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Abstract- Evolutionary programming (EP) has been ap-
plied with success to many numerical and combinatorial
optimization problems in recent years. However, most
analytical and experimental results on EP have been ob-
tained using low-dimensional problems. It is interesting
to know whether the empirical results obtained from the
low-dimensional problems still hold for high-dimensional
cases. It was discovered that neither classical EP (CEP)
nor fast EP (FEP) performed satisfactorily for some large-
scale problems. This paper shows empirically that FEP
with cooperative coevolution (FEPCC) can speed up con-
vergence rates on the large-scale problems whose dimen-
sion ranges from 100 to 1000. Cooperative coevolution
adopts the divide-and-conquer strategy. It divides the sys-
tem into many modules, and evolves each module sepa-
rately and cooperatively. The results of FEPCC on the
problems investigated here are something of a surprise.
The time used by FEPCC to find a near optimal solution
appears to scale linearly; that is, the time used seems to go
up linearly as the dimensionality of the problems studied
increases.

1 Introduction

Evolutionary programming (EP) has been recently applied
with success to many numerical and combinatorial optimiza-
tion problems [1, 2]. Optimization by EP can be summarized
into two major steps:

1. Mutate the solutions in the current population, and

2. Select the next generation from the mutated and the
current solutions.

These two steps can be regarded as a population-based ver-
sion of the classical generate-and-test method, where muta-
tion is used togenerate new solutions (offspring) and selec-
tion is used totest which of the newly generated solutions
should survive to the next generation. The generate-and-test

formulation of EP indicates that mutation is a key search op-
erator which generates new solutions from the current ones.

Recently, a fast EP (FEP) algorithm based on Cauchy mu-
tation was proposed and tested on a suite of 23 functions
[3]. FEP performs much better than classical EP (CEP) for
multimodal functions with many local minima while being
comparable to CEP in performance for unimodal and multi-
modal functions with only a few local minima. However, the
problems studied in [3] have 30 dimensions that are relatively
small for many real-world problems. It is interesting to know
whether the results obtained from the low dimensional prob-
lems can be generalized to higher-dimensional problems. It
is also important to investigate the computational complexity
of an EP algorithm, i.e., how it scales as the problems size in-
creases. Unfortunately, the reported studies on the scalability
of EP algorithms and evolutionary algorithms, in general, are
scarce [4, 5].

It was discovered that neither classical CEP nor FEP per-
formed satisfactorily for some large-scale problems [5]. The
reason for FEP’s poor performance on the high dimensional
problem lies in its overly large search step size. The step
size of the Cauchy mutation increases monotonically as the
dimensionality increases. As pointed out in a previous study
[6], there is an optimal search step size for a given problem.
A step size which is too large or too small will have a negative
impact on the performance of search. CEP performs poorly
on the multimodal function due to its small search step size,
which makes it difficult to escape from a local minimum once
it is trapped.

In this paper, FEP with cooperative coevolution (FEPCC)
is proposed to deal with the high dimensional problems. Co-
operative coevolution adopts the divide-and-conquer strategy
[7, 8]. It divides the system into many modules, and then
repeats the following two steps for many generations until a
good system rather than a module is obtained:

1. Evolve each module separately, and

2. Combine them to form the whole system.
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This paper investigates the behavior of FEPCC on large-scale
problems with dimensions ranging from 100 to 1000. The
problems used in our empirical studies include four unimodal
functions and four multimodal functions with many local op-
tima. The results of FEPCC on the problems investigated here
are something of a surprise. FEPCC has displayed excellent
robustness across dimensionality in their good performance.
The time used by FEPCC to find a near optimal solution ap-
pears to scale linearly; that is, the time used seems to go
up linearly as the dimensionality of the problems studied in-
creases.

The rest of this paper is organized as follows: Section 2
describes the global minimization problem considered in this
paper and FEPCC used to solve it. Section 3 presents and dis-
cusses the experimental results. Finally, Section 4 concludes
with some remarks and future research directions.

2 Fast Evolutionary Programming with Cooper-
ative Coevolution

A global minimization problem can be formalized as a pair
�S� f�, whereS � Rn is a bounded set onRn andf � S �� R

is ann-dimensional real-valued function. The problem is to
find a pointxmin � S such thatf�xmin� is a global minimum
on S. More specifically, it is required to find anxmin � S

such that
�x � S � f�xmin� � f�x��

where f does not need to be continuous but it must be
bounded. This paper only considers unconstrained function
optimization.

