Tabu Search: A Comparative Study

Harun Pirim, Engin Bayraktar and Burak Eksioglu
Mississippi State University, Industrial and System Engineering Department
USA

1. Introduction

Problems encountered in fields like scheduling, assignment, vehicle routing are mostly NP-
hard. These problems need efficient solution procedures. If confronted with an NP-hard
problem, one may have three ways to go: one chooses to apply an enumerative method that
yields an optimum solution, or apply an approximation algorithm that runs in polynomial
time, or one resorts to some type of heuristic technique without any a priori guarantee for
quality of solution and time of computing (Aarts & Lenstra, 2003). Heuristics fall under the
general heading of local search approaches. Hence, local search techniques are widely used
to find “close-to-optimum” solutions to these problems in a “reasonable” amount of time.
Tabu search (TS) is one of the most efficient heuristic techniques in the sense that it finds
quality solutions in relatively short running time. This chapter will provide a basic
description of TS giving insights for novice readers as well as introduce application areas
and provide comparisons of TS to other meta-heuristic procedures for the readers with more
experience on local search procedures.

The chapter will be organized as follows: The second section is going to introduce the basic
terminology. For example, definitions for global optimization, local search, heuristics, and
meta-heuristics will be provided. The section will also provide brief descriptions of TS as
well as the following meta-heuristics to which TS will be compared: simulated annealing
(SA), genetic algorithms (GA), ant colony optimization (ACO), greedy randomized adaptive
search procedure (GRASP), and particle swarm optimization (PSO). Second section is
intended to give the readers a good overall view of the “local search” area and let them
know that TS will be compared to several other meta-heuristic procedures.

In the third section, basic steps of TS, SA, GA, ACO, GRASP and PSO will be described. As
the mechanisms of these procedures are explained, differences and similarities between TS
and each of the other procedures will be pointed out. Section three will familiarize the
readers with the various meta-heuristic procedures that will be discussed throughout the
chapter.

The fourth section will be dedicated to identifying the different problems for which TS was
used to generate solutions. For example; TS has been used to solve scheduling problems,
routing problems, and assignment problems. We will try to generate a comprehensive list of
the problems to which TS has been applied. This section will provide the reader with an
understanding of how TS has been used.

In the fifth section, efficiency and effectiveness of TS will be compared to other meta-
heuristic procedures. Reasons why TS is more efficient and/or effective than some of the



2 Local Search Techniques: Focus on Tabu Search

other local search techniques will be discussed. Section five will explain why TS is the choice
of solution method for some problems and not for others. Section six will conclude the
chapter.

2. Definitions and terminologies

Tabu Search (TS) was developed by Fred Glover in 1988. It was initiated as an alternative
local search algorithm addressing combinatorial optimization problems in many fields like
scheduling, computer channel balancing, cluster analysis, space planning etc. (Glover, 1989).
However, popularization and dissemination of TS goes back to the works of Hertz and de
Werra (1987, 1989, 1991). This section consists of three parts: general definitions, TS related
definitions, and definitions related to other meta-heuristics.

2.1. General definitions

The term “combinatorial” refers to the constraint that the solution set has to be finite or
countably infinite (Michiels et al., 2007). Many combinatorial optimization problems can be
expressed as a search for a specific permutation (Dréo et al. 2006). Solution space of
combinatorial optimization problems can typically be represented by sequences,
permutations, graphs and partitions (Michiels et al., 2007).

Combinatorial optimization problem: Optimizing a linear function subject to other linear
functions over a finite (or countably infinite) set of possible solutions is called a
combinatorial problem. Combinatorial optimization is the discipline of decision making in
case of discrete alternatives (Aarts & Lenstra, 2003). In other words, in combinatorial
optimization, one looks for an object from a finite, or countably infinite set, permutation, or
graph (Papadimitriou & Steiglitz, 1998).

