
A Hybrid Heuristic Ordering and Variable Neighbourhood Search for
the Nurse Rostering Problem

EdmundK. Burke1, Timothy Curtois1, Gerhard Post2, Rong Qu1, Bart Veltman2

1 School of Computer Science & I.T. University of Nottingham, Jubilee Campus, Wollaton

Road, Nottingham. NG8 1BB. UK
2 ORTEC, Groningenweg 6-33, 2803 PV Gouda. Holland.

Abstract
This paper is concerned with the development of intelligent decision support methodologies
for nurse rostering problems in large modern hospital environments. We present an approach
which hybridises heuristic ordering with variable neighbourhood search. We show that the
search can be extended and the solution quality can be significantly improved by the careful
combination and repeated use of heuristic ordering, variable neighbourhood search and back-
tracking. The amount of computational time that is allowed plays a significant role and we
analyse and discuss this. The algorithms are evaluated against a commercial Genetic
Algorithm on commercial data. We demonstrate that this methodology can significantly
outperform the commercial algorithm. This paper is one of the few in the scientific nurse
rostering literature which deal with commercial data and which compare against a
commercially implemented algorithm.

Keywords: Variable Neighbourhood Search, Heuristics and Metaheuristics, Nurse
Rostering, Hybrid Methods.

1.Introduction:
It is clear that the efficient rostering of healthcare personnel can lead to the more effective
utilisation of valuable resources. Healthcare institutions around the world are becoming
increasingly interested in the deployment of decision support technology to aid the personnel
scheduling process. A very general form of the nurse rostering problem could be described as
follows: Given a set of shifts and a set of nurses over a certain time period, assign each shift
to a nurse subject to a set of constraints. The constraints are usually defined by regulations,
working practices and the preferences of the nurses.
The problem of nurse rostering is relatively easily described but like most real world search
problems it is far from easy to automatically generate very high quality solutions. Indeed,
there have been many papers over the years from across operational research and artificial
intelligence that have tackled the problem in one form or another. A wide range of
approaches and techniques have been investigated and used. Ernst et al. [18, 19] identified 28
different categories of methods that have been used on personnel scheduling problems. These
include constraint logic programming, constructive heuristics, expert systems, genetic
algorithms, integer programming, set partitioning, simple local search and simulated
annealing. A recent review of automated nurse rostering approaches found that, although
there has been a lot of research in the area, surprisingly few of the methods were tested on
real world data [16]. The paper went on to conclude that even fewer have actually been
implemented in real hospital wards.

Of those techniques that have been applied on real-world problems metaheuristic methods
seem to dominate. One approach which has been applied in multiple real world hospitals is a
hybrid tabu search [14]. The tabu search is integrated with techniques which are usually
observed in manual scheduling approaches. The algorithm has been incorporated into
software that has been used to create nurse rosters in over forty Belgian hospitals and copes
with many shift types, work regulations and skill categories. This work was hybridised with
an evolutionary approach [9] to produce a methodology which could generate higher quality
solutions but at the cost of increased computational time. Variable Neighbourhood Search
[20, 29] has also been applied and tested on highly constrained real world nurse rostering data
[12]. The authors found that VNS could be effectively used to escape from the local optima
found using single neighbourhood heuristics. They also commented “After reaching a local
optimum, we recommend the exploration of wider environments”. Evaluation methods for
challenging real world problems are presented and discussed in [10]. A methodology which
can handle a more flexible approach to real world nurse rostering than the traditional fixed
period based approach is presented in [13]. An overview of the work carried out by these
authors in Belgian hospitals is presented in [15].
Another investigation on real data explored a genetic algorithm approach [1], which
successfully exploits problem specific knowledge in tackling the problem. Although the
method is tailored for that particular problem instance, the underlying concepts could be
applied to other nurse rostering problems. In 1998, Dowsland was also able to match the
quality of schedules produced by an expert human scheduler using a highly developed tabu
search [17]. The algorithm ‘oscillates’ between trying to improve the cover and improving
the preference costs. As well as using tabu lists, candidate lists and diversification strategies
the search also uses a large neighbourhood created by looking for chains of overall improving
swaps. Aickelin and Li [23, 24] have since experimented with the application of bayesian
optimisation and classifier systems to similar nurse rostering problems. The results are close
to those produced by an optimal integer programming method and the authors concluded that
with further effort and experimentation the algorithms could well improve even more.
Bellanti et al. [7] tackled a problem with hard constraints and objectives (or soft constraints)
using various local search techniques. The authors presented good results for a tabu search
and iterated local search which use neighbourhoods defined by changing the assignment of
night shifts.
Another methodology that has been tested on complex real-world data from a UK hospital is
case-based reasoning [31]. This approach avoids the use of evaluation functions but instead
aims to imitate how an expert human scheduler would produce a good schedule. This is done
by storing observed methods for repairing violations in schedules and retrieving, adapting
and performing these repairs or moves whenever a similar violation is encountered again. As
an extension to their work, the authors also suggest methods in which it could be combined
with a meta-heuristic approach [5, 6]. Another relatively recent methodology is a
combination of constraint networks and knowledge-based rules [25]. The approach was
implemented in a commercial software package and has been successfully used in a number
of hospitals.
Berrada, Ferland and Michelon [8] developed a multi-objective mathematical programming
model to represent a real world problem containing both hard and soft constraints in a
Canadian hospital. The schedules produced met the standards required by the head nurses.
The authors also experimented with a tabu search and found that although it required greater
computational time it was useful in some circumstances. Valouxis and Housos [33] approach
a nurse rostering problem using an approximate integer linear programming model to produce
initial solutions. The initial solutions are then further optimised using a local search with a ‘2-
opt’ neighbourhood and a tabu search. Their method compared very favourably with a

