Reducing Energy Consumption Using Genetic
Improvement

Bobby R. Bruce
University College London
London
United Kingdom

r.bruce@cs.ucl.ac.uk

ABSTRACT

Genetic Improvement (GI) is an area of Search Based Soft-
ware Engineering which seeks to improve software’s non-
functional properties by treating program code as if it were
genetic material which is then evolved to produce more op-
timal solutions. Hitherto, the majority of focus has been
on optimising program’s execution time which, though im-
portant, is only one of many non-functional targets. The
growth in mobile computing, cloud computing infrastruc-
ture, and ecological concerns are forcing developers to fo-
cus on the energy their software consumes. We report on
investigations into using GI to automatically find more en-
ergy efficient versions of the MiniSAT Boolean satisfiability
solver when specialising for three downstream applications.
Our results find that GI can successfully be used to reduce
energy consumption by up to 25%.

Categories and Subject Descriptors
D.2 [Software|: Software Engineering

Keywords

Search based software engineering, SBSE, genetic improve-
ment, GI, optimisation, energy optimisation, energy effi-
ciency, energy consumption, Boolean satisfiability

1. INTRODUCTION

Less than a decade ago the quality of software (outside of
end-user design preferences) could broadly be described as
the extent to which software met its specification while min-
imising the prevalence of bugs and usage of traditional com-
puter resources such as CPU time and memory allocation.
The growth in two new technologies, mobile computing de-
vices and cloud services, has led to a new environment for
software engineers where they must now consider the en-
ergy an application consumes; the quality of software is
now measured in Joules, as well as bug counts, seconds,
and megabytes. At present there are more smartphones in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO 15, July 11 - 16, 2015, Madrid, Spain
© 2015 ACM. ISBN 978-1-4503-3472-3/15/07. .. $15.00
DOL: http://dx.doi.org/10.1145/2739480.2754752

Justyna Petke
University College London
London
United Kingdom

j.petke@ucl.ac.uk

Mark Harman
University College London
London
United Kingdom

mark.harman@ucl.ac.uk

the world than personal computers [22], each containing a
limited store of energy between charges that must be used
efficiently. The energy required to run large server clusters
has grown considerably in the last decade, estimated to be
between 1.1% to 1.5% of global electricity consumption in
2010 [26], putting strain on energy suppliers and the budgets
of those respounsible for purchasing this energy [7]. The total
ICT infrastructure generated 1.9% of global CO2 emissions
in 2011 [5] (larger than the entire United Kingdom estimated
at 1.47% for the 2010-2014 period [42]) indicating that com-
puter science has a role to play in mitigating climate change.

Thus we believe it important that software engineers find
ways of programming computers with energy efficiency in
mind to appease the demands from consumers for longer
battery life, from companies to reduce their energy bills,
and from society’s desire to minimise humanity’s impact on
the environment.

One of the largest hurdles in producing energy-efficient
software is the developer’s disconnect between the source
code they write and the energy that will be consumed from
the compiled product they deliver [33]. Without a deep un-
derstanding of how a particular compiler works, along with
an equally deep understanding of how much energy a given
instruction will consume, the problem remains difficult for
many developers. It has been found that metrics previously
believed to guide developers to more energy efficient solu-
tions are, in reality, poor at doing so [38]. Subtle changes,
such as introducing inline methods [41], swapping API im-
plementations [33], and constructing semantically equivalent
(but structurally inequivalent) algorithms [8] have all been
shown to influence energy consumption. However this influ-
ence is difficult to determine outside of the ad hoc and inef-
ficient process of trial-and-error. Tools have been developed
to guide users to energy-inefficient areas of their software [2,
11, 30, 19] though the developer retains responsibility for
rectifying these inefficiencies.

We suggest that the most under explored method of de-
creasing software’s energy consumption lies in automated
processes. Such processes would allow developers to focus
solely on meeting the specification requirements with wor-
ries about non-functional attributes like energy consumption
left to an algorithm capable of refactoring software to a more
optimal state.

Genetic Improvement (GI) [20, 25, 27, 28, 29, 36, 37, 45,
44] is a Search Based Software Engineering (SBSE) tech-
nique [21] which treats program code as if it were genetic
material that can then be evolved to produce optimised so-
lutions. GI has previously been found effective at optimis-

ing software’s execution time [20, 28, 37, 44] and similar
genetic techniques have been shown effective at reducing en-
ergy consumption, albeit as a post-compilation process [40].
We therefore seek to investigate whether GI can be used at
the source-code level to minimise energy consumption in a
widely-used piece of software.

In 2014 Petke et al. [37] demonstrated that MiniSAT!,
a popular Boolean satisfiability solver (SAT Solver), can
be optimised for execution time, producing a solver 17%
faster than any human-written equivalent for the Combina-
torial Interaction Testing (CIT) domain. SAT solvers are
crucial components in many applications [4, Part 2], from
Al planning [24] through to package management [43] and
predicting crosstalk in integrated circuits [9]. Due to this
inherent flexibility [32] and previous success in improving
its non-functional attributes, we shall attempt to improve
MiniSAT’s energy consumption using GI techniques.