Global and local optimum: An optimization problem with a feasible solution set S and a
neighborhood function N has a local optimal solution that is also globally optimum if N is
exact. A solution is locally optimum if and only if its out degree is zero in the transition
graph which is a directed, acyclic sub-graph of a neighborhood graph. A globally optimum
solution can be found within a small number of steps if the neighborhood graph is strongly
connected, which means for each pair of solutions (a, b), b is reachable from a, and its
diameter (maximum distance between any pair of solutions) is not too large. If a graph is not
strongly connected then its diameter is infinitely large. A local optimal solution to a problem
may be poor (i.e. far from the global optimum). Hence, a better solution can be generated by
applying a more powerful neighborhood function which obviously is a trade-off between
quality of a solution and computation time to yield that solution.

Complexity: “A measure of computer time or space to solve a problem by an algorithm as a
function of the problem's dimensions. Suppose T(n) is the time it takes to solve an instance
of a problem with dimension n. Then, the algorithm has (worst-case) time complexity K(n),
if the greatest time it could take to solve an instance of the problem is O(K(n)). When K(n) is
a polynomial, we say the algorithm has polynomial time complexity”(Holder, 2006). If the
running time of an algorithm is not polynomial then it is typically exponential. For example,
if we try to find the best tour for a Travelling Salesman Problem (TSP) with one hundred
cities, the number of solutions exceeds 1050 which is larger than the estimated number of
particles in the universe (Michiels et al., 2007). If a problem is polynomially reducible to



Tabu Search: A Comparative Study 3

another problem then the new problem is at least as hard as the old one and a polynomial-
time algorithm exists for the new problem if and only if it exists for the old problem.
Heuristics, meta-heuristics, hyperheuristics: Heuristic usually refers to a procedure that
seeks an optimum solution but does not guarantee it will find one, even if one exists. Meta-
heuristics are general frameworks for heuristics in solving hard problems. The idea of
“meta" is that of level (Holder, 2006). Meta-heuristics do not stop in the first local optimum
as a simple heuristic does. They can be classified into two: those that perform a single walk
in the neighborhood graph using special procedures trying not to be trapped in a local
optimum and those that perform multiple walks (Michiels et al., 2007). TS and SA are
examples for the first class. Hyperheuristics choose between given heuristics at various
decision points in an optimization problem.

Constructive algorithm: An algorithm that generates a solution through a number of steps
where in each step a partial solution is obtained and a complete solution is obtained in the
final step.

Plateaus: A part of a solution space that contains solutions with the same objective function
value.

Local search algorithm: An algorithm that searches through the solution space and tries to
find good quality solutions in each step by means of a neighborhood.

Graph representation of solutions may be inspiring for the designer to be able to direct the
search more intelligently (Dréo et al. 2006). For a local search algorithm to be effective,
solution space of the problem should not comprise large plateaus. Plateaus may cause
cycling. There are ways of avoiding cycling such as remembering recently visited solutions
as in TS short term memory.

Local search is what we always do when we are supposed to find a solution in practical life
as well. Local search associates by local optimum and local optimum may be a step/stop for
global optimum. One may try to modify a local optimal solution in order to get a better
solution. However, it is necessary to prevent cycling among solutions visited. This
probability of revisiting a previously visited solution is inevitable unless necessary cautions
are taken. In that sense, TS uses memory property to prevent cyclic motions in the solution
space. TS uses short-term and/or long-term memory while making moves between
neighboring solutions. It is essential for a local search to be balanced in terms of quality of
solutions and computing time of these solutions. In that sense, a local search does not
necessarily evaluate all neighborhood solutions. Generally, a subset of solutions is
evaluated.

