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Summary. This chapter presents two ways of improvement for TRIBES, a parameter-
free Particle Swarm Optimization (PSO) algorithm. PSO requires the tuning of a set
of parameters, and the performance of the algorithm is strongly linked to the values
given to the parameter set. However, finding the optimal set of parameters is a very
hard and time consuming problem. So, Clerc worked out TRIBES, a totally adaptive
algorithm that avoids parameter fitting. Experimental results are encouraging but are
still worse than many algorithms. The purpose of this chapter is to demonstrate how
TRIBES can be improved by choosing a new way of initialization of the particles and
by hybridizing it with an Estimation of Distribution Algorithm (EDA). These two im-
provements aim at allowing the algorithm to explore as widely as possible the search
space and avoid a premature convergence in a local optimum. Obtained results show
that, compared to other algorithms, the proposed algorithm gives results either equal
or better.

Keywords: Particle swarm optimization, estimation of distribution algorithm,
continuous optimization.

1 Introduction

Particle Swarm Optimization (PSO) is a population-based optimization tech-
nique proposed by Kennedy and Eberhart in 1995 [6]. Like ant colony algorithms
or genetic algorithms, PSO is a biologically-inspired metaheuristic. The method
is inspired from the social behavior of animals evolving in swarms, like birds or
fishes. The principle is to use collaboration among a population of simple search
agents to find the optimum in a function space. More precisely, a simple agent
has basically the knowledge of the characteristics of its surroundings but, by
communicating with other particles of the swarm, it also has a global knowledge
of the search space, as it can be seen in a fish school which tries to find something
to eat. PSO is also a particular case in the metaheuristic field because PSO was
directly designed for solving continuous problems. This point has its importance
because most of the applications deal with continuous problems. A state of the
art of PSO and all the concepts which are linked to it is available in [2].
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Like other metaheuristics, PSO shows the drawback of comprising many
parameters which have to be defined. The difficulty is that the performances of
the algorithm are strongly linked to the values given to these parameters. Such a
remark implies that it is difficult and time consuming to find the optimal combi-
nation of parameter values. Moreover, in real problems, the parameters are often
correlated, which makes the choice of parameters harder. So, researches are led to
reduce the number of ”free” parameters. The aim is to design algorithms which
are as efficient as classical algorithms, but with a lower number of parameters.
Such algorithms can be called ”adaptive algorithms”, because information grad-
ually collected during the optimization process are used to compute the values of
the parameters. The algorithm is ”adaptive” in the way that its behavior, char-
acterized by the values given to the parameters, is evolving all along the process.
Several adaptive methods already exist for PSO [15,16,18]. All these algorithms
are adaptive but not completely, i.e. there are still parameters to define, so the
problem is admittedly easier, but still existing. The ideal would be to design a
parameter-free algorithm. A parameter-free algorithm acts as a “black-box” and
the user has just to define his problem and to run the process; no parameter
has to be defined. Such an algorithm exists among genetic algorithms [10]. Clerc
has created a parameter-free algorithm for PSO called TRIBES [3, 4]. In this
chapter, we will describe the rules of adaptation which permit to avoid the defi-
nition of parameters in TRIBES and two ways of improvement will be explored.

Section 2 is dedicated to a brief presentation of the basic PSO algorithm.
TRIBES is described in Section 3. In Section 4, we propose a new method to
initialize TRIBES. A discussion of the strategies of displacement is presented in
Section 5. Some numerical results are shown in Section 6. Finally, we conclude
in Section 7.

2 Basic Particle Swarm Optimization

PSO is easy to be coded and implemented. In addition, its simplicity implies
that the algorithm is inexpensive in terms of memory requirement and CPU
time [4]. All these characteristics have made the popularity of PSO in the field
of metaheuristics.

PSO starts with a random initialization of a swarm of particles in the search
space. Each particle is modelled by its position in the search space and its veloc-
ity. At each time step, all particles adjust their positions and velocities, thus their
trajectories, according to their best locations and the location of the best parti-
cle of the swarm, in the global version of the algorithm, or of their neighbors, in
the local version. Here appears the social behavior of the particles. Indeed, each
individual is influenced not only by its own experience but also by the experience
of other particles.

