
The Particle Swarm Algorithm

Tim Hendtlass

Centre for Information Technology Research, Swinburne University of Technology,
Hawthorn VIC 3125, Australia, thendtlass@swin.edu.au

1 Introduction

Many algorithms are the result of biological inspiration and particle swarm
optimization (PSO) is no exception. However, the PSO algorithm has slightly
different end goals to the biological behavior that provides its inspiration
and so needs to differ from its biological inspiration in some, perhaps non-
biological, ways. PSO takes its inspiration from the flocking of birds and
fish. In the real world, the flock needs to be compact for protection, and
once food is found the flock should settle to feed. In the artificial particle
swarm optimization the aim of the algorithm is to find an optimum solution
to some problem, rather than the protection or food sought in the natural
environment. For PSO the correct behavior once an optimum is found is not
for all the particles in the swarm to converge on this, possibly local, optimum
as the goal is to check many optima in the hope of finding the global optimum.
Instead of converging, once an optimum has been found, it should be noted
and the particles should immediately disperse to look for another, perhaps
better, optimum. In Nature the time will come when a swarm that is feeding
has consumed the food so that the place is no longer optimal: if swarming
for protection the threat may change or even disappear completely. Then the
swarm will again set out. Such extended periods of convergence serve no useful
purpose so far as an artificial swarm is concerned.

If we model our PSO algorithm too closely on the behavior of birds and fish
we run the risk that we will achieve those aspects of the natural behavior that
we don’t want at the expense of the artificial behavior that we do want. While
retaining (possibly modified versions of) components that give the natural
swarm its efficient search capability, we should be prepared to add such non-
biological components as necessary so as to modify the natural behavior into
the type of behavior we desire. This Chapter is concerned with developing
the ideas behind a range of PSO algorithms, ranging from the simple (which

T. Hendtlass: The Particle Swarm Algorithm, Studies in Computational Intelligence (SCI) 115,

1029–1062 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

1030 T. Hendtlass

loosely models real life and so has substantially real life behavior) through
a series of progressively less biologically plausible algorithms that enable us
to achieve useful and practical, but un-biological, aims. The basics are the
same for all these algorithms. Since the extra abilities generally come at extra
computational cost, this Chapter will describe the strengths and limitations
of each so that the reader can make an informed choice as to which might be
best for any particular problem.

2 The Basic Particle Swarm Optimization Algorithm

In all particle swarm algorithms the position of a particular particle in some
way encodes a possible solution to the problem for which we seek, ideally an
optimal, but at least a very good solution. Particles move under the com-
bined influence of a number of factors in such a way that they tend to
converge towards an optimum. A number of slight variants of the particle
swarm algorithm have been proposed since the original algorithm was intro-
duced by [19]. All of these try to balance several aspects of the behavior. See,
for example, [5, 15, 23]

For an optimization algorithm to be more efficient than a random search
the choice of the next position to be searched must be guided by the positions
previously tested, and how good a solution those positions represented. Some
way must be found that allows this previous knowledge to be exploited so
that, on average, the next positions explored represent better solutions than
would have been found if the next positions had just been picked randomly.
Obviously storing all positions previously explored would rapidly produce an
unsupportable demand for memory, and manipulating them in any way an
insupportable computational load. So in the PSO only a few – often only two
– kinds of good positions are kept by each particle, and probably some (and
possibly all) the information about a particular particle’s stored positions is
shared with some or all of the other members of the swarm. There are a
number of candidates for the types of position to keep:

1. All particles try to exploit (are influenced to move towards) at least one
good position already found by some particle in the swarm. Often the
position that is exploited is the best position yet found by any member
of the swarm, a position known as the ‘global best’ or gbest position. This
obviously requires communication between the members of the swarm shar-
ing the best position each has found and forms a sort of social collective
memory of the current global best gbest position.

2. Rather than using all the members of the swarm, sometimes each particle
uses the best position – lbest – found by some subset of the swarm, the sub-
set to which this particle belongs. Often this is defined as the N physically
closest particles (in problem space) to this particle, but also the N closest
in terms of index can be used. For example, if this particle has index 7 in

The Particle Swarm Algorithm 1031

the list of particles, particles 5, 6, 8 and 9 might be the other members of
its subset. Although for this latter option the particles may be far apart
in problem space initially, attraction between the subset members has the
effect of moving them closer together over time so that the net effect is
quite similar to that of using the N physically closest particles. Not having
to calculate the distance between each pair of particles can be a significant
saving in time. Either the best current or the best position ever found by all
the particles that make up the subset can be used. While this information
is only directly shared among members of the subset, each particle can be
a member of many subsets and so information in time is spread across the
swarm.

3. The last position commonly used by a particle is the best position yet found
by this particle – pbest. Since each particle is attracted to its own personal
best position this does not depend on any inter-particle communication at
all (although of course this is the same information that is shared as part
of the calculation of whichever of gbest or lbest is also being used).

All particles are assumed to have mass so that they cannot change direc-
tion instantaneously. Furthermore, each time their velocity is updated it must
contain a component that is in the same direction as their previously cal-
culated velocity. This effectively provides a low pass filter to any change in
their velocity, and smooths the track the particle follows through the problem
space. The fraction of the previous component that is retained is called the
‘momentum’ and is a number greater than zero but less than one.

With only the use of momentum and gbest, particles would engage in a
headlong rush toward the first reasonable position found by any particle, only
changing this if some particle happens upon a better position during this
rush. Eventually all particles would reach the same best-known position and
exploration would stop. The particles would in time come to rest as, once a
particle overshot a position, it would be attracted back to it and, with the
momentum term being less than one, the velocity would drop with each rever-
sal. This behavior would mimic real life birds settling at the best-known food
source, but little exploration would occur during the headlong convergence
and this would represent the balance between exploration and exploitation
being tipped firmly towards exploitation.

With only the use of momentum and lbest, the behavior would depend on
whether each particle is sharing the current best or the best ever position it has
found. If the best ever is being kept the swarm could tend to divide and small
groups of particles converge on a number of different positions. Particularly
in the early stages the exact membership of the subsets would change, quite
possibly changing the position towards which the current subgroup’s particles
are being attracted. This is less social than using gbest and more exploration
will occur as the sub-swarms move towards their (generally) individual con-
vergence positions. The balance between exploration and exploitation is still
tipped strongly towards exploitation, but not as strongly as using momentum
and gbest.

1032 T. Hendtlass

If using momentum and lbest and the position recorded is the current best,
then the position that the particles in the sub-swarm are converging on is likely
to change often, but can as easily change to a lesser fitness as to a greater
fitness. With no collective memory of good positions found, the final position
where the swarm members end up is largely a matter of chance. The balance
between exploration and exploitation is now tipped quite strongly towards
exploration, but some small exploitation occurs as the particles that make up
a sub swarm share their current but not their historic information.

With only the use of momentum and pbest, each particle will end up on the
best position it has happened across during its travels. While this obviously
means that there will be some, probably many, positions explored by the swarm
with poorer fitness than those positions on which the swarm members finally
end up, there is no guarantee that the final positions will be good in a global
sense. This is pure exploration with very little attempt at exploitation at all.

It is when momentum is combined with an attraction to two of these
positions that the performance of the swarm improves sufficiently to make
it attractive as a practical optimization algorithm. Which two you choose
determines how greedy the algorithm would be.1 A very greedy algorithm will
converge fast, but not necessarily to a good position: a less greedy algorithm
will converge more slowly, possibly much more slowly, but the probability that
it will converge to a good position is enhanced.

The general form of the equation that governs the updating of each
particle’s velocity is given as:

V T+t = M × V T + (1−M)×
((

G×R1 × (Gbest−XT)
t

)
(1)

+
(

L×R2 × (Lbest−XT)
t

))

or

V T+t = M × V T + (1−M)×
((

G×R1 × (Gbest−XT)
t× | Gbest−XT |

)
(2)

+
(

L×R2 × (Lbest−XT)
t× | Lbest−XT |

))

In both of these equations, the parameter M is the momentum of the
particle [0..1] and controls how fast the particle is able to respond to the

1 A very greedy algorithm is one which attempts to optimize each step without
regard to the final result; a less greedy algorithm is prepared to make one or
more less optimal steps for now in the hope that these would set it up to make a
‘killer’ move later on.