constrained programming approach. In 2004, Bard and Purnomo [3] employed a combination
of heuristic and integer programming methods to solve nurse preference scheduling problems
with up to one hundred nurses and approximately thirteen hard and soft constraints.
Individual nurse schedules are created by modifying a base schedule using swaps. These
columns are then used to form a set covering type problem which, when solved, creates the
overall roster. Later they extended this work to further improve the quality of schedules by
incorporating the use of a downgrading option [2] and in [4] present a model which combines
cyclic and preference scheduling.
By defining fuzzy constraints (i.e. constraints that may be partially satisfied and partially
violated) Meyer auf’m Hofe [28] solved real world nurse rostering problems as constraint
optimisation rather than as constraint satisfaction problems. Branch and bound and iterative
improvement are used to quickly produce good rosters. The approach was developed using
experience gained developing a software rostering system that is used in approximately 60
German hospitals [27].
There are many more papers in the literature which are discussed in more detail in [16] and
[18]. It is clear that relatively few papers in the literature have worked with real world data or
been implemented in hospitals [16]. One of the main goals in this paper is to develop an
effective and efficient search approach to improve upon the genetic algorithm based approach
that is currently employed within ORTEC’s Harmony software1. As such, the methodology
has to be able to handle all the requirements and constraints that are inherent in nurse
rostering problems from the modern complex environments that are represented by today’s
hospitals.
This paper presents our investigation into combining a variable neighbourhood search with a
method of heuristically unassigning shifts and repairing schedules using heuristic ordering.
The next section describes the nurse rostering problem we were dealing with. Sections 3 and
4 discuss the algorithm and results respectively. In section 5 we draw conclusions on the
success of this approach and present some possible future extensions in section 6.

2. Problem Description
The data for this problem was provided by ORTEC, a major supplier of software products
and consulting in the field of advanced planning and scheduling. They support hospitals and
other organisations all over the world with automated workforce management solutions.
The number of nurses in the problem instances tested ranges from 30 to12, the ratio of full to
part time nurses also varies between wards. For example, one ward consists of 16 nurses, 12
of the nurses are full time and work 36 hours per week. One nurse works 32 hours per week
and the other 3 are also part time and work 20 hours per week. Each instance also has a
number of specific personal requests such as particular shifts and/or days requested off or on.
All the other constraints that need to be satisfied are presented in sections 2.2 and 2.3. The
scheduling period for each instance is exactly one month.
The data was provided by ORTEC as a challenging real world problem and is very typical of
their clients’ needs. An approach which is successful in dealing with a problem as complex as
this will provide direct benefits in a number of real world personnel scheduling scenarios.

2.1 Shifts and Shift Demand
There are 4 different shift types in the problem: day, early, late and night shifts. All the shifts
except night shifts cover 9 hours including one hour of rest time. So the actual number of
working hours for each shift type is 8. Night shifts last 8 hours but include no rest time and so
are counted as 8 working hours. The total cover requirements for each shift for each day vary

1 The results of this research are incorporated in the latest product versions of Harmony.

between instances. Generally, larger wards require more nurses on duty during each shift but
similar sized wards can also have different cover requirements.

Table 1 shows the daily demand for these shifts in the instance described earlier with 16
nurses.

Shift Start
time

End
Time

Mon Tue Wed Thu Fri Sat Sun

Day (D) 08:00 17:00 3 3 3 3 3 2 2
Early (E) 07:00 16:00 3 3 3 3 3 2 2
Late (L) 14:00 23:00 3 3 3 3 3 2 2
Night (N) 23:00 07:00 1 1 1 1 1 1 1

Table 1 : Shift types and an example weekly demand.

2.2 Hard Constraints
The following rules must be met at all times otherwise the schedule is considered to be
infeasible and unacceptable.

• Shift cover requirements need to be satisfied. Over coverage is not permitted.
• A nurse may start only one shift per day.
• The maximum overtime assigned to each nurse per month is 4 hours.
• The maximum hours worked per week is on average 36 hours over a period of 13

consecutive weeks which do not include night shift assignments.
• The maximum number of night shifts in any period of 5 consecutive weeks is 3.
• A nurse must receive at least 2 weekends off in any 5 week period. A weekend off

lasts 60 hours including Saturday 00:00 to Monday 04:00.
• Following 2 or more consecutive night shifts, a 42 hour rest is required.
• During any period of 24 hours, at least 11 hours rest is required. A night shift has to

be followed by at least 14 hours rest. Once in a period of 21 days, however, the rest
period may be reduced to 8 hours.

• The maximum number of consecutive night shifts is 3.
• The maximum number of consecutive days worked is 6.

2.3 Soft Constraints
Ideally these requirements should be fulfilled. However, to obtain a schedule that meets all
the hard constraints it is often necessary to break some of the soft rules. A weight is assigned
to each soft constraint to reflect its importance (especially in comparison to other soft
constraints). A weighting is simply a number. The higher the number, the more strongly
desired the constraint or request is. The weights are set either by the head nurses or through
feedback from the nurses about what qualities they desire in their schedules. As a rough
guide, the weights could be described as follows:

Weight 1000 : The constraint should not be violated unless absolutely necessary.
Weight 100 : The constraint is strongly desired.
Weight 10 : The constraint is preferred but not critical.
Weight 1 : Try and obey this constraint if possible but it is not essential.

In practice exponentially scaled weights like these are most commonly used. However, the
users do have the option of setting and changing the weight for each constraint to any positive
integer value.

Constraint Weight Penalty
Function

Violation measurement
factor

From Friday 22:00 to Monday 0:00 a nurse
should have either no shifts or at least 2
shifts (‘complete weekend’).

1000 Linear Number of incomplete
weekends

No stand-alone shifts i.e. a day off, day on,
day off sequence.

