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Abstract 
This paper is concerned with the development of intelligent decision support methodologies 
for nurse rostering problems in large modern hospital environments. We present an approach 
which hybridises heuristic ordering with variable neighbourhood search. We show that the 
search can be extended and the solution quality can be significantly improved by the careful 
combination and repeated use of heuristic ordering, variable neighbourhood search and back-
tracking. The amount of computational time that is allowed plays a significant role and we 
analyse and discuss this. The algorithms are evaluated against a commercial Genetic 
Algorithm on commercial data. We demonstrate that this methodology can significantly 
outperform the commercial algorithm. This paper is one of the few in the scientific nurse 
rostering literature which deal with commercial data and which compare against a 
commercially implemented algorithm. 
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1.Introduction: 
It is clear that the efficient rostering of healthcare personnel can lead to the more effective 
utilisation of valuable resources. Healthcare institutions around the world are becoming 
increasingly interested in the deployment of decision support technology to aid the personnel 
scheduling process. A very general form of the nurse rostering problem could be described as 
follows: Given a set of shifts and a set of nurses over a certain time period, assign each shift 
to a nurse subject to a set of constraints. The constraints are usually defined by regulations, 
working practices and the preferences of the nurses.  
The problem of nurse rostering is relatively easily described but like most real world search 
problems it is far from easy to automatically generate very high quality solutions. Indeed, 
there have been many papers over the years from across operational research and artificial 
intelligence that have tackled the problem in one form or another. A wide range of 
approaches and techniques have been investigated and used. Ernst et al. [18, 19] identified 28 
different categories of methods that have been used on personnel scheduling problems. These 
include constraint logic programming, constructive heuristics, expert systems, genetic 
algorithms, integer programming, set partitioning, simple local search and simulated 
annealing. A recent review of automated nurse rostering approaches found that, although 
there has been a lot of research in the area, surprisingly few of the methods were tested on 
real world data [16]. The paper went on to conclude that even fewer have actually been 
implemented in real hospital wards. 



Of those techniques that have been applied on real-world problems metaheuristic methods 
seem to dominate. One approach which has been applied in multiple real world hospitals is a 
hybrid tabu search [14]. The tabu search is integrated with techniques which are usually 
observed in manual scheduling approaches. The algorithm has been incorporated into 
software that has been used to create nurse rosters in over forty Belgian hospitals and copes 
with many shift types, work regulations and skill categories. This work was hybridised with 
an evolutionary approach [9] to produce a methodology which could generate higher quality 
solutions but at the cost of increased computational time. Variable Neighbourhood Search 
[20, 29] has also been applied and tested on highly constrained real world nurse rostering data 
[12]. The authors found that VNS could be effectively used to escape from the local optima 
found using single neighbourhood heuristics. They also commented “After reaching a local 
optimum, we recommend the exploration of wider environments”. Evaluation methods for 
challenging real world problems are presented and discussed in [10]. A methodology which 
can handle a more flexible approach to real world nurse rostering than the traditional fixed 
period based approach is presented in [13]. An overview of the work carried out by these 
authors in Belgian hospitals is presented in [15]. 
Another investigation on real data explored a genetic algorithm approach [1], which 
successfully exploits problem specific knowledge in tackling the problem. Although the 
method is tailored for that particular problem instance, the underlying concepts could be 
applied to other nurse rostering problems. In 1998, Dowsland was also able to match the 
quality of schedules produced by an expert human scheduler using a highly developed tabu 
search [17]. The algorithm ‘oscillates’ between trying to improve the cover and improving 
the preference costs. As well as using tabu lists, candidate lists and diversification strategies 
the search also uses a large neighbourhood created by looking for chains of overall improving 
swaps. Aickelin and Li [23, 24] have since experimented with the application of bayesian 
optimisation and classifier systems to similar nurse rostering problems. The results are close 
to those produced by an optimal integer programming method and the authors concluded that 
with further effort and experimentation the algorithms could well improve even more. 
Bellanti et al. [7] tackled a problem with hard constraints and objectives (or soft constraints) 
using various local search techniques. The authors presented good results for a tabu search 
and iterated local search which use neighbourhoods defined by changing the assignment of 
night shifts. 
Another methodology that has been tested on complex real-world data from a UK hospital is 
case-based reasoning [31]. This approach avoids the use of evaluation functions but instead 
aims to imitate how an expert human scheduler would produce a good schedule. This is done 
by storing observed methods for repairing violations in schedules and retrieving, adapting 
and performing these repairs or moves whenever a similar violation is encountered again. As 
an extension to their work, the authors also suggest methods in which it could be combined 
with a meta-heuristic approach [5, 6]. Another relatively recent methodology is a 
combination of constraint networks and knowledge-based rules [25]. The approach was 
implemented in a commercial software package and has been successfully used in a number 
of hospitals. 
Berrada, Ferland and Michelon [8] developed a multi-objective mathematical programming 
model to represent a real world problem containing both hard and soft constraints in a 
Canadian hospital. The schedules produced met the standards required by the head nurses.  
The authors also experimented with a tabu search and found that although it required greater 
computational time it was useful in some circumstances. Valouxis and Housos [33] approach 
a nurse rostering problem using an approximate integer linear programming model to produce 
initial solutions. The initial solutions are then further optimised using a local search with a ‘2-
opt’ neighbourhood and a tabu search. Their method compared very favourably with a 



