
Search Based Software Engineering:
Introduction to the Special Issue of the

IEEE Transactions on Software Engineering
Mark Harman and Afshin Mansouri

Ç

1 INTRODUCTION

SEARCH Based Software Engineering (SBSE) consists of the
application of search-based optimization to software

engineering. Using SBSE, a software engineering task is
formulated as a search problem by defining a suitable
candidate solution representation and a fitness function to
differentiate between solution candidates [11].

The candidate solution representation to the problem
defines the search space in which the search takes place. In
order to guide the search-based optimization process, a
fitness function (or cost function) is required. This function
determines the better of two candidate solutions, imbuing
the search algorithm with the ability to differentiate
between solutions and to measure progress.

The most widely used algorithms for SBSE have been
genetic algorithms, genetic programming, simulated anneal-
ing, and hill climbing (gradient descent) [12]. However, many
other optimization techniques have also been applied,
including greedy-based approaches and traditional opera-
tions research techniques through to more recently devel-
oped metaheuristic optimization techniques such as particle
swarm optimization and ant colony optimization [12].

In this special issue, the authors have also used a variety
of search-based optimization algorithms, most notably
single and multi-objective genetic algorithms, genetic
programming, and hill climbing. The most important
attribute that these applications share is the search based
formulation; the problem is thought of as a search among a
large space of candidate solutions. It is from this search
based approach that Search Based Software Engineering
derives its name.

The term SBSE was coined by Harman and Jones [11] in
2001. However, there were many other authors who had
previously applied search-based optimization to aspects of
software engineering (for example, in work on search-based
optimization for software project management [5] and
testing [19], [22], [20]). The theory and practice of SBSE as

a coherent approach to software engineering optimization
has been developed by many other authors [8]. The SBSE
approach has been the topic of several surveys and reviews
[1], [12], [14], [17], to which this special issue also adds a
significant new contribution in the form of the systematic
review of the literature on Search Based Software Testing
(SBST) by Ali, Briand, Hemmati, and Panesar-Walawege.

SBSE is important in software engineering because it
provides a way to attack hard, highly constrained problems
that involve many (potentially competing and conflicting)
objectives using an automated approach. It is relatively easy
to apply because representations and fitness functions are
readily available in software engineering [10].

In other engineering disciplines, such as mechanical,
materials, chemical, electric, and electronic engineering,
search-based optimization has been applied for many years
[9]. It is only recently that software engineering has started
to catch up with this trend. There is every reason to think
that this growing interest will continue. In some ways, the
advent of SBSE is merely a reflection of the evolution of
software development into a mature and fully fledged
engineering discipline. However, software engineering,
more than any other engineering discipline, is redolent
with search based optimization application potential.

The very nature of software makes it even better suited
to search based optimization than traditional engineering
artifacts. In traditional engineering optimization, the artifact
to be optimized is often simulated. This is typically
necessary precisely because the artifact to be optimized is
a physical entity (such as a processing plant, aircraft engine,
or circuit layout). Search-based optimization requires
repeated fitness computation, which is impractical if a
physical solution has to be constructed for each fitness
evaluation.

Engineers seeking to apply search-based optimization to
traditional physical engineering artifacts therefore have to
content themselves with an approach that is one step
removed from reality; optimizing not the artifact itself, but
some simulation or representation of it. The fitness thus
computed is not the fitness of the final product, resulting in
an additional layer of potential inaccuracy and cost.

By contrast, software has no physical existence. It exists
only in the virtual world of discrete logic and conception.
This virtual existence is perhaps the single most important
property that makes software unique among engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010 737

. M. Harman is with the Centre for Research on Evolution, Search and
Testing (CREST), Department of Computer Science, University College
London, Malet Place, London WC1E 6BT, UK.
E-mail: Mark.Harman@cs.ucl.ac.uk.

. A. Mansouri is with the Brunel Business School, Brunel University,
Uxbredge, Middlesex UB8 3PH, UK.
E-mail: Afshin.Mansouri@brunel.ac.uk.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org.

0098-5589/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

artifacts. Software derives much of its complexity and
consequent engineering challenge from this property.
However, in the realm of SBSE it becomes one of software
engineering’s primary advantages. It means that, for soft-
ware engineering, in contrast with all other engineering
disciplines, the application of search-based optimization
can often be completely direct. SBSE can be used to
construct optimal and/or near optimal instances of test
cases, designs, and logical structures, not merely optimiza-
tions of their corresponding simulations.