1000 Linear Number of isolated shifts

The length of a series of night shifts should
be within the range 2-3. It could be before
another series.

1000 Quadratic Difference between length
of series and acceptable
length. e.g. if 1 night shift,
factor = 1, if 2 or 3 night
shifts, factor = 0, if 4 night
shifts, factor = 1, if 5 factor
= 2 etc.

A minimum of 2 days rest after a series of
day, early or late shifts.

100 Linear Factor is one if only one day
of rest otherwise zero

Employees with availability of 30-48 hours
per week, should receive a minimum of 4
shifts and a maximum of 5 shifts per week.

10 Quadratic Difference between number
of shifts received and
acceptable number per week

Employees with availability of 0-30 hours
per week, should receive a minimum of 2
shifts and a maximum of 3 shifts per week.

10 Quadratic Difference between number
of shifts received and
acceptable number per week

For employees with availability of 30-48
hours per week, the length of a series of
shifts should be within the range of 4-6.

10 Quadratic Difference between length
of series received and
acceptable series length.

For employees with availability of 0-30
hours per week, the length of a series of
shifts should be within the range 2-3.

10 Quadratic Difference between length
of series received and
acceptable series length.

The length of a series of early shifts should
be within the range 2-3. It could be within
another series.

10 Quadratic Difference between length
of series received and
acceptable series length.

The length of a series of late shifts should be
within the range of 2-3. It could be within
another series.

10 Quadratic Difference between length
of series received and
acceptable series length.

An early shift after a day shift should be
avoided.

5 Linear Number of early shifts after
days shifts

A night shift after an early shift should be
avoided.

1 Linear Number of night shifts after
early shifts

Table 2 : Soft Constraints

2.4 Evaluation Function
The evaluation function is the sum of all the penalties incurred due to soft constraint
violations. The penalty for each soft constraint is calculated either linearly or quadratically
using the violation measurement factors listed in Table 2. The violation measurement factor
is the degree to which the constraint is violated or the excess of the violation. The use of

either quadratic or linear evaluation functions arises from practices in Harmony which were
developed based on customer preferences and feedback.
A soft constraint with a linear penalty function is simply calculated as: The violation
measurement factor multiplied by the weight. For example, it is preferable to have at most
zero stand-alone or isolated shifts. This is a soft constraint with weight 1000. However, to
produce a feasible schedule (i.e. one in which all the hard constraints are fulfilled) it may be
necessary to allocate a nurse to an isolated shift. This is one more than is preferred so a
penalty of 1000 is incurred. If the nurse had two isolated shifts they would have a penalty of
2000 (2 * 1000) .
A quadratic penalty function is calculated as: The violation measurement factor squared and
multiplied by the weight. For example, it is preferable that during a period of five weeks a
nurse performs no more than three night shifts. This is a soft constraint with a weight of
1000. However, it may be necessary to assign five night shifts in the five week period (i.e. 2
more than preferred), then the penalty for this soft constraint violation would be 4000 (22 *
1000).
It is now possible to define the objective of the problem: To find a feasible schedule with the
lowest possible penalty caused by soft constraint violations. From the perspective of the head
nurse, of course, the actual penalty hides a lot of information about the solution but it is not
totally meaningless. By examining the penalty for each schedule it is possible to gain some
idea of the schedule quality. For example, if the penalty is less than 1000 then we know that
all the constraints with weight 1000 have been satisfied. However, the key to producing
satisfactory schedules is obviously setting the correct weights and ensuring that all the
required constraints are defined. Therefore it is essential that the end user either has a good
understanding of how to set the weights and define constraints or has clearly described the
requirements to the software administrator.

As mentioned previously, a feasible schedule is a schedule that satisfies all the hard
constraints. A penalty for an infeasible schedule can still be calculated but in our system a
feasible schedule is always considered to be better than an infeasible schedule regardless of
penalty values. The only infeasible schedules that may be introduced during the search or
returned afterwards are those that provide insufficient cover. This is ensured by never
assigning a shift to a nurse if it will violate a hard constraint. For example, at certain points in
the algorithm, shifts may be unassigned in a schedule and so the coverage constraint will be
violated. These shifts will then only be reassigned if no hard constraint violations occur in
doing so. If the quality of infeasible schedules need to be compared, the schedules with the
lowest number of unassigned shifts (i.e. minimum shift coverage violation) are ranked higher
regardless of their penalties. If infeasible schedules have the same number of shifts
unassigned, then the penalty function is used.
For all the instances we tested we were able to produce feasible schedules. It is possible
though that there may be an instance for which a feasible schedule does not exist. In practice,
if a feasible schedule cannot be found (either because one does not exist or it is too difficult
to find) then the head nurse or manager decides whether to work with the best infeasible
schedule or relax some of the constraints or hire extra personnel and/or to assign some extra
nurses to the ward (usually agency or float nurses) and then restart the search.

3. The Hybrid Variable Neighbourhood Search Algorithm
The algorithm that we present in this paper represents an iterative process in which variable
neighbourhood search is followed by a schedule disruption and repair strategy. The repairing

of the schedule is performed using a heuristic ordering technique. Back-tracking is also
carried out to further improve the quality of the schedules produced.

The overall process is illustrated by the pseudo-code in Figure 1.