We set out to answer the following research questions:

RQ1 To what extent can MiniSAT’s energy consumption be
reduced using Genetic Improvement?

RQ2 Do different downstream MiniSAT applications require
different optimisations?

RQ3 Does reduction in energy consumption correlate to re-
duction in execution time when GI is applied?

2. OPTIMISING ENERGY CONSUMPTION
WITH GENETIC IMPROVEMENT

We build on an approach to GI first outlined by Lang-
don and Harman in 2013 [28] and later modified by Petke
et al. in 2013 [36] and again in 2014 [37] for their MiniSAT
experiments. We apply modifications to the fitness func-
tion, taking into account energy estimates made by the In-
tel Power Gadget (see Section 2.4) instead of the number
of lines executed (a metric previously used to optimise for
execution time). We also modify the selection and mutation
procedure in an attempt to tackle the phenomenon of bloat.
As in Petke et al.’s work [36, 37], all modification occurs in
MiniSAT’s Solver.C class which contains the main solving
algorithm.

2.1 Program and Genotype Representation

Modification to the software is made at the source code
level. The source code is converted into a customised tem-
plate format, captured using BNF notation. The BNF no-
tation allows lines to be tagged with discrete markers that
indicate whether a line can be modified or not. Methods,
opening and closing brackets, and initialisation lines are de-
clared unmodifiable in order to reduce the percentage of so-
lutions developed which are uncompilable. Figure 1 shows
an example of the tagging format used in our experiments.

A genotype represents a list of modifications made to this
format that is then translated to its phenotype by apply-
ing these modifications to the original source code. The
three modifications permitted are to DELETE, REPLACE
or COPY a line of source code. A DELETE operation re-
moves a line, a REPLACE operation replaces one line with
another and a COPY operation copies a line to another lo-
cation. All genetic material used is contained within the

! Available at http://minisat.se/MiniSat.html.

<Solver_235> ti= " if"<IF_Solver_235> " \n"
<IF_Solver_235> 1= " (order_heap.empty())"
<Solver_236> 1= "{\n"

<Solver_237> ti= "" <_Solver_237> "\n"

<_Solver_237> 1:= "next = (-1);"
<Solver_238> D= " break;\n"
<Solver_239> 1= "FNn"

Figure 1: A Solver.C snippet converted to our GI format.
Lines starting with “<Solver” are unmodifiable.

original source code. This development is based on the ob-
servation that source code is redundant [14, 28] to the extent
that genetic material necessary to produce an improved re-
sult is likely to be contained within the source code itself.
Special cases exist for conditional statements so that predi-
cate expressions can only be replaced or deleted with pred-
icates found in the same type of conditional statement (the
DELETE operation replaces a predicate expression with ’0’
to avoid compilation issues). For example, a while loop (e.g.,
x>5) can only be replaced with the condition of another
while loop (e.g., y==2) and can never be replaced with a
random line found elsewhere in the software (e.g., z=2z*2;).
Figure 2 shows how these modifications are represented in-
side a population of solutions.

#DELETE line 205
<_Solver_205>

#REPLACE if condition in line 154 with if
#condition in line 307
<IF_Solver_154><IF_Solver_307>

#COPY line 299 and insert above line 325
<_Solver_325>+<_Solver_299>

#REMOVE line 56 and REPLACE line 78 with
#line 145
<_Solver_b6> <_Solver_78><_Solver_145>

Figure 2: An example population of four solutions.

2.2 Fitness Function, Selection, Crossover and
Mutation

The fitness of a candidate solution is determined by mea-
suring the total energy consumed (see Section 2.4) across all
tests selected from the training set (see Section 2.3) when
using the original unmodified software divided by the energy
consumed by the phenotype across the selected tests. Thus
a fitness greater than 1 indicates a solution that consumes
less energy while a fitness less than 1 indicates a solution
that consumes more energy.

Each selected test case can either be passed or failed. A
test is deemed to have passed when the modified version
categorises a test as satisfiable or unsatisfiable with that
categorisation equal to the categorisation produced by the
original MiniSAT. We thereby use the original code as an
oracle [3] to guide the GI to functionally correct solutions.
When a test is found to have failed, the energy consumption

for that test case is not included in the fitness evaluation
and, instead, an appropriate penalty is applied.

To be selected for the next generation, a solution must
have a fitness of above 0.95, have passed an appropriate
number of the selected test cases, and be in the top 50% of
the population. Crossover is carried out by selecting one par-
ent based on fitness and another chosen randomly from the
selected individuals. Due to the simplicity of the genotype
representation, crossover consists of appending one genotype
to another; producing a new individual. Crossover is carried
out until the population size, after selection, has doubled.