The Particle Swarm Algorithm 1033

two positions of attraction. A high momentum will make the particle slow to
respond, which encourages exploration (and may enable the particle to move
through small local optima entirely); conversely a low momentum makes the
particle very quick to respond. Each of the two points of attraction has a
constant that sets its maximum importance (G and L, respectively) but the
two random numbers (R1 and R2 both in the range 0..1) introduce a stochas-
tic element into the actual attraction at any time. The introduction of the
1/t terms is to ensure that the dimensions of each part of the equation are
the same, namely the dimensions of velocity. The units of time are usually
arbitrary, allowing t to be set to one and so saving it having to be writ-
ten, but this time (whatever its value) is of great significance and has been
included in Eqn. (1) deliberately so it is not overlooked. It must be remem-
bered that, unlike real life, the algorithm assumes that a particle’s velocity
remains unchanged between fitness evaluations. A particle may travel a con-
siderable distance, and even pass through several possible optima, between
evaluations if t is large. Further implications of using a finite value for t will
be discussed below.

Commonly the attraction to each position is also made dependent on the
distance the particle is from the point of attraction: the further the particle is
away, the higher the attraction. This is the form of the above update equations.
While this can work well in simple problem spaces it may become unhelpful in
more complex problem spaces. When a particle is far from a point of attrac-
tion, the acceleration of the particle towards that point of attraction would
be high. By the time the particle reaches the point of attraction the particle’s
speed would be very high and so the distance it travels between evaluations
is also large. An alternate approach (as expressed in Eqn. (1)/(2)) is to make
the attraction to a point independent of the distance it is from that point.
Although a particle will still accelerate as a result of the continued attraction
to a point, this approach has the effect of limiting the maximum velocity par-
ticles can have and thus the maximum distance it can travel between fitness
evaluations.

A limiting speed may be introduced for use with either version of the
update equation. No particle is permitted to go faster than this limiting speed,
if the magnitude of the right hand side of Eqns. (1) or (2) is greater than this
limiting speed, the new speed of the particle is set to this limiting value but
with the direction calculated from the equation. However the initial accelera-
tion will be faster than if Eqn. (1)(Eqn. (2)) as stated above is used, and more
of the journey will tend to occur at this limiting velocity, reducing the number
of fitness evaluations along the journey.

To complete the description of Eqn. (1)(Eqn. (2)) it only remains to dis-
cuss which pair of attraction points to use. Originally, gbest and pbest were
used, the former providing the social exploitation and the latter the personal
exploration. Replacing pbest with lbest is a viable alternative as long as the
size of the neighbourhood remains a modest fraction (say 10%) of the total

1034 T. Hendtlass

swarm. If this is done the algorithm is made slightly greedier but a significant
amount of exploration is still undertaken. Using lbest and pbest is the least
greedy version of all and provides the least exploitation and the most explo-
ration. The swarm may finally converge owing to the overlap between the
sub-swarms of each of the particles.

Having calculated the new velocity for each particle the only other step
in the algorithm is to move each particle ready for the next iteration. As
mentioned above, it is assumed that the velocity of the particle does not
change during the time t between updates (and evaluations). The position
update equation is given as Eqn. (3), again with the inter-evaluation time t
explicitly shown so as to make the equation dimensionally consistent.

XT+t = XT + t× V T+t (3)

2.1 Pseudo Code Algorithm for the Basic PSO

Algorithm 4 Basic Particle Swarm Optimization Algorithm

1. Randomly assign each particle to some point in problem space with some (small)
random velocity and evaluate the fitness of each particle at its current position.
while no stopping condition is met do

2. Update gbest for the swarm, pbest for each particle (if these are to be used).
if lbest is to be used then

find the other particles that make up the sub-swarm of each particle, and
update lbest for each particle from either the current best or the personal
best fitness of it and its neighbours.

3. Calculate the new velocity of each particle using Eqn. (1)/(2) (if not using
either gbest or lbest, replace then with the position you are using).
4. Move each particle using Eqn. (3) and evaluate its fitness at this new position.

The stopping condition could be achieving acceptable performance OR the
swarm having converged without achieving adequate performance OR some
maximum number of fitness evaluations having been made without either
of the first two conditions being met. A swarm has converged when all the
particles are (eventually) at the same position and the velocity of each particle
is approaching zero.

3 Enhancements to the Basic Particle Swarm Algorithm

3.1 Constriction Factors

The whole right side of Eqns. (1) and (2) can be multiplied by a constriction
factor. The purpose of this factor is to drop the average speed of the particles
as time goes on. By doing this one of the problems with using a finite time
between updates (t) can be addressed. If a particle is travelling fast it can

The Particle Swarm Algorithm 1035

cover a considerable distance in problem space in this time and may well pass
over a point of interest without observing it, as no evaluation was made. This
risk may be acceptable when the swarm is dispersed as the aim is to find
regions of interest and there are probably other reasonably interesting points
in the vicinity of this unobserved one. However, this is not so acceptable when
the swarm is settling and trying to find the best point in a more restricted
region as it will result in many unnecessary crossings and re-crossings of the
best point thus increasing the time taken to find the best point.

The constriction factor could be just a fixed number less than one, but
finding a suitable value for this number a priori is not easy. A better approach
[8,9,11] takes into account the current behavior of the swarm and adjusts the
constriction factor accordingly.

3.2 Adding Controlled Diversification

The tendency of a swarm to converge is beneficial when the swarm is exploring
in the vicinity of an optimum but may well be counter productive if the
swarm as a whole is still in transit searching for a suitable point to explore.
Then it would be desirable for the swarm to diverge so as to explore more
territory. Comparing the average velocity and the average speed of the swarm
can help identify these two situations; if the average speed is significantly
higher than the average velocity then it is reasonable to assume that the
swarm particles are around a region of interest but approaching it in different
directions. However, if the average speed and the average velocity have similar
non-zero magnitudes then the swarm is probably sweeping through problem
space. In this latter case deliberate measures can be taken to counter the
natural tendency of the swarm to converge so as to more efficiently search the
problem space – for more details see [17].

3.3 Handling Problem Constraints

Problem constraints can take many forms, for example possibly limited ranges
of values for one or more variables or regions of problem space that correspond
to non-viable solutions.

The first of these can be addressed by only allowing problem space to be
of finite duration in the direction that corresponds to that particular vari-
able. Any movement past the limit results in the particle re-appearing at the
beginning. Effectively the axis is no longer an infinite straight line but a circle.
This ensures that only permitted values of this variable are ever explored. The
formula to update the position is no longer complete in itself; it has to have
two conditional clauses added. For example, if the range of values is from 2
to 8, the clauses would be:

• if position ≥ 8 then position = position – 6
• if position is < 2 then position = position + 6

1036 T. Hendtlass

It might be necessary to apply these conditional clauses repeatedly until
the position was within the meaningful range. The calculation of the distance
between two particles would now have to take into account the fact that, for
this dimension at least, the shortest distance (the one that should be used)
could be in either direction around the circular axis. Should the acceptable
values for this variable form a series of discontinuous ranges (say, 2 – 5 and
8 – 12) the range of the axis should be set to be the sum of these ranges (3 +
4 = 7 in this example). A mapping needs to be made between the position of
the axis and the value this represents before the fitness is evaluated. For the
example given here this would be:

• if position ≥ 0 and < 3 then value = position + 2
• if position is ≥ 3 and < 7 then value = position + 5

The distance between two particles would be calculated as described above,
that is without taking into account the mapping.