In a D-dimensional search space, the position and the velocity of the ith
particle can be represented as Xi = [xi,1, · · · , xi,D] and Vi = [vi,1, · · · , vi,D]
respectively. Each particle has its own best location pi = [pi,1, · · · , pi,D], which
corresponds to the best location reached by the ith particle at time t. The
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global best location is named g = [gi, · · · , gD], which represents the best location
reached by the entire swarm. From time t to time t+1, each velocity is updated
using the following equation:

vi,j(t + 1) = wvi,j(t) + c1r1(pi,j(t) − vi,j(t)) + c2r2(gj(t) − vi,j(t)) (1)

where w is a constant called inertia factor, c1 and c2 are constants called accel-
eration coefficients, r1 and r2 are two independent random numbers uniformly
distributed in [0,1]. Generally, the value of each component in Vi can be clamped
in a range [−Vmax, Vmax] to control excessive roaming of the particles outside the
search space. If the computed velocity leads one particle out of the search space,
two methods can be used:

• the particle goes out of the search space but its fitness is not computed.
• the particle is brought back in the search space either on the nearest bound

or by applying a multiplicative coefficient chosen in ]-1,0[.

The computation of the position at time t + 1 is derived from Eq.(1) using:

xi,j(t + 1) = xi,j(t) + vi,j(t + 1) (2)

The inertia weight w controls the impact of the previous velocity on the current
one, so it ensures the diversity of the swarm, which is the main means to avoid
the stagnation of particles at local optima. In the same way, c1 controls the
attitude of the particle of searching around its best location and c2 controls
the influence of the swarm on the particle’s behavior. To summarize, we can
say that w controls the diversification feature of the algorithm and c1 and c2
the intensification feature of the algorithm. In [5], Clerc and al show that the
convergence of PSO may be insured by the use of a constriction factor. Using the
constriction factor emancipates us to define Vmax. In this case, Eq (1) becomes:

vi,j(t + 1) = K (vi,j(t) + φ1r1(pi,j(t) − vi,j(t)) + φ2r2(gj(t) − vi,j(t))) (3)

with:
K =

2∣∣∣2 − φ −
√

φ2 − 4φ
∣∣∣ , φ = φ1 + φ2, φ > 4 (4)

The convergence characteristic of the system can be controlled by φ. Namely,
Clerc and al. [5] found that the system behavior can be controlled so that the
system behavior has the following rules:

• the system does not diverge in a real value region and finally can converge,
• the system can search different regions efficiently by avoiding premature con-

vergence.

Unlike other evolutionary computation methods, constricted PSO ensures the
convergence of the search procedure based on the mathematical theory. The
standard PSO procedure can be summarized in the algorithm in Figure 1.

Generally, the stopping criterion is either a predefined acceptable error or a
maximum “reasonable” number of evaluations of the objective function.
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Initialize a population of particles with random positions and velocities.
Evaluate the objective function for each particle and compute g.
For each individual, pi is initialized at Xi.
Do
Update the velocities and the positions of the particles.
Evaluate the objective function for each individual.
Compute the new pi and g.

While the stopping criterion is not met

Fig. 1. Standard PSO procedure

3 TRIBES, a Parameter-Free PSO Algorithm

Like many other metaheuristics, PSO shows the drawback of having too many
parameters which must be set by the user. According to the values given to these
parameters the algorithm is more or less efficient. A first approach to adaptive
PSO was proposed by Ye [16], whose method looks for inactive particles and
replaces them by new particles, more able to explore new areas of the search
space. Zhang et al. [18] proposed to modify swarm’s size, constriction factor or
neighborhood size through the use of an improvement threshold. Yasuda [15]
worked out an algorithm in which parameters are defined according to the ve-
locity information of the swarm. But the first parameter-free algorithm, called
TRIBES, was proposed by Clerc [3]. TRIBES is an adaptive algorithm whose
parameters change according to the swarm behavior. In TRIBES, the user only
has to define the objective function and the stopping criterion. The method in-
corporates rules defining how the structure of the swarm must be modified and
also how a given particle must behave, according to the information gradually
collected during the optimization process.

3.1 Swarm, Tribes and Communication

PSO is based on the social behavior of animals evolving in swarms. Each indi-
vidual of the swarm knows the direction of displacement and the velocity of its
neighbors in the swarm and uses this information to decide its own direction of
displacement and its own velocity. Considering that the swarm is an intercon-
nected network, information collected by one of the individuals is propagated
in the entire swarm. So, all the individuals modify their behavior according to
the new interesting information. This implies a “global” behavior of the swarm,
which allows the swarm to find regions of interest in the search space. These
considerations form the framework of Standard PSO.