2.1 Function Optimization by Fast Evolutionary Pro-
gramming

The FEP applied to function optimization can be described as
follows [3]:

1. Generate the initial population of� individuals, and
setk � �. Each individual is taken as a pair of real-
valued vectors,�xi� �i�, �i � f�� � � � � �g, wherexi’s
are objective variables and�i’s are standard deviations
for Cauchy mutations (also known as strategy parame-
ters in self-adaptive evolutionary algorithms).

2. Evaluate the fitness score for each individual�xi� �i�,
�i � f�� � � � � �g, of the population based on the objec-
tive function,f�xi�.

3. Each parent�xi� �i�, i � �� � � � � �, creates a single off-
spring�xi�� �i�� by: for j � �� � � � � n,

xi
��j� � xi�j� � �i�j��j � (1)

�i
��j� � �i�j� exp��

�N��� �� � �Nj��� ��� (2)

where�i�j�, �i��j�, xi�j�, and xi��j� denote thej-
th component of the vectors�i, �i�, xi and xi�, re-
spectively. The factors� and� � are commonly set to

�p
�
p
n
���

and
�p

�n
���

[9, 10]. N��� �� denotes

a normally distributed one-dimensional random num-
ber with mean� and standard deviation�. Nj��� �� in-
dicates that the random number is generated anew for
each value ofj. �j is a Cauchy random variable with
the scale parametert � �, and is generated anew for
each value ofj. The one-dimensional Cauchy density
function centered at the origin is defined by:

ft�x� �
�

�

t

t� � x�
� �	 � x �	� (3)

where t � � is a scale parameter [11](pp.51). The
shape offt�x� resembles that of the Gaussian density
function but approaches the axis so slowly that an ex-
pectation does not exist. As a result, the variance of the
Cauchy distribution is infinite.

4. Calculate the fitness of each offspring�xi �� �i��, �i �
f�� � � � � �g.

5. Conduct pairwise comparison over the union of parents
�xi� �i� and offspring�xi�� �i��, �i � f�� � � � � �g. For
each individual,q opponents are chosen uniformly at
random from all the parents and offspring. For each
comparison, if the individual’s fitness is no smaller than
the opponent’s, it receives a “win.”

6. Select the� individuals out of�xi� �i� and �xi �� �i��,
�i � f�� � � � � �g, that have the most wins to be parents
of the next generation.

7. Stop if the halting criterion is satisfied; otherwise,k �
k � � and go to Step 3.

The FEP described is similar to CEP in [9] except for
Eq.(2) which is defined in CEP:

xi
��j� � xi�j� � �i�j�Nj��� �� (4)

Figure 1 shows the difference between the Cauchy mutation
and Gaussian mutation. It is clear from Figure 1 that Cauchy
mutation is more likely to generate an offspring further away
from its parent than Gaussian mutation due to its long flat
tails. It is expected to have a higher probability of escaping
from a local optimum or moving away from a plateau, es-
pecially when the “basin of attraction” of the local optimum
or the plateau is large relative to the mean step size. On the
other hand, the smaller hill around the center in Figure 1 indi-
cates that Cauchy mutation spends less time in exploiting the
local neighborhood and thus has a weaker fine-tuning ability
than Gaussian mutation in small to mid-range regions. The
empirical results support the above intuition [3] .

2.2 Scaling Up Performance by Cooperative Coevolution

Given that a solution to a function minimization problem con-
sists of a vector ofn variable values, a direct cooperative co-
evolution for function optimization is to assign a population
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Figure 1: Comparison between Cauchy and Gaussian density
functions.

to each variable, and coevolve the individuals in each separate
population [7, 8]. One complete evolution of all populations
for n variables during one generation is called acycle. A cy-
cle of evolution of FEPCC consists of three major steps:

1. j � �. Apply FEP to the population of variable�.

2. j � j � �. Apply FEP to the population of variablej.

3. If j � n, go to Step 2. Otherwise, go to the next cycle.

To reduce the evaluation time, the fitness of an individ-
ual in FEPCC was estimated by combining it with the current
best individuals from each of the other populations to form
a vector of real values, and applying the vector to the target
function. The fitness evaluation in FEPCC is different with
that in FEP. In FEP, the target function value of a new indi-
vidual have to be recalculated since an individual is a vector
and the most of components in the vector have new values.
In contrast, because an individual in FEPCC is a component
in a vector and other components in the vector remain un-
changed, it only needs to calculate the difference caused by
the changed component. This fitness evaluation method used
in this paper takes less computation time.

3 Experimental Studies

3.1 Benchmark Functions

Eight benchmark functions [1, 9, 12, 13] were used in our ex-
perimental studies. The eight benchmark functions are given
in Table 1. Functionsf� to f� are unimodal. Functionsf�
to f� are multimodal functions where the number of local
minima increases exponentially with the problem dimension
[12, 13].