The second constraint can be accommodated by a small change to the
rule to update the global best and local best positions. A particle can only
update these if its value is better AND it is in a region of problem space that
the fitness function reports as being feasible. A particle can only include in
its neighbourhood other particles that are currently in feasible space. It is
possible that a particle itself and all other particles in infeasible space, in this
case there is no local best and the contribution of the term involving the local
best to the velocity update (Eqn. (1) or (2)) is set to zero. The momentum
of the particles, useful in helping them sweep through local optima, will also
help them sweep through regions of non-feasible space. Should there be no
particle in valid problem space at the first fitness evaluation there will be
no global best position and that term in Eqns. (1) and (2) will also be zero,
and all particles will move in straight lines. However as soon as some particle
finds a region of feasible space it can update and the convergence process will
start. A problem space that is mostly infeasible would probably form quite
a challenge, but more feasible problem spaces can be handled, as described
above.

4 Particle Swarm Optimization of Multiple Optima

The performance of the basic particle swarm algorithm is good for problems
with one best global optimum as long as the total number of optima does not
get too high; ‘good’ in this context means both in terms of the quality of the
results obtained and in the speed with which they are found. The quality of
the solutions found for a given problem is comparable with those found by
a Genetic Algorithm (GA), but the time take to find them is typically one
tenth of that required.

The Particle Swarm Algorithm 1037

However, not all problems fit into this simple category. Modifications can
be made to the basic swarm algorithm to produce variations that are suited
to at least some more complex classes of problem.

4.1 Exploring Multiple Optima

Many problems may have a number of optima whose fitness is similar. Allow-
ing the swarm to converge to just one may not be the best move. Firstly there
is no guarantee that convergence will occur to the global best optimum, indeed
practical considerations may make the choice as to which is the best require
considerations that are over and above just the numeric fitness value. Under
these conditions we would like the algorithm to find several good optima and
allow someone (or something) with knowledge of the broader picture to make
the final choice.

An example might help. Suppose that the problem being solved is to find
a good manufacturing schedule. When selecting the schedule for Thursday
(say), the manager may know that certain members of their workforce would
have attended a lively social occasion on Wednesday night. As a result it might
be better to give them a lighter load on Thursday morning while they over-
came the effects of the previous night. Given a range of possible schedules they
might choose one that was likely to have the best practical outcome (given
the extraneous factors) rather than chose the one with the best theoretical
outcome. There could be many possible outside factors occurring too infre-
quently to be worth building into the fitness calculation for possible schedules.
Better to give a range of good possibilities and let the human use their extra
knowledge when making the final choice.

There are two basic approaches: if the number of good optima is small
we might like to quickly perform a parallel exploration of these, with sub-
sections of the total swarm each exploring a different optimum. Of course the
absolute (and impractical) limit to the number of optima that can be explored
in parallel is the number of particles in the swarm. This is impractical as a
sub-swarm of one particle cannot use any social exploitation at all. If the
number of potential optima that should be explored is large, then rather than
exploring them all at once we would explore them in turn (serial exploration).
Both of these approaches will be considered in this Section.

4.2 Achieving Parallel Exploration of Several Positions
of Interest (niching)

The aim here is for the swarm to break automatically into sub-swarms and
for these sub-swarms to converge onto different optima. While easy to state,
achieving a practical realization presents many problems. If gbest is used the
swarm will tend to converge all to one point. If gbest is replaced by lbest how
many optima the swarm finds depends on the degree of overlap between the

1038 T. Hendtlass

local regions from which best is derived. This degree of overlap has proved
hard to control.

An alternate, and more successful, approach has been to develop a niching
PSO [13: 67–69] that starts with a single main swarm and finishes with a
number of smaller independent swarms. The particles in each of the smaller
swarms communicate only with other members of its own swarm; there is no
communication between swarms. The main swarm is generally trained using
only the pbest position. Once some member of the main swarm is deemed to
be in the vicinity of an optimum, a sub-swarm is formed by grouping together
a number of particles in close proximity to the potential optimum. These
communicate only with each other so as to further explore the optimum –
now also using gbest attraction. These chosen particles refine the absolute best
position, never leaving the vicinity of the optimum. Meanwhile the members of
the main swarm that were not chosen for this sub-swarm continue using only
pbest and look for another optimum (or at least a place that seems worthy of
closer study).

Ideally the sub-swarms would never come close and no member of the main
swarm would wander into a region being explored by a sub-swarm. In reality,
of course, both things do happen. In the first case the two sub-swarms are
merged (become aware of the performance of each other’s members), which
at the cost of using more particles may provide a more thorough exploration
of the local space. In the second case the particle is just recruited to (joins)
the sub-swarm it is moving through.

The niching PSO can explore a few different regions but since the particles
that form a sub-swarm never leave the region they are exploring, the maximum
number of regions that can be explored is set by the size of the original main
swarm and by how many particles are recruited to form each sub-swarm. As
the number of potential regions that require investigation increases, parallel
exploration will obviously become quite inefficient.

4.3 Achieving Serial Exploration of Many Positions
of Interest (WoSP)

An alternate approach that uses Waves of Swarm Particles (WoSP), intro-
duced by [14], achieves serial exploration of an, in principle, infinite number
of positions of interest. Actually it is not strictly serial as at any given time
a small number of regions of interest are typically being explored in paral-
lel. This behavior is achieved by reinforcing the tendency to totally converge
rather than trying to slow or even inhibit total convergence, but once they
have converged forcing particles to be ejected with significant velocities so
that they carry on searching for other optima. This behavior is achieved by
adding an extra short-range force of attraction to the basic swarm equation

The Particle Swarm Algorithm 1039

(as shown in Eqn. (4)) and making use of the finite time between velocity
updates for particles.

V T+t = M × V T + (1−M)×
((

G×R1 × (Gbest−XT)
t× | Gbest−XT |

)

+
(

L×R2 × (Lbest−XT)
t× | Lbest−XT |

))
+ SRF (4)

where SRF is the net short range force acting on this particle. The ith
component of the short range force exerted on particle x by particle y is
given by

SRFxyi − SRF factor × Vxyi

D
SRFpower
xy

(5)

where Vxyi is the ith component of the velocity of particle x with respect to
particle y, Dxy is the distance from particle x to particle y, SRFfactor is the
magnitude of the short range force at unit distance, and SRFpower sets how
fast this force decreases with distance.

As a result of the discrete way in which fitness evaluations and updates to
the velocity of the particles is done, an aliasing effect causes pairs of particles
to approach, pass each other and then continue at very high velocities. The
closer particles approach each other the higher the probability of this happen-
ing. There is no longer a need to try to stop the particles fully converging;
once converged this aliasing effect will cause particles to be ‘ejected’. As the
velocity with which the particles leave the swarm is variable, exploration can
continue both locally and at a distance.

The way in which this aliasing effect works is as follows. As particles
approach each other the magnitude of the short-range force will increase sig-
nificantly, producing a substantial increase in the velocity of the particles
towards each other. For discrete evaluation, by the time of the next evalua-
tion, particles may have passed each other and be at such a distance apart
that the short-range attraction that might bring them back together is far too
weak to do this. As a result, the particles will continue to move rapidly apart
with almost undiminished velocity, exploring beyond their previous positions.
This process is shown in Fig. 1. The ‘snapshots’ are taken starting at some
arbitrary time T (at the top), with the lower ‘snapshots’ being taken progres-
sively later. The time interval between ‘snapshots’ is the basic time interval
for the PSO and is represented by t.

At time T , the separation between the particles is moving into the region
in which the magnitude of the short-range attraction (shown by broad arrows)
is becoming significant. This augments the effect of their velocities (shown by
thin arrows) so that the particles move close together. By time T + t the
particles are close and the short-range effect is large. As a result, the velocity

1040 T. Hendtlass

Fig. 1. A series of ‘snapshots’ showing the two particles (shown as circles), their
velocities (thin arrows), and forces (thick arrows)

of the particles increases substantially, almost entirely as a consequence of the
short-range attraction. By time T + 2t when the next evaluation is made the
particles have passed each other, and are so far apart the short-range force
is weak. Consequently, the particles continue to diverge, retaining at T + 2t
much of the velocity obtained as a result of the short-range forces acting at
time T + t. The short-range forces will continue to decrease as the particles
move apart, leaving only the normal swarm factors to influence their future
movement in the absence of other close encounters.

