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Milan Dražić a, Carlile Lavor b,*, Nelson Maculan c, Nenad Mladenović d
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Abstract

We develop a continuous variable neighborhood search heuristic for minimizing the potential energy function of a mol-
ecule. Computing the global minimum of this function is very difficult because it has a large number of local minimizers
which grows exponentially with molecule size. Experimental evidence shows that in the great majority of cases the global
minimum potential energy of a given molecule corresponds to its three-dimensional structure and this structure is impor-
tant because it dictates most of the properties of the molecule. Computational results for problems with up to 200 degrees
of freedom are presented and favourable compared with other two existing methods from the literature.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of this paper is to explore the capability of Variable Neighborhood Search (VNS for short) meta-
heuristic to yield novel insights on the problem of finding the three-dimensional structure of a molecule. This
structure is of particular importance because it is essential for understanding its functional mechanism and it is
strongly related to the properties of the molecule [9].

The determination of the three-dimensional structure of a molecule can be formulated as a continuous glo-
bal minimization problem. In the great majority of cases, that structure corresponds to the one involving the
global minimum of the molecular potential energy function. The problem is that the number of local minimiz-
ers of this function grows exponentially with molecule size. Many optimization methods have been developed
for this problem. They include simulated annealing, genetic algorithms, diffusion equation method, a BB algo-
rithm, etc. For a survey, see [3,13,15].
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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VNS is a metaheuristic usually used for solving combinatorial optimization problems. Few works deal with
its application to the global minimization of functions depending on continuous variables [11,7], and in par-
ticular, to the minimization of molecular potential energy functions.

VNS metaheuristic developed in this paper uses different metrics in defining neighborhoods of the current
best solution. To test the proposed methods and compare the results, we use a scalable simplified molecular
potential energy function with well known properties established in [8]. Computational results for problems
with up to 200 degrees of freedom are presented.

The outline of the paper is as follows. Section 2 presents the general principles of the VNS metaheuristic
and its adaptation to the continuous case. Section 3 describes the molecular potential energy function that will
be used to test the method. Section 4 gives the computational results and details of implementation in solving
problem defined in Section 3. Finally, we end with some conclusions.

2. Continuous VNS metaheuristic

The variable neighborhood search (VNS) metaheuristic is well-established in the literature. For an overview
of the method and numerous applications, the reader is referred to [4,5,10]. Basic steps of the VNS metaheu-
ristic as seen in discrete optimization problems are given in Fig. 1.

The idea of VNS is to define a set of neighborhood structures Nk, k = 1, . . . ,kmax, that can be used in a
systematic way to conduct a search through the solution space. Whereas in local search for discrete problems
a single neighborhood is typically defined (kmax = 1), the VNS expands the search over an increasing radius to
escape from a ‘‘local optimum trap’’.

To induce a set of neighborhoods Nk on the solution space S, we use a distance function q that specifies the
distance between any two points, x1,x2 2 S. This may be done for example by comparing the attributes of the
two solutions, and setting the distance equal to the number of attributes where x1 and x2 differ; that is, a Ham-
ming distance is defined as
qðx1; x2Þ ¼ jx1Dx2j ¼ jðx1 n x2Þ [ ðx2 n x1Þj:

It is readily shown that q is a metric, and (S,q) a metric space. For the continuous global optimization prob-
lem, where S � Rn, q(x1,x2) may be any metric, i.e., Euclidean, rectangular, łp norm, etc.

The neighborhood NkðxÞ denotes the set of solutions in the kth neighborhood of x, and using the metric q,
it is defined as balls
NkðxÞ ¼ fy 2 Sjqðx; yÞ 6 qkg;

or shells
NkðxÞ ¼ fy 2 Sjqk�1 6 qðx; yÞ 6 qkg;

where qk is the radius (size) of NkðxÞ monotonically increasing with k.
Fig. 1. Steps of the basic VNS.
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The stopping condition may be, e.g., the predetermined maximal allowed CPU time (tmax), the maximal
number of iterations, or the maximal number of iterations between two improvements. Let us note that the
point y is generated in Step 2(a) at random in order to avoid cycling which might occur if any deterministic
rule was used.