3.2 Experimental Setup

In experiments, the population size� � 	�, the tournament
size q � �� for selection, and the initial� � 
	� were

used. These parameters follow the suggestions from B¨ack
and Schwefel [9] and Fogel [1]. The initial population was
generated uniformly at random in the range as specified in
Table 1.

3.3 Unimodal Functions

The first set of experiments was aimed to study the conver-
gence rate of FEPCC for functionsf� to f� with different
dimensions. The dimensions off�–f� were set to 100, 250,
500, 750, and 1000, respectively, in our experiments. For a
function in each dimension,	� independent runs were con-
ducted. The average results of	� runs are summarized in
Table 2. Figure 2 shows the progress of the mean solutions
found over 50 runs forf� to f�. Functionf� is the simple
sphere model studied by many researchers. Functionf� is
a discontinuous function. FEPCC maintains a nearly con-
stant convergence rate throughout the evolution for functions
f� andf�. For functionf�, when the term of

Qn

i�� jxij domi-
nates the target function value, FEPCC displays a fast conver-
gence rate. Once the term of

Pn

i�� jxij takes over, FEPCC’s
convergence rate reduces substantially. Functionf� is the step
function that is characterized by plateaus and discontinuity.
FEPCC moves quickly from one plateau to a lower one for
f�.

According to Figure 2 and Table 2, the computational time
used by FEPCC to find an optimal solution to the unimodal
functions appears to grow in the order of O(n). For example,
for functionf�, 500000 fitness evaluations were need forn �
���, 1250000 forn � �	�, 2500000 forn � 	��, 3750000
for n � �	�, and 5000000 forn � ����. Although the
number of fitness evaluation is relatively large in FEPCC, the
totol computation time is considerably short. An individual in
a population in FEPCC is a single variable. Its fitness can be
easily evaluated from its parent. Only the difference caused
by one changed variable in a vector needs to be calculated.

3.4 Multimodal Functions

Multimodal functions having many local minima are often
regarded as being difficult to optimize.f�–f� are such func-
tions where the number of local minima increases exponen-
tially as the dimension of the function increases. Five dif-
ferent values ofn have been used in our experiments, i.e.,
n � ���, �	�, 	��, �	�, and����. The average results of	�
runs are summarized in Table 3. Figure 3 shows the progress
of the mean solutions found over 50 runs forf� to f�. Ac-
cording to Figure3, FEPCC was able to improve its solution
steadily for a long time for functionsf�, f	, andf�, but fell
to a local optimum quite early for functionf�. One reason for
FEPCC becoming trapped in a local optimum is that it used a
greedy fitness evaluation. The fitness of an individual is eval-
uated based on the vector formed by this individual and the
current best individuals from each of the other populations.
To get a better evaluation, we can construct many vectors,
and determine the fitness of an individual by evaluating the
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Table 1: The eight benchmark functions used in our experimental study, wheren is the dimension of the function,fmin is the
minimum value of the function, andS � Rn.

Test function S fmin

f��x� �
Pn

i�� x
�

i ������ ���
n 0
f��x� �

Pn

i�� jxij�
Qn

i�� jxij ����� ��
n 0
f��x� � maxifjxij� � � i � ng ������ ���
n 0
f��x� �

Pn

i�� �bxi � �		c�� ������ ���
n 0
f��x� �

Pn

i���xi sin�
p
jxij� ��	��� 	��
n ����	����n

f��x� �
Pn

i���x
�

i � �� cos���xi� � ���
 ��		��� 		��
n 0

f	�x� � ��� exp
�
��	�

q
�

n

Pn

i�� x
�

i

�
� exp

�
�

n

Pn

i�� cos ��xi
�

��
�� 
�
n 0

��� � e

f��x� �
�

�




Pn

i�� x
�

i �
Qn

i�� cos
�
xip
i

�
� � ������ ���
n 0

Table 2: The mean solutions found forf�–f�, with dimension
n � ���, �	�, 	��, �	�, and����, respectively, by FEPCC.
One complete evolution of all populations in one generation
is called acycle. The function evaluation number in one cycle
equals���n.

Func. n No. of Cyc. Mean Std Dev
f1 100 50 �	�
 ���� �	�
 ����

250 50 �	�
 ���� �	�
 ���	

500 50 �	�
 ���� �	�
 ���	

750 50 
	�
 ���� �	�
 ����

1000 50 		�
 ���� �	�
 ����

f2 100 100 �	�
 ���� �	�
 ����

250 100 �	

 ���� �	�
 ����

500 100 �	

 ���� 
	�
 ����

750 100 �	�
 ���� �	�
 ����

1000 100 �	�
 ���� 
	�
 ����

f3 100 50 
	�
 ���� �	�
 ����

250 50 		�
 ���� �	�
 ����

500 50 �	�
 ���� �		
 ����

750 50 �	�
 ���� 
	�
 ����

1000 50 �		
 ���� �	�
 ����

f4 100 50 0.0 0.0
250 50 0.0 0.0
500 50 0.0 0.0
750 50 0.0 0.0
1000 50 0.0 0.0

target function values of all vectors containing this individual
[14].

