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Abstract: The Austrian forest sector has experienced extensive development in recent 
years. In 2003, approximately 27.9 million cubic meters of logs were 
processed in Austria. In order to enable a stable supply, an efficient and 
economical operation for round timber transport is necessary. In this paper, we 
present a Tabu Search based solution method for log-truck scheduling. A fleet 
of m log-trucks that are situated at the respective homes of the truck drivers 
must fulfill n transports of round timber between various wood storage 
locations and industrial sites. All of the transports are carried out as full 
truckloads. Since the full truck movements are known, our objective is to 
minimize the overall duration of empty truck movements. In addition to the 
standard VRP, we have to take into consideration weight constraints on the 
road network, multi-depots, and time windows at the industrial sites and 
homes of the truck drivers. We applied the Unified Tabu Search method and 
modified it by an oscillating change of the neighborhood size in some selected 
iteration steps. Our heuristics are verified with extensive numerical studies. 
The Tabu Search based heuristics are able to solve real-life problems within a 
reasonable timeframe by providing good solution quality. 

Keywords: Log-truck scheduling; Timber Transport Vehicle Routing Problem; Tabu 
Search 

1. INTRODUCTION AND PROBLEM 
DESCRIPTION 

The Austrian forest sector has experienced extensive development in 
recent years. With respect to the Austrian economy, forest based industry is 
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in second place in terms of exporting goods and services. In 2003, Austria 
had 1,400 sawmills, 30 pulp mills, ground wood pulp mills, and paper mills, 
and 39 chipboard factories that processed approximately 27.9 million cubic 
meters of logs (Schwarzbauer, 2005). In order to enable a stable supply, an 
efficient and economical operation for round timber transport is necessary. A 
number of natural restrictions, such as regional topology, storms, and heavy 
snow may hinder a steady supply for industrial recipients. In this regard, the 
availability of the forest road network is of great importance. A number of 
research efforts mainly focus on information supply and the provision of GIS 
based applications for supporting truck drivers in finding storage locations 
and to further support wood transfer. Moreover, there exist numerous 
proposals for the efficient use of wood transportation systems. In order to 
sustain the competitiveness of the Austrian forest based industry 
improvements in transportation logistics are often considered an essential 
starting point. Our work focuses on the log-truck scheduling problem, which 
typically has many sources and few recipients. At the beginning of a 
planning period, the transportation orders are given. Here, we are 
considering full truckloads when it is that the truck moves from the wood 
storage location to a particular industrial site. When starting at the home 
location, and after unloading at the mill, we have to decide where the trucks 
should collect a new load in order to minimize the overall empty truck 
movements. 

The problem we are discussing here is relevant for large forestry 
companies that serve a number of different mills; it describes the challenge 
of reducing the mileage of log-trucks. In our background forestry 
application, 10 trucks and approximately 30 trips are scheduled daily. In 
Austria, forest owners usually need to organize the log transport by 
employing forwarding companies. These forwarders usually serve several 
forest owners per day and aim to minimize their transportation costs. With 
this respect, the presented scheduling problem is highly relevant for log 
transport companies. 

The emerging vehicle routing problem is denoted as a Timber Transport 
Vehicle Routing Problem (TTVRP) (see also Karanta et al., 2000 and 
Weintraub et al., 1996). It can be characterized as follows: a heterogeneous 
fleet of m log-trucks that are situated at the respective homes of truck drivers 
must fulfill n transports of logs between various wood storage locations and 
industrial sites, such as pulp mills and sawmills, during a specified 
timeframe. All of the transports are carried out as full truckloads; the vehicle 
is loaded at the wood storage location and unloaded at the industrial site. 
Each route commences at the home of the truck driver who leaves with an 
empty truck for loading round timber. Subsequently, he drives to the 
designated industrial site and completes the transport. The truck driver can 
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now finish his tour and return back home or start a new delivery. Due to the 
transportation orders, each wood storage location and industrial site can be 
visited more than once during the planning horizon. 

Log transport has a few specific constraints to consider such as the fact 
that some parts of the forest road networks are unsuitable for larger trucks, 
as their weight occasionally damages the road. Therefore, some wood 
storage locations can only be reached by trucks with a certain capacity. We 
denote this as the route weight limits. Due to industry operating hours, time 
windows for unloading wood must be considered. Time windows also occur 
at the truck starting points since truck drivers are only on duty at certain 
times. Additionally, we have to observe tour length constraints and capacity 
constraints. According to the given transportation orders, the objective is to 
minimize empty truck movements. 

In Figure 1, we present a small example to illustrate the planning 
problem. Two log-trucks have to perform eight transportation orders  
(1, …, 8). The log-trucks are situated at the home-locations A and B, 
respectively. Wood is provided at six different wood storage locations  
(P1, …, P6) and must be transported to three industrial sites (I1, …, I3). The 
number of rectangles and triangles provides the number of visits at the 
respective location. I1 receives three loads: two from P1 and one from P2. 
Figure 1a) shows the required transports and demonstrates the problem of 
linking these transports in a cost-efficient manner, taking into account the 
above-mentioned constraints. Figure 1b) shows the cost-optimal solution for 
this problem. A1 is the first trip taken from the log-truck situated at A, A2 is 
the second one, etc.; the same is true for B1 to B11. Altogether, we have 
scheduled 8 transports and 10 empty truck movements. 
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Figure 4-1. Conceptual formulation and solution for a TTVRP 

The TTVRP is a special application of the full truckload vehicle routing 
problem (Gronalt et al., 2003). Murphy (2003) presents an approach that 
attempts to reduce the number of log-trucks that are used to perform 
transports of round timber. He developed a MIP model that minimizes the 
total transport costs. His approach does not take into account, however, time 
windows at industrial sites, availability times of the drivers, or route weight 
limits. He uses standard solver software to solve his problems but he only 
provides the best found solution after a certain computing time and not the 
global optimal solution. The approach of Palmgren et al. (2003) unites 
tactical and operational planning in wood transport. They provide a model 
formulation for the Log Truck Scheduling Problem (LTSP) and present a 
column generation based solution approach. 