constrained programming approach. In 2004, Bard and Purnomo [3] employed a combination 
of heuristic and integer programming methods to solve nurse preference scheduling problems 
with up to one hundred nurses and approximately thirteen hard and soft constraints. 
Individual nurse schedules are created by modifying a base schedule using swaps. These 
columns are then used to form a set covering type problem which, when solved, creates the 
overall roster. Later they extended this work to further improve the quality of schedules by 
incorporating the use of a downgrading option [2] and in [4] present a model which combines 
cyclic and preference scheduling. 
By defining fuzzy constraints (i.e. constraints that may be partially satisfied and partially 
violated) Meyer auf’m Hofe [28] solved real world nurse rostering problems as constraint 
optimisation rather than as constraint satisfaction problems. Branch and bound and iterative 
improvement are used to quickly produce good rosters. The approach was developed using 
experience gained developing a software rostering system that is used in approximately 60 
German hospitals [27]. 
There are many more papers in the literature which are discussed in more detail in [16] and 
[18]. It is clear that relatively few papers in the literature have worked with real world data or 
been implemented in hospitals [16]. One of the main goals in this paper is to develop an 
effective and efficient search approach to improve upon the genetic algorithm based approach 
that is currently employed within ORTEC’s Harmony software1. As such, the methodology 
has to be able to handle all the requirements and constraints that are inherent in nurse 
rostering problems from the modern complex environments that are represented by today’s 
hospitals. 
This paper presents our investigation into combining a variable neighbourhood search with a 
method of heuristically unassigning shifts and repairing schedules using heuristic ordering. 
The next section describes the nurse rostering problem we were dealing with. Sections 3 and 
4 discuss the algorithm and results respectively. In section 5 we draw conclusions on the 
success of this approach and present some possible future extensions in section 6. 
 
2. Problem Description 
The data for this problem was provided by ORTEC, a major supplier of software products 
and consulting in the field of advanced planning and scheduling. They support hospitals and 
other organisations all over the world with automated workforce management solutions.  
The number of nurses in the problem instances tested ranges from 30 to12, the ratio of full to 
part time nurses also varies between wards. For example, one ward consists of 16 nurses, 12 
of the nurses are full time and work 36 hours per week. One nurse works 32 hours per week 
and the other 3 are also part time and work 20 hours per week. Each instance also has a 
number of specific personal requests such as particular shifts and/or days requested off or on. 
All the other constraints that need to be satisfied are presented in sections 2.2 and 2.3. The 
scheduling period for each instance is exactly one month.  
The data was provided by ORTEC as a challenging real world problem and is very typical of 
their clients’ needs. An approach which is successful in dealing with a problem as complex as 
this will provide direct benefits in a number of real world personnel scheduling scenarios. 
 
2.1 Shifts and Shift Demand 
There are 4 different shift types in the problem: day, early, late and night shifts. All the shifts 
except night shifts cover 9 hours including one hour of rest time. So the actual number of 
working hours for each shift type is 8. Night shifts last 8 hours but include no rest time and so 
are counted as 8 working hours. The total cover requirements for each shift for each day vary 

                                                 
1 The results of this research are incorporated in the latest product versions of Harmony. 



between instances. Generally, larger wards require more nurses on duty during each shift but 
similar sized wards can also have different cover requirements. 
 