Create Initial Schedule

REPEAT

 Variable Neighbourhood Search

 IF current penalty < best penalty THEN

 SET best schedule to current schedule
 SET best penalty to current penalty

 ELSE

 SET Current Schedule to Best Schedule (i.e. Back-track one step)

 ENDIF

 Unassign shifts of a set of nurses

 Repair schedule (using heuristic ordering method)

UNTIL search terminated

Figure 1. Pseudo-code of the overall hybrid algorithm

3.1 Initialisation
A heuristic ordering is used to create the initial schedule. In the experimentation section, we
will be comparing our approach against a commercial genetic algorithm developed by
ORTEC and in use in real hospital environments. The commercial genetic algorithm this
hybrid variable neighbourhood search is evaluated against uses a similar heuristic ordering
method to create its initial population of schedules.
The aim of the heuristic ordering process is to sort all the shifts in order of the estimated
difficulty of assigning them or how likely they are to cause high penalties (by using the
criteria shown in Table 3). Using the weighted sum to identify them, the more troublesome
shifts are then assigned earlier on in the schedule construction process.
Once the shifts have been sorted in the order in which to try and assign them, they are in turn
assigned to each nurse to calculate the penalty that would be incurred if the shift was assigned
to that nurse. The shift is then assigned to the nurse that gains the least penalty in receiving
that shift.
The attributes of a shift that are examined when ranking the shifts in the order of possible
difficulty to assign are described in Table 3 along with the functions used to assign its total
weight for ranking.

Shift Criteria Evaluation Function Weight
Night Shift Weight 100
Weekend Shift Weight 50
Number of valid
nurses

(NumValidNurses / TotalNumNurses) * Weight 70

Shift Date Weight * (Schedule.EndDate – Shift.BeginDate) 20

Table 3: Shift evaluation criteria

The first two criteria in Table 3 are obvious to examine as there are high penalties associated
with night shift and weekend shift constraints. The third criterion used is to deduce how many
nurses are able to fulfil this shift. If there are many nurses able to undertake it then it can be
scheduled later but if there are very few then it is a good idea to assign it early on in the
process. The shift date criteria is used to try and ensure that shifts in the early days in the
scheduling period are assigned earlier on in the process. This is useful as these shifts are more
likely to conflict with the previous schedule’s assignments. The shift date evaluation function
is in units of days.

3.2 Variable Neighbourhood Search
When the initial schedule has been created using the heuristic ordering method described
above, a variable neighbourhood search is applied. This makes use of two neighbourhoods.
Both of these neighbourhoods are commonly used by meta-heuristics and other approaches
and have been described before, see, for example, [21, 22, 26, 30]. The two neighbourhoods
are defined by the following moves or changes to a schedule:

1. Assigning a shift to a different nurse.
2. Swapping the nurses assigned to each of a pair of shifts.

The first neighbourhood is a lot smaller than the second neighbourhood. However, it is
observed that moves in the second neighbourhood can improve the quality of the schedule
quite significantly.
Our variable neighbourhood approach is a variable neighbourhood descent. As can be seen
from Figure 3, the smaller neighbourhood (neighbourhood 1) is repeatedly examined for an
improving move and the move is executed if found. When there are no improving moves left
in neighbourhood 1, then the much larger neighbourhood 2 is examined. If a move in
neighbourhood 2 is used then neighbourhood 1 is examined again. This is repeated until there
are no improving moves left in neighbourhood 1 and 2.

SET MoveMade to TRUE

WHILE MoveMade is TRUE

 SET MoveMade to FALSE

 FOR each move in neighbourhood one

 IF an improving move THEN
 make this move
 END IF

 END LOOP

 FOR each move in neighbourhood two

 IF an improving move THEN
 make this move
 SET MoveMade to TRUE
 END IF

END LOOP

 ENDWHILE

Figure 3. Pseudo-code of VNS

Initially, the Variable Neighbourhood Search was implemented in a steepest descent manner.
That is, for each of the moves in the neighbourhood, we identified the move or swap that
would bring the most improvement and then performed that move or swap. The disadvantage

in steepest descent is the extra time required to examine every move and swap, especially in a
highly constrained problem like this in which there are many constraints to check and
penalties to calculate at each move. This was especially noticeable in the second
neighbourhood, which is quite large.
In an attempt to decrease the running time of the algorithm, a quickest descent form of VNS
was tested. That is, until no more improving moves are found, examine each move and swap
and execute the move or swap if it decreases the schedule’s overall penalty at all.
It was interesting to discover that, for this problem, using these neighbourhoods, the quickest
descent method was not only faster than steepest descent but it was usually at least as good
and sometimes better in comparison. This was an interesting observation that was initially
difficult to understand. On closer investigation, though, a possible explanation became
apparent. The heuristic ordering is very effective at satisfying the constraints with the highest
penalties. This means that the soft constraint violations that the VNS needs to repair are often
ones with smaller similar sized penalties. If there is a high probability that all the possible
improving moves will yield a similar sized improvement, it is not efficient to examine all of
them to find the absolute best if it will be only slightly larger than the average of all available
improving moves.
We will briefly explain why the available neighbourhoods are restricted to these two
neighbourhoods. For example, in [12] a VNS for a nurse rostering problem is introduced
which uses a larger set of neighbourhoods. If these neighbourhoods are examined more
closely, however, it can be observed that many of them are already included in our larger
two. Merging many of these neighbourhoods and searching them exhaustively is now
possible due to the recent increases in hardware technology and computing power that we
have witnessed over the past few years. Note that the VNS experiments in [12] were carried
out on an IBM RS6000 PowerPC. Also, some of the other neighbourhoods are used to add
moves which diversify the search and are used regardless of the effect on the schedule’s
penalty. So they are not appropriate for use in a VNS descent.

3.3 Schedule Feasibility
After the creation of the initial schedule described earlier, or the larger movements in the
search space which are described later, the schedule may be infeasible in that the shift cover
may not yet have been fulfilled. Therefore, during the VNS, if there are still unassigned
shifts, then after a successful move or swap an attempt is made to see if it is now possible to
assign any of the unassigned shifts without creating hard constraint violations.

3.4 Schedule Disruption and Repair
Generally, at the end of the VNS phase the schedule not only has a lower penalty than before
but the schedule is also usually now feasible by satisfying the cover requirements if it was not
before.