According to the established notation on VRPs, the TTVRP is related to 
the Multi Depot Vehicle Routing Problem with Pickup and Delivery, and 
Time Windows (MDVRPPDTW); supplementarily, one has to deal with 
specific route weight limits and full truckloads. An overview of the Vehicle 
Routing Problems can be found for example in Toth and Vigo (2002). The 
transport activities of the TTVRP have a similar structure to the Stacker 
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Crane Problem (SCP) (see Righini et al., 1999). Coja-Oghlan et al. (2004) 
provide an example of a SCP, which describes the scheduling of a delivery 
truck. Glover and Laguna (1997) provide a general introduction to the Tabu 
Search metaheuristic. For solving the TTVRP the Unified Tabu Search 
(Cordeau et al., 2001) is adapted and modified. 

This present paper is organized in the following way: In Section 2, we 
present a model formulation of the TTVRP. The heuristic solution approach 
is outlined in the third section. We have developed three variants of the Tabu 
Search in order to obtain solutions for the TTVRP. Section 4 describes our 
numerical studies and the generation of test data. The results of the 
numerical experiments are provided in Section 5. We use different parameter 
sets for our heuristics and compare the three variants of the Tabu Search 
with each other and the best found feasible solution obtained with solver 
software. Finally, our conclusions are drawn in Section 6, in which an 
outlook on our future research is also provided. 

2. MODEL FORMULATION 

The transportation orders are predefined and can therefore be considered 
as tasks that must be fulfilled in order to obtain a feasible solution. A 
feasible solution must include all of the tasks that are represented by arcs. 
Figure 2 demonstrates the same problem as Figure 1, which is transformed 
into a special case of the SCP. We have two kinds of tasks, so-called 
artificial tasks (A’, B’) and transport tasks (1, …, 8). The artificial tasks are 
introduced in order to connect the starting point and endpoint of a cycle. The 
direct connection between two vertices is always the shortest one. It is 
impossible to transport directly from one wood storage location to another or 
from one industrial site to another. This is because we have to deal with full 
truckloads. In Figure 2a) the tasks and vertices are displayed. Figure 2b) 
shows the corresponding optimal solution, using the same notation as in 
Figure 1b). 

Log-truck scheduling with a tabu search strategy 



70 Chapter 4
 

2

1

3

4

5
6

7
8

I3

I2

I1

Industrial
sites

Wood storage
locations

P1

P2

P3

P4

P5

P6

starting points endpoints

B’

A’

I3

I2

I1

Industrial
sites

Wood storage
locations

P1

P2

P3

P4

P5

P6

starting points endpoints

A1 A2

A3

A4

A5

A6

A7

B1 B2

B3

B4

B5

B6

B7 B8

B9
B10

B11

B12

A8

 

Figure 4-2. Example shown as special case of the SCP 

In order to facilitate a further description the following notations are 
used: 
 n-element set of transport tasks W, 
 m-element set of artificial tasks V, 
 and m-element set of trucks R. 

The notation of the elements in V and R is identical. Truck r  R has a 
maximum capacity Qr and a duration limit Tr. The availability time of a 
truck driver starts at er and ends at lr. A specific route of a truck is named 
after this truck r. 

Each transport task i  W has the following attributes: 
 loading time ai at the wood storage location, 
 route weight limit ki given in units of weight, 
 order quantity qi, 
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 unloading time si at the industrial site, 
 time window [ei, li] at the industrial site, 
 and traveling time ui. 

Each truck is allowed to arrive at an industrial site at a time 0  bi  li; if 
the truck arrives at a time bi < ei it must wait for the period wi = ei - bi. 
tij represents the time that is needed to move from the endpoint of task i to 
the starting point of task j; this is the time needed for the empty truck 
movement. 

The following binary decision variables are defined: 
 xijr = 1, if task j is visited directly after task i with truck r; 0 otherwise. 
 yir = 1, if task i is visited with truck r; 0 otherwise. 

The set presented in (1) includes all of the tasks. 

VWW~  (1)

The objective function (2) of the model minimizes the duration of empty 
truck movements. 
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Constraints (3) guarantee a tour, (4) to (6) define the predecessor and 
successor relationships, and (7) links the binary variables. Constraints (8) to 
(10) guarantee the observance of the truck capacity, route weight limits, and 
maximum travel times. (11) to (14) deal with the time windows at the 
industrial sites and truck starting points. (15) and (16) define the binary 
variables. (17) and (18) are non-negativity constraints. We validated our 
model for small instances, using Xpress-MP software. For real-life 
problems, it is necessary to develop a customized heuristic. 

3. SOLUTION APPROACH 

The solution approach consists of the following steps: 
1. Restrict the solution space. 
2. Find an initial solution with a greedy heuristic. 
3. Find an improved solution by applying one of the following Tabu Search 

procedures: 
  a. Standard Tabu Search 
  b. Tabu Search with a limited neighborhood 
  c. Tabu Search with an alternating strategy 

4. Apply a post-optimization heuristic based on 2opt. 
 

The Unified Tabu Search heuristic served as a starting point for our 
solution procedures. Three variants that differ with respect to the size of their 
solution space in each iteration step are developed and subsequently 
discussed. 
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3.1 Tabu Search 

3.1.1 Solution space and initial solution 

The overall heuristic commences with a reduction of the solution space. 
Looking at the problem characteristic, we see that some transport tasks can 
only be executed by certain truck types. On the one hand, this is because it is 
impossible to split transport tasks; therefore a truck r with capacity Qr cannot 
perform a transport task with an order quantity qi if Qr < qi. On the other 
hand, we have wood storage locations that cannot be reached by each truck 
type because of the route weight limits. A truck r with capacity Qr cannot 
perform a transport task with a route weight limit ki if Qr > ki. In the first 
step, it is guaranteed that a truck r is only assigned to a task that can be 
handled by this truck with respect to the truck capacity and the route weight 
limit. 