After crossover, mutations are applied to the selected geno-
types. Prior investigations have shown GI frameworks such
as this can lead to bloat [28, 37], resulting in effective solu-
tions being encumbered with ineffective mutations. For this
reason elitism has been implemented so that the top 5 solu-
tions in each generation move forward to the next without
mutation. The remaining selected individuals have a 50%
chance of having a mutation applied. Mutations consist of
adding a random DELETE, REPLACE, or COPY modifi-
cation to the genotype. If the population after crossover
has not met the preset population size, then single, random
mutations are added as entirely new genotypes until the pop-
ulation size is met. The initial generation is seeded in this
manner; a population consisting entirely of single, randomly
chosen, modifications.

2.3 Training Set

For each MiniSAT downstream application a training and
test set are constructed, representative of that application’s
use. Within each generation only a small subset of tests
are selected from the training set to evaluate the solutions.
A subset is chosen both to avoid over-fitting and to reduce
execution time. The number of tests is dependent on the
MiniSAT application: four for CIT (see Section 3.1) and
five for Ensemble and AProVE (see Sections 3.2 and 3.3).
To ensure this selection is representative of the entire train-
ing set, a binning system is introduced (originally presented
by Langdon and Harman in 2013 [28]) which decomposes
training set tests into bins based on complexity and type. A
random test from each bin is selected in each generation. For
our experiments we form bins based on execution time and
satisfiability. Bins 1 and 3 contain satisfiable solutions while
bins 2 and 4 contain unsatisfiable solutions. Bins 1 and 2
are examples of tests with small execution times while bins
3 and 4 are tests with larger execution times. If a 5th bin
is present, then it contains both satisfiable and unsatisfiable
solutions that have a larger execution time than those in bins
3 and 4. This test case selection process guarantees that fit-
ness evaluation is always carried out against both satisfiable
and unsatisfiable tests of varying difficulty.

2.4 Estimating Energy Consumption

We estimate the energy consumed in computing these
tests using the Intel Power Gadget API for Mac OS X2
which estimates the energy consumption of 2nd Generation
and higher Intel Core processors. Given MiniSAT’s singled-
threaded, CPU-bound nature we believe this method of es-
timation is suitable for our requirements, however it should
be noted that Intel Power Gadget estimations do not in-

2 Available at software.intel.com/en-us/articles/intel-power-
gadget/.

clude energy consumed in main memory nor that consumed
during I/O tasks.

Intel Power Gadget uses drivers and libraries to read the
processor’s special energy model-specific registers (MSRs)
over a specified time period. These register readings are
then used to calculate the total energy consumed.

We have built this API into a C++ application that takes
a terminal command as input, estimates the CPU’s energy
usage during command execution, and returns the amount
of energy consumed over this time in Joules. Running Min-
iSAT against a test case using this program gives us the
energy consumption of MiniSAT for that test case.

When carrying out our experiments we were careful to
avoid running processes that may have caused large vari-
ations in energy estimations. All unnecessary background
processes were terminated while experiments were running.
Running the original MiniSAT on a typical test case for
200 iterations, taking energy readings each time, we found a
standard deviation of 5.23% in estimates; a variance within
the limits we deem acceptable for our experiments.

3. EXPERIMENT SETUP

We modify the main solving algorithm in MiniSAT2-070721
(hereinafter simply referred to as “MiniSAT”). In each ex-
periment the GI framework is run for 20 generations with
a population of 100. Once complete each solution that has
achieved a fitness greater than 1.05 is run against all tests
within the training set to give an overall ranking of the best
solutions based on the total energy consumed. This step
has been included as it was found that many solutions with
a high fitness only performed well on the tests selected for
that generation. The step can be considered a method of de-
termining the “true fitness” of the best solutions, as opposed
to the fitness value given by the GI framework. The top
solution is chosen from this “true fitness” list and declared
the “champion” solution.

The champion solution is then run against the test set
20 times with the energy readings averaged to give a value
which is then compared to the original MiniSAT’s perfor-
mance against that test set (run 20 times then averaged) to
obtain an overall percentage improvement.

We run three experiments, each specialising MiniSAT for
a different downstream application (see Sections 3.1, 3.2,
and 3.3). In practice each experiment simply requires that
we use a different training set (and test set for the final
results).

To answer RQ1 (7o what extent can MiniSAT’s energy
consumption be reduced using Genetic Improvement?) we
observe the energy improvements between the original, un-
modified MiniSAT and the champion for each downstream
application. As the champion solution and the original Min-
iSAT are run 20 times on the test set we are able to deter-
mine how statistically significant these results are.

RQ2 (Do different downstream MiniSAT applications re-
quire different optimisations?) is answered by running the
champion solution for each downstream application against
the test sets of the other applications. If a comparable en-
ergy reduction is observed when using other test sets then
the modifications applied are general (in the sense they are
improvements across all the downstream applications tested),
however if the energy reductions are significantly smaller,
crashes occur, or timeout events are triggered then the mod-
ifications must be specialised in some manner. We also anal-

yse the modifications made to the software to produce the
champion solutions in an attempt to determine whether any
similarities can be found. Where solutions are found to be
specialised, we investigate why modifications applied to one
champion are less effective (or ineffective) when used on an-
other MiniSAT downstream application.