Table 1 shows the daily demand for these shifts in the instance described earlier with 16 
nurses. 
 
 

Shift Start 
time 

End 
Time 

Mon Tue Wed Thu Fri Sat Sun 

Day (D) 08:00 17:00 3 3 3 3 3 2 2 
Early (E) 07:00 16:00 3 3 3 3 3 2 2 
Late (L) 14:00 23:00 3 3 3 3 3 2 2 
Night (N) 23:00 07:00 1 1 1 1 1 1 1 

 
Table 1 : Shift types and an example weekly demand. 

 
2.2 Hard Constraints 
The following rules must be met at all times otherwise the schedule is considered to be 
infeasible and unacceptable. 

• Shift cover requirements need to be satisfied. Over coverage is not permitted. 
• A nurse may start only one shift per day. 
• The maximum overtime assigned to each nurse per month is 4 hours. 
• The maximum hours worked per week is on average 36 hours over a period of 13 

consecutive weeks which do not include night shift assignments. 
• The maximum number of night shifts in any period of 5 consecutive weeks is 3. 
• A nurse must receive at least 2 weekends off in any 5 week period. A weekend off 

lasts 60 hours including Saturday 00:00 to Monday 04:00. 
• Following 2 or more consecutive night shifts, a 42 hour rest is required. 
• During any period of 24 hours, at least 11 hours rest is required. A night shift has to 

be followed by at least 14 hours rest. Once in a period of 21 days, however, the rest 
period may be reduced to 8 hours. 

• The maximum number of consecutive night shifts is 3. 
• The maximum number of consecutive days worked is 6. 

 
2.3 Soft Constraints 
Ideally these requirements should be fulfilled. However, to obtain a schedule that meets all 
the hard constraints it is often necessary to break some of the soft rules. A weight is assigned 
to each soft constraint to reflect its importance (especially in comparison to other soft 
constraints). A weighting is simply a number. The higher the number, the more strongly 
desired the constraint or request is. The weights are set either by the head nurses or through 
feedback from the nurses about what qualities they desire in their schedules. As a rough 
guide, the weights could be described as follows: 
 
Weight 1000 :  The constraint should not be violated unless absolutely necessary. 
Weight 100   :  The constraint is strongly desired. 
Weight 10     :  The constraint is preferred but not critical. 
Weight 1       :  Try and obey this constraint if possible but it is not essential. 
 



In practice exponentially scaled weights like these are most commonly used. However, the 
users do have the option of setting and changing the weight for each constraint to any positive 
integer value. 
 

Constraint Weight Penalty 
Function 

Violation measurement 
factor 

From Friday 22:00 to Monday 0:00 a nurse 
should have either no shifts or at least 2 
shifts (‘complete weekend’). 

1000 Linear Number of incomplete 
weekends 

No stand-alone shifts i.e. a day off, day on, 
day off sequence. 

1000 Linear Number of isolated shifts 

The length of a series of night shifts should 
be within the range 2-3. It could be before 
another series. 

1000 Quadratic Difference between length 
of series and acceptable 
length. e.g. if 1 night shift, 
factor = 1, if 2 or 3 night 
shifts, factor = 0, if 4 night 
shifts, factor = 1, if 5 factor 
= 2 etc. 

A minimum of 2 days rest after a series of 
day, early or late shifts. 

100 Linear Factor is one if only one day 
of rest otherwise zero 

Employees with availability of 30-48 hours 
per week, should receive a minimum of 4 
shifts and a maximum of 5 shifts per week. 

10 Quadratic Difference between number 
of shifts received and 
acceptable number per week 

Employees with availability of 0-30 hours 
per week, should receive a minimum of 2 
shifts and a maximum of 3 shifts per week. 

10 Quadratic Difference between number 
of shifts received and 
acceptable number per week 

For employees with availability of 30-48 
hours per week, the length of a series of 
shifts should be within the range of 4-6. 

10 Quadratic Difference between length 
of series received and 
acceptable series length. 

For employees with availability of 0-30 
hours per week, the length of a series of 
shifts should be within the range 2-3. 

10 Quadratic Difference between length 
of series received and 
acceptable series length. 

The length of a series of early shifts should 
be within the range 2-3. It could be within 
another series. 