SBSE is not merely applicable to program code, but all of
the artifacts which, in the broadest sense can be considered
part of software and relevant to software engineering.
Already SBSE has been successfully applied to the con-
struction of optimal test cases [18], clustering of modules
and heaps [6], [15], requirements sets [4], management [2],
and refactorings [16]. The papers in this special issue also
reflect this wide application diversity, applying SBSE to
construction of many different software artifacts including
designs, test cases, and behavioral and quality models.

Not only is SBSE widely applicable to many very
different software engineering problems, it also brings to
these problems many generic advantages that make it an
attractive solution technique in many cases:

1. SBSE is highly robust. Search based optimization
techniques are stochastic algorithms that can often
be tuned using a selection of parameters. This can
initially dissuade software engineers, particularly
those more comfortable with formal approaches to
software development. However, it should be noted
that optimization algorithms are extremely robust
and that often the solutions required need only lie
within some specified tolerance. Indeed, part of the
appeal of SBSE derives from the way in which it
moves us away from thinking that there should be a
single perfect solution to a more “engineering
centric” world view in which we seek a solution
that falls within a suitable tolerance. This is a world
view well adapted to the emergent engineering
challenges that come with nonfunctional properties,
massive scales, and complex emergent behavior
interactions. This issue of robustness is an important
property for investigation. For example, in this
special issue, the paper by Garousi addresses
questions of robustness in the application of SBSE
to stress testing.

2. SBSE has attractive scalability potential. Search
based optimization techniques are known as “em-
barrassingly parallel” because of their potential for
scalability through parallel execution of fitness
computations. Recent work has shown how this
parallelism can be exploited on General Purpose
Graphical Processing devices (GPGPUs). For in-
stance, Langdon and Banzhaf reported results that
achieved multiple orders of magnitude scale up with
hundreds of millions of GP operations performed
per second using relatively cheap and widely
available GPGPU devices [13].

3. SBSE creates new links. SBSE creates links between
otherwise apparently unconnected software

engineering disciplines. For instance, regression
testing and requirements engineering are two
software engineering subareas that are typically
regarded as existing at opposite ends of the
software development process. They have largely
nonintersecting communities of researchers, each
with their own separate conferences and journals.
However, regression and requirements optimiza-
tion problems share common formulations. Viewed
through the SBSE lens, they are essentially selection
and prioritization problems and can be solved with
similar search-based approaches [12].

4. SBSE offers a source of insight. SBSE is not just a
way to construct software artifacts such as test cases
and designs. The process of search can be used to
reveal insight into the structure of the problem to be
optimized. For example, in this special issue, the
papers on modeling and classification by Krogmann
et al. and Yi et al., respectively, seek to give insight
into models of performance and quality.

These attributes have made SBSE increasingly popular

among researchers. Fig. 1 presents evidence for this

increasing popularity. It is constructed from the data

available in the SBSE repository.1 As can be seen from this

figure, the growth rate is dramatic.
Undoubtedly the first area of software engineering to

receive significant attention from SBSE researchers was

software testing and, as Fig. 2 shows, testing remains the

area of software engineering most widely covered by SBSE.

Software test objectives are natural candidates for SBSE.

Software testing applications are easy to formulate as SBSE

problems because the search space is simply the space of

possible inputs to the system under test, while the fitness

function that guides the search is directly translatable from

test objective metrics.
The field of SBST research is now reaching a level of

maturity. Evidence for this comes from the fact that a

systematic review of the literature like that presented by Ali

et al. in this special issue is possible and necessary. Also,

there is now an established workshop on SBST, which is

738 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

1. The SBSE repository is a publicly available resource at http://
www.sebase.org/sbse/publications/. The graph in Fig. 1 was constructed
from the data available on 20 November 2009. The guest editors wish to
thank Dr. Yuanyuan Zhang, the repository maintainer, for constructing
Figs. 1 and 2 presented in this editorial.

Fig. 1. The trend of publications on SBSE.

held annually in colocation with the IEEE International
Conference on Software Testing (ICST).

Nonetheless, it is notable that of the eight papers in this
special issue, five concern topics other than testing. This
does not mean that SBST is a topic in decline—on the
contrary—it continues to grow. However, this observation
reflects a growing trend. SBSE researchers are reaching out
to other software engineering domains with the result that
new software engineering topic areas are starting to fall
within the SBSE catchment area.