To construct an initial solution we use a regret-heuristic. The gained 
solution may violate the duration- and time window constraints. The regret-
heuristic works in the following way: 
 Initialization: 

– For every artificial task i  V: find the closest transport task j and the 
second-closest transport task z. 

– Calculate a regret-value REGi = tiz - tij. 
– Sort the regret-values in descending order. 
– Allocate the closest transport tasks to the artificial tasks according to 

this order; if a transport task is the closest to two or more artificial 
tasks, it is assigned to the one with the highest regret value. 

 Continue with the same procedure until all of the transport tasks are 
assigned to a tour. Always find the closest and second-closest transport 
task to the last included task. 

3.1.2 Parameter setup 

Based on the initial solution a rank indicator Bir with i  W and r  R is 
defined. If Bir = 0 this means that transport task i is not on tour (of truck) r. If 
for example Bir = 3 this means that transport task i is ranked third on tour r. 
While traversing the solution space we apply different notations for marking 
the solutions: current solution s, a neighbor solution s°, the best neighbor 
solution s’, and the best found feasible solution s*. The costs associated with 
a solution are given by c(s) and are equal to the total travel time of the empty 
trucks. The Tabu Search permits infeasible intermediate solutions. The total 
violation of tour duration constraints and time windows is denoted by d(s) 

Log-truck scheduling with a tabu search strategy 



74 Chapter 4
 
and h(s), respectively. The variables  and  are used to weight the total 
violation of constraints. Their values are updated in each iteration step with 
the help of a parameter .  and  are used in order to guide the search 
process. If we are gaining feasible solutions for a number of iterations, these 
variables encourage the search process to move to areas with infeasible 
solutions. If the search process stays in an area with infeasible solutions for a 
longer time, the search process is driven to areas with feasible solutions. The 
parameter  is used to weight the penalizing factor for deteriorating neighbor 
solutions. 

The array ir is used to store how often a transport task i was part of a 
tour r in a solution s. The tabu status is stored in the array ir. We save the 
information up to which iteration step a task i may not be part of a tour r. An 
aspiration criterion is used to permit the bypassing of the tabu status. We use 
fixed tabu durations that are dependent on the number of log-trucks and 
transport tasks, in which the tabu duration is given by . The array ir saves 
the value of the best found feasible solution, in which transport task i was 
part of tour r. The parameter  gives the number of iteration steps. The 
function f(s) is equal to the cost function c(s) plus the weighted violations of 
constraints. The decision function g(s) is used to determine which neighbor 
solution is chosen; it is equal to f(s) plus a possible penalty function p(s). 

3.1.3 Search procedure 

The Tabu Search algorithm works as follows: 
 Initialization 

– If the initial solution s is feasible set s* := s and c(s*) := c(s); else set 
s* := { }and c(s*) := . 

– Initialize  and . 
– For all attributes (i,r): 

 Set ir := 0 and ir := 0. 
 If the initial solution s is feasible and Bir > 0 then set ir := c(s); else 

set ir := . 
– Set the parameters  and . We use the following values for these 

parameters: 
   [0.1, 0.9] 
   [0.010, 0.025] 

 For  = 1 To  do 
– Determine all neighbor solutions s° of s and their costs c(s°). A 

neighbor solution s° is generated by moving a transport task i from a 
tour r to a tour o (move-operator). 
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 Each transport task i is taken out of its current tour r and tentatively 
inserted into all of the other tours that fulfill the capacity- and route 
weight limits. 

 If a transport task i is eliminated in a tour r, the direct predecessor 
and direct successor of i are connected. In its new tour o transport 
task i is inserted at the position with the least additional costs. 

 For each attribute (i,r) that is part of a neighbor solution s°, but was 
not part of solution s, the procedure checks if ir is smaller than . 
This means that the attribute is checked as to whether it is tabu or 
not. If the attribute (i,r) is tabu the algorithm checks if s° is a 
feasible solution and c(s°) < ir. In this case, the aspiration criterion 
is fulfilled, in which it is permitted to use this neighbor solution s° 
despite its tabu status. If the tabu status remains, the value of the 
decision function to choose a neighbor solution must be set to 
g(s°) := . 

 For all neighbor solutions s° that are not tabu or meet the aspiration 
criterion, the algorithm computes f(s°) and g(s°). If f(s°) < f(s), then 
set g(s°) := f(s°); otherwise set g(s°) := f(s°) + p(s°). Equation (19) 
shows the calculation of f(s°); (20) shows the computation of the 
penalty function p(s°). 

   )()()()( shsdscsf  
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The penalty function p(s°) penalizes the neighbor solutions s° for 
having the same or a higher function value f(s°) as the current 
solution s. The parameter  is predefined; n is the number of 
transport tasks and m the number of log-trucks. The sums over ir 
count how often attributes (i,r) that are element of s° were part of a 
solution s. 

 The neighbor solution s° that has the lowest value of g(s°) is chosen 
and called s’. 

– After having found the best neighbor solution s’ the algorithm 
continues with the following steps: 
 For each attribute (i,r), which was part of solution s but is not part 

of s’ set ir :=  + . The tabu duration  is calculated with Equation 
(21). 

   
4))²(log( mn

 
(21)
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We obtained this formula after a number of parameterization 
approaches for . The value of  is dependent on the size of the 
problem according to this formula. 

 For each attribute (i,r) that is part of the best neighbor solution s’ set 
ir := ir + 1. 

 If s’ is a feasible solution and c(s’) < c(s*) set s* := s’ and 
c(s*) := c(s’); otherwise, leave the values of c(s*) and s* 
unchanged. 

