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Preface to the Second Edition

Since the publication of the first edition of this book in 2008, significant
developments have been made in metaheuristics, and new nature-inspired
metaheuristic algorithms emerge, including cuckoo search and bat algo-
rithms. Many readers have taken time to write to me personally, providing
valuable feedback, asking for more details of algorithm implementation,
or simply expressing interests in applying these new algorithms in their
applications.

In this revised edition, we strive to review the latest developments in
metaheuristic algorithms, to incorporate readers’ suggestions, and to pro-
vide a more detailed description to algorithms. Firstly, we have added
detailed descriptions of how to incorporate constraints in the actual imple-
mentation. Secondly, we have added three chapters on differential evolu-
tion, cuckoo search and bat algorithms, while some existing chapters such
as ant algorithms and bee algorithms are combined into one due to their
similarity. Thirdly, we also explained artificial neural networks and sup-
port vector machines in the framework of optimization and metaheuristics.
Finally, we have been trying in this book to provide a consistent and uni-
fied approach to metaheuristic algorithms, from a brief history in the first
chapter to the unified approach in the last chapter.

Furthermore, we have provided more Matlab programs. At the same
time, we also omit some of the implementation such as genetic algorithms,
as we know that there are many good software packages (both commercial
and open course). This allows us to focus more on the implementation of
new algorithms. Some of the programs also have a version for constrained
optimization, and readers can modify them for their own applications.

Even with the good intention to cover most popular metaheuristic al-
gorithms, the choice of algorithms is a difficult task, as we do not have
the space to cover every algorithm. The omission of an algorithm does not
mean that it is not popular. In fact, some algorithms are very powerful
and routinely used in many applications. Good examples are Tabu search
and combinatorial algorithms, and interested readers can refer to the refer-
ences provided at the end of the book. The effort in writing this little book
becomes worth while if this book could in some way encourage readers’
interests in metaheuristics.

Xin-She Yang

August 2010
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Chapter 1

INTRODUCTION

It is no exaggeration to say that optimization is everywhere, from engi-
neering design to business planning and from the routing of the Internet to
holiday planning. In almost all these activities, we are trying to achieve cer-
tain objectives or to optimize something such as profit, quality and time.
As resources, time and money are always limited in real-world applica-
tions, we have to find solutions to optimally use these valuable resources
under various constraints. Mathematical optimization or programming is
the study of such planning and design problems using mathematical tools.
Nowadays, computer simulations become an indispensable tool for solving
such optimization problems with various efficient search algorithms.

1.1 OPTIMIZATION

Mathematically speaking, it is possible to write most optimization problems
in the generic form

minimize
x∈<n fi(x), (i = 1, 2, ...,M), (1.1)

subject to hj(x) = 0, (j = 1, 2, ..., J), (1.2)

gk(x) ≤ 0, (k = 1, 2, ...,K), (1.3)

where fi(x), hj(x) and gk(x) are functions of the design vector

x = (x1, x2, ..., xn)
T . (1.4)

Here the components xi of x are called design or decision variables, and
they can be real continuous, discrete or the mixed of these two.

The functions fi(x) where i = 1, 2, ...,M are called the objective func-
tions or simply cost functions, and in the case of M = 1, there is only a
single objective. The space spanned by the decision variables is called the
design space or search space <n, while the space formed by the objective
function values is called the solution space or response space. The equali-
ties for hj and inequalities for gk are called constraints. It is worth pointing

Nature-Inspired Metaheuristic Algorithms, 2nd Edition by Xin-She Yang
Copyright c© 2010 Luniver Press
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2 CHAPTER 1. INTRODUCTION

out that we can also write the inequalities in the other way ≥ 0, and we
can also formulate the objectives as a maximization problem.

In a rare but extreme case where there is no objective at all, there are
only constraints. Such a problem is called a feasibility problem because
any feasible solution is an optimal solution.

If we try to classify optimization problems according to the number
of objectives, then there are two categories: single objective M = 1 and
multiobjective M > 1. Multiobjective optimization is also referred to as
multicriteria or even multi-attributes optimization in the literature. In
real-world problems, most optimization tasks are multiobjective. Though
the algorithms we will discuss in this book are equally applicable to mul-
tiobjective optimization with some modifications, we will mainly place the
emphasis on single objective optimization problems.

Similarly, we can also classify optimization in terms of number of con-
straints J + K. If there is no constraint at all J = K = 0, then it is
called an unconstrained optimization problem. If K = 0 and J ≥ 1, it is
called an equality-constrained problem, while J = 0 and K ≥ 1 becomes
an inequality-constrained problem. It is worth pointing out that in some
formulations in the optimization literature, equalities are not explicitly in-
cluded, and only inequalities are included. This is because an equality
can be written as two inequalities. For example h(x) = 0 is equivalent to
h(x) ≤ 0 and h(x) ≥ 0.

We can also use the actual function forms for classification. The objec-
tive functions can be either linear or nonlinear. If the constraints hj and gk
are all linear, then it becomes a linearly constrained problem. If both the
constraints and the objective functions are all linear, it becomes a linear
programming problem. Here ‘programming’ has nothing to do with com-
puting programming, it means planning and/or optimization. However,
generally speaking, all fi, hj and gk are nonlinear, we have to deal with a
nonlinear optimization problem.

