaling by its row standard deviations for
m ¼ 1; . . . ;M; b ¼ 1; . . . ;B:
Table 1
Type I e

Type I e
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gFWER
FDR
TPPFP
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false po
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: ð5Þ
The estimate of the test statistic (4)’s joint distribution is given by the empirical distribution of the columns of Z in (5). In
the next section, we will use this joint distribution to compute a measure of the observed data’s extremity under the null
hypothesis (3). For hypothesis testing applications, the bootstrap is implemented in the MTP function of the R statistical pro-
gramming environment’s multtest package [14].

5. Multiple testing procedures

The significance level a, the observed test statistics tm (4), and the matrix of bootstrap test statistics Z (5) constitute the
input to a multiple testing procedure (MTP). In this setting, a variety of methods that reflect a diversity of attitudes toward
risk are available. Statistical tests can generate two types of errors: a Type I error (or false positive) occurs when a true null
hypothesis is incorrectly rejected, and a Type II error (or false negative) occurs when a false null is not rejected. When testing
M hypotheses simultaneously, as in (3), we define the following random variables: The number of Type I errors V, which is
not observed, and the number of rejected hypotheses R, which is observed. Classical MTPs seek to control the Family-Wise
Error Rate (FWER). More recent research has been developed to control the generalized Family-Wise Error Rate
(gFWER), False Discovery Rate (FDR), and the Tail Probability for the Proportion of False Positives (TPPFP), which are defined
in Table 1.

As described in [6,5,15,13,14,18], Table 2 lists a selection of available MTPs for each Type I error rate. The results of a mul-
tiple hypothesis test can be summarized in terms of several measures. A rejection region provides a set of values for which
each hypothesis Hm of (3) is rejected while controlling the desired Type I error rate at level a. A 1� a confidence region
estimates a plausible range of values for the parameter of interest based upon the estimator’s inherent variability. If the
rror rates

rror rate Parameter Parameter controlled

– PrðV > 0Þ
k 2 Zþ PrðV > kÞ
– E½V=R�
q 2 ½0;1� PrðV=R > qÞ

ily-Wise Error Rate (FWER) is the probability of obtaining at least 1 false positive in the simultaneous test of M hypotheses. The generalized Family-
ror Rate (gFWER) is the probability of obtaining at least kþ 1 false positives. The False Discovery Rate (FDR) is the expected proportion of false
s among all rejected hypotheses. Finally, the Tail Probability for the Proportion of False Positives (TPPFP) is the probability that the proportion of
sitives among all rejected hypotheses exceeds a given threshold.

y Type I error rate

rror rate Multiple testing procedures

Single step (SS) max T, SS minP, step down (SD) maxT, SD minP, Bonferroni, Holm, Hochberg, SS Šidák, SD Šidák
Augmentation procedure (AMTP), SS common cut-off, SS common quantile, empirical Bayes
Conservative augmentation, restrictive augmentation, Benjamini–Yekutieli (BY), Benjamini–Hochberg (BH)
AMTP, empirical Bayes

ails about these procedures, please refer to Dudoit and van der Laan [6].
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experiment were repeated a large number of times, a proportion of approximately 1� a of the resulting confidence regions
would contain the true parameter. Finally, adjusted p-values [6] provide a measure of the data’s extremity under the null
hypothesis. The adjusted p-value for null hypothesis Hm is defined as the minimum value of Type I error level a for which
Hm is rejected. Smaller adjusted p-values correspond to stronger evidence against the validity of the null hypothesis.
Adjusted p-values from different MTPs controlling the same Type I error rate may be directly compared, with smaller values
reflecting a less conservative test [6]. The MTPs of Table 2 are implemented in the MTP function of the R multtest package
[14]. The user need only supply the data, the value of a, the form of the null hypothesis, the test statistic, Type I error rate
to control, and select the MTP.
6. Example: Ackley’s function minimization

6.1. Defining Ackley’s function

We seek to compare two candidate EAs that approximate the minimum of a D ¼ 10-dimensional Ackley function [1].
With ymh ¼ ðymh1; . . . ; ymhDÞ as in Section 2, Ackley’s multi-modal function, which achieves a known minimum at the origin,
is defined as
f ðymhÞ ¼ �c1 exp �c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

XD

d¼1

y2
mhd

vuut
0
@

1
A� exp

1
D

XD

d¼1

cos c3ymhdð Þ
 !