In the recent work of Brimberg et al. [2], the global convergence of VNS is proved as well as its superiority
over multistart local search (MLS) metaheuristic. In many continuous (as well as discrete) optimization prob-
lems, VNS performs better than genetic algorithm (GA) or tabu search (TS) metaheuristics [11,6,7].

Basic idea of VNS can be successfully applied to continuous global optimization problems:
global min
x2S

f ðxÞ; S � Rn:
In continuous optimization, contrary to discrete optimization, solution space and neighborhoods NkðxÞ
are infinite sets. Therefore one cannot expect to fully explore any small neighborhood of a point in a local
search, which is typical in discrete case. Nevertheless, we can apply some local minimization algorithm (steep-
est descent, Nelder–Mead, Newton, etc.) from starting point. Local minimum obtained by this minimizer can
be far away from the starting point which we find to be a feature of the method because we are most of the
time looking for a better solution lying in some distant part of a solution space.

For neighborhoods NkðxÞ in continuous case we can use lp metrics
qðx; yÞ ¼
Xn

i¼1

jxi � yij
p

 !1=p

; 1 6 p <1;

qðx; yÞ ¼ max
16i6n

jxi � yij; p ¼ 1:
These metrics lead to different geometric shapes of neighborhoods we explore.
In shaking step we generate a random point from NkðxÞ as a starting point for the local search. Distribu-

tion of this random point is another parameter of choice for the method. Uniform distribution is an obvious
choice but some others can speed up the whole process.

Geometric neighborhood shapes and random point distributions used in the minimizing process can be
changed after a number of unsuccessful steps to increase a chance for finding a better solution. Incorporating
previous specific points for continuous optimization into the basic VNS framework we get continuous VNS
metaheuristic with basic steps given in Fig. 2.

The continuous VNS metaheuristic does not have many parameters to specify so it appears to be a robust in
that sense. Beside the stopping condition parameters (maximal allowed CPU time tmax, maximal number of
Fig. 2. Steps of the continuous VNS.
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iterations, maximal number of iterations between two improvements), parameters that can influence the per-
formance are:

• Number kmax of neighborhood structures Nk.
• Values of radii qi,i = 1, . . . ,kmax. Those values may be defined by user or calculated automatically in min-

imizing process.
• Geometry of neighborhood structures Nk, defined by the choice of metric q(x,y). Usual choices in contin-

uous optimization are l1, l2, and l1 metrics.
• Distribution used for obtaining the random point y from Nk in shaking step. Uniform distribution in Nk is

the obvious choice, but other distributions may lead to much better performance on some problems.
• Local optimizer used in local search step. A lot of local optimization algorithms are available both for

smooth and not differentiable functions.
3. The problem

The potential energy of a molecule will be derived from molecular mechanics, which describes molecular
interactions based on the principles of Newtonian physics. An empirically derived set of potential energy con-
tributions is used for approximating these molecular interactions. This set of potential energy contributions,
called the force field, contains adjustable parameters that are selected in such a way as to provide the best pos-
sible agreement with experimental data. Our discussion will focus on energy functions which share the main
features of general molecular force fields.

The molecular model considered here consists of a chain of N atoms centered at x1; . . . ; xN 2 R3. For every
pair of consecutive atoms xi and xi+1, let ri,i+1 be the bond length which is the Euclidean distance between
them. For every three consecutive atoms xi,xi+1,xi+2, let hi,i+2 be the bond angle corresponding to the relative
position of the third atom with respect to the line containing the previous two. Likewise, for every four con-
secutive atoms xi,xi+1,xi+2,xi+3, let xi,i+3 be the angle, called the torsion angle, between the normals through
the planes determined by the atoms xi,xi+1,xi+2 and xi+1,xi+2,xi+3.

The force field potentials corresponding to bond lengths, bond angles, and torsion angles will be defined
respectively as
E1 ¼
X
ði;jÞ2M1

c1
ijðrij � r0

ijÞ
2
;

E2 ¼
X
ði;jÞ2M2

c2
ijðhij � h0

ijÞ
2
;

E3 ¼
X
ði;jÞ2M3

c3
ijð1þ cosð3xij � x0

ijÞÞ;

ð1Þ
where c1
ij is the bond stretching force constant, c2

ij is the angle bending force constant, and c3
ij is the torsion

force constant. The constants r0
ij and h0

ij represent the ‘‘preferred’’ bond length and bond angle, respectively,
and the constant x0

ij is the phase angle that defines the position of the minima. The set of pairs of atoms sep-
arated by k covalent bonds will be denoted by Mk for k = 1,2,3.