 If s’ is a feasible solution do: for each attribute (i,r) which is part of 
s’ set ir := min{ ir, c(s’)}. 

 Adjustment of  and : 
 If d(s’) > 0 set  :=  · (1 + ), else set  :=  / (1 + ). 
 If h(s’) > 0 set  :=  · (1 + ), else set  :=  / (1 + ). 

– Set  :=  + 1 and s := s’. 
 End For 

3.1.4 Post-optimization heuristic 

A 2-opt based heuristic is applied as a post-optimization procedure after 
each iteration step of the Tabu Search algorithm. The algorithm attempts to 
improve single tours by changing the position of two transport tasks. If 
improvement is attained, the tour is rebuilt accordingly and the same 
procedure restarts until no further improvement can be found. Per definition, 
an improvement of a solution is only tolerated if the solution is feasible. The 
post-optimization procedure does not influence the Tabu Search algorithm; 
the input data for the next Tabu Search iteration step remains unchanged 
even if improvement is attained. Only s* and c(s*) are updated if the costs 
c(s’) of the post-optimized solution s’ are lower than the current best found 
costs c(s*). 

3.2 New search strategies 

The Tabu Search strategy described in Section 3.1.3 implies a search of 
the entire neighborhood of a solution in each iteration step. We call this 
strategy hereafter a Standard Tabu Search. This is a very time-consuming 
procedure since there are no rules to restrict the search space. Therefore, we 
developed a search strategy that concentrates on the elimination of bad 
connections between tasks. Toth and Vigo (2003) proposed the Granular 
Tabu Search in order to restrict the neighborhood of solutions drastically and 
reduce computing times. They attempt to limit moves that insert “long” arcs 
in the current solution. Our approach concentrates on a certain fraction of 
empty truck movements in the current solution s; only these links are to be 
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removed in neighbor solutions. Other links can only be modified if a task 
from a removed link is inserted between their starting and ending points. 

The procedure functions in the following way: The links are first sorted 
according to their duration in descending order. Then, a predefined number 
of links is chosen starting from the one with the longest duration. The 
number of used links is calculated as a fraction of all the existing empty 
truck movements; the divider D is set as a parameter. If D = 4 this means 
that one fourth of all the links of a solution s is taken away for being 
removed in neighborhood solutions. 

We call this strategy a Tabu Search with a limited neighborhood. This 
strategy seems to be myopic since “shorter” links are unaffected directly. To 
overcome this we merge the Standard Tabu Search and Tabu Search with a 
limited neighborhood in a new algorithm called a Tabu Search with an 
alternating strategy. After a predefined number of iteration steps with a 
restricted neighborhood, an iteration step with a full neighborhood search is 
set. The parameter A is used to define which iteration steps will be computed 
with a full neighborhood search. For example, a setting of A = 8 means that 
in every eighth iteration step a full neighborhood search is performed. These 
new strategies lead to drastic reductions of the computing time. As shown in 
Section 5, there are also no, or only minimal, losses in the solution quality if 
the Tabu Search with an alternating strategy is used. 

4. NUMERICAL EXPERIMENTS 

The small introductory example with eight transport tasks and two trucks 
can be solved with standard solver software within seconds. Unfortunately, 
real-life problems have far more trucks and trips to consider. We have 
observed that regional forest enterprises have to perform approximately 30 
transport tasks per day and on average, they operate 10 log-trucks. In the 
course of a year up to 600 pick-up locations are visited to supply five 
industrial sites. A large wood processing company in the area operates four 
sites. In order to ensure a smooth wood supply, up to 250 transport tasks and 
80 trucks per day are on order. We estimate their overall yearly number of 
pick-up locations as 2,500. Murphy (2003) presents a case study with an 
average of 9 trucks and 35 transport tasks per day for a company situated on 
the Southern Island of New Zealand. Palmgren et al. (2003) present two case 
studies for Sweden: one with six trucks and 39 transport tasks, and one with 
28 trucks and approximately 85 transport tasks. 

In order to test the algorithmic approach for real-life sized problem 
instances we have developed a random problem generator. Two sets of 
problem instances have been generated. Each set consists of 20 instances 
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with 30 transport tasks and 10 trucks. The first set of instances has weaker 
constraints than the second one in terms of the average task duration and the 
traveling times between the tasks. In the first instance set, the same 10 truck 
starting points are used for all of the instances. There are three different 
industrial sites and 560 possible wood storage locations. In the second 
instance set, the same 10 truck starting points are also used for all of the 
instances; but they are different from those of instance set 1. In instance set 2 
there are four different industrial sites and 560 possible wood storage 
locations. In instance set 1, we chose the three industrial sites with the lowest 
average distance to the 560 wood storage locations out of a set of nine 
industrial sites; whereas in instance set 2 we use four industrial sites out of 
this set, which belong to one company and are situated less centrally. This is 
the reason why we have longer distances in instance set 2. 

The model formulation was implemented with the software Xpress-MP. 
The heuristic solution approach was programmed with Visual Basic 6. We 
tested the algorithm in the following variants: Standard Tabu Search, Tabu 
Search with a limited neighborhood, and Tabu Search with an alternating 
strategy. The post-optimization strategy is only applied in some test runs. 

All of the computers used are equipped with a Pentium IV processor with 
2.52 GHz and 512 MB RAM; their operating system is Windows XP. 

The values of the following parameters were varied in the test runs: 
 weighting factor  for the penalty function p(s), 
 parameter  to update  and , 
 number of iteration steps , 
 divider D, 
 and parameter A. 

The variables  and  are initialized with the value 1. We use the best 
found solutions and lower bounds computed with Xpress-MP after a certain 
computing time as a benchmark for the heuristic solutions. It is also 
necessary to compare the different variants of Tabu Search with respect to 
computing times and solution quality. Section 5 shows the results of the 
numerical studies. 