Fig. 2 shows the development of SBST as a topic within
SBSE. As can be seen, topics such as requirements, manage-
ment, design, and maintenance are all growing in their
share of the work on SBSE. The fall in the proportion of
work on software testing does not indicate that there is
diminishing interest in this topic. Rather, interest in all SBSE
topics, including testing, is growing, as shown by Fig. 1.
However, it is interesting to see how the application of
search-based optimization techniques is spreading from its
original application site of software testing throughout the
overall spectrum of software engineering activities. Based
on the trends revealed in these figures and the historical
development of the subject, it seems likely that within the
next five years we may see tutorials, workshops, and other
dedicated events and special issues focusing on search-
based requirements optimization, search-based software
design, search-based software project management, and
search-based software maintenance and reengineering.
Already, there are nascent communities developing in all
of these areas and many others.

The field of SBSE continues to develop and grow, with
many exciting new application areas within software
engineering continuing to emerge. As well as this special
issue of the IEEE Transactions on Software Engineering, there
have also been special issues in the journals Information and
Software Technology (IST), Software Maintenance and Evolution
(JSME), Computers and Operations Research (COR), Empirical
Software Engineering (EMSE), and Software Practice and
Experience (SPE). This reflects the wide range of application
areas within software engineering as well as uptake of
software engineering problems within the operations
research and metaheuristic search communities. There is
now an established Symposium on Search Based Software

Engineering (SSBSE) and a dedicated track of the Genetic
and Evolutionary Computation COference (GECCO) on
search based software engineering.

The papers in this special issue make a strong contribu-
tion to this growing body of literature. The call for papers
attracted the submission of 31 papers, from which the eight
papers in this special issue were selected for publication.
The submissions went through TSE’s normal comprehen-
sive and thorough refereeing process. Additionally, for each
paper, at least one referee was chosen to have expertise in
SBSE, while at least one was chosen from outside the SBSE
community. This referee process sought to ensure that the
papers ultimately selected for the special issue attain a level
of interest to the general software engineer as well as to
those actively involved in the SBSE community.

The special issue guest editors would like to thank the
authors for their contributions to this special issue and the
reviwers for their time and expertise. The guest editors
sincerely hope and believe that the papers within this
special issue of the IEEE Transactions on Software Engineering
will give a sense of the vibrancy and diversity of the
growing and promising area of research and practice that is
Search Based Software Engineering.

2 SUMMARY OF THE PAPERS IN THIS SPECIAL ISSUE

The eight papers in this special issue cover topics in Search
Based Software Testing (SBST) and SBSE for design,
modeling, and prediction.

2.1 SBSE for Software Testing

As mentioned in the introduction to this editorial, Search
Based Software Testing (SBST) was the first area of software
engineering to which search based optimization techniques
were applied and it remains that most widely studied area.
The survy by Ali et al. in this special issue answers
questions about the empirical results available in the
literature, using the mechanism of a systematic review to
collect, select, and extract from the literature statements of
what can be claimed for SBST. The authors also present
recommendations for the construction of future empirical
studies in SBST that will be an invaluable guide for future
research. Many of these recommnedations also apply more

HARMAN AND MANSOURI: SEARCH BASED SOFTWARE ENGINEERING: INTRODUCTION TO THE SPECIAL ISSUE... 739

Fig. 2. The increasingly diversified trend of software engineering topics covered by SBSE since 2001.

widely to the field of SBSE as a whole, not merely to the
subarea of SBST.

SBSE has been applied to many other software testing
applications, including structural testing, model-based
testing, mutation testing, temporal testing, exception test-
ing, regression testing, integration testing, configuration,
and interaction testing [12]. However, hitherto, there has
been little work in search-based approaches to statistical
testing. The paper by Poulding and Clark addresses this
problem. the authors use the hill climbing approach to
derive optimal and near optimal probability distributions
for statistical testing, with evidence to show that this
produces better fault finding abilities by specializing the
distribution (compared to uniform random distributions).
Also, Poulding and Clark present empirical results that
support the claim that the distributions of test cases they
derive using SBSE outperform the fault finding abilities of
traditional structural testing techniques.

The paper by Garousi also concerns SBST. It addresses
the problem of stress testing. Previous work by Garousi and
others has resulted in SBSE approaches to the generation of
test cases that stress the system under test. The approach
can be useful for identification of particularly challenging
operating environments and scenarios. In the paper in the
issue, Garousi empirically studies the problem of search-
based stress testing scalability and robustness, using a tool
that he has also made publicly available.

2.2 SBSE for Software Design

Software design is one of the recent areas of growing SBSE
research interest. Software design presents the engineer with
a naturally complex design space in which many competing
and conflicting objectives must be optimized and balances
between different concerns must be found. As such, the
software design space is a natural candidate for SBSE
research. Indeed, design level SBSE has been the subject of a
recent survey reflecting its growing importance [17].