þ c1 þ expð1Þ ð6Þ
with the following parameters supplied for this example:
c1 ¼ 20; c2 ¼ 0:2; c3 ¼ 2p; D ¼ 10; ymhd 2 ð�20;30Þ:
6.2. Candidate EAs Ackley1 and Ackley2

The algorithms Ackley1 and Ackley2 were devised to estimate the minimum of (6). Each EA takes an input population ym as
described in Section 2. Each individual ymh of this population has associated cost f ðymhÞ given by (6). At each generation, both
algorithms include a selection, reproduction, and mutation phase. Ackley1 and Ackley2 differ only in the choice of the muta-
tion rate and are otherwise identical algorithms. The evolutionary mechanisms of these EAs are as follows:

Selection: For simplicity, the population size H is assumed to be a multiple of 4, though this method can be generalized
with floor and ceiling operators for other values of H. Sort and re-label the H individuals in order of increasing
f ðymhÞ;h ¼ 1; . . . ;H. The H=2 best-fit individuals – those with the smallest values of (6) – are selected for reproduction,
while the other members will not breed. For h ¼ 1; . . . ;H=4, pair individuals y½mð2h�1Þ� and y½mð2hÞ� for mating. Although
selection is the last phase of a generation, it is presented first because the initialization process that creates the 0th gen-
eration requires selection before the first generation of the evolution process may commence.
Reproduction: Selection in the previous generation pairs individuals y½mð2h�1Þ� and y½mð2hÞ�;h ¼ 1; . . . ;H=4, for mating. Each
pair produces two offspring to replace individuals not selected. For the first child ðc ¼ 1Þ, a uniform random variable
k1 is generated on ð0;1Þ, and the second child ðc ¼ 2Þ receives k2 ¼ 1� k1. Genes are inherited (vector-wise) by the
weighted average
y½mðH=2þ2ðh�1ÞþcÞ� ¼ kcy½mð2h�1Þ� þ ð1� kcÞy½mð2hÞ�: ð7Þ

Mutation: Each offspring y½H=2þ1�; . . . ; yH may randomly mutate in a single gene at birth with probability ha. When mutation
occurs, the gene is selected from a uniform random variable on f1; . . . ;Dg, and this trait is assigned a uniform random
variable on ð�20;30Þ. In this example, mutation probabilities for Ackley1 and Ackley2 are h1 ¼ 0:1 and h2 ¼ 0:8, respec-
tively. Because only one of an individual’s D ¼ 10 genes may mutate, the expected proportions of mutating genes in
Ackley1 and Ackley2 are 0.01 and 0.08.

Except for the mutation probability, Ackley1 and Ackley2 are identical EAs. The initial population is considered the com-
pletion of the reproduction and mutation phases for the 0th generation, and the first generation begins after selection of the
initial population. The process of reproduction, mutation, and selection repeats a total of G generations, and the EAs’ results
are given by
Result ¼ min
h2f1;...;Hg

f ðymhÞ: ð8Þ
The value of (8) observed for EA a after G generations on the ith trial given initial population ym is stored as the [m, i]th entry
of the data matrix Xa. Because the reproduction and mutation phases have random components at each generation, the value
Xa½m; i� is a random variable.