In addition to the above, there is a potential E4 which characterizes the 2-body interactions between every
pair of atoms separated by more than two covalent bonds along the chain. We use the following function to
represent E4:
E4 ¼
X
ði;jÞ2M3

ð�1Þi

rij

� �
; ð2Þ
where rij is the Euclidean distance between atoms xi and xj.
The general problem is the minimization of the total molecular potential energy function,

E1 + E2 + E3 + E4, leading to the optimal spatial positions of the atoms. To reduce the number of parameters
involved in the potentials above, we will simplify the problem considering a chain of carbon atoms. In this
case, it is known that the preferred bond lengths are r0

ij ¼ 1:526 Å (for all (i, j) 2M1) and that the bond angles
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are h0
ij ¼ 1:91 rad (for all (i, j) 2M2). We will consider also that c1

ij ¼ 1 (for all (i, j) 2M1), c2
ij ¼ 1 (for all

(i, j) 2M2), c3
ij ¼ 1 (for all (i, j) 2M3), and x0

ij ¼ 0 (for all (i, j) 2M3). While this structure reflects great sim-
plifications over the general problem, its complexity should not be underestimated, as we will see below.

In most molecular conformational predictions, all covalent bond lengths and covalent bond angles are
assumed to be fixed at their equilibrium values r0

ij and h0
ij, respectively. Thus, the molecular potential energy

function reduces to E3 + E4 and the first three atoms in the chain can be fixed. The first atom, x1, is fixed at the
origin, (0,0,0); the second atom, x2, is positioned at (�r12,0,0); and the third atom, x3, is fixed at
(r23 cos(h13) � r12, r23 sin(h13), 0).

Using the parameters previously defined and Eqs. (1) and (2), we obtain
E ¼
X
ði;jÞ2M3

ð1þ cosð3xijÞÞ þ
X
ði;jÞ2M3

ð�1Þi

rij

� �
: ð3Þ
Although the molecular potential energy function (3) does not actually model the real system, it allows one to
understand the qualitative origin of the large number of local minimizers – the main computational difficulty
of the problem [15] – and is likely to be realistic in this respect.

Note that E3, Eq. (1), is expressed as a function of torsion angles and E4, Eq. (2), is expressed as a function
of Euclidean distances. To represent (3) as a function of torsion angles only, we can use the result established
in [14, p. 278] and obtain
r2
il ¼ r2

ij þ r2
jl � rij

r2
jl þ r2

jk � r2
kl

rjk

 !
cosðhikÞ � rij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2

jlr
2
jk � ðr2

jl þ r2
jk � r2

klÞ
2

q
rjk

0
@

1
A sinðhikÞ cosðxilÞ;
for every four consecutive atoms xi,xj,xk,xl. Using the parameters previously defined, we have
rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:60099896 � 4:141720682ðcosðxijÞÞ

q
for all ði; jÞ 2 M3: ð4Þ
From (3) and (4), the expression for the potential energy as a function of the torsion angles takes the form
E ¼
X
ði;jÞ2M3

1þ cosð3xijÞ þ
ð�1Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10:60; 099; 896� 4:141; 720; 682 cosðxijÞ
p

 !
; ð5Þ
where i = 1, . . . ,N � 3 and N is the number of atoms in the given system.
In [8], it is shown that the number of local minimizers of the function (5) is 2N�3, where N is the number of

atoms in the given system. Moreover, by imposing xij 2 [0, 5] for all (i, j) 2M3, the existence of only one global
minimizer is guaranteed. Independent of the number of variables, the global minimizer is the alternate
sequence of torsion angles given by a,b,a,b,a,b, . . ., where a = 1.039195303 and b = 3.141592654, considering
up to 10 digits.