5. RESULTS 

The optimal solution for the introductory example with two log-trucks 
and eight transport tasks can be found within a few iteration steps for all of 
the variants of the heuristic. The numerical studies were started with a 
Standard Tabu Search variant, which forbids log-trucks to stay at home 
and uses no post-optimization strategy. The first test case of each ins-
tance set was taken to find the best  values for the parameters  
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  [0.010, 0.025] and   [0.1, 0.9]. The resulting values were taken for 

further computations. Tables 1 and 2 show the deviation from the best found 
solution for different parameter values. The algorithm is executed for 10,000 
iteration steps. In total, we tested 36 parameter variants. In Table 1 and 2, the 
first row shows the different values for  and the first column shows the 
different values for . The highest deviation is written in cursive; the shaded 
cell marks the best found parameterization. 
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0.1371%0.1269%0.1578%0.0744%0.2

0.0744%0.0952%0.1269%0.1616%0.1

0.0250.0200.0150.010

 

Table 4-1. Deviation from the best found solution for test case 1 of instance set 1 

0.6251%0.1054%0.9748%0.3205%0.9

0.0941%0.1424%0.1518%0.5824%0.8

0.1424%0.4143%0.2822%0.3606%0.7

0.0481%0.3205%0.5159%0.1518%0.6

0.2440%0.2339%0.2695%0.2973%0.5

0.0500%0.0554%0.2220%0.1411%0.4

0.0462%0.0914%0.2799%0.0000%0.3

0.1781%0.2245%0.1332%0.2042%0.2

0.2281%0.2440%0.2979%0.0554%0.1

0.0250.0200.0150.010

0.6251%0.1054%0.9748%0.3205%0.9

0.0941%0.1424%0.1518%0.5824%0.8

0.1424%0.4143%0.2822%0.3606%0.7

0.0481%0.3205%0.5159%0.1518%0.6

0.2440%0.2339%0.2695%0.2973%0.5

0.0500%0.0554%0.2220%0.1411%0.4

0.0462%0.0914%0.2799%0.0000%0.3

0.1781%0.2245%0.1332%0.2042%0.2

0.2281%0.2440%0.2979%0.0554%0.1

0.0250.0200.0150.010

 

Table 4-2. Deviation from the best found solution for test case 1 of instance set 2 

Table 3 shows the deviation from the best found solution for all test cases 
of instance set 1 depending on the number of iteration steps. The best found 
solution is obtained after 1,000,000 iteration steps. If there is no deviation 
from the best found solution, the cell is shaded. We have adopted the best 
found parameter values for test instance 1 with  = 0.025 and  = 0.6. Table 
3 provides insight into the speed of convergence. The first row shows the 
number of iteration steps and the first column shows the different test 
instances. 

Log-truck scheduling with a tabu search strategy 
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0.0000%0.0000%0.4012%0.4012%no sol.T20

0.0464%0.1807%0.2550%0.2550%no sol.T19

0.1476%0.2782%0.9737%1.6211%no sol.T18

0.1484%0.2933%0.3748%0.3748%no sol.T17

0.1499%0.1911%0.1911%0.5266%no sol.T16

0.0000%0.1770%0.1770%0.1770%no sol.T15

0.0868%0.0868%0.2859%0.2859%no sol.T14

0.0000%0.2127%0.2896%1.0375%no sol.T13

0.0546%0.2614%0.8338%0.8338%no sol.T12

0.0210%0.4182%0.4182%0.4182%no sol.T11

0.1605%0.4733%0.6192%0.6192%no sol.T10

0.0127%0.3448%0.5149%0.5149%no sol.T9

0.0000%0.2374%0.8319%1.1864%no sol.T8

0.2204%0.5607%0.7752%3.5075%no sol.T7

0.0000%0.0000%0.4273%0.4273%no sol.T6

0.1573%0.2793%0.7436%1.1163%no sol.T5

0.0147%0.0474%0.5808%0.5808%no sol.T4

0.1570%0.1570%0.6693%0.6693%no sol.T3

0.0000%0.0838%0.4799%0.4799%no sol.T2

0.0000%0.0000%0.4928%1.5116%no sol.T1

100,00010,0001,00010010

0.0000%0.0000%0.4012%0.4012%no sol.T20

0.0464%0.1807%0.2550%0.2550%no sol.T19

0.1476%0.2782%0.9737%1.6211%no sol.T18

0.1484%0.2933%0.3748%0.3748%no sol.T17

0.1499%0.1911%0.1911%0.5266%no sol.T16

0.0000%0.1770%0.1770%0.1770%no sol.T15

0.0868%0.0868%0.2859%0.2859%no sol.T14

0.0000%0.2127%0.2896%1.0375%no sol.T13

0.0546%0.2614%0.8338%0.8338%no sol.T12

0.0210%0.4182%0.4182%0.4182%no sol.T11

0.1605%0.4733%0.6192%0.6192%no sol.T10

0.0127%0.3448%0.5149%0.5149%no sol.T9

0.0000%0.2374%0.8319%1.1864%no sol.T8

0.2204%0.5607%0.7752%3.5075%no sol.T7

0.0000%0.0000%0.4273%0.4273%no sol.T6

0.1573%0.2793%0.7436%1.1163%no sol.T5

0.0147%0.0474%0.5808%0.5808%no sol.T4

0.1570%0.1570%0.6693%0.6693%no sol.T3

0.0000%0.0838%0.4799%0.4799%no sol.T2

0.0000%0.0000%0.4928%1.5116%no sol.T1

100,00010,0001,00010010

 

Table 4-3. Deviation from the best found solution after 1,000,000 iteration steps depending on 
the number of performed iteration steps for instance set 1 

With 1,000 iteration steps the solution values of all test instances of set 1 
are less than 1% worse than the best found solution. It takes approximately 
150 seconds to perform 1,000 iteration steps with the Standard Tabu Search. 
Since we can estimate a linear relationship between computing times and the 
number of iteration steps we only need about a tenth part of the computing 
time for 10,000 iteration steps. 