In this special issue, the reader will find two contribu-
tions to the problem of software design using SBSE. Simons
and Parmee address the problem from a user centered
perspective. Until recently, SBSE research focused on fully
automated approaches to fitness computation in which the
human input to the overall design of good fitness functions
is crucial to the success of SBSE. However, there has been
little previous work on the direct involvement of the human
software engineer in the search itself [12].

The paper by Simons and Parmee involves the human
directly as a part of the evolutionary computation, using a
technique known in the evolutionary computation commu-
nity as “interactive evolution.” This is a natural approach to
design since many design judgments ultimately rely upon
human intuition. As a result of similar intuition-guided
design properties in other engineering disciplines, inter-
active evolution can also be applied to SBSE. Simons and
Parmee combine software and human agents interactively
to guide the search process.

The paper by Bowman, Briand, and Labiche also focuses
on software design and uses SBSE tehcniques to guide the
decision maker in their design process. Unlike the Simons
and Parmee approach, the paper does not directly use
interactive evolution, but involves the designer in the
overall process of allocating class responsibility. The paper

also uses multi-objective optimization, an increasing trend
in SBSE research [12]. Using multi-objective optimization,
and SBSE approach can seek to find a balance between
several competing objectives. These different objectives may
be in competition with one another. also, it may be
impossible to determine, a priori, the relative importance
of each objective. In this situation, researchers have found
Pareto optimal approaches to be very attractive. Bowman et
al. use a Pareto optimal approach to seek class responsi-
bility assignments that balance the outcomes of four
different cohesion and coupling metrics.

The paper by White, Dougherty, and Schmidt is also
concerned with design, but not merely software design. The
paper presents an approach, ASCENT, that uses SBSE to
develop designs for hardware and software in tandem. This
approach illustrates the wide applicability of SBSE research,
indicating that it has contributions to make in software
systems engineering as well as purely within software
engineering.

2.3 SBSE for Software Modeling and Prediction

Modeling and prediction are also topics for which SBSE is
well adapted because it can cater to multiple, potentially
conflicting goals and constraints and can be used to
interpolate a best fit to a set of data, using fit as a fitness
function. The paper by Khoshgoftaar, Liu, and Seliya
concerns the construction of software quality models using
SBSE. They adddress search-based software quality model-
ing with multiple software data repositories. The authors
show that optimizing software quality models can improve
predictive capability, employing genetic programming to
build optimized models from multiple data sets.

The paper by Krogmann, Kuperberg, and Reussner is
also concerned with SBSE as a means of building predictive
models. The paper shows how SBSE can be used to help
predict the performance characteristics of component-based
system assemblies. The approach uses SBSE to build models
using genetic programming, from which a behavioral
model is formed. A combination of dynamic and static
analysis is used to generate the required input for genetic
programming.

Mark Harman
Afshin Mansouri
Guest Editors

REFERENCES

[1] W. Afzal, R. Torkar, and R. Feldt, “A Systematic Review of Search-
Based Testing for Non-Functional System Properties,” Information
and Software Technology, vol. 51, no. 6, pp. 957-976, 2009.

[2] E. Alba and F. Chicano, “Software Project Management with Gas,”
Information Sciences, vol. 177, no. 11, pp. 2380-2401, June 2007.

[3] A. Arcuri, “On the Automation of Fixing Software Bugs,” Proc.
Doctoral Symp. IEEE Int’l Conf. Software Eng., pp. 1003-1006, May
2008.

[4] A.J. Bagnall, V.J. Rayward-Smith, and I.M. Whittley, “The Next
Release Problem,” Information and Software Technology, vol. 43,
no. 14, pp. 883-890, 2001.

[5] C.K. Chang, “Changing Face of Software Engineering,” IEEE
Software, vol. 11, no. 1, pp. 4-5, Jan.. 1994.

[6] M. Cohen, S.B. Kooi, and W. Srisa-an, “Clustering the Heap in
Multi-Threaded Applications for Improved Garbage Collection,”
Proc. Eighth Ann. Conf. Genetic and Evolutionary Computation, vol. 2,
pp. 1901-1908, July 2006.

740 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 6, NOVEMBER/DECEMBER 2010

[7] P. Funes, E. Bonabeau, J. Herve, and Y. Morieux, “Interactive
Multi-Participant Task Allocation,” Proc. 2004 IEEE Congress
Evolutionary Computation, pp. 1699-1705, June 2004.