However, it can also be observed in real life that a swarm can be divided in
“tribes” of individuals. Here, the behavior of the swarm is different from the one
explained before. Each tribe acts as an independent swarm, i.e. each tribe has its
own “global behavior” and explores a particular region of the search space. In addi-
tion to that, all the tribes exchange information about regions they are exploring.
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Fig. 2. Intra-tribe and inter-tribes communications

So, the swarm is an interconnected network of tribes, which are themselves inter-
connected networks of individuals. This implies two different types of communi-
cation: intra-tribe communication and inter-tribes communication. These consid-
erations form the framework of TRIBES. In Figure 2, an example of a swarm of 17
particles (white spots) divided in 4 tribes is shown. Arrows symbolize inter-tribes
communications and lines symbolize intra-tribe communications.

In TRIBES, the swarm is structured in different tribes of variable size. The aim
is to simultaneously explore several promising areas, generally local optima, and
to exchange results between all the tribes in view of finding the global optimum.

Each tribe is composed of a variable number of particles. Relations between
particles in a tribe are similar to those defined in basic PSO. More precisely,
each particle of the tribe stores the best location it has met and knows the best
(and the worst) particle of the tribe, i.e. the particle which has met the best
(and the worst) location in the search space. This is intra-tribe communication.

Even if each tribe is able to find a local optimum, a global decision must be
taken to decide which of these optima is the best one. So, each tribe is linked
to all the others to inform them on the best location found by its best particle.
This is inter-tribes communication.

TRIBES is an adaptive algorithm, so the swarm must be generated and mod-
ified automatically, by means of creation, evolution, and removal of the tribes.

3.2 Structural Adaptations

Setting rules to modify the swarm’s structure implies the definition of a quality
qualifier for each particle and likewise for the tribes. In the case of particles,
it is known that each particle has a current position and a best position. So, a
particle is said to be a good particle if it has just improved its best performance,
neutral if not. In addition to this qualitative (because not relative to values,



204 Y. Cooren, M. Clerc, and P. Siarry

Fig. 3. Removal of a particle from a multiparticle tribe

but to improvement) qualification, the best and the worst particles are defined
within the tribe framework.

In addition, good and bad statuses are also defined for the tribes. These sta-
tuses are related to the amount of good particles inside the tribes. It is postulated
that: “The larger the number of good particles in the tribe, the better the tribe
itself”. In practice, a random integer number p between 0 and the swarm’s size
is generated according to a uniform distribution. Then, if the number of good
particles in the tribe is strictly larger than p, the tribe is said good, if not, the
tribe is said bad.

These qualifiers allow us to define the two following rules.

Removal of a Particle

In most common uses of PSO, the most time consuming part of the algorithm
is the objective function evaluation. So, it is interesting to carry out the least
number of evaluations of the objective function. Consequently, it will be tried
to remove a particle of the swarm as soon as possible, on condition that the
removal does not affect the final result. That is why a removal of particle must
occur in a good tribe and the removed particle is obviously the worst. In Figure 3,
the particle P is the worst of its tribe and the tribe was declared good. In this
case P is removed and the redistribution of its external links (here, only one
symmetrical link) is done on M, the best particle of the tribe. The information
links that each particle has with itself are not represented, because they do not
play any role here.

In the case of a monoparticle tribe, the removal is only made if one of the “in-
formers”, i.e. a particle of another tribe by which the inter-tribes communication
is made, has a better performance (see Figure 4). This ensures us to keep the
better quality of information. In Figure 4, the monoparticle tribe was declared
good, thus the single particle P, which is necessarily the worst of the tribe, even
if it is at the same time good, should be removed. But it will be removed only
if its best external informer MP is better than itself. The assumption is indeed
that the information carried by P is then less valuable than that carried by MP .

The removal of a particle implies a change in the information network. All
the particles linked to the removed particle are redirected to the best particle of
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Fig. 4. Removal of a particle from a multiparticle tribe

the removed particle’s tribe. In the particular case of a monoparticle tribe, all
these links are redirected to the best informer of the removed particle, because
removing the particle implies removing the tribe.