The heuristic ordering and VNS is capable of producing high quality schedules in a number
of minutes. However, for most instances it is more likely that a good local optimum rather
than the global optimum has been found. Some users may wish to continue the search for a
longer time period to try and produce an even higher quality schedule e.g. running the search
during a lunch break or over night. Also, as computers get faster and more powerful it is
practical to have an approach which can scale with these increases. A one hour search today
may only last one minute in five years or so.
To extend the search, a heuristic restart mechanism was developed. The idea is to select
sections of the overall schedule which could possibly be improved and to then attempt to
improve them.

This is done by selecting a fixed number of nurses who have the worst individual schedules
(the penalty is calculated just for their individual schedule) and then unassigning all shifts
assigned to this set of nurses. Using the heuristic ordering method, these shifts are then
reassigned (over all available nurses) and then the VNS is performed to try and produce a
better schedule. This schedule disruption and repair cycle is used repeatedly until the user
terminates the search.
The algorithm was initially implemented to unassign shifts from the current schedule after the
VNS. However, on some occasions, it was observed that the current schedule could be
significantly worse than the best found so far and it could take a number of iterations to get
the current schedule penalty back close to the best found. To reduce this effect it was found to
be more efficient to return to the best found (if the current schedule is worse than the best
found) before the disruption phase.
As stated, the shifts selected for unassigning are those belonging to a fixed number of nurses
with the worst individual schedules i.e. those with the highest individual penalties. To prevent
cycling though, one of these nurses is selected randomly and replaced with another randomly
selected nurse not belonging to this set.
To identify the best number of nurses from which to unassign shifts, a number of experiments
were conducted on each instance in which this number ranged between 1 and 14. The results
are provided in section 4.

3.5 Genetic Algorithm
Harmony uses a genetic algorithm to produce schedules. This existing algorithm provides a
benchmark upon which to compare the performance of the algorithm described here.
The genetic algorithm of Harmony is designed to be robust and effective for a wide variety of
rostering problems. To achieve this, like our algorithm, it does not heavily rely on problem
specific knowledge or use detailed knowledge of the problems’ structures. An algorithm
designed for a specific problem which heavily exploits its particular structure is likely to be
more effective but less useful when other problems are considered. The genetic algorithm
has, however, already performed in a more than satisfactory manner for a number of
ORTEC’s clients with varying requirements.
The algorithm has a number of phases. Firstly, the initial population of schedules is created
using a similar heuristic ordering method to the one described in this paper but ensuring that
each individual (or schedule) is different enough to introduce sufficient diversity in the
population. Successive generations are created using roulette wheel parent selection, two
types of crossover and three types of mutation. The particular crossover and/or mutations
used are determined statistically by measuring their success in previous use between
generations. The genetic algorithm terminates when a minimum threshold of improvement
between generations is reached. After the genetic algorithm phase, a local search is
performed to further improve the best schedule found.

4. Results
To develop this algorithm, the workforce management and planning software ORTEC
Harmony [32] was used. Employing Harmony provided a number of advantages from a
research point of view. The software has a highly developed user interface with which a large
number and wide variety of nurse rostering problems can be defined and created. All data
structures and methods for manipulating the problem instances themselves already exist with
many hours of work already performed to increase their access and use. This meant we were
able to concentrate on creating, testing and improving an efficient algorithm for a wide
variety of nurse rostering problems. The software also provides a clear visual display of the
schedules and with precise breakdowns of why each employee receives the penalty they have.

It was also particularly useful to have an existing commercial strength algorithm with which
to compare against our work.
The experiments were performed using a PC with a P4 2.4GHz processor.

4.1 Effects of varying the number of nurses to unassign shifts from

Table 4 presents the results of varying the number of nurses from which to unassign shifts in
the disruption and repair phase. The ‘penalty after first VNS’ column is the penalty of the
schedule after the VNS is first applied to the initial schedule. The columns ‘1’ to ‘14’ show
the penalty of the best schedule found after the search has been applied for one hour when
that number of nurses were selected for shift unassignment during the disruption.
The results show the best number of nurses to use is between three and five. Using these
settings, the final schedule is, on average, 14% lower than the schedule found after the first
VNS. Using two nurses can also generate some improvement but using one nurse alone is
generally ineffective and does not provide sufficient diversification in the search. Using six
and seven nurses can also provide some good results but above seven the performance
deteriorates with eleven to fourteen providing little improvement suggesting too much
diversification.
There does not seem to be any correlation between the size of the instance in terms of the
number of nurses and the optimal number of nurses to use for unassignment. Three to five is
the best range for instances with varying sizes.
The success of the disruption and repair also varies between instances. For example, on
instance thirteen, using three, four or five nurses provides almost 70% improvement on the
schedule after one VNS whereas, on instance one, the final improvement is less than 1%.