The total swarm automatically becomes broken into a number of sub-
swarms called ‘waves’, each with its own gbest value. Particles that leave a
converging swarm as a result of this aliasing effect leave the wave they were
in and are ‘promoted’ to join the highest numbered (most recently created)
wave. Should the particle already be part of the highest numbered wave,
the particle becomes the founder member of a new ‘most recently created’
wave. Importantly, a form of evolution is introduced by making all particles
from some lower performing wave be compulsorily recruited into a better
performing higher numbered wave. Waves that run out of particles (owing to
promotion or recruitment) die out. In this way there is a continual automatic
updating of best position information available to the successive waves.

For static problems2 each particle keeps a tabu list of places that it has
already explored and is repelled from any place on its tabu list. In this
way re-exploration of any point in problem space is largely (but not totally)
eliminated and much pointless computation saved.

2 The minor changes to suit WoSP to dynamic problems, ones that change even
whilst the optimization algorithm is running, will be discussed later.

The Particle Swarm Algorithm 1041

5 Controlling the Computational Expense

Whichever version of PSO is used, every time a particle moves to a new posi-
tion the fitness of this particle at this position has to be calculated. For real
life complex problems this fitness calculation may well dominate the compu-
tational load of the algorithm. Although the PSO lends itself to being run on
a number of computers in parallel (for example each particle’s current fitness
being evaluated simultaneously by a different computer), for really complex
problems even this approach is not adequate and it behoves us considering
ways to improve the computational efficiency of the PSO algorithm. Two
possible computational enhancement possibilities will be mentioned here.

5.1 Using a Dynamic Swarm Size

Since the fitness of each particle has to be evaluated for every iteration of the
algorithm, one possible approach is to limit the number of particles. While
swarms do not need to be large, too few swarm members will limit the search
capability and thus the average quality of the results obtained. However, the
number of particles does not need to be constant. When the swarm is converg-
ing and the particles get very close together it may be a waste of resources to
support so many particles. Some particles could simply be ‘switched off’ and
take no further part in the swarm thus saving their evaluations. Of course, the
monitoring required and deciding when such action should be taken, must not
add so much computational cost as to negate the computational advantage we
seek to gain. In addition, knowing precisely when and which particles should
be switched off is in itself a non-trivial matter.

5.2 Fitness Estimation

It is possible to avoid having to measure the fitness at every position if you can
instead estimate it. This has been shown to work for genetic algorithms [23]
and a variation has been shown to work for PSO for a range of problems [12].
The idea is to estimate the fitness of a particle at a new position using the
fitness of this particle last time it was estimated or evaluated together with
the fitness of the particle that last iteration was closest to this new position.
These fitnesses may be estimates themselves and may have been estimated
from other fitnesses that were themselves estimates. Obviously a fitness based
on estimates that were based on estimates, and so forth, would not be very
accurate and so a new parameter is associated with a particle’s fitness – its
‘reliability’. This is set to one if the fitness was found as a result of a true
evaluation, and this figure is decreased every time an estimation of the fitness
is made. When a fitness drops below a threshold, the estimation is discarded
and a true evaluation done, returning the reliability to one.

The formulae for estimating the fitness and reliability of the particle in
the new position (Fnew and Rnew) in terms of the fitness and reliability of the

1042 T. Hendtlass

two closest positions to its new position during the last iteration (F1, R1 and
F2, R2) are:

Fnew =
W1F1R1 + W2F2R2

W1R1 + W2R2
(6)

and

Rnew =
(W1R1)2 + (W2R2)2

W1R1 + W2R2
(7)

where W1 and W2 are the relative weightings to be placed on the two closest
positions. These weightings are derived from the Cartesian distances between
the new position and each of the two closest positions last iteration (D1 and
D2):

W1 = 1− D1

D1 + D2
(8)

and
W2 = 1− D2

D1 + D2
(9)

Figure 2 shows the fitness values (and their reliabilities) that would be
calculated for a simple one-dimensional case, where the values are derived
from a fitness of 1 (reliability 0.8) at position 15 and another fitness of 2
(reliability 0.6) at position 25. Notice how the fitness and reliability matches
at each known point. The fitness is linearly interpolated between the two
known points and moves asymptotically to the average of the two fitnesses at
points far from them. The reliability however falls away the further we move

Fig. 2. An example fitness and reliability calculation in one dimension

The Particle Swarm Algorithm 1043

from a known point – note how the value is influenced by the reliability of the
closest known point.

The only new parameter introduced to the algorithm is the reliability
threshold T [0..1] that is used to determine when a true fitness evaluation
is required (a threshold of 1 would result in true evaluations every time as in
a conventional PSO). The initial positions of all particles must be truly evalu-
ated and their reliability set to 1. However, after this the following algorithm
is used whenever a particle’s fitness is required. Note that it only requires
a list to be kept of the positions, fitness and reliability of all particles’ last
iteration. It would, of course, be possible to keep a list of positions, fitness
and reliability triads derived from more than just the last iteration, but expe-
rience so far suggests that any modest increase in performance is not worth
the computational cost.

Algorithm 5 PSO position, fitness and reliability algorithm
1. Record the distance this particle has moved since last iteration and this
particle’s fitness and reliability last iteration.
2. Find the particle whose position last iteration was closest to this particle’s
current position and record its fitness and reliability, together with the distance
from this particle’s current position.
3. Using Eqns. (8) and (9) calculate the relevant weighing factors for each of these
two positions.
4. Using Eqns. (6) and (7) estimate the fitness and reliability of the fitness estimate
for this particle’s current position.
if this reliability is greater than the threshold then

keep these fitness and reliability estimates.
else

discard the fitness estimate and perform a true fitness evaluation;
set reliability of this fitness to 1.

Experiments have shown that there is no significant difference in the aver-
age performance at any number of iterations of the algorithm with or without
fitness estimation. However, using fitness estimation would have required far
fewer real fitness evaluations, a saving in time if the time for a true fitness
evaluation is greater than the time required to find the closest particle and
calculate the fitness estimate. This condition will be met for many real life
practical problems, and so for these problems using fitness estimation will
allow you to obtain essentially the same result in a shorter time.

6 Dynamic Optimization Problems

Dynamic optimization problems are problems in which the objective function
being optimized changes in some way while the optimization is taking place.
Obviously there will be some limit to the rate of change that can be tracked,

1044 T. Hendtlass

but swarms are able to adapt to changing conditions as long as they are not
too rapid. The changes can be divided into three groups [22]:

1. The actual problem being changes alters as time passes. For example, when
scheduling the delivery of goods to multiple places the original aim of
minimizing fuel usage is replaced by an overwhelming need to minimize
the number of late deliveries.

2. The components available to use in building the solution change. To con-
tinue the same example used above, some delivery trucks break down and
others are returned from repair and become available.

3. There is a change to the constraints on the problem. Still continuing the
same example, some of the roads that might be used now have altered
speed restrictions.

In practice however, much of the work in the area of dynamic problems
has been done on function optimization problems in which the position and/or
magnitude of peaks in the function vary with time.

When attempting to find and track optima in dynamic problems, the
swarm behavior must become even more un-biological. It is a more biolog-
ically plausible scenario to have to track an optimum that slowly changes
position (while remaining a good optimum) than to have to find the global
optimum from a number of local optima that change their relative quality
ranking (and possibly position). It is not surprising therefore that, provided
the swarm is not allowed to fully converge so that the velocity of each particle
is reduced to zero, a slowly moving peak can expect to be followed in the
sense of there being a high probability that one or more particles will tra-
verse sufficiently close to the moving peak at the time of a fitness evaluation
that the new position of the optimum is discovered. A number of methods to
ensure incomplete convergence will be described below but on their own none
of these is a complete solution as some mechanism also has to be introduced
to update the best fitness known based on a combination of the value found
and the time at which it was found.

To observe the emerging eminence of a local optimum far from the position
towards which the swarm was just converging requires some swarm particles
to be exploring in the vicinity of this distant position. Various methods to
achieve this will also be described below. Again the maintenance of a number
of explorer particles is not a complete solution. The social factors (the best
position found by each particle and by the swarm) must also be updated as
the old information goes out of date.