Obviously, these structural adaptations must not occur at each iteration, be-
cause time must be let for the information propagation. In practice, if NL is
information links number at the moment of the last adaptation, the next adap-
tation will occur after NL/2 iterations.

Generation of a Particle

The process of adding a particle is quite similar to the removal. A bad tribe
generates particles which will form a new tribe. The bad tribe will keep the
contact with the new tribe and will try to use it to improve its best location.

Three types of particles are generated:

• Free particle: The particle is randomly generated according to a uniform
distribution in the whole search space, on a side of the search space or on
a vertex of the search space. The idea is to rely on the future course of the
particle to cross a promising area.

• Confined particle: If x is the best particle of the generating tribe and ix the
best informer of x, px and pix are the best locations of x and ix. The new
particle will be generated in the D-sphere of center pix and radius ||px−pix ||.
The idea is here to intensify research inside an interesting area.

• Isolated particle: The particle is generated in the biggest “terra incognita”,
i.e. as far as possible from the existing particles and from the boundaries of
the search space. The idea is to explore areas which have not been explored
yet and, then, to discover new regions of interest. Figure 5 shows an example
of where a “terra incognita” can be located. The * symbolize the particles
and the gray regions indicate possible “terra incognita”.

Swarm Evolution

At the beginning, the swarm is composed of only one particle which represents a
single tribe. If, at the first iteration, this particle does not improve its location,
a new one is created, forming a second tribe. At the second iteration, the same
process is applied and so on.
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Fig. 5. Location of possible “terra incognita”

The swarm’s size will grow up until promising areas are found. The more the
swarm grows, the longer the time between two adaptations will be. By this way,
the swarm’s exploratory capacity will grow up but the adaptations will be more
and more spaced in time. Therefore, the swarm has more and more chances to
find a good solution between two adaptations.

Contrarily, once a promising area is found, each tribe will gradually remove
its worst particle, possibly until it disappears. Ideally, when convergence is con-
firmed, each tribe will be reduced to a single particle.

3.3 Behavioral Adaptations

In the previous section, the first way of adaptation of the algorithm was de-
scribed. The second way in view of adapting the swarm to the results found by
the particles is to choose the strategy of displacement of each particle accord-
ing to its recent past. As in the case of the evolution of tribes, it will enable a
particle with a good behavior to have an exploration of greater scope, with a
special strategy for very good particles, which can be compared to a local search.
According to this postulate, the algorithm will choose to call the best displace-
ment’s strategy in view of moving the particle to the best possible location it
can reach.

There are three possibilities of variation for a particle: deterioration, status
quo and improvement, i.e. the current location of the particle is worse, equal or
better than its last position. These three statuses are denoted by the following
symbols: - for deterioration, = for status quo and + for improvement. The history
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of a particle includes the two last variations of its performance. For example,
an improvement followed by a deterioration is denoted by (+ -). So, there are
nine possibilities of history. The strategy of displacement of a particle will be
determined by its couple of variations. The different strategies of displacement
will be discussed in Section 5.

To sum up, it can be said that TRIBES is an algorithm which tries to solve one
of the main problems of metaheuristics: the fitting of parameters. By adapting
the swarm’s form and particles’ strategies of displacement, TRIBES frees users
of defining parameters and acts as a “black box”. The particles use their own
history and swarm’s history to decide how they must move and how the swarm
must be organized in view of approaching as efficiently as possible the global
optimum. The algorithm in Figure 6 shows a pseudo-code which summarizes
TRIBES process. g is the best location reached by the swarm and the p’s are
the best locations for each particle. NL is the number of information links at the
last swarm’s adaptation and n is the number of iterations since the last swarm’s
adaptation.