In order to answer RQ3 (Does reduction in energy con-
sumption correlate to reduction in execution time when GI
is applied?), we take each experiment champion and mea-
sure the total time required to compute all tests within their
respective test set. These times are then compared to the
execution time of the original, unmodified software when
computing the test set to give a percentage improvement of
execution time. This can then be compared to the energy
percentage improvement. If the energy improvements are
comparable to improvements in execution time we can add
weight to the argument the two are related, if not we can
claim this relationship is not valid in all cases. To obtain
a deeper understanding of the time-energy relationship we
also sample random solutions from each experiment (20 from
each experiment, 60 in total) and measure their execution
times and energy consumption estimates on their respective
test sets. Analysing the data we are able to determine how
correlated these readings are.

The following subsections describe the MiniSAT down-
stream applications we specialise for. We have carefully se-
lected three applications areas we believe are suitably diverse
in real-world or academic usage. For each we describe the
purpose of the downstream application and give a descrip-
tion of the training and test set provided.

3.1 Specialising for CIT

Combinatorial Interaction Testing (CIT) is a black box
test sampling technique used to test highly configurable soft-
ware [34]. With highly configurable software, such as database
management systems and architectures like software prod-
uct lines, testing all configuration combinations is impossi-
ble though it remains important to ensure no combination
of configuration variables exist that results in the software
failing. CIT’s role is to produce a test suite which suffi-
ciently covers the configurations while minimising the execu-
tion time of such tests. CIT has been successfully translated
and run as a Boolean satisfiability problem [1, 34], though
running these SAT problems is a computationally intensive
task. In 2014 Petke et al. [37] optimised MiniSAT to reduce
the computation time for this domain, we aim to reduce the
energy consumption.

The CIT training set contains 58 tests, 23 of which are
satisfiable, spread evenly over 4 bins. The mean execution
time for bins 1 and 2 is 3.33s, the mean execution time for
bins 3 and 4 is 10.68s. The test set contains 20 tests, 11
of which are satisfiable with an average execution time of
13.07s.

3.2 Specialising for Ensemble Computation

Ensemble Computation is the study of an NP-complete
variant of the Boolean circuit problem where one must find
the smallest circuit that satisfies a set of Boolean functions
simultaneously [23]. This problem can be translated into
a satisfiability problem, which MiniSAT can then seek to
solve.

The Ensemble training set contains 25 tests, 12 of which
are satisfiable, spread evenly over 5 bins. The mean execu-

tion time for bins 1 and 2 is 4.21s, the mean execution time
for bins 3 and 4 is 9.89s. The average execution time for Bin
5 is 28.87s. The test set contains 14 tests contain, 4 of which
are satisfiable with an average execution time of 14.23s.

3.3 Specialising for AProVE

AProVE, Automated Program Verification Environment®
[16, 17, 18], is a system for the generation of automated
termination proofs of term rewrite systems. AProVE uses a
Boolean satisfiability solver to determine which paths can or
cannot be reached. Proving termination is a much discussed
area in computer science [6, 12, 15, 31] with SAT solvers
frequently used to aid analysis [10, 13, 39]. In this example
the SAT solver is a component in a much larger applica-
tion. This distinguishes it from the two other applications
we optimise (where SAT solvers take a central role in prob-
lem solving). It serves as a reminder that GI need not be
applied to an entire application but individual components
within an application. Any component, when receiving the
correct training data, can be optimised. Improving the parts
that, in-turn, improve the whole.

The AProVE training set contains 24 tests, 13 of which are
satisfiable, spread evenly over 5 bins. The mean execution
time for bins 1 and 2 is 6.27s while the mean execution time
for bins 3 and 4 is 19.04. The average execution time for
Bin 5 is 25.33s. The test set contains 11 tests, 5 of which
are satisfiable, with an average execution time of 17.83s.

4. RESULTS AND DISCUSSION

In this section we report the results obtained from carry-
ing out the experiments described in Section 3. All three ex-
perimental runs, each optimising a different MiniSAT down-
stream application, completed successfully.

4.1 RQ1: Energy Reduction

Application Original(J) Champ(J) Reduction(%)
CIT 3111 2969 4.58
Ensemble 2232 1665 25.39
AProVE 3145 2973 5.44

Table 1: The original MiniSAT’s total Energy consumption
across all test-set tests compared to the Champion solutions’
energy consumption.

All three experiments produced champion solutions which
out-performed the original MiniSAT, in terms of energy ef-
ficiency, for their respective test sets. Table 1 shows the
improvements. The CIT and AProVE champions achieve
modest energy consumption reductions of approximately 5%
while the Ensemble champion achieves 25.39%. Further
analysis of the results has shown that these energy esti-
mations are statistically significant (p<= 0.01) using the
Wilcoxon signed rank test (we found CIT, AProVE, and
Ensemble to have the equal p-values of 3.716 x 10™'2).