It should be noted that Ackley1 and Ackley2 were designed solely to provide an example of our comparison methodology.
Different population sizes, reproduction schemes, or mutation rates may lead to improved estimates of (6)’s minimum.
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6.3. Study design and results

Using the twofold sampling scheme of Section 2, we generated M ¼ 100 initial populations y1; . . . ; yM , each consisting of
H ¼ 100 individuals with D ¼ 10 genes apiece. Each individual’s traits were initialized using pseudo-random number gen-
eration from a uniform distribution on the interval (�20,20). It should be noted that subsequent mutations allowed genes
to take any value in (�20,30), so only mutant genes and their offspring can reach the interval [20,30). Function (6) was used
to assess each individual’s cost. Then, for each initial population m ¼ 1; . . . ;M, we collected result data on n1 ¼ n2 ¼ 50 trials
of the EAs. On each trial, both Ackley1 and Ackley2 were allowed to evolve for G ¼ 10;000 generations.

The data for the Ackley1 and Ackley2 trials are displayed in Fig. 1 as a function of initial population index. Fig. 2 shows the
average performance of the EAs for each initial population. Though Ackley2 produces a better (i.e. smaller) mean value of (8)
than Ackley1 at each initial population, Fig. 1 shows that Ackley1 is capable of producing competitive results for some trials
across all inputs. Furthermore, Ackley1 appears to exhibit greater variance than Ackley2 in its estimates. Therefore, it is not
immediately clear that Ackley2 does indeed perform better than Ackley1.
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We conducted two-sided tests of the multiple null hypotheses (3) corresponding to no difference in mean performance
between Ackley1 and Ackley2 at each given input versus the alternative of unequal mean performance. Note that one could
also perform one-sided tests that designate one candidate EA as superior to the other in the null hypothesis.

Hypotheses (3) were tested using the multtest package [14] of R based on the data collected and the test statistic (4). We
first employed the FWER-controlling SS maxT MTP at nominal level a ¼ 0:05. Figs. 3–6 provide summary plots of the SS maxT
results. Fig. 3 shows how the number of rejected hypotheses R grows as a function of a. The second plot depicts the SS maxT
adjusted p-values in sorted order, which relates the growth of a to the number of rejected hypotheses. This curve indicates
that 91 hypotheses are rejected at level a ¼ 0:05. Fig. 5 shows how the SS maxT adjusted p-values decrease with the absolute
value of the test statistics. Here the adjusted p-values approach 0.05 as the test statistics increase toward �2.75, indicating
that a given hypothesis is rejected for all test statistics smaller than this value. Fig. 6 displays the unordered SS maxT
adjusted p-values, which allow one to identify the initial populations that result in significant (<0.05) performance
differences.
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Fig. 3. The number of rejected hypotheses as a function of Type I error rate in SS maxT testing. Each hypothesis is rejected if its adjusted p-value is smaller
than Type I error rate a.
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We then implemented a selection of the MTPs listed in Table 2 to test (3) under different Type I error rates. Table 3 dis-
plays the number of hypotheses rejected by each MTP at varying Type I error levels a. The following procedures reject all 100
hypotheses at level a ¼ 0:05: Holm, Hochberg, SD Šidák, and the TPPFP Augmentation Procedure with values q ¼ 0:07 and
q ¼ 0:10.

For the gFWER and TPPFP-controlling augmentation procedures, the question remains whether the allowed number k or
rate q of false positives is tolerable in testing EA performance differences. This question is epistemological in nature and must
be decided by subject matter specialists. In practice, a maximum value for these parameters should be established before
comparison takes place. Although the particular benchmark is somewhat arbitrary (much like the choice of a ¼ 0:05 in
hypothesis testing), establishing a uniform standard is necessary for future studies.

The results of the test of (3) suggest a performance difference between Ackley1 and Ackley2. On each of the M ¼ 100 sam-
ple input populations, Ackley2 achieved a smaller average observed minimum. All MTPs rejected at least 84 of the M ¼ 100
hypotheses at level a ¼ 0:05, and a number of procedures rejected all hypotheses even at level a ¼ 0:01. Therefore, based
upon the data collected, we conclude that Ackley2 significantly outperforms Ackley1 in estimating the minimum of (6) when



Table 3
The number of rejected hypotheses R as a function of a for a selection of MTPs