6.1 Ways to Achieve these Adaptations

As suggested above there are a number of non-biological adaptations that need
to be made to the classical swarm algorithm to suit it for dynamic problems.
These can be summarized as:

The Particle Swarm Algorithm 1045

• preventing the complete convergence of the swarm,
• keeping personal and social reference points up-to-date, and
• maintaining or generating explorer particles far from any current point of

convergence.

Approaches that achieve at leat one of these aims will be considered.

6.2 Preventing Total Convergence

Social influences between particles – attractions to gbest and lbest – will clearly
tend to result in total convergence. In order to change this it is necessary to
introduce some counter influence.

One method, introduced by [1] is to give at least some particles a charge so
that, by analogy with electrostatics, two particles would experience a repul-
sion force as they approached and the swarm would then not be able to fully
converge. The particles would in time reach some (possibly dynamic) equilib-
rium between the convergence and divergence effects, but this does not mean
that they are actively exploring.

A second method, introduced by [5], is to divide the swarm into sub-swarms
so that not all particles are converging on the same point. As well as the main
swarm, a particle and its closest neighbours may form a sub-swarm if the
variance in the fitness of the particles is less than some threshold. Any particle
that is not a member of a sub-swarm belongs to the main swarm. These
sub-swarms may merge or acquire extra particles from the main swarm or
collapse back into the main swarm. While developed for multi-modal functions
this niching behavior could also be used, in principle, to limit total swarm
convergence. However the algorithm depends on a uniform distribution of
particles in the search space, a condition that may be able to be met after
initialization but which is not met after convergence into the sub-swarms has
taken place.

6.3 Refreshing the Best Positions

If an attraction to pbest is being used these best positions may be updated
by allowing particles to replace their previous best position with the current
position periodically [6]. Choosing a suitable period without knowledge of the
problem being optimized can be problematic. If an attraction to gbest is being
used then the fitness at this position may be periodically re-evaluated [2]. As
the fitness at that point deteriorates, the probability that it will be replaced
by another position as a result of the current fitness at that position increases.
Again a suitable re-calculation frequency has to be chosen.

1046 T. Hendtlass

6.4 Forcing Explorer Particles

The simplest approach just requires that a number of particles be periodi-
cally moved to randomly chosen points and have their fitness re-evaluated
[16]. Another approach organizes particles in a tree with each particle being
influenced by the particle above it (social) and itself (best position and
momentum). A particle swaps with the one above it if it out performs it.
This gives a dynamic neighbourhood that does require extensive calculation.
This has been adapted to dynamic problems by [17,18]. After the value of the
best-known position (gbest) changes (it is re-evaluated every cycle) a few sub-
swarms are re-initialized while the rest are reset (have their old personal best
information erased and replaced with the current position). The sub-swarms
then search for the new optimum.

[1] introduce a more elaborate approach using quantum particles. Using an
analogy to quantum mechanics, a particle on measurement is placed randomly
within a given radius of its net current point of attraction. A uniform (and
very un-physical) distribution is used, but this could be changed so that there
was not a uniform probability of the particle being at every distance, and a
function chosen so that a finite probability exists of a movement to a distance
far from the point of attraction.

6.5 Adapting WoSP to Dynamic Problems

WoSP, because of the sequential way it explores optima, is inherent suited
to dynamic problems. All that needs to be changed is the removal of the
tabu list that each particle keeps, recording the positions from which it has
been promoted. While for static problems repulsion for these points makes
sense, for dynamic problems a particular point in problem space may be a
good optimum at several disjoined times and a poor optimum in between
these times. Completely removing the list may be inefficient, it may be better
to periodically review the entries on each particle’s list. Extending the idea
from [18], each of the previously explored optima on all the lists could be
periodically re-examined and all points for which significant changes were
found to have occurred in the fitness would be removed from the tabu lists of
the particles. This would need to be done frequently and whether the reduced
re-exploration would be worth the computational expense of this housekeeping
is not clear.

7 Particle Swarm and Quantized Problem Spaces

So far all the descriptions of the PSO have been in terms of continuous prob-
lem spaces, indeed all the swarm update equations presented in this Chapter
explicitly require a continuous problem space. However, this does not mean

The Particle Swarm Algorithm 1047

Fig. 3. An axis in PSO space suitable for a five value quantized parameter in
problem space

that the PSO cannot handle other types of problems with other types of prob-
lem spaces. All that is required is the ability to map the continuously variable
positions in the PSO particle space to the problem space. There are many
problem spaces that are not continuous problem spaces and there is not room
to describe possible mappings for more than one. The one problem space cho-
sen is the quantized problem space, a space in which the values associated with
some parameter are constant for a while and then change instantaneously to a
new value. The values of this parameter are discrete (quantized) values. As an
example of the mapping required, consider the case where a certain parameter
can only have one of five values, it does not matter what the actual values
are, we will refer to then as V1, V2, V3, V4 and V5.3 Let the length of the axis
in PSO space be L. Figure 3 shows this axis.

Note that the axis wraps around, a particle reaching the end of the axis
at L immediately reappears at position zero. Effectively, Eqn. (3) becomes:

XT+t = (XT+t × V T+t)mod(L) (10)

If L is made equal to the number of categories, the value that a particle’s
position corresponds to can be found by applying Eqn. (10) and then taking
the integer part of the answer. However, there is obviously a length of L/N
on an axis that will correspond to the same quantized value (where N is the
number of values – five in this example). The fitness function is required to
be continuous in the sense that adjacent positions should in general return
different fitness values so as to provide guidance to the swarm as it converges.
For this reason the distance of a particle from the closest cell centre may
also be recorded (expressed as a fraction of L/N). The fitness function now
becomes comprised of two parts, the ‘normal’ fitness function (F) and the
average of these fractional distances across all axes in the problem (f). When
deciding if one position is fitter than another the ‘normal’ fitness function
parts of the total fitness (the two F values) are consulted first. If these differ,

3 Each quantum value has been allocated an equal length on the axis in this exam-
ple. This is not essential and different lengths could be allocated, each length
being set proportional to the relative probability of this quantized value occurring,
perhaps.

1048 T. Hendtlass

the answer is clear. However, should they be the same then the position with
the better value of f is chosen.

8 Some Sample Results

8.1 Problems used as Examples in this Chapter

This Chapter has described a number of variants of the PSO algorithm and
a number of problem domains to which they may be applied. Space will not
allow results to be presented for every variant and every domain; indeed the
limitations of fixed type do not readily allow the presentation of dynamic
problem results in a simple and clear way. The results from four problems
have been chosen in order to show the behavior of the basic and WoSP vari-
ants of PSO both with and without fitness estimation and on continuous and
quantized problem spaces. These problems are described below.

Finding the Origin

The first of these is the apparently trivial problem of finding the origin, the
fitness of each particle being its distance from the origin, as shown in Eqn. (11).

f =
100∑
i=1

√
(xi)2 (11)

where f is the fitness and xi is the ith component of the position of the
particle.

This becomes quite hard as the number of dimensions increases for any
algorithm that makes simultaneous updates to all dimensions (as the PSO
does). For a new position to be more successful than the old position the net
effect of all the changes in all the dimensions must be a decrease. As the num-
ber of dimensions increases this becomes harder, especially approaching the
origin. Results will be presented for PSO seeking the origin in 100 dimensions.

Rastrigin’s Function

The second problem is Rastrigin’s Function Eqn. (12).

f = ((xi)2 − 10cos(2πxi)− 10) xi ∈ [−5.12 · · ·5.12] (12)

where f is the fitness and xi is the ith component of the position of the
particle.

This is a well known function commonly used as a test problem for
optimization algorithms. This can be readily solved by a traditional PSO
algorithm.