We carried out the Vargha-Delaney-A statistic on all three
experiments and found each to have a score of 1. This score
shows that the energy efficiency of the champion solutions
are entirely superior to the original MiniSAT for their re-
spective application domains. Figure 3 shows box-plots that
visually demonstrate this significant effect size.

3 Available at http://aprove.informatik.rwth-aachen.de/

o
——— o ————
—_ N
i 3]
g —— 2
™ g] by
o~
£3] ’ g g2
3 9 =] N > ™ —_—
o ™ (=] o
s > 2 o
= > 2 > @0 |
> S | =1
= g2 g -
c o [=4 c H
[T . i} u g :
4 [=3n
s s
g '
o 7 - o =}
o £ _ &
o —
T T T
Original MiniSAT Champion Original MiniSAT Champion Original MiniSAT Champion
(a) CIT (b) Ensemble (¢) AProVE

Figure 3: Boxplots of the Champion solutions’ Energy Consumption compared to that of the original MiniSAT

When taking into account that MiniSAT is a relatively
small program and that it is already considered to be quite
efficient (at least in terms of execution time), it is encourag-
ing that a reduction in energy consumption of 25% has been
achieved.

4.2 RQ2: Specialisation differences

- On CIT On Ensemble On AProVE
CIT - X X
Ensemble X - X

AProVE 3.56% 3.86% -
Table 2: The best solutions’ energy consumption when com-
puting other test-sets. An X indicates a timeout event when

running the test set.

When the champion solution for each application was run
against the test sets for the other two (see Table 2) we found
that both the CIT and Ensemble champions timeout when
attempting to run on the other two test sets (this timeout
is set at 5 minutes per test case, no test set used here ex-
ceeds 90 seconds when run on the original MiniSAT). This
indicates that these champions are “specialised” in such a
way that they cannot be generalised as optimisations for all
SAT problem sets. The AProVE champion functions cor-
rectly on the other test sets but does not achieve the same
performance improvement as seen when run in AProVE do-
main. It appears that this may be a general improvement
to MiniSAT unlike the other two solutions.

The AProVE champion solution, already shown to be a
general MiniSAT improvement, is found to be the removal of
an assert statement. Removing assert statements has pre-
viously been shown to produce good results for execution
time when optimising MiniSAT [37]. Our experiments show
that the same is true for optimising energy consumption. It
is also easy to understand why such a modification does not
result in specialisation as it will not produce a version of
MiniSAT that is functionally different to the original, un-
modified version.

The more interesting results come from the specialisation
cases (CIT and Ensemble). In the CIT solution we find a
mutation that results in a if statement being disabled (the

predicate replaced with a zero through a DELETE oper-
ation) in MiniSAT’s pickBranch function. The statement
is used for picking a random variable for assignment and is
called 2% of the time. The condition within the if statement
itself involves running a random number generator which
may be an unnecessary cost for such an under-used piece of
code. It is currently unknown why this modification results
in the solutions performing so poorly on the AProVE and
Ensemble test sets. It is perhaps the case that this rarely
entered if statement does result in significant impacts on
performance for Ensemble and AProVE, to the extent that
it is of benefit for them, but not for CIT.

For the Ensemble application, the application with the
largest reduction in energy, we found the specialisation made
a single modification to a switch statement. A modification
equivalent in outcome to changing MiniSAT’s polarity mode
from polarity_false to polarity_true. This causes the
solver to try an assignment of True instead of False to each
variable that has been picked for branching. It seems that
this polarity mode is of benefit in Ensemble Computation
, however, as previously stated, why these changes produce
measurable gains in performance is not fully understood.

One of the more unexpected, but nonetheless interesting,
observations is that the champion in each experiment has
always been a genotype containing only one modification.
We reject the idea that single modifications are truly opti-
mal. Not only does this run counter to optimal solutions
found in similar experiments [28, 37], the champion solution
found within the AProVE experiment is a general optimisa-
tion which could easily be crossed-over with the champions
found for CIT and Ensemble to produce better results for
each. Though mutation, and to a lesser extent crossover, al-
ways carries a high risk of producing poor solutions, it may
be the case that our policy of elitism and employing only a
50% mutation rate to reduce this risk, make it more diffi-
cult to produce longer, fitter genotypes. Further research is
needed to investigate these possibilities. However we believe
that the results reported here are encouraging and thereby
justify further study.

4.3 RQ3: Energy-Time Relationship

Table 3 shows the reduction in execution time for each
specialisation. When compared to the energy reduction re-

Application Unmodified(s) Champion(s) Reduction

CIT 268 261 2.58%
Ensemble 219 162 25.89%
AProVE 280 261 6.69%

Table 3: The original MiniSAT’s execution time across all
test-set tests compared to the champion solutions’ execution
times.

sults in Table 1 it can be seen that the values appear to
correlate to the execution time.

To investigate the correlation further we sampled 20 func-
tionally correct solutions from each experiment, and ran
each solution against the entire test set with both energy
estimated and time measured for each test. Figure 4 shows
the data produced from this analysis with each test case’s
energy and time costs plotted. Visually the relationship be-
tween energy and time is stark, Table 4 gives the Pearson
Correlation Coefficient for each experiment showing each to
have a very strong energy-time correlation.