N

um
be

r
of

 n
ur

se
s

se
le

ct
ed

 f
or

 u
na

ss
ig

nm
en

t

In
st

an
ce

N

ur
se

s
G

en
et

ic

al
go

ri
th

m
 P

en
al

ty
 a

ft
er

fi

rs
t V

N
S

1
2

3
4

5
6

7
8

9
10

11

12

13

14

1
30

36

26

37
66

37

66

37
21

37

46

37
51

37

66

37
51

37

66

37
66

37

66

37
66

37

66

37
66

37

66

37
66

2

30

23
81

23

90

23
75

23

30

22
85

22

85

22
95

23

90

23
90

23

90

23
90

23

90

23
90

23

90

23
90

23

90

3
28

43

25

46
87

45

57

44
76

46

87

46
87

46

87

46
87

43

01

46
87

46

87

46
87

46

87

46
87

46

87

46
87

4

26

13
01

13

66

13
11

12

46

12
31

12

16

11
51

10

81

11
86

10

35

11
91

11

76

13
66

13

66

13
66

13

66

5
24

52

30

65
75

64

50

53
40

52

91

65
45

54

65

65
75

65

75

63
50

65

75

65
75

65

75

62
97

65

75

65
75

6

24

25
40

6
32

17
1

31
98

6
31

89
6

31
97

1
27

03
8

29
93

1
28

82
6

28
82

6
28

82
1

29
85

7
28

94
1

32
14

1
32

17
1

29
92

5
29

87
4

7
22

15

66
1

22
60

2
22

60
2

21
47

6
15

55
0

16
60

1
21

75
6

15
27

6
18

32
5

21
05

5
16

34
8

15
43

7
16

45
5

19
48

0
18

55
1

22
35

3
8

22

22
87

7
25

82
9

25
82

4
23

69
4

24
80

8
23

67
8

24
79

9
24

84
3

22
99

1
22

82
2

23
92

6
23

85
1

23
71

6
23

92
6

24
71

7
24

66
3

9
20

22

47
8

24
29

7
24

27
7

24
17

4
24

22
8

24
16

3
23

29
8

24
28

4
23

39
4

23
33

4
24

29
7

24
29

7
24

29
7

24
29

7
24

29
7

24
29

7
10

18

In

fe
as

ib
le

In

fe
as

ib
le

In

fe
as

ib
le

In

fe
as

ib
le

15

70
6

15
69

6
In

fe
as

ib
le

In

fe
as

ib
le

In

fe
as

ib
le

In

fe
as

ib
le

In

fe
as

ib
le

In

fe
as

ib
le

In

fe
as

ib
le

In

fe
as

ib
le

In

fe
as

ib
le

In

fe
as

ib
le

11

18

45

25

45
46

45

46

45
30

44

60

45
06

45

46

45
46

45

46

45
46

45

46

45
46

45

46

45
46

45

46

45
46

12

16

77

5
99

6
90

5
83

1
76

0
69

0
80

5
83

0
86

2
99

6
95

1
99

6
99

6
99

6
99

6
99

6
13

14

17

57

50
26

49

51

27
41

15

96

15
91

15

97

17
40

17

70

50
26

39

51

50
26

50

26

50
26

50

26

50
26

14

14

76

0
80

0
75

5
59

1
55

6
64

5
62

1
70

0
65

0
79

0
80

0
80

0
80

0
80

0
80

0
80

0
15

13

15

00

16
26

13

45

12
75

13

65

14
01

13

41

15
50

16

10

16
26

16

26

16
26

16

26

16
26

16

26

16

12

18
20

2
18

87
3

18
87

3
14

74
6

18
82

2
15

86
7

11
85

0
13

00
0

16
12

1
16

99
1

18
87

3
16

05
2

18
87

3
18

87
3

A
ve

ra
ge

 im
pr

ov
em

en
t i

n
pe

na
lt

y
on

sc

he
du

le
 f

ou
nd

 a
ft

er
 f

ir
st

 V
N

S
(%

)
2.

7
11

.4

13
.6

13

.9

13
.7

12

.4

11
.1

4.

5
5.

1
4.

9
2.

2
1.

6
1.

9
0.

9

T
ab

le
 4

. H
yb

ri
d

V
N

S
R

es
ul

ts

4.2 Comparison of the hybrid VNS with the genetic algorithm

If the number of nurses selected in the disruption phase is three or four then the hybrid VNS
outperforms the genetic algorithm on nine of the sixteen instances. Interestingly, the hybrid
VNS is more effective on the instances with less than twenty nurses. For example, in the
experiments in which four nurses are selected, all the schedules found for instances with less
than twenty nurses have lower penalties than the genetic algorithm. If three are selected, the
hybrid VNS outperforms on all but one.
It can also be seen that using the VNS phase alone is not sufficient to outperform the genetic
algorithm. For all instances, after the first VNS iteration the schedule is worse than the final
schedule produced by the genetic algorithm. The disruption and repair phases are required to
further improve the schedule.

Figure 5. Comparison of the algorithms’ progress

Figure 5 shows the progress of the two algorithms in finding schedules for instance 12. The
graph shows the penalty for the best schedule found so far for each algorithm after x minutes.
For the genetic algorithm, a steady decrease in penalty can be seen over the sixty minutes as,
after each generation, a new best schedule is often found as a result of the crossover and
repair operations. A drop of over 1000 in penalty in under a couple of minutes is most likely
due to one of the constraints with a weight of 1000 being satisfied as well as other small
improvements being made. The relatively steep (as all the soft constraints with weight 1000
have now been satisfied) decrease in penalty in the last two minutes for the genetic algorithm
is due to the final local search phase.
For the hybrid VNS, it can be seen that within four minutes (after a couple of iterations of the
algorithm) the best schedule already has a penalty close to that produced finally by the
genetic algorithm at the end of the sixty minutes. Between the fourth and sixtieth minute, an
additional better schedule is found as a result of the schedule disruption, repair and VNS.
From observing the algorithm when applied to the other scheduling periods, within the first
sixty minutes there are usually three or four improvements in the best solution found between
the fourth and sixtieth minute.