The Particle Swarm Algorithm 1049

Schwefel’s Function

The third problem is Schwefel’s function [24] in 30 dimensions. This is another
well known function commonly used as a test problem for optimization algo-
rithms. It has a large number of local optima but one unique global optimum.
No matter the number of dimensions, the position and size of this global opti-
mum can be readily calculated, as can the positions and sizes of any local
optimum.4

f =
30∑

i=1

xisin(
√
| xi |) xi ∈ [−512.03 · · ·511.97] (13)

where f is the fitness and xi is the ith component of the position of the
particle.

This problem is included as the chance of the conventional PSO algorithm
finding the global optimum position is very low. This is because in 30 dimen-
sions there are 1.2 ×1027 local optima that need to be explored. Sequentially
exploring optima using the WoSP PSO variant gives an approximately 40%
chance of finding the one global optimum [4]. Like many real life problems that
also have many local optima, fitness evaluation now constitutes a significant
fraction of the total computational load.

A Timetabling Problem

Finally a simple quantized problem space is used to illustrate how the PSO
may solve this type of problem. The problem used is a simple timetabling
problem involving scheduling nineteen classes for four groups of students in
three rooms for one day of six time periods. While all classes can occur in any
of the six available time periods there are various constraints as to the rooms
each class may occur in and the group(s) of students that will be involved.
The aim is to timetable the classes so that these constraints are met and no
student is required to undertake two classes at once and no room is required
to contain more than one class at a time. The constraint details are shown in
Table 1, with the classes, room and groups identified by numbers.

There are approximately 1.7 × 1026 ways in which these classes can be
arranged but only slightly more than 2,500 that meet all constraints. While
this is a trivial problem as far as timetabling is concerned, it is more than
adequate to explore the behavior of PSO particles in quantized problem spaces
as it is easy to comprehend and has the advantage of fast fitness evaluation.

4 The version of Schwefel’s function given here is the form in which the value of
the fitness function can be negative at some places in problem space. If it is
more convenient for the fitness to always be positive (for example if in a GA
with the breeding probability directly proportional to the fitness) this can be
achieved by adding 418.9829 times the number of dimensions to the result given
by equation 13.

1050 T. Hendtlass

Table 1. Timetable problem constraints

Class Possible Groups
rooms involved

1, 2, 3 1, 2, 3 1
4 4 1

5, 6, 7 1, 2, 3, 2
8 4 2

9, 10, 11 1, 2, 3 3
12 4 3

13, 14, 15 1, 2, 3 4
16 4 4
17 1, 2, 3 1, 2
18 1, 2, 3 3, 4
19 1 1, 2, 3, 4

Table 2. Parameter values used for each of the four problems

Parameter Origin Rastringin’s Schewefel’s Timetable
problem function function problem

Particle count 30 30 30 30
M 0.5 0.9 0.9 0.9
G 0.5 0.9 0.9 0.3
L 0.5 0.5 0.5 0.7
Neighbourhood Particle & Particle & Particle & Particle &

3 closest 3 closest 3 closest 3 closest
Search scale – – 500 2

SRF factor – – 5000 500
SRF power – – 3.5 3.5

Two quantized variables were associated with each class, the time it is to
be scheduled and the room it is to occur in. Each of these is mapped to a
different axis in problem space. A total of 38 axes were therefore required to
schedule these 19 classes. The number of possible quantized values these axes
contain varies from 1 to 6.

8.2 Experimental Details

The values used for the parameters for each of these four problems are shown
in Table 2.

9 Sample Results

All the figures below contain multiple plots, each corresponding to a different
threshold. The concept of a threshold is really only meaningful when using
some fitness estimation, but setting the threshold to one has the effect of not

The Particle Swarm Algorithm 1051

allowing any fitness estimation – the ‘traditional’ PSO. For thresholds below
one, the lower the threshold value the higher the ratio of fitness estimations
to true fitness evaluations.

9.1 Minimizing the Distance to the Origin in 100 Dimensions

The fitness values reported at a particular iteration are the average distance
from the origin of all 30 particles in 100 independent repeats of the experiment.

There is some evidence on all the plots in Fig. 4 of two phases of activity, in
the first of which fast progress is made. In the second phase (from about 1000
iterations onwards) progress is slower as the algorithm finds it harder to make
a move that has a net beneficial effect on the fitness over all 100 dimensions. It
could be argued that PSO (like other algorithms that simultaneously update
all dimensions) is not a very suitable algorithm for this second phase.

Having a threshold of either 0.75 or 0.5 has little effect on the average
best fitness per iteration compared to a threshold of one, despite the fact that
the first two thresholds correspond to a mixture of fitness estimation and true
fitness evaluation, and the last to only using true fitness evaluation. When the
threshold is as low as 0.25, the average fitness falls more slowly. The fact that
the estimated fitness can never be lower (or higher) than the lowest (highest)
fitness of the two reference points from which it is derived makes it even
harder for the algorithm to find points whose estimated fitness is better than
the current Gbest and Lbest. This may, at first sight, suggest that the fitness

0 2000 4000 6000 8000 10000
Iteration

0

200

400

600

A
ve

ra
ge

 fi
tn

es
s

Threshold=1
Threshold=0.75
Threshold=0.5
Threshold=0.25

Fig. 4. Finding the distance to the origin in 100 dimensions as a function of the
iteration

1052 T. Hendtlass

0.1 10 1000 100000
Number of evaluations

0

200

400

600

A
ve

ra
ge

fit
ne

ss

Threshold
1
0.75
0.5
0.25

Fig. 5. Finding the distance to the origin in 100 dimensions as a function of the
number of true evaluations as opposed to fitness estimates made (the fitness values
reported at a particular iteration are the average)

estimation PSO algorithm is not particularly suited to problems containing
regions of problem space that are smooth changes.

However, when the average fitness is plotted against the number of true
evaluations as in Fig. 5, it becomes clear that for this problem it will take less
true evaluations to achieve a given performance using fitness estimation than
when not using it (if only marginally for a threshold of 0.25). The quality
of the final solution is comparable in all cases. Had the time taken to do
a true evaluation been significantly greater than the time taken to estimate
the fitness (which is not the case for this particular simple demonstration
problem), the overall result would have been less computing for results of
comparable quality.

9.2 Rastrigin’s Function in 100 Dimensions

Consider the bold line in Fig. 6 which shows the average best known fitness
(averaged over 100 independent repeats) for a PSO solving Rastrigin’s Func-
tion in 100 dimensions using only true fitness evaluation. While the gradient
of the graph varies, progress is almost continuous, with only short periods
of apparent stagnation. A genetic algorithm would be likely to show longer
periods of apparent stagnation. Like a GA, the solid curve tends to plateau
out in the vicinity of, but not actually at, the global optimum of zero. Once

The Particle Swarm Algorithm 1053

10 100 1000 10000
Iteration

0

2000000

4000000

6000000

A
ve

ra
ge

 fi
tn

es
s

Threshold=1
Threshold=0.75
Threshold=0.5
Threshold=0.25

Fig. 6. Best known fitness per iteration (averaged over 100 independent repeats)
for Rastrigin’s function in 100 dimensions

Table 3. Final statistics for Rastrigin’s function (averaged over 100 independent
repeats)

Threshold 1 0.75 0.5 0.25

Average fitness 1553 1511 1525 1619
Standard deviation 221 180 121 153
Maximum 2544 2510 1899 2074
Minimum 1241 1166 1262 1314

in the vicinity of an optimum it is often better to switch to using a simple
gradient descent algorithm for the local search.

Figure 6 shows that it would be hard to pick whether fitness estimation
was being used (and, if it were, what value was being used for the threshold)
if one just has the average best known fitness at each iteration (an iteration
is all particles making one position update). The values presented here are for
30 particles and the average is over 100 independent repeats.

However, Fig. 7 once again shows that the performance as a function of
the number of true evaluations differs substantially with the four threshold
values. The performance with a threshold of one (no fitness estimation) is
poorer than any of those that do allow fitness estimation.