10 Quadratic Difference between length 
of series received and 
acceptable series length. 

The length of a series of late shifts should be 
within the range of 2-3. It could be within 
another series. 

10 Quadratic Difference between length 
of series received and 
acceptable series length. 

An early shift after a day shift should be 
avoided. 

5 Linear Number of early shifts after 
days shifts 

A night shift after an early shift should be 
avoided. 

1 Linear Number of night shifts after 
early shifts 

 
Table 2 : Soft Constraints 

 
2.4 Evaluation Function 
The evaluation function is the sum of all the penalties incurred due to soft constraint 
violations. The penalty for each soft constraint is calculated either linearly or quadratically 
using the violation measurement factors listed in Table 2. The violation measurement factor 
is the degree to which the constraint is violated or the excess of the violation. The use of 



either quadratic or linear evaluation functions arises from practices in Harmony which were 
developed based on customer preferences and feedback. 
A soft constraint with a linear penalty function is simply calculated as: The violation 
measurement factor multiplied by the weight. For example, it is preferable to have at most 
zero stand-alone or isolated shifts. This is a soft constraint with weight 1000. However, to 
produce a feasible schedule (i.e. one in which all the hard constraints are fulfilled) it may be 
necessary to allocate a nurse to an isolated shift. This is one more than is preferred so a 
penalty of 1000 is incurred. If the nurse had two isolated shifts they would have a penalty of 
2000 (2 * 1000) . 
A quadratic penalty function is calculated as: The violation measurement factor squared and 
multiplied by the weight. For example, it is preferable that during a period of five weeks a 
nurse performs no more than three night shifts. This is a soft constraint with a weight of 
1000. However, it may be necessary to assign five night shifts in the five week period (i.e. 2 
more than preferred), then the penalty for this soft constraint violation would be 4000 (22 * 
1000). 
It is now possible to define the objective of the problem: To find a feasible schedule with the 
lowest possible penalty caused by soft constraint violations. From the perspective of the head 
nurse, of course, the actual penalty hides a lot of information about the solution but it is not 
totally meaningless. By examining the penalty for each schedule it is possible to gain some 
idea of the schedule quality. For example, if the penalty is less than 1000 then we know that 
all the constraints with weight 1000 have been satisfied. However, the key to producing 
satisfactory schedules is obviously setting the correct weights and ensuring that all the 
required constraints are defined. Therefore it is essential that the end user either has a good 
understanding of how to set the weights and define constraints or has clearly described the 
requirements to the software administrator. 
 
As mentioned previously, a feasible schedule is a schedule that satisfies all the hard 
constraints. A penalty for an infeasible schedule can still be calculated but in our system a 
feasible schedule is always considered to be better than an infeasible schedule regardless of 
penalty values. The only infeasible schedules that may be introduced during the search or 
returned afterwards are those that provide insufficient cover. This is ensured by never 
assigning a shift to a nurse if it will violate a hard constraint. For example, at certain points in 
the algorithm, shifts may be unassigned in a schedule and so the coverage constraint will be 
violated. These shifts will then only be reassigned if no hard constraint violations occur in 
doing so. If the quality of infeasible schedules need to be compared, the schedules with the 
lowest number of unassigned shifts (i.e. minimum shift coverage violation) are ranked higher 
regardless of their penalties. If infeasible schedules have the same number of shifts 
unassigned, then the penalty function is used. 
For all the instances we tested we were able to produce feasible schedules. It is possible 
though that there may be an instance for which a feasible schedule does not exist. In practice,  
if a feasible schedule cannot be found (either because one does not exist or it is too difficult 
to find) then the head nurse or manager decides whether to work with the best infeasible 
schedule or relax some of the constraints or hire extra personnel and/or to assign some extra 
nurses to the ward (usually agency or float nurses) and then restart the search. 
 
 
3. The Hybrid Variable Neighbourhood Search Algorithm 
The algorithm that we present in this paper represents an iterative process in which variable 
neighbourhood search is followed by a schedule disruption and repair strategy. The repairing 



of the schedule is performed using a heuristic ordering technique. Back-tracking is also 
carried out to further improve the quality of the schedules produced. 
 
The overall process is illustrated by the pseudo-code in Figure 1. 
 