Table 4 shows the same data as Table 3 for all of the test instances of 
instance set 2 depending on the number of iteration steps. We also used the 
best found parameterization for test instance 1 with  = 0.010 and  = 0.3. 
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0.0223%0.1743%0.7800%1.5204%no sol.T20

0.0589%0.1164%0.7194%3.1343%no sol.T19

0.0285%1.2930%2.5321%6.1360%no sol.T18

0.0000%1.1039%1.3800%1.3800%no sol.T17

0.2714%1.6086%2.5547%9.7840%no sol.T16

0.0113%0.9137%0.9137%3.1242%no sol.T15

0.0270%0.8963%1.3224%2.4080%no sol.T14

0.1400%0.1400%1.4113%1.7042%no sol.T13

0.2803%0.2803%1.2256%1.3593%no sol.T12

0.1801%0.4553%0.8382%0.8382%no sol.T11

0.0000%0.8509%1.0430%1.0430%no sol.T10

0.0002%0.8786%0.9153%3.4008%no sol.T9

0.1944%0.1990%0.1990%0.1990%no sol.T8

0.0000%0.0000%0.0000%5.5435%no sol.T7

0.5272%1.2378%2.1683%5.4487%no sol.T6

0.0000%0.1037%0.9880%2.6279%no sol.T5

0.0000%0.0438%0.0548%3.2998%no sol.T4

0.0000%0.1172%2.5884%5.9537%no sol.T3

0.8177%1.8074%1.8074%1.8074%no sol.T2

0.0000%0.0000%0.4010%2.2515%no sol.T1

100,00010,0001,00010010

0.0223%0.1743%0.7800%1.5204%no sol.T20

0.0589%0.1164%0.7194%3.1343%no sol.T19

0.0285%1.2930%2.5321%6.1360%no sol.T18

0.0000%1.1039%1.3800%1.3800%no sol.T17

0.2714%1.6086%2.5547%9.7840%no sol.T16

0.0113%0.9137%0.9137%3.1242%no sol.T15

0.0270%0.8963%1.3224%2.4080%no sol.T14

0.1400%0.1400%1.4113%1.7042%no sol.T13

0.2803%0.2803%1.2256%1.3593%no sol.T12

0.1801%0.4553%0.8382%0.8382%no sol.T11

0.0000%0.8509%1.0430%1.0430%no sol.T10

0.0002%0.8786%0.9153%3.4008%no sol.T9

0.1944%0.1990%0.1990%0.1990%no sol.T8

0.0000%0.0000%0.0000%5.5435%no sol.T7

0.5272%1.2378%2.1683%5.4487%no sol.T6

0.0000%0.1037%0.9880%2.6279%no sol.T5

0.0000%0.0438%0.0548%3.2998%no sol.T4

0.0000%0.1172%2.5884%5.9537%no sol.T3

0.8177%1.8074%1.8074%1.8074%no sol.T2

0.0000%0.0000%0.4010%2.2515%no sol.T1

100,00010,0001,00010010

 

Table 4-4. Deviation from the best found solution after 1,000,000 iteration steps depending on 
the number of performed iteration steps for instance set 2 

Table 5 compares the average deviation from the best found solution for 
all test cases of instance set 1 and 2 in the range of 100 to 100,000 iteration 
steps. It summarizes the results of Table 3 and Table 4. One can observe that 
it is possible to find solutions of good quality in less computing time, for 
instance set 1. We assume that the tighter constraints of instance set 2 make 
it more difficult to find feasible and good quality solutions. 

0.1280%0.6110%1.1921%3.1482%instance set 2

0.0689%0.2141%0.5168%0.8272%instance set 1

100,00010,0001,000100

0.1280%0.6110%1.1921%3.1482%instance set 2

0.0689%0.2141%0.5168%0.8272%instance set 1

100,00010,0001,000100

 

Table 4-5. Average deviation from the best found solution after 1,000,000 iteration steps 
depending on the number of performed iteration steps for instance sets 1 and 2 

Furthermore, we compared the different variants of Tabu Search with 
respect to computing times and solution quality. For performing this, we 
used test case 1 of instance set 1 to compute 10,000 iteration steps with the 
different Tabu Search variants. In all of the Tabu Search variants, we did not 
permit unemployed log-trucks. We also applied different parameter values of 
the divider D and varied the sequence of full neighborhood search iteration 
steps. The parameter  was set to 0.025;  was set to 0.6. Table 6 shows in its 
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first column the used Tabu Search variant and the respective 
parameterization, in the second, the time deviation from the lowest 
computing time, and in the third, the deviation of the solution value from the 
best found solution value is displayed. All Tabu Search variants in Table 6 
are computed without a post-optimization strategy. We also applied the post-
optimization heuristic to the Tabu Search with an alternating strategy. It 
turned out that the post-optimization was able to improve the best found 
solution within the first iteration steps, but after 10,000 iteration steps we 
obtained the same results as when not using it. The additional computing 
time for the post-optimization can only be determined empirically for each 
test instance; roughly spoken, one can expect an increase of approximately 
10%. 

The following abbreviations are used for the Tabu Search variants in the 
below-mentioned text: Standard Tabu Search (TS), Tabu Search with a 
limited neighborhood (TSLN), and Tabu Search with an alternating strategy 
(TSAS). 