Initialize a population of particles with random positions and velocities.
Evaluate the objective function for each particle and compute g.
For each individual, pi is initialized at Xi.
Do
Determination of statuses for each particle.
Choice of the displacement strategies.
Update the velocities and the positions of the particles.
Evaluate the objective function for each individual.
Compute the new pi and g.
If n < NL

Determination of tribes qualities
Swarm’s adaptations
Computation of NL

End if
While the stopping criterion is not met

Fig. 6. TRIBES procedure

4 Initialization of TRIBES

The efficiency of every PSO-inspired algorithm is linked to the initialization of
the particles. In [1], it is proved that, in basic PSO, the position of a particle at
the time step t can be decomposed in two vectors, one which only depends on the
initial configuration and one which does not depend on the initial configuration.
The trajectory of a given particle is then linearly dependent from its initial
position and its initial velocity. So, it clearly appears here that a good choice of
initial positions and velocities can lead to better results. The ideal case would
be to assess the initial points in the way that the search space is explored as
widely as possible by the trajectories of the particles.
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Fig. 7. Random initialization

Commonly, particles are randomly initialized in the search space. But, such an
initialization can lead to a bad diversity of the particles. On Figure 7, a random
initialization of seven particles in dimension D=2 is shown. It can be seen that
the particles are confined in the lower-right part of the search space and in the
upper-left part. In this way, the particles would first explore the upper-left and
the lower-right corners of the search space and, then, there is a possibility that
they would be trapped in a local optimum situated in this region without having
explored the other regions of the search space.

In view of avoiding this problem, a new way of initialization is proposed. The
idea is to fill as widely as possible the search space. To summarize, the particles
will be initialized so that each particle will be as far as possible from the others
and as far as possible from the boundaries of the search space.

In dimension D, TRIBES will be initialized with D + 1 particles. The initial-
ization is made using a standard particle swarm optimization using the objective
function of Eq.(5):

f =
D+1∑
i=1

∑
j �=i

1
dij

+
D+1∑
i=1

1
mind∈[1..D](d(xi, boundd))

(5)

where dij is the distance between particle i and particle j and d(xi, boundd) is
the distance between particle i and the boundary of the dth dimension.

Figure 8 shows that this new way of initialization leads to a better diversity
of the particles in the search space. The particles fill well the search space and
no region will be preferred to others during the exploration process.
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Fig. 8. Regular initialization

5 Strategies of Displacement

It was seen in Section 4 that the way of initializing the particles has its im-
portance in view of making PSO as effective as possible. Once the particles are
initialized, it must be decided how they will move. In basic PSO, the strategy of
displacement is the same for each particle. Eqs.(1,2) model this strategy.

In TRIBES, the strategy of displacement is different for each particle and can
be modified at each time step. For a given particle, the choice of its strategy of
displacement is made according to its recent history. In this section, the original
strategies defined by Clerc in [4] are exposed and a new strategy is defined.

5.1 Basic Strategies of TRIBES

It was said in Section 3.3 that the strategy of displacement of a given particle
depends on its two last variations. So, there are nine possibilities of history.
Clerc [4] gathered them in three groups. So, only three strategies are needed.
The three used strategies are the following:

• Pivot strategy: This method is inspired from [11]. Let us denote by p the best
location of the particle, g the best position of the informers of the particle
and f the objective function. The movement is done as follows:

X = c1U(Hp) + c2U(Hg) (6)

with c1 = f(p)/(f(p) + f(g)), c2 = f(g)/(f(p) + f(g)), U(Hp) a point uni-
formly chosen in the hyper-sphere of center p and radius ||p − g|| and U(Hg)
a point uniformly chosen in the hyper-sphere of center g and radius ||p − g||.
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• Disturbed pivot strategy: Here we have

X = c1U(Hp) + c2U(Hg) (7)

b = N(0,
f(p) − f(g)
f(p) + f(g)

(8)

Xj = (1 + b)Xj (9)

• Local strategy by independent gaussians: If g is the best particle of the swarm,
we have

Xj = gj + N(gj − Xj , ||gj − Xj||) (10)

where N(gj − Xj , ||gj − Xj ||) is a point randomly chosen with a monodi-
mensional gaussian distribution of mean gj − Xj and standard deviation
||gj − Xj||.

So, (= +) and (+ +) represent the best particles and it will be chosen for
them a local strategy by “independent gaussians”. (+ =) and (- +) represent the
neither bad nor good particles and it will be chosen a “disturbed pivot strategy”.
At last, (- -), (= -), (+ -), (- =) and (= =) represent feeble particles. A “pivot
strategy” is chosen for them. If the movement implies one particle to go out
the search space, the particle will be brought back to its closest position in the
search space. This is particle’s confinement.

It can be seen that the strategies of displacement defined in this paragraph are
different from the one of Standard PSO, especially because there is no need to
define velocity vectors, but the philosophy is almost the same: a particle moves
according to its own best performance and according to the best performance of
the swarm.