We can give a maze analogy to explain how local search works: a man needs to find the
door to get out of the maze. All paths he travels look similar. He goes back and forth to find
the exit door. He makes moves to be able to search through the maze. He has some signs-
such as colorful marbles- which he can put on the floor of areas he walked through in order
to understand that he visited these areas previously so that he can narrow his search space
and easily find the door which will lead him outside. In this analogy, the maze represents
the search space of neighborhood solutions of a problem instance. Moves made by the man
are the moves (iterations) of an algorithm. His back and forth moves may represent cycles.
Marbles are rules (e.g. tabu list) that prevent an algorithm from being trapped in a cycle or



4 Local Search Techniques: Focus on Tabu Search

local optimum and narrow the search space. The door opening outside represents a local or
global optimal solution of a problem instance.

A local search algorithm begins with an initial solution. This initial solution can be
generated by any heuristic algorithm. The algorithm then searches through the solution
space with guidance of a neighborhood function. In other words, the algorithm makes a
walk through the neighborhood graph. There are different strategies for walking through a
neighborhood graph. The most obvious strategy is used by the iterative improvement
algorithm also known as the hill climbing algorithm (Michiels et al., 2007). This basic
algorithm searches for a better solution in the neighborhood. If it finds a better solution, it
changes the current solution with this new one. Otherwise, the algorithm stops and keeps
the current local optimum solution (Figure 2.1). The simplex method of linear programming
is also a hill climbing procedure that moves from one extreme point solution to another,
using an exact neighborhood.

Algorithm Hill Climbing (Iterative improvement)
begin

i:=initial solution

repeat

generate an s € N(i);

if £(s) > £(i) then i:=s;

until f(s) < f(i) for all s € N(i);

end;

Figure 2.1 Hill climbing algorithm

In iterative improvement, selecting a better solution within a neighborhood is done using
what'’s called a pivoting rule. A pivoting rule generally selects the first better solution or the
best solution within a neighborhood. We had mentioned that we could represent the
solution space as a transition graph. The potential of such a graph gives a lower bound on
the number of iterations that are maximally required by iterative improvement. One
disadvantage of applying iterative improvement is the possibility of being trapped at a local
optimum. In order to escape from such a possibility, the neighborhood function can be
defined accordingly. Another alternative is allowing non-improving moves as well as
performing multiple runs of iterative improvement (Michiels et al., 2007). For example, TS
and SA allow non-improving moves as it will be discussed in more detail in the following
sections.

Neighborhood function: Given a feasible solution s, we can define a set of solutions N(s)
elements of which are close to s. Neighborhood functions can be generated based on the
structure of the problem at hand. Some basic neighborhoods are inversions of two elements
placed successively in the permutation, transposition of two distinct elements, or
displacement of an element (Dréo et al. 2006). If a solution s is neighbor of solution s” and s’
is also a neighbor solution of s then N is called a symmetric neighborhood function.
Neighborhood functions can be defined as swapping, moving, replacing operations. A
neighborhood is said to have a performance bound C if all local optimum costs have at most
a cost of C times optimum cost. If the neighborhood function is exact then iterative
improvements end up with an optimal solution.



Tabu Search: A Comparative Study 5

2.2 Tabu search definitions

Short-term memory: A kind of memory that is limited in terms of time and storage capacity.
In TS, the tabu list can be regarded as a short-term memory. Recency memory which will be
defined later is also a short-term memory. With a short term memory, a previsited solution
may be revisited with a different neighborhood.

Long-term memory: A kind of memory that differs from short-term memory in terms of
time and storage capacity. The probability of visiting a previously visited solution using
long-term memory is very small. Intensification and/or diversification are/is achieved
through long-term memory.

Move: A modification made to a solution. Local search will tend to visit previously visited
solutions more frequently if the number of tabu moves are relatively small. On the other
hand, if the number of tabu moves is large then the search is less probable to find good local
optima due to lack of available moves.

Tabu list: In order to prevent visiting a previously visited solution, TS uses a tabu list in
which tabu moves or attributes of moves are listed. Also, tabu name is originated by these
prohibited move states. Short tabu lists may not prevent cycling resulting in information
loss while long tabu lists may excessively prevent neighborhood so that moves are limited
to some extent.