One can observe that the TS has the highest computing time of all the 
variants and offers a solution quality that is close to the best found solution. 
We tested four parameterizations of the TSLN. The divider D determines 
which portion of the connections between the transport tasks is removed in 
neighboring solutions. The results show that the lowest computing time (203 
seconds) is reached with a TSLN and a divider D = 8. However, this method 
also offers the worst solution quality, which is in turn unacceptable. When 
the TSLN is used with D = 2, a quite good solution quality is obtained in 
reasonable computing time. Nevertheless, the TSLN is a myopic strategy. 
Some parts of the neighborhood are excluded permanently. The TSAS seems 
to be a good way to overcome this problem. A look at the results shows that 
it is able to reduce computing times drastically with little or no loss in 
solution quality. As the results show, it is sufficient to search the full 
neighborhood in every eighth iteration step.  
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0.00%78.82%TSAS D = 8 A = 8

0.06%110.84%TSAS D = 6 A = 8

0.00%159.11%TSAS D = 4 A = 8

0.05%287.68%TSAS D = 2 A = 8

0.03%326.11%TSAS D = 8 A = 2

0.08%348.77%TSAS D = 6 A = 2

0.00%373.89%TSAS D = 4 A = 2

0.29%444.33%TSAS D = 2 A = 2

7.69%0.00% (203 s)TSLN D = 8

7.31%33.00%TSLN D = 6

2.09%90.64%TSLN D = 4

0.27%227.59%TSLN D = 2

0.18%673.40%TS

Solution value deviationTime deviationMethod

0.00%78.82%TSAS D = 8 A = 8

0.06%110.84%TSAS D = 6 A = 8

0.00%159.11%TSAS D = 4 A = 8

0.05%287.68%TSAS D = 2 A = 8

0.03%326.11%TSAS D = 8 A = 2

0.08%348.77%TSAS D = 6 A = 2

0.00%373.89%TSAS D = 4 A = 2

0.29%444.33%TSAS D = 2 A = 2

7.69%0.00% (203 s)TSLN D = 8

7.31%33.00%TSLN D = 6

2.09%90.64%TSLN D = 4

0.27%227.59%TSLN D = 2

0.18%673.40%TS

Solution value deviationTime deviationMethod

 

Table 4-6. Comparison of the different Tabu Search variants for test case 1 of instance set 1 
for 10,000 iteration steps 

We also compared the results of the different Tabu Search variants after a 
fixed computing time. Table 7 shows the results for the same Tabu Search 
variants and parameterizations as Table 6. The running time was chosen as 
the average of the running times of the different Tabu Search variants for 
10,000 iteration steps (696 seconds). The second column of Table 7 shows 
the number of iteration steps in this time, and the third, the deviation from 
the best found solution. The best found solution has the same value in both 
comparisons. 

0.00%19,161TSAS D = 8 A = 8

0.06%16,251TSAS D = 6 A = 8

0.00%13,223TSAS D = 4 A = 8

0.05%8,838TSAS D = 2 A = 8

0.03%8,041TSAS D = 8 A = 2

0.08%7,635TSAS D = 6 A = 2

0.15%7,230TSAS D = 4 A = 2

0.29%6,295TSAS D = 2 A = 2

7.69%34,263TSLN D = 8

7.31%25,762TSLN D = 6

2.09%17,973TSLN D = 4

0.27%10,459TSLN D = 2

0.18%4,430TS

Solution value deviationIteration stepsMethod

0.00%19,161TSAS D = 8 A = 8

0.06%16,251TSAS D = 6 A = 8

0.00%13,223TSAS D = 4 A = 8

0.05%8,838TSAS D = 2 A = 8

0.03%8,041TSAS D = 8 A = 2

0.08%7,635TSAS D = 6 A = 2

0.15%7,230TSAS D = 4 A = 2

0.29%6,295TSAS D = 2 A = 2

7.69%34,263TSLN D = 8

7.31%25,762TSLN D = 6

2.09%17,973TSLN D = 4

0.27%10,459TSLN D = 2

0.18%4,430TS

Solution value deviationIteration stepsMethod

 

Table 4-7. Comparison of the different Tabu Search variants for test case 1 of instance set 1 
after 696 seconds running time 

Log-truck scheduling with a tabu search strategy 
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In the following the mean solution value of three arbitrary test cases 
namely 1, 10, and 20 of instance set 1 for 10 to 1,000,000 iteration steps is 
displayed. We forbade unemployed log-trucks and applied no post-
optimization. In Figure 3, the abscissa represents the number of iteration 
steps; the ordinate shows the deviation from the best found solution; if the 
deviation is equal to 10%, this means that no feasible solution was found for 
one or more test cases up to this iteration step. The solution quality does not 
improve significantly for the TSLN with a divider D equal to 6 and 8 if more 
than 100 iteration steps are computed; the same is true with more than 
10,000 iteration steps for a divider D equal to 2 and 4. With the TSAS and 
the TS solutions of good quality can be obtained. Even with a very fast Tabu 
Search variant (TSAS with D = 8, full neighborhood search in every eighth 
iteration step) the deviations from the best found solution are far less than 
1% after 1,000 iteration steps. The bars in figures 3 and 4 are ordered in the 
same way as the sequence of the legend. 

Figure 4-3. Average deviation from the best found solution for test cases 1, 10, and 20 of 
instance set 1 

Figure 4 shows the average deviation from the best found solution for test 
cases 1, 10, and 20 of instance set 2. Since instance set 2 has tighter 
constraints, it is more difficult to find feasible solutions. Even after 
1,000,000 iteration steps with a TSLN no feasible solution for the dividers  
D = 4, D = 6, and D = 8 can be obtained. The TSLN achieves a solution of 
good quality only for a divider D = 2. The TS and the TSAS are able to find 
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solutions that are equal to the best found solution with one exception; the 
TSAS with a divider D = 8 and a full neighborhood search in every eighth 
iteration step seems to be improper for solving problems with tight 
constraints. However, if the divider is reduced it is also possible to improve 
the solution quality in this case. 