Application N Correlation p

CIT 1160 0.988 <22x10716
Ensemble 457 0.995 <22x10716
AProVE 481 0.989 <22x10716

Table 4: The number of Data-Points, the Pearson Correla-
tion Coefficient and p-value for the Energy-Time relation-
ship in each experiment.

These findings show that for CPU-bound processes, such
as MiniSAT, optimising execution time exclusively has the
side effect of producing more energy-efficient solutions (and
vice-versa). This provides further incentive to investigate us-
ing execution time as a metric for reducing energy consump-
tion for CPU-bound, single-threaded applications. If energy
consumption and execution time can be bundled into a sin-
gle metric, developers may find it easier to reduce energy as
methods to reduce program execution time are already well
understood.

Although this result is somewhat expected and unsurpris-
ing, the effect has not been demonstrated empirically in the
context of SBSE. We are therefore pleased this work may aid
future research in providing evidence to their claims about
Energy-Time relationships in CPU-bound, single-threaded
applications.

S. THREATS TO VALIDITY

It is worthwhile mentioning there exists some threats to
validity for the results produced and the conclusions drawn
within this investigation. The first is the relatively small
area of code optimised (478 lines). Working on such a small
example is essentially reducing the search-space of the appli-
cation, making it easier to navigate and optimise for. Tech-
niques have been introduced for GI to optimise larger ap-
plications [28] but they have only been demonstrated for
execution time optimisation. It is currently unknown how
well these techniques would translate over to optimising for
Energy Consumption.

The Intel Power Gadget has been chosen as a power esti-
mation API for this investigation as it produced estimation
with low variance, is easy to implement, and is supplied by

a reputable hardware manufacturer though questions still
remain over how accurate this API is. The true relationship
between this estimation and the true energy consumption
is unknown. Intel provide no formal documentation on this
API, nor has there been any research into its validity mean-
ing this research has been undertaken on the assumption
the Intel Power Gadget functions within an acceptable de-
gree of accuracy. Furthermore, the gadget is limited to CPU
activity exclusively, therefore results presented here ignore
any potential energy increases occurring elsewhere and lim-
its the findings of this paper to CPU-bound applications.

6. FUTURE WORK

Our results show that optimisation is possible though there
are still questions that must be answered to allow GI for
energy optimisation to move from academia to real-world
developers.

The first and foremost of these questions is how energy
can be measured to capture usage outside of the CPU. This
is of particular importance for mobile applications which
are more likely to use components understood to consume
relatively large quantities of energy such as GPS or WiFi
[35]. Though there has been work in this area [19, 30, 35,
46] it is unknown how effectively these can be integrated
into a the GI framework and therefore further research is
required.

We highlighted in Section 5 that using GI to improve en-
ergy efficiency has yet to be applied to larger applications.
Thus we believe future investigations should focus on opti-
mising larger applications for energy consumption in order
to better understand how the techniques presented can be
scaled.

We also believe more work into Genetic Improvement is
required. The genotypes produced in our experiments are
smaller than we believe to be truly optimal. New techniques
require development and testing to ensure the best results
are delivered to the user.

7. CONCLUSION

We evolved MiniSAT, a popular Boolean satisfiability solver,
to reduce its energy consumption on three applications. We
found that energy efficiency can be improved by as much
as 25%, though this varies greatly depending on the down-
stream application being optimised. We also discovered GI
is able to find solutions to reduce energy consumption that
would be difficult for human developers to find.

Two of the three champion solutions were found to be
specialised to their respective downstream applications in a
manner that they were no longer applicable to other MiniSAT
downstream applications. This finding adds to the argu-
ments presented in previous research that GI can be used to
specialise solutions for specific environments [27, 37].

Our further investigations into the results produced in our
experiments found that the energy savings corresponded to
decreases in execution time most likely due to the CPU-
bound nature of the application optimised. The very strong
correlations found provides evidence that for applications
with similar characteristics to MiniSAT (that is CPU bound,
singled threaded, and with limited I/O activity) execution
time and energy consumption may be considered interchange-
able metrics.

Energy (Joules)

200

400 500

300

100

8.
[1]

2]

8]

[4

5

(10]

Theory and Practice of Logic Programming,
11(4-5):503-520, 2011.