4.3 Experimentation with longer computation times
As can be seen, the hybrid VNS algorithm is more likely to find a better solution the more
time it is given. However, in most hospitals, schedules can be produced a long time in
advance of when they are required. This observation motivated our experiments with granting
the algorithm more computation time than just one hour.
The hybrid VNS was granted 12 hours of computation time for one of the instances (instance
12) on which a lot of testing using the genetic algorithm had been previously performed by
ORTEC. For this instance, the best schedule ever found by an extended run of the genetic
algorithm (for a period of about 24 hours) had a penalty of 681. The best schedule previously
known for this period had a penalty of 587. This was produced over a long time period
through an iterative process of using the genetic algorithm and then making some manual
changes to a solution before reapplying the genetic algorithm and so on.
After 12 hours, the hybrid VNS had found a schedule with penalty 541. It is important to note
that our approach is producing the best known solution (produced either automatically or
manually) on this real world problem instance. Moreover, it is producing it within a period
(overnight) which is quite appropriate for this kind of problem. The results are summarised in
Table 5. As can be seen, if more computation time is given, the schedule can be significantly
improved.

Algorithm Penalty
Hybrid VNS after 30 minutes 736
Hybrid VNS after 60 minutes 706
Best ever genetic algorithm (24 hours) 681
Previous best known (made using manual improvements) 587
Hybrid VNS after 12 hours 541

Table 5: Experimentation with longer computation times
5. Conclusions
The hybrid VNS algorithm described has been shown to be a relatively straightforward but
highly effective approach for this problem. It is particularly effective on medium and small
sized instances with less than twenty nurses. It is a viable alternative to the existing genetic
algorithm for the commercial workforce management and planning software Harmony and
has been added alongside the genetic algorithm in the latest versions.
For instances with less than twenty nurses, the VNS algorithm has been shown to regularly
find superior schedules when compared against the genetic algorithm that is currently in use.
For these sized instances, the VNS algorithm represents a significant improvement over a
commercially successful methodology. It has also found best known schedules for some of
the scheduling periods (by running the algorithm for 12 hours).
On instances with more than twenty instances, the VNS algorithm is competitive with the
genetic algorithm and outperforms it on some. However, on average, the genetic algorithm is
more successful on these larger instances.
The shift unassignment and repair using heuristic ordering method has been shown to be an
efficient and effective method of exploring the search space and when it is combined with the
VNS, schedules of high quality can be found. It was also discovered that back-tracking was
very useful in finding better solutions more quickly by reducing the exploration of paths
which only led to poor quality solutions.

6. Further Research
Even though the results produced by this algorithm are strong there are areas in which it
could possibly be improved and which need exploring, especially if it were being designed to

be run over a longer time period than one hour. For example, after the VNS, when selecting
the area of the schedule to un-assign shifts from, a simple method is used: Unassign the shifts
belonging to a fixed number of nurses with the worst individual schedules. This is an obvious
heuristic and has been shown to work well. However, it is possible that there is a more
effective method of selecting which, and how many, shifts to unassign and reassign using the
heuristic ordering.
It may also be interesting to try replacing the VNS phase with tabu search or simulated
annealing. A preliminary investigation revealed that a tabu search over a one hour period was
not as effective as the genetic algorithm but if a longer time period is used it may be possible
to achieve similar results using tabu search, especially if combined with the schedule
disruption and repair method.

Acknowledgements
This work was supported by EPSRC grant GR/S31150/01. We would also like to thank the
anonymous referees for their helpful comments and suggestions.

References

1. Aickelin, U. and K.A. Dowsland, Exploiting problem structure in a genetic algorithm

approach to a nurse rostering problem. Journal of Scheduling, 2000. 3(3): pp. 139-
153.

2. Bard, J.F. and H.W. Purnomo, A column generation-based approach to solve the
preference scheduling problem for nurses with downgrading. Socio-Economic
Planning Sciences, 2005. 39(3): pp. 193-213.

3. Bard, J.F. and H.W. Purnomo, Preference scheduling for nurses using column
generation. European Journal of Operational Research, 2005. 164(2): pp. 510-534.

4. Bard, J.F. and H.W. Purnomo, Cyclic Preference Scheduling of Nurses Using A
Lagrangian-Based Heuristic. Journal of Scheduling, 2007. 10(1): pp. 5-23.

5. Beddoe, G.R. and S. Petrovic, Combining case-based reasoning with tabu search for
personnel rostering problems. 2004, Technical Report, Automated Scheduling
Optimisation and Planning Research Group, School of Computer Science and
Information Technology, University of Nottingham.

6. Beddoe, G.R. and S. Petrovic, Selecting and Weighting Features Using a Genetic
Algorithm in a Case-Based Reasoning Approach to Personnel Rostering. European
Journal of Operational Research, 2006. 175(2): pp. 649-671.

7. Bellanti, F., G. Carello, F.D. Croce, and R. Tadei, A greedy-based neighborhood
search approach to a nurse rostering problem. European Journal of Operational
Research, 2004. 153: pp. 28–40.

8. Berrada, I., J.A. Ferland, and P. Michelon, A multi-objective approach to nurse
scheduling with both hard and soft constraints. Socio-Economic Planning Sciences,
1996. 30(3): pp. 183-193.

9. Burke, E.K., P. Cowling, P. De Causmaecker, and G. Vanden Berghe, A Memetic
Approach to the Nurse Rostering Problem. Applied Intelligence, 2001. 15(3): pp.
199-214.

10. Burke, E.K., P. De Causmaecker, S. Petrovic, and G. Vanden Berghe. Fitness
Evaluation for Nurse Scheduling Problems, in Proceedings of the Congress on
Evolutionary Computation (CEC2001). 2001. Seoul, Korea: IEEE Press. pp. 1139-
1146.

11. Burke, E.K., P. De Causmaecker, S. Petrovic, and G. Vanden Berghe. Variable
Neighbourhood Search for Nurse Rostering Problems, in Proceedings of the 4th

Metaheuristics Internation Conference (MIC 2001). 2001. Porto, Portugal. pp. 755-
60.

12. Burke, E.K., P. De Causmaecker, S. Petrovic, and G. Vanden Berghe, Variable
Neighborhood Search for Nurse Rostering Problems, in Metaheuristics: Computer
Decision-Making, M.G.C. Resende and J.P. de Sousa, Editors. 2004, Kluwer. pp. 153-
172.