5.2 A New Strategy of Displacement

In the previous paragraph, the three strategies of displacement employed in the
first version of TRIBES were defined. Results obtained with the original algo-
rithm can be found in [19]. In view of evaluating the efficiency of the strategies
of displacement defined above, a study of the behavior of the particles must
be done. No complete theoretical study already exists because the interactions
between particles made the problem very hard to solve although a few theoreti-
cal results about the dynamics of PSO [5, 13, 14] are available in the literature.
In consequence, only experimentation can inform us about the dynamics of the
particles during the process.

Figure 9 shows us examples of “convergence graphs” of TRIBES. Such graph
shows the median performance of the total runs, here 25 runs, as a function of the
number of evaluations of the objective function (Fes). A semilog scale is used.
These graphs are made with Griewank (F7), Rastrigin (F9) and Weierstrass
(F11) functions [12] in dimension D=10. It can be seen that TRIBES converges
quickly at the beginning of the process and seems to stagnate after. It can
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Fig. 9. Convergence graphs for Griewank (top), Rastrigin (middle) and Weierstrass
(bottom) functions
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Fig. 10. Trajectory of a particle. The cross indicates the optimum.

Initialize the population X0

Build the distribution P 0

Xt = X0

P t = P 0

Do
Select a subgroup Xt

sub of Xt

Build P t+1 according to Xt
sub

Sample P t+1 to create Xt+1
offspring

Replace individuals of Xt by individuals of Xt+1
offspring for creating Xt+1

t = t + 1
While the stopping criterion is not met

Fig. 11. Principle of an EDA

be concluded that the particles converge quickly to a local optimum and do
not manage to escape from it. This fact is a problem common to every PSO-
inspired algorithm. Considering that, in TRIBES, the position of a given particle
is randomly chosen using two hyperspheres of centers g and p, the particle is
attracted towards these two points. This implies that, if g or p is a local optimum,
the particle would be attracted to the “valley” of this optimum, move around
it and, so, it would not be possible for the particle to improve its performance.
Figure 9 shows an example of this behavior. Figure 9 represents the trajectory
of a particle for Weierstrass 2D problem [12]. Arrows are the velocities of the
particle at each time step and the cross symbolizes the location of the global
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optimum. It is clear that the particle is trapped in a local optimum and moves
around it. The observation of the velocity vectors confirms this remark.

Previous remarks imply that TRIBES is defective in matter of diversification,
i.e. the search space is not widely explored by the particles. The objective of
the new strategy of displacement is to improve the diversification capacity of
TRIBES. To reach this goal, an Estimation of Distribution Algorithm (EDA) is
used [7]. The principle of EDAs is to select a subgroup of a family of solutions,
build a probabilistic model of this subgroup and construct new solutions by
randomly sampling the constructed distribution. First, a family X0 of solutions
is randomly generated and its probabilistic model P 0 is constructed. For a given
time t, the main loop is composed of four steps. First, a subgroup Xt

sub of Xt

is chosen using a predefined criterion. Then, according to the element of Xt
sub,

the probabilistic model P t+1 is constructed. At this moment, P t+1 is sampled
to give the new family of solutions Xt+1 offspring. Finally, individuals of Xt

are replaced by individuals of Xt+1 offspring. The process is iterated until the
predefined stopping criterion is reached. Many different probabilistic models can
be used considering or not that the variables are correlated [7]. Algorithm 11
summarizes this process.

Introducing a new strategy of displacement based on EDA can permit us to
improve the diversification process of TRIBES. Indeed, the displacement of a
given particle will not be driven only by three positions (the current position
of the particle, p and g) but by a sub-family of the swarm. So, premature con-
vergence, caused by the stagnation of p and g, is avoided. Moreover, sampling
a probabilistic model implies that all the positions of the search space can be
reached with a non-zero probability and, then, gives the possibility to a particle
to escape from a local optimum in which it was trapped. By this way, the search
space can be more widely explored.

The problem is now to choose the appropriate family of particles in view
of building the distribution of probability. In a PSO-inspired algorithm like
TRIBES, the most obvious choice is to choose the best position of each par-
ticle i.e. the pi. Dimensions are supposed independent, thus a monodimensional
probabilistic model is computed for each dimension of the search space. If, at
the current time step, the size of the swarm is N and d is the current dimension,
the distribution of probability is supposed normal and is modelled by its average
and its standard deviation according to Eqs.(11, 12).