Aspiration: Some tabu moves need to be disregarded in order to obtain better local
solutions. These moves are called aspired moves. “Improved-best” and “aspiration by
default criteria” are examples. Moving to a solution better than the last solution found so far
is a commonly used aspiration criterion as well.

Probabilistic tabu search: Unlike many TS applications which have deterministic moves,
probabilistic TS assigns a probality for each move (Glover & Laguna, 1997). Convergence
theorems for SA can be adapted to probabilistic tabu conditions.

Quality dimension of memory: Ability to differentiate the merit of solutions to problem
instance visited during the search (Glover & Laguna, 1997). Using a quality dimension,
memory can be used to describe the elements of a good solution so that a bad move can be
penalized.

Recency-based memory: A kind of short-term memory that keeps tracks of solution
attributes that have changed during the recent past. This is the most described TS feature in
the literature (Glover & Laguna, 1997).

Frequency-based memory: To make sure that a certain level of diversity is maintained
throughout the search without prohibiting many moves, frequently used moves can be
penalized (Dréo et al. 2006). Variety of penalizing methods can be derived. Frequency of
certain moves not exceeding a predefined threshold is an example. It is obvious that a
penalty mechanism must be used along with an aspiration criterion not to miss good
solutions. Penalty based on frequencies may be regarded as a long-term memory. In general,
it is better to use both long-term and short-term memory together. Such collaboration can be
either “constant” or “varied”. The term “constant” indicates that the number of tabu moves
and penalty coefficients are predetermined. On the other hand, “varied” refers to alternating
search phases. The purpose of these phases will be to intensify the search or to diversify the
search. Intensification is related to reducing the number of prohibited moves and/or
evoking the long-term memory to choose solutions with characteristics close to the best
solutions enumerated by the search. Diversification is achieved to some extent by means of a
short term memory.



6 Local Search Techniques: Focus on Tabu Search

Intensification aims to guide the search through a part of the solution space that is likely to
have promising solutions while diversification aims to force the search through unvisited
areas in the solution space.

Critical event memory: A kind of memory that monitors the occurrence of critical events
and constitutes an aggregate summary of these events (Glover & Laguna, 1997).

Explicit memory: Records complete solutions generally consisting of elite solutions (Glover
& Laguna, 1997). This kind of memory needs excessive space, and it expands neighborhood
during the search. Explicit memory is related to intensification.

Attributive memory: Records information about solution attributes rather than about
solution. In the TSP, index of tours may be used as attributes. Attributive and explicit
memories complement each other. Attributive memory reduces the neighborhood size by
forbidding certain moves.

Tabu-active: Attributes that change as a result of a move. These attributes may be used in a
recency-based memory called “tabu-active” for a specified number of iterations.

Tabu tenure: Size of a tabu list or previous solutions to be stored. Effective tabu tenures
depend on the size of a problem instance.

Strategic Oscillation: A means for interplay between intensification and diversification over
along term (Figure 2.2)

Function
Value
A

\//\\//\\/ Oscillation Boundary

y Iterations
»

Figure 2.2 Graph of Oscillation Boundary

Tabu Thresholding: A method that joins prescriptions of strategic oscillation with
candidate list strategies. Thresholding methods guide greedily exploring search space in a
nonmonotonic way.

Hash functions: These are used in TS to provide a mechanism to avoid cycling in such a
way that it won’t result in expensive computation. Solution vectors can be mapped to
integers that can be stored for a number of recent iterations.

Path relinking: A kind of integration of intensification and diversification strategies. Based
on this approach, new solutions are generated exploring trajectories that connect elite
solutions by generating a path in the neighborhood space (Glover & Laguna, 1997).
Vocabulary building: It is about generating new attributes out of other attributes like
generating new populations or offsprings in GA. The basic idea is identifying meaningful
parts of solutions as a basis to generate new combination of solutions. It can be viewed as an
instance of path relinking.