The problem is then to find x14,x25, . . . ,x(N�3)N, considering xij 2 [0,5], which correspond to the global
minimum of the function E, Eq. (5). E is a nonconvex function involving numerous local minimizers even
for small molecules. These local minimizers ‘‘correspond’’ to metastable states of the molecule chain and
the single global minimizer defines the energetically most favorable molecular conformation.

Despite these simplifications, the problem remains very difficult. A molecule with as few as 30 atoms has
227 = 134,217,728 local minimizers. It can clearly be seen that finding the global minimum for chains of even
moderate length is intractable via exhaustive methods [8].

4. VNS for molecular potential energy function

For finding the global minimum of the molecular potential energy function E, Eq. (5), we developed a VNS
based method for finding a global minimum:
global min
x2X

f ðxÞ;
in a hyperrectangle X = {(x1,x2, . . . ,xn): ai 6 xi 6 bi}.
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According to the previous section, we defined the function f(x) and box constraints for the solution domain
as
f ðxÞ ¼
Xn

i¼1

1þ cosð3xiÞ þ
ð�1Þiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10:60099896 � 4:141720682 cosðxiÞ
p

 !
and
0 6 xi 6 5; i ¼ 1; . . . ; n:
Three VNS heuristics are designed. They differ in the choice of random distributions used in the shaking
step. For neighborhood structures Nk; k ¼ 1; . . . ; kmax we use shells NkðxÞ ¼ fy 2 X : Rk�1 6 ky � xk1 6
Rkg. Radii q1 6 q2 6 � � � 6 qkmax

are automatically computed so that the ball with the largest radius covers
the whole region X. In all three heuristics a random point is generated in two steps: first, a random direction
is obtained, and after that, the random radius is determined in order to get a point in Nk.

(i) VNS-1. In the first heuristic a random direction is uniformly distributed in a unit ‘1 ball. Random
radius is chosen in such a way that the generated point is uniformly distributed in Nk.

(ii) VNS-2. In the second heuristic a random direction is determined by a random point uniformly distrib-
uted on a ‘1 sphere.

(iii) VNS-3. In the third VNS based heuristic a random direction x = (x1,x2, . . . ,xn) is determined by a spe-
cially designed hypergeometric random point distribution on a unit ‘1 sphere as follows:

(a) x1 is taken uniformly on [�1,1], xk is taken uniformly from [�Ak,Ak], where Ak = 1 �

jx1j � . . . � j xk�1j, k = 2, . . . ,n � 1, and the last xn takes An with random sign.
(b) coordinates of x are randomly permuted.
In order to diversify the search, we also implemented VNS heuristics that combine any two or all three basic
heuristics. Namely, if no improvement in kmax neighborhoods of the current structure is made, then we auto-
matically (cyclically) change their structures for following iterations. VNS-123 denotes the VNS heuristic with
all three previously described heuristics VNS-1, VNS-2, and VNS-3, used in that order.
4.1. Computer results

The results of the experiments for n = 50,100,150,200 with VNS-1, VNS-2, VNS-3, and VNS-123 in ten
runs are summarized in Table 1. Experiments presented in Tables 1 and 2 were performed on AMD 2500+
based PC platform with 512 MB of RAM. In Table 1, time limit was the stopping criteria and its values were
chosen to document the influence of kmax and various heuristics on overall performance. For each kmax, aver-
age and best % error of the function value from fbest in ten runs are calculated as well as standard deviation of
the % error, where % error of objective function value f from fbest is defined as (f � fbest)/fbest · 100. In all cases
the local minimizer was steepest descent method with quadratic approximation method for one–dimensional
optimization. Column fbest contains exact values of global minima.

It can be seen from Table 1 that the basic VNS parameter kmax has a strong influence on the quality of final
results: the increase of kmax leads to better performance. This fact was also confirmed with other test functions
(see [7,12]). In cases with kmax = 10, VNS-1, n = 150 and n = 200, a local minimum (with xi = p, f = 0) is
quickly reached in all runs and better one was not found until tmax (it is found, however, after that time limit).

It also appears that heuristic VNS-3 gives exceptionally good results, both alone or combined with other
two. Namely, in all cases it reaches the optimal values. Due to the large values of n, the special distribution
in VNS-3 generates random directions with only several coordinates significantly different from 0. Therefore,
that special designed VNS heuristic for this class of problems pays off.