μd =
1
N

D∑
i=1

pi,D (11)

σ2
d =

1
N − 1

D∑
i=1

(pi,D − μd)2 (12)

Then, the new coordinate of the particle for the dimension d is randomly chosen
according to the normal distribution of average μd and standard deviation σd.
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Fig. 12. Histograms of the distance to all reached positions

In real problems, it is current that the variables are correlated. In this
case, a joint normal distribution is used instead of D monodimensional normal
distributions.

Obviously, this method cannot be employed at any moment for each particle.
It had been said above that there are nine possibilities of history for a particle. In
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basic TRIBES, histories are gathered in three groups. With the addition of our
new strategy of displacement, a new group is created. The use of the new strategy
of displacement is dedicated to the worst particles. So, particles with a history
(- -), (- =) or (= -) will use the new strategy to compute their displacement.

Figure 12 shows histograms of the distances between all the positions reached
by the particles for the Rastrigin 2D problem [12]. It can be seen that, with
the utilization of the new strategy of displacement, the positions reached by
the particles are less close than in the basic case. This remark implies than
the diversification process is better with the utilization of the new strategy. In
Figure 12(top), it can be seen that the histogram is mainly composed of three
thin peaks. This implies that, at the end of the procedure, the swarm is composed
of three tribes which have explored three different regions of the search space.
The fact that the peaks are very thin implies that all the particles of a same
tribe are concentrated on a local optimum and do not manage to escape from it.
Contrarily, in Figure 9b, the histogram is also composed of three peaks but the
peaks are, in this case, larger. This implies that the particles have explored more
largely the search space and did not stay concentrated around a local optimum.
So, it can be concluded that the diversification process of TRIBES is improved.

6 Numerical Results

The aim of this section is to compare Improved TRIBES, implemented with the
regular initialization and the new strategy of displacement, with a Standard PSO
algorithm [20], a simple continuous EDA [17], a real-coded Memetic Algorithm
[8], a real-coded Differential Evolution Algorithm [9] and with Basic TRIBES.
Tests are made in dimension D=10. For Standard PSO, the number of neighbors
for each particle is 3, the size of the swarm is 20, w = 1/(2 log 2) and c1 = c2 =
1/2+ log 2. The process stops if the error is lower or equal to 10−6 for functions
of Table 1 and 10−2 for functions of Table 2 or if the number of evaluations
of the objective function exceeds 105. Functions used are extracted from the
CEC’2005 benchmark functions set [12]. Table 1 and Table 2 give the mean
error of each algorithm for 25 executions and the mean number of evaluations
of the objective function, in brackets, respectively for unimodal functions and
multimodal functions.

Table 1 and Table 2 show that Improved TRIBES, implemented with the
regular initialization and the new strategy of displacement, gives competitive
results. Ackley bounds function can be excluded from the comparison because
it can be seen in Table 2 that all the algorithms are trapped in the same local
optimum. Improved TRIBES solves 50% of the benchmark, the best algorithm
being Differential Evolution with 60% of the benchmark solved.

Compared to Standard PSO, it can be seen that Improved TRIBES gives
better results on most cases. Indeed, Standard PSO is better only on Schwefel
and Schwefel noise, what can be explained by the simplicity of the function
and by the fact that Standard PSO starts with more particles than Improved
TRIBES. Improved TRIBES is better than TRIBES on 80% of the benchmark.
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Table 1. Comparison between several algorithms for unimodal functions

Sphere Schwefel Elliptic Schwefel
noise

Schwefel
bounds

Standard PSO 0.00
(3375)

0.00
(8300)

71.28e3
(100000)

0.00
(11562)

18.86
(67610)

Simple EDA 0.00
(28732)

0.00
(28916)

0.00
(32922)

0.00
(32636)

233.50
(100000)

Memetic algorithm 0.00
(11737)

0.00
(36598)

4.77e4
(100000)

0.00
(71563)

0.02
(100000)

Differential Evolution 0.00
(7120)

0.00
(21800)

0.00
(8970)

0.00
(26100)

0.00
(25300)

Basic TRIBES 0.00
(1856)

0.00
(10452)

18.77e3
(100000)