Tabu Search: A Comparative Study 7

2.3 Other meta-heuristic definitions

All meta-heuristics, including TS, have terminology and stories associated with them. For
example, some meta-heuristics are inspired from animal behaviors, others from biology, and
some from manufacturing processes. In this part of the chapter, we will concentrate on the
definitions related to meta-heuristic procedures other than TS.

2.3.1 Simulated annealing (SA)

The SA procedure is inspired from the annealing process of solids. SA is based on a physical
process in metallurgy discipline or solid matter physics. Annealing is the process of
obtaining low energy states of a solid in heat treatment. Annealing process starts with
melting the solid by heat treatment. Particles constituting the solid are arranged according
to that heat treatment. Then, temperature is decreased which results in minimum energy
state.

Threshold Value: Value from which difference of costs associated with two solutions
should be strictly less.

Temperature (control parameter): It is the expected value of the thereshold.

2.3.2 Genetic algorithms

Chromosomes: These are strings of parameters which construct proposed solutions to the
problem.

Crossover: In order to find better solutions and maintain diversity, crossover is used in
genetic algorithms. For instance, a new solution (a child) can be obtained by combining two
separate solutions (parents). This combination is defined as crossover. Figure 2.3 provides
an example. There are two chess boards and pawns on these boards. We divide the chess
boards from the middle into two parts. On the first chess board, we have 3 pawns on the left
and 3 pawns on the right. On the second chess board, we have 6 pawns on the left and 4
pawns on the right. An example of crossover would be combining the left half of the first
board with the right half of the second board. It is possible to obtain diverse solutions in
genetic algorithms by utilizing the crossover operation. However, crossover may lead to
infeasible solutions, and one needs to be aware of such situations.

Figure 2.3 A crossover example considering different pawn orders on the chess board

Evolutionary Algorithms: Algorithms which are very similar to genetic algorithms. They
are population based algorithms and they rely on artificial intelligence.

Fitness Function: A tool used in genetic algorithms that serves as a neighborhood function so
that different solutions can be compared based on the values obtained from the fitness function.



8 Local Search Techniques: Focus on Tabu Search

Initialization: A step in which initial solutions are obtained by using initial populations.
These initial populations are usually generated randomly. Using these populations, possible
solutions are determined some of which are selected to construct the search space.
Mutation: An operator which is used to provide diversity in between populations.
Selection: This is the process in which the solutions are selected in accordance with the
results from the fitness function.

Reproduction: After obtaining the results through crossover and/or mutation, another
population is generated. From this newly created population, again new children are
determined by the help of crossover and/or mutation and the reproduction process goes on.
Termination criterion: A condition that indicates when the algorithm will stop.

2.3.3 Ant colony optimization

Ants: Small animals (insects) that live in colonies in/on the ground. With this real life
definition, ant colony optimization is an optimization method in which imaginery agents are
used.

Daemon Actions: These are the actions that can be taken to centralize the solution. The aim
of Daemon Actions is to prevent quick convergence of the algorithm.

Decentralized Control: A term which is related to robustness and flexibility. Robust
systems are desired because of their ability to continue to function in the event of
breakdown of one of their components (Dréo et al., 2006).

Dense Heterarchy: A term which is taken from biology and represents the organization of
ant colonies. It is different from the managerial term hierarchy. In dense heterarchy, the
structure is horizontal, contrary to hierarchy (see Figure 2.4).

Pheromone: In real life, pheromone refers to the chemical material that an ant spreads over
the path it goes and the level of it changes over time by evaporating. On the other hand, in
ant colony optimization, pheromone is a parameter. The amount of this parameter
determines the intensity of the trail. The intensity of the trail can be viewed as a global
memory of the system (Dréo et al., 2006).

e

Figure 2.4 - Hierarchy (a) and dense heterarchy (b): two opposite concepts (Dréo et al., 2006)



Tabu Search: A Comparative Study 9

MAX-MIN Ant System: An improved version of the “Ant System” in which only the best
ant updates a trail of pheromone and values of the trails are limited, the maximum value is
given to the trail initially (Dréo et al., 2006).