In order to confirm this last statement, more detailed results of VNS-123 and VNS-3, with kmax = 15, are
reported in Table 2. In the second column of Table 2, the exact minimum of the function is given. Next
columns present values obtained until that exact optimum is reached, averaged from ten repeated experiments:



Table 1

n tmax

(seconds)
Heuristic kmax = 1 kmax = 5 kmax = 10 kmax = 15 fbest

Aver
(%)

Best
(%)

Dev Aver
(%)

Best
(%)

Dev Aver
(%)

Best
(%)

Dev Aver
(%)

Best
(%)

Dev

50 5 VNS-1 82.50 70.64 7.25 80.73 51.86 18.51 19.90 7.94 8.16 3.60 0.00 3.77 �2.0559
VNS-2 23.09 11.97 5.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VNS-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VNS-123 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100 10 VNS-1 115.50 104.49 6.23 95.76 89.99 4.41 97.79 87.97 4.45 14.79 4.00 7.10 �4.1118
VNS-2 70.40 55.21 9.68 4.98 1.99 2.23 0.40 0.00 0.80 0.20 0.00 0.60
VNS-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VNS-123 0.20 0.00 0.60 0.00 0.00 0.00 0.20 0.00 0.60 0.00 0.00 0.00

150 15 VNS-1 130.92 124.76 4.29 96.22 89.29 4.07 100.00 100.00 0.00 31.43 15.97 8.77 �6.1677
VNS-2 97.78 85.24 6.41 14.87 9.28 3.01 2.65 0.00 1.97 0.93 0.00 0.85
VNS-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VNS-123 1.32 0.00 0.84 2.26 0.00 1.98 0.80 0.00 0.65 0.00 0.00 0.00

200 20 VNS-1 138.60 130.12 4.17 95.95 90.96 3.28 100.00 100.00 0.00 45.47 29.98 8.76 �8.2237
VNS-2 103.90 95.75 5.39 28.01 19.96 4.07 9.56 4.99 2.36 5.58 1.99 2.93
VNS-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
VNS-123 6.17 1.99 1.93 5.78 2.99 2.59 3.19 0.99 1.88 0.80 0.00 0.87

Table 2

n Minimum VNS-123 VNS-3

Fun Dev Grad Dev Sec Dev Fun Dev Grad Dev Sec Dev

20 �0.82237 23,381 6711 1709 491 0.064 0.019 9887 2912 682 200 0.024 0.010
30 �1.23355 48,237 8242 3612 624 0.203 0.036 16,448 5108 1117 351 0.064 0.023
40 �1.64473 57,681 15,692 4414 1244 0.321 0.089 25,723 9327 1743 632 0.139 0.051
50 �2.05592 102,104 42,867 8009 3344 0.708 0.298 38,285 11,650 2573 788 0.262 0.082
60 �2.46710 142,882 37,268 11,374 2983 1.184 0.312 39,315 7499 2621 502 0.322 0.061
70 �2.87828 172,091 68,178 13,979 5448 1.666 0.656 56,183 15,598 3723 1014 0.542 0.150
80 �3.28946 180,999 70,386 14,891 5724 2.003 0.775 74,328 21,772 4897 1426 0.818 0.236
90 �3.70065 211,160 46,778 17,766 3829 2.623 0.577 71,052 17,388 4689 1130 0.878 0.214

100 �4.11183 254,899 96,691 21,724 8230 3.517 1.330 79,263 19,650 5205 1264 1.087 0.268
120 �4.93420 375,970 103,186 33,035 9063 6.237 1.703 99,778 19,096 6466 1206 1.642 0.305
140 �5.75656 460,519 132,113 41,402 11,741 8.922 2.544 117,391 31,104 7569 1990 2.253 0.590
160 �6.57893 652,916 177,969 59,849 16,224 14.471 3.928 167,972 50,883 10,696 3204 3.668 1.102
180 �7.40129 663,722 176,733 62,030 16,508 16.572 4.399 173,513 37,356 10,945 2332 4.263 0.909
200 �8.22366 792,537 218,568 75,411 20,637 22.045 6.060 213,718 31,366 13,382 1917 5.815 0.841
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the number of function and gradient calls (‘‘fun’’ and ‘‘grad’’, respectively) as well as average running time in
seconds (‘‘sec’’) with the corresponding standard deviations (‘‘dev’’).