0.00
(18966)

1.74
(60409)

Improved TRIBES 0.00
(1521)

0.00
(12011)

13.11e4
(100000)

0.00
(23783)

9.07e-4
(80832)

Table 2. Comparison between several algorithms for multimodal functions

Rosen-
brock

Grie-
wank

Ackley
bounds

Rastrigin Rastrigin
rotated

Weier-
strass

Standard PSO 1.88
(100000)

0.08
(100000)

20.11
(100000)

4.02
(100000)

10.18
(100000)

4.72
(100000)

Simple EDA 0.00
(43500)

0.53
(10000)

20.33
(100000)

32.28
(100000)

32.28
(100000)

8.27
(100000)

Memetic algorithm 1.48
(100000)

0.19
(100000)

20.19
(100000)

0.43
(100000)

5.63
(100000)

4.55
(100000)

Differential Evolution 0.00
(26100)

0.15
(100000)

20.40
(100000)

0.00
(5110)

36.00
(100000)

4.67
(100000)

Basic TRIBES 0.06
(100000)

0.07
(100000)

20.32
(100000)

8.55
(100000)

12.11
(100000)

5.68
(100000)

Improved TRIBES 0.12
(100000)

0.02
(100000)

20.35
(100000)

0.19
(72584)

8.55
(100000)

3.55
(100000)

Compared to Basic TRIBES, Improved TRIBES is better excepted on Schwe-
fel, Schwefel noise and Rosenbrock functions. On Schwefel and Schwefel noise,
it can be deduced that the new strategy of displacement slows a little bit the
algorithm mainly because the diversification process is larger. On Rosenbrock
function, the result is a little better in favor of Basic TRIBES but the difference
is not significant.

Table 1 shows that, on unimodal problems, Improved TRIBES is faster than
non-PSO methods except on Elliptic problem. PSO-inspired methods fail totally
on this problem whereas Simple EDA and Differential Evolution solve it quite
simply. Globally, PSO-inspired methods seem to be more efficient, i.e. quicker,
than the others on simple problems easy to solve (ex: Sphere, Schwefel,...).
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Table 3. Time comparison between Basic TRIBES and Improved TRIBES for
unimodal functions

Sphere Schwefel Elliptic Schwefel
noise

Schwefel
bounds

Basic TRIBES 12.72 32.12 21.96 24.18 65.7
Improved TRIBES 26.57 25.28 27.72 34.85 74.12

Table 4. Time comparison between Basic TRIBES and Improved TRIBES for
multimodal functions

Rosen-
brock

Grie-
wank

Ackley
bounds

Rastrigin Rastrigin
rotated

Weier-
strass

Basic TRIBES 26.5 24.48 36.6 22.14 32.11 123.55
Improved TRIBES 32.19 32.32 47.2 38.74 46.84 147.66

Table 2 does not permit to make strong conclusions. However, Improved TRIBES
appears to be better than PSO-inspired methods and competitive with non-PSO
methods.

Table 3 and Table 4 present execution times, in seconds, of 105 evaluations
of the objective functions for Basic TRIBES and Improved TRIBES. Table 3
and Table 4 show that Improved TRIBES is slower than Basic TRIBES. This
fact is easily understandable since the new strategy of displacement needs more
computation time than the others. Moreover, the regular initialization process
is also slower than a simple random initialization.

7 Conclusions

This chapter has shown that TRIBES uses structural and behavioral rules to
avoid the fitting of parameters. Having no parameters implies no lost of time to
fit the parameters, which is a very hard problem, but also implies to give more
information to the particles, because the process is not “driven” by the values
of the parameters.

Two methods are proposed to try to help the particles to explore as widely as
possible the search space. The first one is a regular initialization of the particles,
which aims at filling as regularly as possible the search space. The second one is
a new strategy of displacement based on an estimation of distribution algorithm.
This new strategy permits to the particles to have more various displacements,
thus avoiding to be trapped into local optima.

Numerical results show that Improved TRIBES is equivalent or better than
Standard PSO and Basic TRIBES. Improved TRIBES also appears to be com-
petitive with non-PSO methods. Numerous improvements on TRIBES still are
possible. The rules of adaptation are quite simple and use very few information
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compared with all the available information. New rules can be defined to try to
have the best adaptation of the choices made to the specificity of the problem.
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