8 | oo o Tgf @ ‘d:c
. _ i R _ g e
o g% v § D
) ;; S - o & P; = *
J »* 2 ® %“” BRT °
5 & i 8 w° o] ° o
®e o ¥ . o® &
1 os ’ S o ° -S— 1 @?"
/’{ V4 4
o g
0 10 20 30 40 0 1 20 30 40 50 60 10 20 30 a0
Time (Seconds) Time (Seconds) Time (Seconds)
(a) CIT (b) AProVE (c) Ensemble
Figure 4: Scatterplot of the Energy-Time relationship within the three experiments
REFERENCES [11] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna,
and C. Le. RAPL: Memory power estimation and
M. Banbara, H. Matsunaka, N. Tamura, and K. Inoue. capping. In Low-Power Electronics and Design
Generating combinatorial test cases by efficient SAT (ISLPED), 2010 ACM/IEEE International
encodings suitable for CDCL SAT solvers. In Logic for Symposium on, pages 189-194, 2010.
Programming, Artificial Intelligence, and Reasoning, [12] N. Dershowitz, N. Lindenstrauss, Y. Sagiv, and
pages 112-126. Springer, 2010. A. Serebrenik. A general framework for automatic
A. Banerjee, L. K. Chong, S. Chattopadhyay, and termination analysis of logic programs. Applicable
A. Roychoudhury. Detecting energy bugs and hotspots Algebra in Engineering, Communication and
in mobile apps. In Proceedings of the 22nd ACM Computing, 12(1-2):117-156, 2001.
SIGSOFT International Symposium on Foundations [13] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp,
of Software Engineering - FSE 2014, pages 588-598, R. Thiemann, and H. Zankl. SAT solving for
New York, New York, USA, Nov. 2014. ACM Press. termination analysis with polynomial interpretations.
E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and Springer, 2007.
S. Yoo. The oracle problem in software testing: A [14] M. Gabel and Z. Su. A study of the uniqueness of
survey. IEEE Transactions on Software Engineering, source code. In Proceedings of the eighteenth ACM
2015. SIGSOFT international symposium on Foundations of
A. Biere, M. Heule, and H. van Maaren. Handbook of software engineering - FSE ’10, pages 147-156, New
satisfiability, volume 185. IOS press, 2009. York, New York, USA, Nov. 2010. ACM Press.
Boston Consulting Group. GeSI SMARTer2020: The [15] J. Giesl. Termination analysis for functional programs
role of ICT in driving a sustainable future. using term orderings. In Static Analysis, pages
http://gesi.org/SMARTer2020, 2012. [Online; accessed 154-171. Springer, 1995.
10-January-2015]. [16] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn,
A. R. Bradley, Z. Manna, and H. B. Sipma. C. Fuhs, C. Otto, M. Pliicker, P. Schneider-Kamp,
Termination analysis of integer linear lOOpS. In T. Stréden S. Swiderski, et al. Proving termination of
CONCUR 2005-Concurrency Theory, pages 488-502. programs automatically with AProVE. In IJCAR,
Springer7 2005. volume 14, 2014.
D. J. Brown and C. Reams. Toward energy-efficient [17] J. Giesl, P. Schneider-Kamp, and R. Thiemann.
computing. Communications of the ACM, 53(3):50-58, AProVE 1.2: Automatic termination proofs in the
2010. dependency pair framework. In Automated Reasoning,
C. Bunse, H. Hopfner, S. Roychoudhury, and pages 281-286. Springer, 2006.
E. Mansour. Choosing the” best” sorting algorithm for (18] J. Giesl, R. Thiemann, P. Schneider-Kamp, and
optimal energy consumption. ICSOFT, 2009. S. Falke. Automated termination proofs with
P. Chen and K. Keutzer. Towards true crosstalk noise AProVE. In Rewriting Techniques and Applications,
analysis. In Proceedings of the 1999 IEEE/ACM pages 210-220. Springer, 2004.
international conference on Computer-aided design, [19] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan.
pages 132-138. IEEE Press, 1999. Estimating mobile application energy consumption
M. Codish, I. Gonopolskiy, A. M. Ben-Amram, using program analysis. In 2013 35th International
C. Fuhs, and J. Giesl. SAT-based termination analysis Conference on Software Engineering (ICSE), pages
using monotonicity constraints over the integers. 92-101. IEEE, May 2013.
[20] M. Harman, W. B. Langdon, Y. Jia, D. R. White,

A. Arcuri, and J. A. Clark. The GISMOE challenge:

21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

constructing the pareto program surface using genetic
programming to find better programs. In Proceedings
of the 27th IEEE/ACM International Conference on
Automated Software Engineering - ASE 2012, pages
1-14, New York, New York, USA, Sept. 2012. ACM.
M. Harman, P. McMinn, J. T. De Souza, and S. Yoo.
Search based software engineering: Techniques,
taxonomy, tutorial. In Empirical software engineering
and verification, pages 1-59. Springer, 2012.

J. Heggestuen. Business Insider: One In Every 5
People IN The World Own A Smartphone, One in
Every 17 Own A Tablet. http://www.businessinsider.
com/smartphone-and-tablet-penetration-2013-10,
2013. [Online; accessed 9-January-2015].

M. Jarvisalo, P. Kaski, M. Koivisto, and J. H.
Korhonen. Finding efficient circuits for ensemble
computation. In Theory and Applications of
Satisfiability Testing—SAT 2012, pages 369-382.
Springer, 2012.

H. Kautz and B. Selman. Planning as satisfiability. In
Proceedings of the 10th European Conference on
Artificial Intelligence (ECAI 92), pages 359-363,
Vienna, Austria, 1992.