From Table 2, it clearly appears that VNS-3 found the optimal solutions with much less efforts than VNS-
123. Also, the important conclusion is that there is no exponential explosion of computer efforts with the
increase of the problem size.

The same problem had been treated by using genetic algorithms [1] and branch and bound approach [8]. We
summarize in Tables 3 and 4 some computational results obtained in [1] and [8], respectively.

In Table 3, for each problem size ‘‘n’’, ‘‘fmin’’ (‘‘fmax’’) is the minimum (maximum) number of function
evaluations needed to reach 99% of the global minimum in the 30 runs performed. Additionally, ‘‘favg’’ is
the average and ‘‘fsd’’ is the standard deviation computed considering the successful runs (‘‘succ’’). The



Table 3

n favg fmin fmax fsd succ sec

20 36,626 33,086 40,545 2057 30 28.01
40 133,581 120,643 139,857 4378 30 237.69
60 263,266 242,739 280,653 10,360 30 852.61
80 413,948 392,493 445,181 13,340 30 3250.53

100 588,827 565,793 614,362 13,057 30 4400.61

Table 4

n Fun Sec

20 174,857 10,126
21 253,358 19,480
22 385,745 34,657
23 662,161 62,730
24 1,019,868 123,232
25 1,779,637 297,100
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CPU time ‘‘sec’’ (in seconds) is also given. The program was coded in FORTRAN 77 and executed on a Pen-
tium III 996 MHz with 192 MBytes of RAM memory.

In Table 4, again for each problem size ‘‘n’’, ‘‘fun’’ is the number of function evaluations needed to reach
the global minimum and ‘‘sec’’ is the CPU time in seconds (note the exponential increasing of the number of
function evaluations with n and the time required to reach the global minimum for n = 25: 82.5 hours!). The
program was coded in FORTRAN 90 and executed on a Pentium III 700 MHz with 256 MBytes of RAM
memory.

From Tables 2–4, we can observe that all VNS versions perform much less computations than both genetic
algorithm (GA) and branch and bound (B&B). Compare, e.g. for n = 20, the number of function evaluations
obtained by VNS-3, GA and B&B, respectively: 10,569 (9887 + 682), 36,626, and 174,857. Also, because GA
and B&B have bigger calculation overhead and use more memory than VNS, for the same time VNS can exe-
cute more function calls on the same computer. Note also that the codes for GA and B&B were run on slower
computers.

5. Conclusions and research in progress

We developed VNS–based heuristics for minimization of a continuous function subject to box constraints.
Moreover, for solving the molecular potential energy function, whose number of local minimizers exponen-
tially grows with problem size, we suggest special VNS variant that appears to be very efficient. Results
reported allow us to say that the ideas initially developed for discrete optimization successfully perform in case
of continuous optimization problems.

Compared with the branch and bound scheme used for the same problem in [8] (see Tables 2 and 4), our
VNS heuristics performed much better. Unlike exponential complexity of the first, our VNS based heuristics
have approximately quadratic complexity on this minimization problem, as can be seen from the Table 2.
Compared with genetic algorithms also used for the same problem in [1], VNS-123 and, particularly VNS-
3, produced better results (see Tables 2 and 3).

Although VNS has only a few tuning parameters, their choice can increase the performance. Numerical
experiments verify the conjecture that adding more neighborhood structures improves performance of the
search. The choice of random point distribution in shaking step can also speed up the convergence
significantly.

The future work will be focused on two directions: (i) extension of VNS to global optimization problems
subject to general nonlinear constraints, and (ii) application of our VNS to more realistic molecular potential
energy functions.
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[11] N. Mladenović, J. Petrović, V. Kovačević -Vujčić, M. Čangalović, Solving spread spectrum radar polyphase code design problem by

tabu search and variable neighbourhood search, European Journal of Operational Research 151 (2003) 389–399.
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