Create Initial Schedule 
 
REPEAT 
 
    Variable Neighbourhood Search 
 
    IF current penalty < best penalty  THEN 
     
        SET best schedule to current schedule 
        SET best penalty  to current penalty 
     
    ELSE 
     
        SET Current Schedule to Best Schedule (i.e. Back-track one step) 
 
    ENDIF 
     
    Unassign shifts of a set of nurses 
     
    Repair schedule (using heuristic ordering method) 
     
UNTIL search terminated 

 
Figure 1. Pseudo-code of the overall hybrid algorithm 

 
3.1 Initialisation 
A heuristic ordering is used to create the initial schedule. In the experimentation section, we 
will be comparing our approach against a commercial genetic algorithm developed by 
ORTEC and in use in real hospital environments. The commercial genetic algorithm this 
hybrid variable neighbourhood search is evaluated against uses a similar heuristic ordering 
method to create its initial population of schedules.  
The aim of the heuristic ordering process is to sort all the shifts in order of the estimated 
difficulty of assigning them or how likely they are to cause high penalties (by using the 
criteria shown in Table 3). Using the weighted sum to identify them, the more troublesome 
shifts are then assigned earlier on in the schedule construction process.  
Once the shifts have been sorted in the order in which to try and assign them, they are in turn 
assigned to each nurse to calculate the penalty that would be incurred if the shift was assigned 
to that nurse. The shift is then assigned to the nurse that gains the least penalty in receiving 
that shift. 
The attributes of a shift that are examined when ranking the shifts in the order of possible 
difficulty to assign are described in Table 3 along with the functions used to assign its total 
weight for ranking.  
 

Shift Criteria Evaluation Function Weight 
Night Shift Weight 100 
Weekend Shift Weight 50 
Number of valid 
nurses 

(NumValidNurses / TotalNumNurses) * Weight 70 

Shift Date Weight * (Schedule.EndDate – Shift.BeginDate) 20 

Table 3: Shift evaluation criteria 
 



The first two criteria in Table 3 are obvious to examine as there are high penalties associated 
with night shift and weekend shift constraints. The third criterion used is to deduce how many 
nurses are able to fulfil this shift. If there are many nurses able to undertake it then it can be 
scheduled later but if there are very few then it is a good idea to assign it early on in the 
process. The shift date criteria is used to try and ensure that shifts in the early days in the 
scheduling period are assigned earlier on in the process. This is useful as these shifts are more 
likely to conflict with the previous schedule’s assignments. The shift date evaluation function 
is in units of days. 
 
3.2 Variable Neighbourhood Search 
When the initial schedule has been created using the heuristic ordering method described 
above, a variable neighbourhood search is applied. This makes use of two neighbourhoods. 
Both of these neighbourhoods are commonly used by meta-heuristics and other approaches 
and have been described before, see, for example, [21, 22, 26, 30]. The two neighbourhoods 
are defined by the following moves or changes to a schedule: 

1. Assigning a shift to a different nurse. 
2. Swapping the nurses assigned to each of a pair of shifts. 

The first neighbourhood is a lot smaller than the second neighbourhood. However, it is 
observed that moves in the second neighbourhood can improve the quality of the schedule 
quite significantly. 
Our variable neighbourhood approach is a variable neighbourhood descent. As can be seen 
from Figure 3, the smaller neighbourhood (neighbourhood 1) is repeatedly examined for an 
improving move and the move is executed if found. When there are no improving moves left 
in neighbourhood 1, then the much larger neighbourhood 2 is examined. If a move in 
neighbourhood 2 is used then neighbourhood 1 is examined again. This is repeated until there 
are no improving moves left in neighbourhood 1 and 2. 

 
SET MoveMade to TRUE 
 
WHILE MoveMade is TRUE 

 
      SET MoveMade to FALSE 
 
      FOR each move in neighbourhood one  
       
          IF an improving move THEN 
              make this move 
          END IF 
       
      END LOOP 
 
      FOR each move in neighbourhood two  
       
          IF an improving move THEN 
              make this move 
              SET MoveMade to TRUE 
          END IF 
       

END LOOP 
 
  ENDWHILE 

 