Z. Kocsis, G. Neumann, J. Swan, M. Epitropakis,

A. E. Brownlee, S. O. Haraldsson, and E. Bowles.
Repairing and optimizing Hadoop hashCode
implementations. Search-Based Software Engineering,
pages 259-264, 2014.

J. Koomey. Growth in data center electricity use from
2005 to 2010, Aug. 2011.

W. B. Langdon and M. Harman. Evolving a CUDA
kernel from an nVidia template. In IEEE Congress on
Evolutionary Computation, pages 1-8. IEEE, July
2010.

W. B. Langdon and M. Harman. Optimising existing
software with genetic programming. IEEE
Transactions on Evolutionary Computation, 2013.

C. Le Goues, S. Forrest, and W. Weimer. Current
challenges in automatic software repair. Software
Quality Journal, 21(3):421-443, 2013.

D. Li, S. Hao, W. G. J. Halfond, and R. Govindan.
Calculating source line level energy information for
android applications. In Proceedings of the 2013
International Symposium on Software Testing and
Analysis - ISSTA 2013, pages 78 — 89, New York, New
York, USA, July 2013. ACM Press.

N. Lindenstrauss and Y. Sagiv. Automatic termination
analysis of logic systems. In Logic Programming:
Proceedings of the Fourteenth International Conference
on Logic Programming, page 63. MIT Press, 1997.

S. Malik and L. Zhang. Boolean satisfiability: from
theoretical hardness to practical success.
Communications of the ACM, 52(8):76-82, 2009.

I. Manotas, L. Pollock, and J. Clause. SEEDS: a
software engineer’s energy-optimization decision
support framework. In Proceedings of the 36th
International Conference on Software Engineering -
ICSE 2014, pages 503-514, New York, New York,
USA, May 2014. ACM Press.

C. Nie and H. Leung. A survey of combinatorial
testing. ACM Computing Surveys (CSUR), 43(2):11,
2011.

(35]

(36]

37]

(38]

(39]

(40]

(41]

42]

(43]

(4]

[45]

[46]

A. Pathak, Y. C. Hu, and M. Zhang. Where is the
energy spent inside my app?: fine grained energy
accounting on smartphones with eprof. In Proceedings
of the 7th ACM european conference on Computer
Systems - EuroSys ’12, pages 2942, New York, New
York, USA, Apr. 2012. ACM Press.

J. Petke, W. B. Langdon, and M. Harman. Applying
genetic improvement to MiniSAT. In Search Based
Software Engineering, pages 257-262. Springer, 2013.
J. Petke, W. B. Langdon, M. Harman, and

W. Weimer. Using genetic improvement & code
transplants to specialise a C++ program to a problem
class. In M. Nicolau, K. Krawiec, and M. Heywood,
editors, Proceedings of the 17th European Conference
on Genetic Programming (EuroGP), Granada, Spain,
2014.

C. Sahin, L. Pollock, and J. Clause. How do code
refactorings affect energy usage? In Proceedings of the
8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement,
page 36. ACM, 2014.

P. Schneider-Kamp, R. Thiemann, E. Annov,

M. Codish, and J. Giesl. Proving termination using
recursive path orders and SAT solving. In Frontiers of
Combining Systems, pages 267—282. Springer, 2007.
E. Schulte, J. Dorn, S. Harding, S. Forrest, and

W. Weimer. Post-compiler software optimization for
reducing energy. Proceedings of the 19th international
conference on Architectural support for programming
languages and operating systems - ASPLOS 14, pages
639-652, 2014.

W. G. P. Silva, L. Brisolara, U. B. Corréa, and

L. Carro. Evaluation of the impact of code refactoring
on embedded software efficiency. In Proceedings of the
1st Workshop de Sistemas Embarcados, pages 145-150,
2010.

The World Bank. http://data.worldbank.org/
indicator/EN.ATM.CO2E.KT/countries. [Online;
accessed 10-January-2015].

C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner.
Opium: Optimal package install/uninstall manager. In
Software Engineering, 2007. ICSE 2007. 29th
International Conference on, pages 178-188. IEEE,
2007.

D. R. White, A. Arcuri, and J. A. Clark. Evolutionary
improvement of programs. IEEE Transactions on
Evolutionary Computation, 15(4):515-538, Aug. 2011.
D. R. White, J. Clark, J. Jacob, and S. M. Poulding.
Searching for resource-efficient programs: Low-power
pseudorandom number generators. In Proceedings of
the 10th annual conference on Genetic and
evolutionary computation, pages 1775-1782. ACM,
2008.

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick,
Z. M. Mao, and L. Yang. Accurate online power
estimation and automatic battery behavior based
power model generation for smartphones. In
Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software
codesign and system synthesis - CODES/ISSS ’10,
page 105, New York, New York, USA, Oct. 2010.
ACM Press.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150504081349
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 1
 AllDoc
 1

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150504081349
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 1
 AllDoc
 1

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 7
 8
 7
 8

 1

 HistoryList_V1
 qi2base