Table 3 shows the average final fitness and the standard deviation for the
four tested threshold values, along with the maximum and minimum final
values found (a total of 100 independent repeats were done for each threshold

1054 T. Hendtlass

10 100 1000 10000 100000
Number of evaluations

0

2000000

4000000

6000000
A

ve
ra

ge
 fi

tn
es

s
Threshold=1
Threshold=0.75
Threshold=0.5
Threshold=0.25

Fig. 7. The best known fitness per true evaluation (averaged over 100 independent
repeats) for Rastrigin’s function in 100 dimensions

value). As Rastrigin’s Function is a minimization function (with a global best
value of zero) the final values show that the exact optimum had not been
located, although compared to the initial values of over 6,000,000 the parti-
cles had made significant progress in the number of iterations that they had
been allowed (20,000). Again PSO, with or without fitness estimation, is not
efficient in the final stages of converging to an optimum. Table 3 also shows
that the threshold in use could not be identified from these end results in a
blind test.

Figure 8 shows the ratio of the cumulative totals of the number of fitness
evaluations to the number of fitness estimations for Rastrigin’s function as
a function of the iteration number. Note that whenever fitness estimation is
being used this ratio is asymptotic to a number less than one. This means
that the number of true fitness evaluations is always less, often significantly
less, than one half of the number of true fitness evaluations that would be
required by a PSO algorithm that does not use fitness estimation.

9.3 Schwefel’s Function in 30 Dimensions

This function, with its many local optima, is highly problematic for a tradi-
tional PSO algorithm. However, it can be solved by successive exploration of
optima using the WoSP variant of the PSO algorithm [14] The results pre-
sented here only show relatively early stages of this exploration (only the first
10,000 iterations, by which stage the best known result is well within the top
thousandth of one percent of all results). However, given 200,000 iterations,
WoSP has a 41% chance of finding the global optimum [14].

The Particle Swarm Algorithm 1055

0 4000 8000 12000 16000 20000
Iteration

0

0.2

0.4

0.6

0.8

R
at

io
of

 e
va

lu
at

io
ns

 to
es

tim
at

io
ns

Threshold=0.75
Threshold=0.5
Threshold=0.25

Fig. 8. The ratio of the total number of true fitness evaluations to total number of
fitness estimations for Ratrigin’s function plotted per iteration

10 100 1000 10000 100000
Iteration

2000

4000

6000

8000

A
ve

ra
ge

 fi
tn

es
s

Threshold=1
Threshold=0.75
Threshold=0.5
Threshold=0.25

Fig. 9. The best known fitness per iteration (averaged over 100 independent repeats)
for Schwefel’s function in 30 dimensions

Although there is some difference in the early stages and a slight difference
in the late stages, the plots of the average best known fitness versus iteration
shown in Fig. 9 are very similar, especially during the time that the swarm is
making good progress. Since this is a plot of the best optimum known, many

1056 T. Hendtlass

1 100 10000 1000000
True evaluation count

2000

4000

6000

8000

A
ve

ra
ge

 fi
tn

es
s

Threshold=1
Threshold=0.75
Threshold=0.5
Threshold=0.25

Fig. 10. Best known fitness per true evaluation (averaged over 100 independent
repeats) for Schwefel’s function in 30 dimensions

optima are explored without affecting the plot. Nevertheless progress is fairly
continuous with few regions of apparent stagnation.

When plotted as the average best known fitness versus the number of true
evaluations (Fig. 10), the advantage of using fitness estimation becomes clear.
If there was only enough time to perform 10,000 true fitness evaluations, the
best location found by the conventional WoSP PSO (threshold=1) would have,
on average, a fitness of some 3500. Using a threshold of 0.25, the best location
the WoSP PSO with fitness estimation would have found, on average, would
have a fitness of about twice this.

The particular significance of this result is that it is achieved in a system
that frequently moves particles far from the region(s) of problem space that
have been explored. This underlies the importance of the reliability value
associated with the fitness, and the way that this decreases, not only with
the reliability associated with the two reference positions in use, but also
with the distance of the new position from these two reference positions. This
clearly demonstrates that the fitness estimation algorithm not only decreases
the number of fitness evaluations required but also is reasonably efficient at
deciding when true evaluation is really required.

Results from a Simple Quantized Problem Space

Because of the large number of ways that the classes can be arranged, attempts
to solve it with the traditional PSO algorithm were, as expected, highly inef-
fectual (as will be seen from Table 5). However, the WoSP variant of the PSO

The Particle Swarm Algorithm 1057

was able to solve the problem. Details of the basic parameter values used are
shown in Table 2. It is not claimed that the values used were optimal but they
do follow the general guidelines given in [15]. Each swarm was randomly ini-
tialized and then allowed 1,500,000 evaluations after which the best solutions
found were recorded.

A simple problem specific local heuristic was used that took a solution
with one or more constraint violations and repeated the following set of steps
until either the number of constraint violations was reduced to zero or a user
specified number of attempts had been made. A list of all classes that were
involved in these violations was made. One class was chosen at random from
this list and a second list made of all the other room time combinations to
which it could be moved. One possible move was chosen from this second
list and the change this possible move would make in the constraint violation
count was calculated. Only if this was positive was the move actually made.
A new list of clashing classes was then made and the process repeated until
either no clash occurred or a total of fifty tries had been made. The algorithm
described in the above paragraph is very greedy and can easily result in a
local optimum being reached that does not meet all constraints. As a result
the original quantized position passed to the local heuristic was saved and the
algorithm described above was tried twenty times, with the original quantized
position being restored at the start of each time. The best result found in any
of these twenty tries was the result actually used. The extra computational
load was insignificant as the local heuristic was only run when a wave died –
typically a few hundred times per run. The results of running the conventional
and WoSP variant of the PSO on this problem are shown in Table 4.

Table 4 shows that in terms of the best performing repeat out of each group
of 100 there is a steady improvement as progressive enhancements are made to
the classical particle swarm algorithm (from left to right in the table). Inter-
estingly, adding waves alone produces a greater positive effect than adding

Table 4. An overview of the performance of 100 independent repeat runs for each
of the four possible combinations of waves and local heuristic

Using waves No No Yes Yes
Local heuristic No Yes No Yes

Number of times one or more solutions 0 0 8 80
found that satisfied all constraints

Average number of constraint 5.72 3.81 2.25 0.2
violations per run

Number of constraint violations 1 1 0 0
in best solution found

Number of constraint violations 8 8 3 1
in worst solution found

1058 T. Hendtlass

Table 5. The number of constraint violations for 100 repeats of each of all
combinations of waves and local heuristic

Number of constraint Waves No No Yes Yes
violations in best solutions Local heuristic No Yes No Yes
found

0 8 80
1 6 26 20
2 1 10 32
3 1 32 17
4 15 22 10
5 24 13 5
6 29 14
7 27 2 2
8 3 1

Table 6. The average reduction in constraint violations obtained using the local
heuristic for 100 repeats with and without waves

Average Minimum Maximum

Without waves 1.9 0 5
With waves 2.1 0 7

the local heuristic alone but the best results are obtained when both of these
are used. While Table 4 shows only the best result for each repeat, Tables 5
and 6 show statistics derived from all the repeats for all combinations.

Comparing the columns in Table 5 that do not involve the local heuristic,
it is clear that the addition of waves consistently and substantially improves
the performance. Again it can be observed that the performance with waves
alone is better than the performance with the local heuristic alone.

Table 6 shows that the improvement made by the use of the local heuristic
was essentially independent of the use of waves.

The best performing combination by far is when both waves and the local
heuristic are used and these results have been examined in more detail.

During the 100 independent repeats, each run reported on average 653
(max 671, min 634) candidate solutions that were passed to the local heuris-
tic. A candidate solution corresponds to the best position found by a wave
during its existence and subsequently refined using the local heuristic. The
range of the number of constraint violations in all these candidate solutions is
from 0 to 12. During the runs a grand total of 1242 solutions that satisfied all
constraints (absolute solutions) were found. Twenty runs produced no abso-
lute solutions; the other 80 runs produced between 1 and 51 solutions each,
with an average of 15.7 absolute solutions per run. However, even though each
particle maintained an individual list of promotion points, some optima were

The Particle Swarm Algorithm 1059

explored by more than one wave during a run. On average, the runs that found
absolute solutions found 5.8 different absolute solutions each (the maximum
for any wave being 21, the minimum 1). Overall, the 100 repeats found a
grand total of 446 different absolute solutions out of the approximately 2500
that exist.