Figure 3. Pseudo-code of VNS 
 
Initially, the Variable Neighbourhood Search was implemented in a steepest descent manner. 
That is, for each of the moves in the neighbourhood, we identified the move or swap that 
would bring the most improvement and then performed that move or swap. The disadvantage 



in steepest descent is the extra time required to examine every move and swap, especially in a 
highly constrained problem like this in which there are many constraints to check and 
penalties to calculate at each move. This was especially noticeable in the second 
neighbourhood, which is quite large. 
In an attempt to decrease the running time of the algorithm, a quickest descent form of VNS 
was tested. That is, until no more improving moves are found, examine each move and swap 
and execute the move or swap if it decreases the schedule’s overall penalty at all. 
It was interesting to discover that, for this problem, using these neighbourhoods, the quickest 
descent method was not only faster than steepest descent but it was usually at least as good 
and sometimes better in comparison. This was an interesting observation that was initially 
difficult to understand. On closer investigation, though, a possible explanation became 
apparent. The heuristic ordering is very effective at satisfying the constraints with the highest 
penalties. This means that the soft constraint violations that the VNS needs to repair are often 
ones with smaller similar sized penalties. If there is a high probability that all the possible 
improving moves will yield a similar sized improvement, it is not efficient to examine all of 
them to find the absolute best if it will be only slightly larger than the average of all available 
improving moves. 
We will briefly explain why the available neighbourhoods are restricted to these two 
neighbourhoods. For example, in [12] a VNS for a nurse rostering problem is introduced 
which uses a larger set of neighbourhoods. If these neighbourhoods are examined more 
closely, however, it can be observed that many of them are already included in our larger 
two. Merging many of these neighbourhoods and searching them exhaustively is now 
possible due to the recent increases in hardware technology and computing power that we 
have witnessed over the past few years. Note that the VNS experiments in [12] were carried 
out on an IBM RS6000 PowerPC. Also, some of the other neighbourhoods are used to add 
moves which diversify the search and are used regardless of the effect on the schedule’s 
penalty. So they are not appropriate for use in a VNS descent.  
 
3.3 Schedule Feasibility 
After the creation of the initial schedule described earlier, or the larger movements in the 
search space which are described later, the schedule may be infeasible in that the shift cover 
may not yet have been fulfilled. Therefore, during the VNS, if there are still unassigned 
shifts, then after a successful move or swap an attempt is made to see if it is now possible to 
assign any of the unassigned shifts without creating hard constraint violations.  
 
3.4 Schedule Disruption and Repair 
Generally, at the end of the VNS phase the schedule not only has a lower penalty than before 
but the schedule is also usually now feasible by satisfying the cover requirements if it was not 
before. 
 
The heuristic ordering and VNS is capable of producing high quality schedules in a number 
of minutes. However, for most instances it is more likely that a good local optimum rather 
than the global optimum has been found. Some users may wish to continue the search for a 
longer time period to try and produce an even higher quality schedule e.g. running the search 
during a lunch break or over night. Also, as computers get faster and more powerful it is 
practical to have an approach which can scale with these increases. A one hour search today 
may only last one minute in five years or so.  
To extend the search, a heuristic restart mechanism was developed. The idea is to select 
sections of the overall schedule which could possibly be improved and to then attempt to 
improve them.  



This is done by selecting a fixed number of nurses who have the worst individual schedules 
(the penalty is calculated just for their individual schedule) and then unassigning all shifts 
assigned to this set of nurses. Using the heuristic ordering method, these shifts are then 
reassigned (over all available nurses) and then the VNS is performed to try and produce a 
better schedule. This schedule disruption and repair cycle is used repeatedly until the user 
terminates the search. 
The algorithm was initially implemented to unassign shifts from the current schedule after the 
VNS. However, on some occasions, it was observed that the current schedule could be 
significantly worse than the best found so far and it could take a number of iterations to get 
the current schedule penalty back close to the best found. To reduce this effect it was found to 
be more efficient to return to the best found (if the current schedule is worse than the best 
found) before the disruption phase. 
As stated, the shifts selected for unassigning are those belonging to a fixed number of nurses 
with the worst individual schedules i.e. those with the highest individual penalties. To prevent 
cycling though, one of these nurses is selected randomly and replaced with another randomly 
selected nurse not belonging to this set. 
To identify the best number of nurses from which to unassign shifts, a number of experiments 
were conducted on each instance in which this number ranged between 1 and 14. The results 
are provided in section 4. 
 