Based on Figure 3 and Table 3, the computational time
used by FEPCC to find a near optimal solution to the mul-
timodal functions also appears to grow in the order of O(n).
For example, for functionf�, 500000 fitness evaluations were
need forn � ���, 1250000 forn � �	�, 2500000 for
n � 	��, 3750000 forn � �	�, and 5000000 forn � ����.

Table 3: The mean solutions found forf�–f�, with dimension
n � ���, �	�, 	��, �	�, and����, respectively, by FEPCC.
One complete evolution of all populations in one generation
is called acycle. The function evaluation number in one cycle
equals���n.

Func. n No. of Cyc. Mean Std Dev
f5 100 50 ������	
 52.28

250 50 �������	� 96.47
500 50 ����
��	� 121.3
750 50 �
�
��		� 171.1
1000 50 �������	� 200.6

f6 100 50 0.026 0.14
250 50 0.048 0.15
500 50 0.143 0.28
750 50 0.163 0.23
1000 50 0.313 0.40

f7 100 50 �	�
 ���� �	�
 ����

250 50 
		
 ���� 
	�
 ����

500 50 		�
 ���� 
	�
 ����

750 50 �	�
 ���� �	�
 ����

1000 50 �		
 ���� 
	�
 ����

f8 100 50 0.047 0.065
250 50 0.025 0.052
500 50 0.029 0.085
750 50 0.061 0.195
1000 50 0.025 0.114
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Table 4: Comparison between FEPCC with FEP on functionf� (the sphere function) withn � ���, 200 and 300, respectively.
The results of FEPCC were averaged over	� independent runs. The results of FEP were averaged over�� independent runs
[5].

n FEPCC FEP
No. of Function Mean of No. of Function Mean of

Evaluations Solutions Evaluations Solutions
100 		�
 ��� �	�
 ���� �		
 ��� �	�
 ����

200 �	�
 ��� �	�
 ���� �		
 ��� �	�
 ����

300 �		
 ��� �	�
 ���� 
	�
 ��� 0.46

Table 5: Comparison between FEPCC with FEP on functionf� (the Ackley’s function) withn � ���, 200 and 300, respectively.
The results of FEPCC were averaged over	� independent runs. The results of FEP were averaged over�� independent runs
[5].

n FEPCC FEP
No. of Function Mean of No. of Function Mean of

Evaluations Solutions Evaluations Solutions
100 		�
 ��� �	�
 ���� �		
 ��� 
	�
 ����

200 �	�
 ��� 
	�
 ���� �		
 ��� 15.2
300 �		
 ��� 
	�
 ���� 
	�
 ��� 20.7

3.5 Comparisons with Fast Evolutionary Programming

Tables 4 and 5, and Figures 4 and 5 summarize the average
results of FEPCC in comparison with FEP on the sphere func-
tion f� and the Ackley’s functionf�. Only the results of
FEP onf� andf�, with n � ���, ���, and
��, respectively,
were reported in [5]. When the dimensionality becomes large,
FEP converges very slowly in comparison with FEPCC. The
reason that FEP’s performance worsens as the dimensional-
ity increases lies in its increasingly large search step sizes.
FEP’s search step size (driven by the search step size of the
Cauchy mutation) increases as the dimensionality increases.
When the search step size is larger than the optimal one, fur-
ther increase in the step size can only deteriorate the search
performance [6]. FEPCC is applyed to a variable of a vector
rather than the whole vector, the problem of too large step size
with high dimensionality does not exist. Furthermore, the ro-
bust and faster search capability of Cauchy mutation in one
dimension can be fully explored by cooperative coevolution
approach.

4 Conclusions

This paper proposes FEPCC, and evaluates its scalability on a
number of benchmark problems. Scalability of an algorithm
is an important measurement of how good and how applica-
ble the algorithm is. Few results on the scalability of EP al-
gorithms and evolutionary algorithms are available at present
[4, 5]. The experiment results show that the cooperative co-
evolution approach provides an effective and efficient way to
improve scalability of FEP. The time used by FEPCC to find
a near optimal solution appears to increase linearly as the di-
mensionality increases.

One problem was found for FEPCC is that it sometimes

fell into a local optimum due to its greedy fitness evaluation.
One of the future improvements to FEPCC would be to apply
more complex and better fitness evaluation methods [14].
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