Positive Feedback: Feedback that instructs all ants to follow the same single path to reach
the solution.

Stigmergy: The indirect communication among ants when finding a path to reach the food.

2.3.4 GRASP

Greedy Function: The function is used to rank the solution elements.

Iterated Local Search: It is the search in which a locally optimal solution is derived by using
iterative improvement of GRASP.

Restricted Candidate List (RCL): A list in which well ranked elements of partial solutions
are placed.

2.3.5 Particle swarm optimization

Cognitive Consistency: A meaningful pattern among the particles in a given society.
Particles can be anything from animals to cities depending on the system studied. Based on
cognitive consistency, when one group of particles thinks in a certain way, the other groups
also think in the same or a similar way.

Global Best: The best position found after an update made by any particle in the swarm.
Local Best: The best solution that a particle has seen.

Neighborhood Best: It is the best solution that the particle finds after examining the
neighboring solutions.

School: The set of elements (e.g. animals) in a society.

Position: The location of the particle in a specific iteration.

Social Influence: A term used in PSO that describes the logic of particle swarm. In real life,
people have thoughts and these thoughts can change after social interactions like
conversations. The same logic is used for PSO so that the solutions are changed in the best
possible way.

Swarm Intelligence: The artificial intelligence that is made up of simple agents that interact
with one another and with the environment.

Velocity: The direction of movement of the particles of a particular society.

3. Meta-heuristic procedures

It is possible to classify meta-heuristics in many ways. Different view points differentiate the
classifications. Blum and Roli (2003) classified meta-heuristics based on their diverse
aspects: nature-inspired (e.g. GA, ACO) vs. non-nature inspired (e.g. TS); population-based
(e.g. GA) vs. single point search (also called trajectory methods, e.g. TS); dynamic (i.e.
guided local search) vs. static objective function; one vs. various neighborhood functions
(i.e. variable neighborhood search); memory usage vs. memory-less methods. A
classification of meta-heuristics is given in the Table 3.1 in which “A” represents the
adaptive memory property, “M” represents the memory-less property, “N” represents
employing a special neighborhood, “S” represents random sampling, “1” represents



10 Local Search Techniques: Focus on Tabu Search

iterating-based approach, and “P” represents a population-based approach. Population-
based approaches, also referred to as evolutionary methods, manipulate a set of solutions
rather than one solution at a stage.

Meta-heuristic Classification
Tabu-search A/N/1-P
Simulated annealing M/S-N/1
GA M/S-N/P
ACO M/S-N/P
GRASP M/S-N/1
PSO M/S-N/P

Table 3.1 - Classification of Meta-heuristics (modified from Glover, 1997)

Almost all meta-heuristic procedures require a representation of solutions, a cost function, a
neighborhood function, an efficient method of exploring a neighborhood, all of which can
be obtained easily for most problems (Aarts & Lenstra, 2003). It is important to mention that
a successful implementation of a meta-heuristic procedure depends on how well it is
modified for the problem instance at hand.

3.1 Tabu Search (TS)

TS can be considered as a generalization of iterative improvements like SA. It is regarded as
an adaptive procedure having the ability to use many methods, such as linear programming
algorithms and specialized heuristics, which it guides to overcome the limitations of local
optimality (Glover, 1989).

TS is based on concepts that can be used in both artificial intelligence and optimization
fields. Over the years TS was improved by many researchers to become one of the preferred
solution approaches. Surrogate constraints, cutting plane approaches, and steepest ascent
are big milestones in the improvement of TS. TS applies restrictions to guide the search to
diverse regions. These restrictions are in relation to memory structures that can be thought
of as intelligent qualifications. Intelligence needs adaptive memory and responsive
exploration (Glover & Laguna, 1997). For example, while climbing a mountain one
remembers (adaptive memory) attributes of paths s/he has traveled and makes strategic
choices (responsive exploration) on the way to peak or descent. TS also uses responsive
exploration because a bad strategic decision may give more information than a good
random one to come up with quality solutions. TS has memory property that distinguishes
it from other search designs. It has adaptive memory that is also different from rigid
memory used by branch and bound strategies. Memory in TS has four dimensions: quality,
recency, frequency, and influence.