3.5 Genetic Algorithm 
Harmony uses a genetic algorithm to produce schedules. This existing algorithm provides a 
benchmark upon which to compare the performance of the algorithm described here. 
The genetic algorithm of Harmony is designed to be robust and effective for a wide variety of  
rostering problems. To achieve this, like our algorithm, it does not heavily rely on problem 
specific knowledge or use detailed knowledge of the problems’ structures. An algorithm 
designed for a specific problem which heavily exploits its particular structure is likely to be 
more effective but less useful when other problems are considered. The genetic algorithm 
has, however, already performed in a more than satisfactory manner for a number of 
ORTEC’s clients with varying requirements. 
The algorithm has a number of phases. Firstly, the initial population of schedules is created 
using a similar heuristic ordering method to the one described in this paper but ensuring that 
each individual (or schedule) is different enough to introduce sufficient diversity in the 
population. Successive generations are created using roulette wheel parent selection, two 
types of crossover and three types of mutation. The particular crossover and/or mutations 
used are determined statistically by measuring their success in previous use between 
generations. The genetic algorithm terminates when a minimum threshold of improvement 
between generations is reached.  After the genetic algorithm phase, a local search is 
performed to further improve the best schedule found. 
 
4. Results 
To develop this algorithm, the workforce management and planning software ORTEC 
Harmony [32] was used. Employing Harmony provided a number of advantages from a 
research point of view. The software has a highly developed user interface with which a large 
number and wide variety of nurse rostering problems can be defined and created. All data 
structures and methods for manipulating the problem instances themselves already exist with 
many hours of work already performed to increase their access and use. This meant we were 
able to concentrate on creating, testing and improving an efficient algorithm for a wide 
variety of nurse rostering problems. The software also provides a clear visual display of the 
schedules and with precise breakdowns of why each employee receives the penalty they have. 



It was also particularly useful to have an existing commercial strength algorithm with which 
to compare against our work. 
The experiments were performed using a PC with a  P4 2.4GHz processor. 
 
4.1 Effects of varying the number of nurses to unassign shifts from 
 
Table 4 presents the results of varying the number of nurses from which to unassign shifts in 
the disruption and repair phase. The ‘penalty after first VNS’ column is the penalty of the 
schedule after the VNS is first applied to the initial schedule. The columns ‘1’ to ‘14’ show 
the penalty of the best schedule found after the search has been applied for one hour when 
that number of nurses were selected for shift unassignment during the disruption. 
The results show the best number of nurses to use is between three and five. Using these 
settings, the final schedule is, on average, 14% lower than the schedule found after the first 
VNS. Using two nurses can also generate some improvement but using one nurse alone is 
generally ineffective and does not provide sufficient diversification in the search. Using six 
and seven nurses can also provide some good results but above seven the performance 
deteriorates with eleven to fourteen providing little improvement suggesting too much 
diversification. 
There does not seem to be any correlation between the size of the instance in terms of the 
number of nurses and the optimal number of nurses to use for unassignment. Three to five is 
the best range for instances with varying sizes. 
The success of the disruption and repair also varies between instances. For example, on 
instance thirteen, using three, four or five nurses provides almost 70% improvement on the 
schedule after one VNS whereas, on instance one, the final improvement is less than 1%. 
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4.2 Comparison of the hybrid VNS with the genetic algorithm 
 
If the number of nurses selected in the disruption phase is three or four then the hybrid VNS 
outperforms the genetic algorithm on nine of the sixteen instances. Interestingly, the hybrid 
VNS is more effective on the instances with less than twenty nurses. For example, in the 
experiments in which four nurses are selected, all the schedules found for instances with less 
than twenty nurses have lower penalties than the genetic algorithm. If three are selected, the 
hybrid VNS outperforms on all but one. 
It can also be seen that using the VNS phase alone is not sufficient to outperform the genetic 
algorithm. For all instances, after the first VNS iteration the schedule is worse than the final 
schedule produced by the genetic algorithm. The disruption and repair phases are required to 
further improve the schedule. 