Figure 4- 4. Average deviation from the best found solution for test cases 1, 10, and 20 of 
instance set 2 

Due to the computational complexity of the TTVRP, it is clear that 
standard solver software is unsuitable for these problems. However, to 
benchmark the heuristics, we compared in Tables 8 and 9 their best found 
solutions after 10,000 iteration steps with the best found solution obtained 
with the solver software Xpress-MP for the same computing time. In this 
comparison, we permitted log-trucks to stay at home and applied a post-
optimization heuristic to the Tabu Search variants. Table 8 shows the results 
for test case 1 of instance set 1. In Table 8 for example the TSAS with D = 8 
and a full neighborhood search in every second iteration needs 825 seconds 
for 10,000 iteration steps. This provides a solution value of 2,603.52. For the 
same timeframe, the Xpress solver provides a value of 2,640.13. Even after a 
computing time of 24 hours, the solver software obtains a solution value 
(2,603.12) that is worse than most heuristic solution values. The lower 
bound after 24 hours is equal to 2,593.37; but this solution may represent an 
infeasible solution to the problem. 

Log-truck scheduling with a tabu search strategy 
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no solutionno solution2,602.79328TSAS D = 8 A = 8

6.0520%2,767.192,599.72413TSAS D = 6 A = 8

3.8578%2,702.592,598.33503TSAS D = 4 A = 8

1.3867%2,640.132,603.52825TSAS D = 8 A = 2

0.7125%2,616.162,597.521,447TS

Deviationsol. val. Xpress Solversol. val.Time [sec]Method

no solutionno solution2,602.79328TSAS D = 8 A = 8

6.0520%2,767.192,599.72413TSAS D = 6 A = 8

3.8578%2,702.592,598.33503TSAS D = 4 A = 8

1.3867%2,640.132,603.52825TSAS D = 8 A = 2

0.7125%2,616.162,597.521,447TS

Deviationsol. val. Xpress Solversol. val.Time [sec]Method

 

Table 4-8. Comparison of solution values after certain computing times for test case 1 of 
instance set 1 

Table 9 shows the results for test case 1 of instance set 2. The best found 
parameter values of Tabu Search variants that allow log-trucks to stay at 
home and variants that do not permit this differ in instance set 2. Therefore 
the parameter  was set to 0.015;  was set to 0.6. Since there are tighter 
constraints, the solver software could not find feasible solutions within the 
computing times needed by heuristics. Even after a computing time of 24 
hours, the solver software obtains only one feasible solution with a value of 
5,617.76 that is much worse than the heuristic solutions. The lower bound 
after 24 hours is equal to 3,786.93. 

no solutionno solution4,772.40344TSAS D = 8 A = 8

no solutionno solution4,774.76438TSAS D = 6 A = 8

no solutionno solution4,784.72497TSAS D = 4 A = 8

no solutionno solution4,773.07820TSAS D = 8 A = 2

no solutionno solution4,749.971,440TS

Deviationsol. val. Xpress Solversol. val.Time [sec]Method

no solutionno solution4,772.40344TSAS D = 8 A = 8

no solutionno solution4,774.76438TSAS D = 6 A = 8

no solutionno solution4,784.72497TSAS D = 4 A = 8

no solutionno solution4,773.07820TSAS D = 8 A = 2

no solutionno solution4,749.971,440TS

Deviationsol. val. Xpress Solversol. val.Time [sec]Method

 

Table 4-9. Comparison of solution values after certain computing times for test case 1 of 
instance set 2 

Additional comparisons were made for other test cases also. It turned out 
that all of the heuristic solutions were better than the best found solutions 
obtained with Xpress-MP after the same computing time.  

6. CONCLUSION 

In this paper, we presented a formal description of the TTVRP, which 
was only described verbally in the literature up to now. We have also 
developed a heuristic solution approach based on a Tabu Search with 
different neighborhood structures. The numerical studies show that the 
proposed heuristics are able to solve real-life problem instances in 
reasonable computing times with good solution quality. The heuristics 
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perform rather well if they are compared to the best found solutions of solver 
software as a benchmark. 

The TSAS is a good method to reduce computing times and keep the 
solution quality nearly constant. This approach can also be enhanced with a 
dynamic component; instead of fixing the iteration steps with a full 
neighborhood search, one can also make the neighborhood structure 
dependent on the solution quality. If the solution quality does not improve 
for a certain number of iteration steps with a limited neighborhood (this 
number could be a function of the total number of iteration steps) one can set 
an iteration step with a full neighborhood search. The development of further 
variants of the TSAS could also bring forth benefits for other research areas 
that use a Tabu Search as a solution method. The TS is recommendable if 
there are tight constraints, in which feasible solutions are difficult to find; 
but it is also worth attempting to use the TSAS with frequent iteration steps 
with a full neighborhood search for such problem instances. Even though the 
TSLN offers a reduction in computing times compared to the TS, it is not 
recommendable since it is myopic, and therefore, the search process is 
locked very often in local optima for a large number of iteration steps. 

We can also observe that the improvements in solution quality have not 
been significantly compared to the additional computing times after 10,000 
iteration steps. We can conclude that the heuristic solution approaches 
quickly converge to solutions with good quality. This fast speed of 
convergence may be an indication for being locked in local optima; but if we 
look at the intermediate solutions, we can notice that this is not the case, and 
the diversification strategy of the Tabu Search heuristics is working well. 

Future research will concentrate on an extension of the planning horizon 
of this scheduling problem. The current method is able to optimize the 
routing of log-trucks during a given timeframe, which is generally one day. 
When the planning horizon is extended to one week, an evenly distributed 
workload among the days of that week cannot be assured. Since this is an 
important factor for industrial sites in the wood industry, it is necessary to 
introduce a model formulation that first performs an optimal allocation of the 
transport tasks to single days of the week. Subsequently, the current method 
can be reused. As the results show, it also makes sense to put forth additional 
effort toward the enhancement of the TSAS. 
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