TS forces a move to a neighbor with least cost deterioration. TS uses memory to keep track
of solutions previously visited so that it can prevent revisiting that solution. Memory-based
strategies are hallmark of TS approaches. Many applications don’t include advanced
features of TS since good solutions are typically achieved by simple designs. A basic tabu-
search algorithm for a maximization problem is illustrated in Figure 3.1.



Tabu Search: A Comparative Study

11

algorithm Tabu search
begin
=[]
s:=initial solution;
s"=s
repeat

if f(s”) > f(s”) then s":=s’
s:=s’;
update tabu list T;
until stopping criterion:
end;

find the best admissible s” € N(s);

Figure 3.1 - A basic tabu search algorithm

where T is a tabu list and N(s) is the set of neighborhood solutions. A generic flowchart of

TS algorithm can be given as follows in Figure 3.2:

Generate an initial solution, store it as the current seed and the
best solution, set parameters and clear the tabu list

'

Is stop criterion
satisfied?

Generate neighbors of the current seed solution by a
neighborhood structure

Is the aspiration
criterion satisfied?

The “best” neighbor which is not tabu is selected as new seed

A 4
Update the tabu list

Figure 3.2 - Generic flowchart of TS algorithm (Zhang et al.

Output optimization result

Store the aspiration solution as the new seed
and the best solution

2007)



12 Local Search Techniques: Focus on Tabu Search

TS memory can be implemented by means of matrices as shown in the practical example
below provided in Figure 3.3 (Hindsberger & Vidal, 2000) for the TSP:

Iteration 10 Iteration 11
Recency M. Recency M.
1 2 3 4 5 1 2 3 4 5
1 1
2 2
3 3
4 4
5 5
Frequency M. Frequency M.
Current solution: Current solution:
City 1 2] 3] 4 5 City 1
Seq. 1 3] 2| 4 5 Seq. 1
Objective Value: 16 Objective Value: 12
Best Objective Value: 15 Best Objective Value: 12
Neighborhood: Neighborhood:
Swap Obj. Value Swap Obj. Value
T 2-5 12 1-3 15
2-4 17 2-4 15
3-5 18 3-4 16

Figure 3.3 - Matrix implementation of recency memory (Hindsberger & Vidal, 2000)

Here, upper triangular matrix represents recency memory which stores tabu moves. For
example, in iteration 10 exchanging cities 1 and 2 is tabu for 3 iterations, exchanging cities 2
and 5 is tabu for 2 iterations etc. Lower triangular matrix represents frequency memory
which stores frequency of exchanging cities. For example, in iteration 10 cities 1 and 2 were
changed once etc. Total number of exchanges is 9 since it is the 10th jteration we are in. T
represents the tabu move.

3.2 Simulated Annealing (SA)

SA is a randomized algorithm that tries to avoid being trapped in local optimum solution by
assigning probabilities to deteriorating moves. In SA a threshold value is chosen. The
increase in cost of two moves is compared with that threshold value. If the difference is less
than the threshold value, then the new solution is chosen. A high threshold value may be
chosen to explore various parts of solution space while a low threshold value may be chosen
to guide the search towards good solution values. The threshold value is redefined in each
iteration to enable both diversification and intensification. Starting with high threshold



Tabu Search: A Comparative Study 13

values and then decreasing the value may result in finding good solutions. SA uses
threshold as a random variable. In other words SA uses expected value of threshold. In a
maximization problem acceptance probability of a solution is defined as follows:

. ()= f(s)
1 A1)
C