 

 
Figure 5. Comparison of the algorithms’ progress 

 
Figure 5 shows the progress of the two algorithms in finding schedules for instance 12. The 
graph shows the penalty for the best schedule found so far for each algorithm after x minutes. 
For the genetic algorithm, a steady decrease in penalty can be seen over the sixty minutes as, 
after each generation, a new best schedule is often found as a result of the crossover and 
repair operations. A drop of over 1000 in penalty in under a couple of minutes is most likely 
due to one of the constraints with a weight of 1000 being satisfied as well as other small 
improvements being made. The relatively steep (as all the soft constraints with weight 1000 
have now been satisfied) decrease in penalty in the last two minutes for the genetic algorithm 
is due to the final local search phase.  
For the hybrid VNS, it can be seen that within four minutes (after a couple of iterations of the 
algorithm) the best schedule already has a penalty close to that produced finally by the 
genetic algorithm at the end of the sixty minutes. Between the fourth and sixtieth minute, an 
additional better schedule is found as a result of the schedule disruption, repair and VNS. 
From observing the algorithm when applied to the other scheduling periods, within the first 
sixty minutes there are usually three or four improvements in the best solution found between 
the fourth and sixtieth minute. 



 
4.3 Experimentation with longer computation times 
As can be seen, the hybrid VNS algorithm is more likely to find a better solution the more 
time it is given. However, in most hospitals, schedules can be produced a long time in 
advance of when they are required. This observation motivated our experiments with granting 
the algorithm more computation time than just one hour.  
The hybrid VNS was granted 12 hours of computation time for one of the instances (instance 
12) on which a lot of testing using the genetic algorithm had been previously performed by 
ORTEC. For this instance, the best schedule ever found by an extended run of the genetic 
algorithm (for a period of about 24 hours) had a penalty of 681. The best schedule previously 
known for this period had a penalty of 587. This was produced over a long time period 
through an iterative process of using the genetic algorithm and then making some manual 
changes to a solution before reapplying the genetic algorithm and so on.  
After 12 hours, the hybrid VNS had found a schedule with penalty 541. It is important to note 
that our approach is producing the best known solution (produced either automatically or 
manually) on this real world problem instance. Moreover, it is producing it within a period 
(overnight) which is quite appropriate for this kind of problem. The results are summarised in 
Table 5. As can be seen, if more computation time is given, the schedule can be significantly 
improved.  
 
Algorithm Penalty  
Hybrid VNS after 30 minutes 736 
Hybrid VNS after 60 minutes 706 
Best ever genetic algorithm (24 hours) 681 
Previous best known (made using manual improvements) 587 
Hybrid VNS after 12 hours 541 

Table 5: Experimentation with longer computation times 
5. Conclusions 
The hybrid VNS algorithm described has been shown to be a relatively straightforward but 
highly effective approach for this problem. It is particularly effective on medium and small 
sized instances with less than twenty nurses. It is a viable alternative to the existing genetic 
algorithm for the commercial workforce management and planning software Harmony and 
has been added alongside the genetic algorithm in the latest versions.  
For instances with less than twenty nurses, the VNS algorithm has been shown to regularly 
find superior schedules when compared against the genetic algorithm that is currently in use. 
For these sized instances, the VNS algorithm represents a significant improvement over a 
commercially successful methodology. It has also found best known schedules for some of 
the scheduling periods (by running the algorithm for 12 hours). 
On instances with more than twenty instances, the VNS algorithm is competitive with the 
genetic algorithm and outperforms it on some. However, on average, the genetic algorithm is 
more successful on these larger instances.  
The shift unassignment and repair using heuristic ordering method has been shown to be an 
efficient and effective method of exploring the search space and when it is combined with the 
VNS, schedules of high quality can be found. It was also discovered that back-tracking was 
very useful in finding better solutions more quickly by reducing the exploration of paths 
which only led to poor quality solutions. 
 
6. Further Research 
Even though the results produced by this algorithm are strong there are areas in which it 
could possibly be improved and which need exploring, especially if it were being designed to 



be run over a longer time period than one hour. For example, after the VNS, when selecting 
the area of the schedule to un-assign shifts from, a simple method is used: Unassign the shifts 
belonging to a fixed number of nurses with the worst individual schedules. This is an obvious 
heuristic and has been shown to work well. However, it is possible that there is a more 
effective method of selecting which, and how many, shifts to unassign and reassign using the 
heuristic ordering.  
It may also be interesting to try replacing the VNS phase with tabu search or simulated 
annealing. A preliminary investigation revealed that a tabu search over a one hour period was 
not as effective as the genetic algorithm but if a longer time period is used it may be possible 
to achieve similar results using tabu search, especially if combined with the schedule 
disruption and repair method. 
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