13. Burke, E.K., P. De Causmaecker, S. Petrovic, and G. Vanden Berghe, Metaheuristics
for Handling Time Interval Coverage Constraints in Nurse Scheduling. Applied
Artificial Intelligence, 2006. 20(3).

14. Burke, E.K., P. De Causmaecker, and G. Vanden Berghe. A Hybrid Tabu Search
Algorithm for the Nurse Rostering Problem, in Simulated Evolution and Learning,
Selected Papers from the 2nd Asia-Pacific Conference on Simulated Evolution and
Learning, SEAL 98, Springer Lecture Notes in Artificial Intelligence Volume 1585. B.
McKay, et al., Editors. 1999: Springer. pp. 187-194.

15. Burke, E.K., P. De Causmaecker, and G. Vanden Berghe, Novel Meta-heuristic
Approaches to Nurse Rostering Problems in Belgian Hospitals, in Handbook of
Scheduling: Algorithms, Models and Performance Analysis, J. Leung, Editor. 2004,
CRC Press.

16. Burke, E.K., P. De Causmaecker, G. Vanden Berghe, and H. Van Landeghem, The
State of the Art of Nurse Rostering. Journal of Scheduling, 2004. 7(6): pp. 441 - 499.

17. Dowsland, K.A., Nurse scheduling with tabu search and strategic oscillation.
European Journal of Operational Research, 1998. 106(2): pp. 393-407.

18. Ernst, A.T., H. Jiang, M. Krishnamoorthy, B. Owens, and D. Sier, An Annotated
Bibliography of Personnel Scheduling and Rostering. Annals of Operations Research,
2004. 127: pp. 21–144.

19. Ernst, A.T., H. Jiang, M. Krishnamoorthy, and D. Sier, Staff scheduling and
rostering: A review of applications, methods and models. European Journal of
Operational Research, 2004. 153(1): pp. 3-27.

20. Hansen, P. and N. Mladenović, An introduction to variable neighborhood search, in
Meta-heuristics: Advances and trends in local searchs paradigms for optimization, S.
Voss, et al., Editors. 1999, Kluwer Academic Publishers. pp. 433-458.

21. Jaszkiewicz, A., A metaheuristic approach to multiple objective nurse scheduling.
Foundations of Computing and Decision Sciences, 1997. 22(3): pp. 169-183.

22. Li, H., A. Lim, and B. Rodrigues. A Hybrid AI Approach for Nurse Rostering
Problem, in Proceedings of the 2003 ACM symposium on Applied computing. 2003.
pp. 730-735.

23. Li, J. and U. Aickelin. A Bayesian Optimization Algorithm for the Nurse Scheduling
Problem, in Proceedings of 2003 Congress on Evolutionary Computation (CEC2003).
2003. Canberra, Australia: IEEE Press. pp. 2149-2156.

24. Li, J. and U. Aickelin. The application of Bayesian Optimization and Classifier
Systems in Nurse Scheduling, in Proceedings of the 8th International Conference on
Parallel Problem Solving from Nature (PPSN VIII), Springer Lecture Notes in
Computer Science Volume 3242. 2004. Birmingham, UK. pp. 581-590.

25. Meisels, A., E. Gudes, and G. Solotorevsky, Employee Timetabling, Constraint
Networks and Knowledge-Based Rules: A Mixed Approach, in Selected papers from
the First International Conference on Practice and Theory of Automated Timetabling,
Springer Lecture Notes in Computer Science Volume 1154, E. Burke and P. Ross,
Editors. 1995. pp. 93-105.

26. Meisels, A. and A. Schaerf, Modelling and solving employee timetabling problems.
Annals of Mathematics and Artificial Intelligence, 2003. 39: pp. 41-59.

27. Meyer auf'm Hofe, H. ConPlan/SIEDAplan: Personnel Assignment as a Problem of
Hierarchical Constraint Satisfaction, in PACT-97: Proceedings of the Third
International Conference on the Practical Application of Constraint Technology.
1997. pp. 257-272.

28. Meyer auf'm Hofe, H., Solving Rostering Tasks as Constraint Optimization, in
Selected papers from the Third International Conference on Practice and Theory of
Automated Timetabling, Springer Lecture Notes in Computer Science Volume 2079
E.K. Burke and W. Erben, Editors. 2000. pp. 191-212.

29. Mladenović, N. and P. Hansen, Variable neighborhood search Computers and
Operations Research, 1997. 24(11): pp. 1097-1100.

30. Petrovic, S., G.R. Beddoe, and G. Vanden Berghe, Case-based reasoning in employee
rostering: learning repair strategies from domain experts. 2002, Technical Report,
Automated Scheduling Optimisation and Planning Research Group, School of
Computer Science and Information Technology, University of Nottingham.

31. Petrovic, S., G.R. Beddoe, and G. Vanden Berghe. Storing and adapting repair
experiences in employee rostering, in Selected Papers from the 4th International
Conference on the Practice and Theory of Automated Timetabling (PATAT 2002),
Springer Lecture Notes in Computer Science Volume 2740. E.K. Burke and P. De
Causmaecker, Editors. 2003. pp. 149-166.

32. Post, G. and B. Veltman. Harmonious Personnel Scheduling, in Proceedings of the
5th International Conference on the Practice and Automated Timetabling (PATAT
2004). E.K. Burke and M. Trick, Editors. 2004. Pittsburgh, PA. USA. pp. 557-559.

33. Valouxis, C. and E. Housos, Hybrid optimization techniques for the workshift and rest
assignment of nursing personnel. Artificial Intelligence in Medicine, 2000. 20: pp.
155-175.