10 Concluding Remarks

The particle swarm optimization algorithm has proved to be efficient, fast
and flexible. It shows promise as an effective algorithm for a wide range of
optimization problems. A number of variations have been suggested to better
suit it to particular classes of problems and some of these, together with the
basic algorithm, have been discussed in this Chapter. No algorithm is ideal for
all situations and it has been noted the PSO, like other algorithms such as the
genetic algorithm, is really a coarse search algorithm that becomes inefficient
in the final stages of homing in on an optimum. But, when coupled with
an appropriate local search technique, PSO and its many variants deserve a
prominent place in the armory of everyone seriously involves with optimization
in the real world.

References

1. Blackwell T, Branke J (2004) Multi-swarms optimization in dynamic environ-
ments. In: Lecture Notes in Computer Science, 3005. Springer-Verlag, Berlin:
489–500.

2. Blackwell TM, Bentley PJ (2002) Dynamic search with charged swarms. In:
Langdon WB et al. (eds.) Proc. Genetic and Evolutionary Computation Conf.
– GECCO-2002 , 9–13 July, New York, NY. Morgan Kaufmann, San Francisco,
CA: 19–26.

3. Braendler D, Hendtlass T (2002) The suitability of particle swarm optimisation
for training neural hardware. In: Hendtlass T, Ali M (eds.) Lecture Notes in
Artificial Intelligence, 2358, Springer-Verlag, Berlin: 190–199.

4. Brits R (2002) Niching strategies for particle swarm optimization. Master’s
Thesis. Department of Computer Science, University of Pretoria, South Africa.

5. Brits R, Englebrecht A, van der Bergh F (2002) A niching particle swarm
optimiser. In: Proc. 4th Asia-Pacific Conf. Simulated Evolution and Learning
(SEAL’2002), 18–22 November, Singapore: 692–696.

6. Carlisle A, Dozier G (2000) Adapting particle swarm optimization to dynamic
environments. In: Arabnia HR (ed.) Proc. Intl. Conf. Artificial Intelligence,
26–29 June, Las Vegas, NV: 429–433.

7. Carlisle A, Dozier G (2002) Tracking changing extrema with adaptive particle
swarm optimizer. In: Jamshidi M, Hata Y, Fathi M, Homalfar A, Jamshidi
JS (eds.) Proc. World Automation Congress (Intl. Symp. Soft Computing in
Industry – ISSCI’2002) 9–13 June, Orlando FL, TSI Press, Albuquerque, NM:
265–270.

8. Clerc M (1998) Some math about particle swarm optimization. (available
online at http://clerc.maurice.free.fr/PSO/PSOmathstuff/PSOmathstuff.htm –
last accessed January 2007).

1060 T. Hendtlass

9. Clerc M (1999) The swarm and the queen: towards a deterministic and adap-
tive particle swarm optimization. Proc. Congress Evolutionary Computation
(CEC1999), 6–9 July, Washington, DC. IEEE Press, Piscataway, NJ, 3: 1957.

10. Digalakis J, Margaritis K (2000) An experimental study of benchmarking
functions for genetic algorithms. Intl. J. Computer Mathematics, 79: 403–416.

11. Eberhart R, Shi Y (2000) Comparing inertia weights and constriction factors in
particle swarm optimisation. Proc. 2000 Congress Evolutionary Computation,
16–19 July, La Jolla, CA. IEEE Press, Piscataway, NJ: 84–88.

12. Hendtlass T, (2007) Fitness Estimation and the Particle Swarm Optimisa-
tion Algorithm, Proc Congress on Evolutionary Computing (CEC2007). IEEE
Computer Society Press, Piscataway, NJ: 4266–4272.

13. Hendtlass T (2006) A particle swarm algorithm for complex quantised prob-
lem spaces. Proc. Congress Evolutionary Computation (CEC2006), 16–21 July,
Vancouver, Canada. IEEE Computer Society Press, New York, NY: 3760–3765.

14. Hendtlass T (2005) WoSP: a multi-optima particle swarm algorithm. Proc.
Congress Evolutionary Computing (CEC2005) 2–5 September, Edinburgh, UK.
IEEE Press, Piscataway, NJ: 727–734.

15. Hendtlass T (2004) A particle swarm algorithm for high dimensional
problem spaces. Proc. IEEE Swarm Workshop, 9–11 May, Ann Arbor,
MI (available online at http://www.cscs.umich.edu/swarmfest04/Program/
Abstracts/abstracts.html #HendtlassT – last accessed 22 May 2007).

16. Hu X, Eberhart R (2002) Adaptive particle swarm optimisation: detection and
response to dynamic systems. In: Proc. Congress Evolutionary Computation
(CEC2002), 12–17 May, Honolulu, Hawaii. IEEE Press, Piscataway, NJ:
1666–1670.

17. Janson S, Middendorf M (2003) A hierarchical particle swarm optimizer. Proc.
Congress Evolutionary Computing (CEC2003), 9–12 December, Canberra,
Australia. IEEE Press, Piscataway, NJ: 1666–1670.

18. Janson S, Middendorf M (2004) A hierarchical particle swarm optimizer for
dynamic optimization problems. In: Raidl GR, Cagnoni S, Branke J, Corne DW,
Drechsler R, Jin Y, Johnson CG, Machado P, Marchiori E, Rothlauf F, Smith
GD, Squillero G (eds.) Proc. EvoWorkshop 2004, 20–24 June, Toulouse, France.
Lecture Notes in Computer Science 3005, Springer-Verlag, Berlin: 513–524.

19. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc. IEEE
Conf. Neural Networks (ICNN95), November, Perth, West Australia. IEEE
Press, Piscataway, NJ: 1942–1947.

20. Paquet U, Engelbrecht AP (2006) Particle swarms for equality-constrained
optimization. Fundamenta Informaticae, 76: 1–24.

21. Parrot D, Li X (2004) A particle swarm model for tracking multiple peaks in
a dynamic environment using speciation. In: Proc. 2004 Congress Evolutionary
Computation (CEC2004), 20–23 June, Portland, OR. IEEE Press, Piscataway,
NJ: 98–103.

22. Randall M (2005) A dynamic optimisation approach for ant colony optimisation
using the multidimensional knapsack problem: recent advances in artificial life.
Advances in Natural Computation, 3: 215–226.

23. Salami M, Hendtlass T (2002) A fast evaluation strategy for evolutionary
algorithms. J. Soft Computing, 2(3): 156–173.

24. Schwefel HP (1981) Numerical Optimization of Computer Models. Wiley,
Chichester, UK.

Resources

1 Key Books

Engelbrecht AP (2005) Fundamentals of Computational Swarm Intelligence.
Wiley, London, UK.

Kennedy J, Eberhart RC, Shi Y (2001) Swarm Intelligence. Morgan
Kaufmann, San Francisco, CA.

Bonabeau M, Dorigo M, Theraulaz G (1999) Swarm Intelligence: From
Natural to Artificial Systems. Oxford University Press, UK.

2 Organisations, Societies, Special Interest Groups,
Journals

IEEE Computational Intelligence Society
http://www.ieee-cis.org

3 Key International Conferences/Workshops

IEEE Congress on Evolutionary Computing – CEC (IEEE)

Genetic and Evolutionary Computation Conference – GECCO
(ACM SIGEVO)

Swarmfest
http://www.swarm.org

1062 T. Hendtlass

4 (Open Source) Software

CIlib – a public domain framework and library for CI algorithms
http://cilib.sourceforge.net

Optimization Algorithm Toolkit (OAT) ‘A workbench and toolkit for devel-
oping, evaluating, and playing with classical and state-of-the-art optimization
algorithms on standard benchmark problem domains; including reference algo-
rithm implementations, graphing, visualizations and much more.’
http://optalgtoolkit.sourceforge.net/