Rate MTP 0.01 0.03 0.05 0.07 0.1

FWER SS maxT 70 84 91 93 95
Bonferroni 85 89 91 94 95
Holm 100 100 100 100 100
Hochberg 100 100 100 100 100
SS Šidák 85 89 91 94 95
SD Šidák 100 100 100 100 100

gFWER AMTP 70 84 91 93 95
k ¼ 5
AMTP 75 89 96 98 100
k ¼ 10

FDR Conservative AMTP 70 84 91 93 95
Restricted AMTP 75 90 98 100 100
BY 66 76 84 89 95
BH 66 76 84 89 95

TPPFP AMTP 99 100 100 100 100
q ¼ 0:07
AMTP 100 100 100 100 100
q ¼ 0:10
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the expected result obtained after G generations of evolution is the parameter of interest. Because the two algorithms only
differed in their mutation probabilities, it appears that the increased mutation rate of Ackley2 is beneficial in this application.
Future comparisons may consider further increases in mutation to search for the frequency that best tunes the EA to the Ack-
ley cost function (6).

7. Discussion

This paper’s methodology provides a general approach to EA performance comparison. The proposed framework allows
the researcher to choose the parameter of interest in an EA comparison. When parameters other than the expected optimum
cost are used (such as the trimmed mean, the median, the 75th percentile, or other quantiles), our methodology is applicable
provided that the necessary data are collected and appropriate estimators (1), null hypotheses (3), and test statistics (4) are
chosen. In crafting an EA for a particular optimization problem, this paper’s approach can be used iteratively to select the
best among a set of candidate parameter values for quantities such as the mutation rate, population size, and selection pro-
portion. When three or more EAs are simultaneously compared, null hypotheses of equality in means may be tested using
F-statistics.

For illustration purposes, we considered an example in Section 6 involving a simple objective function (6), measure of
performance laðymÞ, and sampling scheme based upon i.i.d. inputs. However, this methodology is applicable for general
choices of the objective function, parameters of interest, sampling scheme, null hypotheses, test statistics, and number of
algorithms to compare. Furthermore, although this paper studies performance comparison within the field of evolutionary
computation, the general framework can be applied to essentially any stochastic optimization routine.

The reader should be cautioned that issues of sample size cannot be neglected. Determining an adequate sample size in
multiple hypothesis testing settings is currently an open problem in the statistics literature. In general, the bootstrap approx-
imation of (4)’s joint distribution grows more accurate as the values B and na increase. In practice, researchers may choose to
collect as much data as a pre-specified time limit will allow. Data-adaptive study designs may also be implemented to halt
data collection once a pre-specified level of statistical power is achieved. In hypothesis testing, the power of a test is defined
as the probability of correctly rejecting a set of false null hypotheses given the true parameter values.

If competing algorithms draw from different input sets, then the test of a single hypothesis ðM ¼ 1Þ concerning average
results from representative input samples may be considered. When the input sets are identical, an alternative to the
approach of this paper may choose to average all trials in a single hypothesis test provided that all inputs are i.i.d. The choice
of which approach to use is philosophical: this paper assumes that EAs should be compared using the same input sample. In
this setting, the parameter of interest is the expected result obtained in G generations given the initial population. This
allows the algorithm to be assessed solely on the merits of its evolutionary mechanisms without any possibility of a founder
effect. However, if one views the input generation and resulting evolution as inextricably linked in the same algorithm, then
a single hypothesis testing framework may be more appropriate, and this paper’s methodology is otherwise applicable. In
this scenario, the parameter of interest shifts to the unconditional expectation of performance. Though a single test may sim-
plify the interpretation of performance differences, this approach lacks the appeal of direct performance comparison on the
same trial inputs.

The researcher may also wish to compare EAs as a function of time by collecting data at regular generational intervals.
Displaying performance curves and confidence regions graphically may allow one to quickly determine decision criteria
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and search for clues about an algorithm’s rate of convergence and asymptotic result. Finally, an EA’s efficacy should be con-
sidered in terms of both performance and computational complexity. Researchers may consider performing a comparison in
which each candidate algorithm is allowed to run for the same amount of time instead of the same number of generations to
satisfy both objectives simultaneously.
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