[8] M. Harman, “The Current State and Future of Search Based
Software Engineering,” Proc. Int’l Conf. Software Eng./Future of
Software Eng., L. Briand and A. Wolf, eds., pp. 342-357, May 2007.

[9] M. Harman, “Why the Virtual Nature of Software Makes It Ideal
for Search Based Optimization,” Proc. 13th Int’l Conf. Fundamental
Approaches to Software Eng., 2010.

[10] M. Harman and J. Clark, “Metrics Are Fitness Functions Too,”
Proc. 10th Int’l Software Metrics Symp., pp. 58-69, Sept. 2004.

[11] M. Harman and B.F. Jones, “Search-Based Software Engineering,”
Information & Software Technology, vol. 43, no. 14, pp. 833-839, Dec.
2001.

[12] M. Harman, A. Mansouri, and Y. Zhang, “Search Based Software
Engineering: A Comprehensive Analysis and Review of Trends
Techniques and Applications,” Technical Report TR-09-03, Dept.
of Computer Science, King’s College London, Apr. 2009.

[13] W.B. Langdon and W. Banzhaf, “A SIMD Interpreter for Genetic
Programming on GPU Graphics Cards,” Proc. 11th European Conf.
Genetic Programming, pp. 73-85, Mar. 2008.

[14] P. McMinn, “Search-Based Software Test Data Generation: A
Survey,” Software Testing, Verification and Reliability, vol. 14, no. 2,
pp. 105-156, 2004.

[15] B.S. Mitchell and S. Mancoridis, “On the Automatic Modulariza-
tion of Software Systems Using the Bunch Tool,” IEEE Trans.
Software Eng., vol. 32, no. 3, pp. 193-208, Mar. 2006.

[16] M. O’Keeffe and M. �O Cinnéide, “Search-Based Software Main-
tenance,” Proc. Conf, Software Maintenance and Reeng., pp. 249-260,
Mar. 2006.

[17] O. Räihä, “A Survey on Search Based Software Design,” Technical
Report D-2009-1, Dept. of Computer Sciences, Univ. of Tampere,
2009.

[18] P. Tonella, “Evolutionary Testing of Classes,” Proc. 2004 ACM
SIGSOFT Int’l Symp. Software Testing and Analysis, pp. 119-128, July
2004.

[19] N. Tracey, J. Clark, and K. Mander, “Automated Program Flaw
Finding Using Simulated Annealing,” Proc. 1998 ACM SIGSOFT
Int’l Symp. Software Testing and Analysis, pp. 73-81, Mar. 1998.

[20] J. Wegener, H. Sthamer, B.F. Jones, and D.E. Eyres, “Testing Real-
Time Systems Using Genetic Algorithms,” Software Quality, vol. 6,
no. 2, pp. 127-135, June 1997.

[21] W. Weimer, T.V. Nguyen, C. Le Goues, and S. Forrest, “Auto-
matically Finding Patches Using Genetic Programming,” Proc.
Int’l Conf. Software Eng., pp. 364-374, 2009.

[22] S. Xanthakis, C. Ellis, C. Skourlas, A. LeGall, S. Katsikas, and K.
Karapoulios, “Application of Genetic Algorithms to Software
Testing,” Proc. Fifth Int’l Conf. Software Eng. and Applications,
pp. 625-636, Dec. 1992.

Mark Harman is a professor of software
engineering in the Department of Computer
Science at University College London. He is
widely known for work on source code analysis
and testing and he was instrumental in the
founding of the field of Search Based Software
Engineering, the topic of this special issue. He
has given 14 keynote invited talks on SBSE and
its applications in the past four years. Professor
Harman is the author of more than 150 refereed

publications, is on the editorial boards of seven international journals,
and has served on 90 program committees. He is director of the CREST
centre at University College London.

Afshin Mansouri received the MSc and PhD
degrees in industrial engineering from Amirkabir
University of Technology, Iran. He is a lecturer in
operations management at Brunel University,
United Kingdom. Prior to this position, he worked
as a research associate in the CREST centre at
King’s College London and as a postdoctoral
research fellow in the Laboratory of Computer
Science at the University of Tours, France. He
has published more than 20 papers in interna-

tional journals and conference proceedings on applied operations
research and management science, metaheuristic search techniques,
and multi-objective optimization.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HARMAN AND MANSOURI: SEARCH BASED SOFTWARE ENGINEERING: INTRODUCTION TO THE SPECIAL ISSUE... 741