1.2 SEARCH FOR OPTIMALITY

After an optimization problem is formulated correctly, the main task is
to find the optimal solutions by some solution procedure using the right
mathematical techniques.

Figuratively speaking, searching for the optimal solution is like treasure
hunting. Imagine we are trying to hunt for a hidden treasure in a hilly
landscape within a time limit. In one extreme, suppose we are blind-
fold without any guidance, the search process is essentially a pure random
search, which is usually not efficient as we can expect. In another extreme,
if we are told the treasure is placed at the highest peak of a known region,
we will then directly climb up to the steepest cliff and try to reach to the
highest peak, and this scenario corresponds to the classical hill-climbing
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1.2 SEARCH FOR OPTIMALITY 3

techniques. In most cases, our search is between these extremes. We are
not blind-fold, and we do not know where to look for. It is a silly idea to
search every single square inch of an extremely large hilly region so as to
find the treasure.

The most likely scenario is that we will do a random walk, while looking
for some hints; we look at some place almost randomly, then move to an-
other plausible place, then another and so on. Such random walk is a main
characteristic of modern search algorithms. Obviously, we can either do
the treasure-hunting alone, so the whole path is a trajectory-based search,
and simulated annealing is such a kind. Alternatively, we can ask a group
of people to do the hunting and share the information (and any treasure
found), and this scenario uses the so-called swarm intelligence and corre-
sponds to the particle swarm optimization, as we will discuss later in detail.
If the treasure is really important and if the area is extremely large, the
search process will take a very long time. If there is no time limit and if any
region is accessible (for example, no islands in a lake), it is theoretically
possible to find the ultimate treasure (the global optimal solution).

Obviously, we can refine our search strategy a little bit further. Some
hunters are better than others. We can only keep the better hunters and
recruit new ones, this is something similar to the genetic algorithms or
evolutionary algorithms where the search agents are improving. In fact, as
we will see in almost all modern metaheuristic algorithms, we try to use the
best solutions or agents, and randomize (or replace) the not-so-good ones,
while evaluating each individual’s competence (fitness) in combination with
the system history (use of memory). With such a balance, we intend to
design better and efficient optimization algorithms.

Classification of optimization algorithm can be carried out in many ways.
A simple way is to look at the nature of the algorithm, and this divides the
algorithms into two categories: deterministic algorithms, and stochastic
algorithms. Deterministic algorithms follow a rigorous procedure, and its
path and values of both design variables and the functions are repeatable.
For example, hill-climbing is a deterministic algorithm, and for the same
starting point, they will follow the same path whether you run the program
today or tomorrow. On the other hand, stochastic algorithms always have
some randomness. Genetic algorithms are a good example, the strings or
solutions in the population will be different each time you run a program
since the algorithms use some pseudo-random numbers, though the final
results may be no big difference, but the paths of each individual are not
exactly repeatable.

Furthermore, there is a third type of algorithm which is a mixture, or
a hybrid, of deterministic and stochastic algorithms. For example, hill-
climbing with a random restart is a good example. The basic idea is to
use the deterministic algorithm, but start with different initial points. This
has certain advantages over a simple hill-climbing technique, which may be
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4 CHAPTER 1. INTRODUCTION

stuck in a local peak. However, since there is a random component in this
hybrid algorithm, we often classify it as a type of stochastic algorithm in
the optimization literature.

1.3 NATURE-INSPIRED METAHEURISTICS

Most conventional or classic algorithms are deterministic. For example, the
simplex method in linear programming is deterministic. Some determinis-
tic optimization algorithms used the gradient information, they are called
gradient-based algorithms. For example, the well-known Newton-Raphson
algorithm is gradient-based, as it uses the function values and their deriva-
tives, and it works extremely well for smooth unimodal problems. However,
if there is some discontinuity in the objective function, it does not work
well. In this case, a non-gradient algorithm is preferred. Non-gradient-
based or gradient-free algorithms do not use any derivative, but only the
function values. Hooke-Jeeves pattern search and Nelder-Mead downhill
simplex are examples of gradient-free algorithms.

For stochastic algorithms, in general we have two types: heuristic and
metaheuristic, though their difference is small. Loosely speaking, heuristic
means ‘to find’ or ‘to discover by trial and error’. Quality solutions to a
tough optimization problem can be found in a reasonable amount of time,
but there is no guarantee that optimal solutions are reached. It hopes
that these algorithms work most of the time, but not all the time. This is
good when we do not necessarily want the best solutions but rather good
solutions which are easily reachable.

Further development over the heuristic algorithms is the so-called meta-
heuristic algorithms. Here meta- means ‘beyond’ or ‘higher level’, and
they generally perform better than simple heuristics. In addition, all meta-
heuristic algorithms use certain tradeoff of randomization and local search.
It is worth pointing out that no agreed definitions of heuristics and meta-
heuristics exist in the literature; some use ‘heuristics’ and ‘metaheuristics’
interchangeably. However, the recent trend tends to name all stochastic
algorithms with randomization and local search as metaheuristic. Here we
will also use this convention. Randomization provides a good way to move
away from local search to the search on the global scale. Therefore, almost
all metaheuristic algorithms intend to be suitable for global optimization.

Heuristics is a way by trial and error to produce acceptable solutions to
a complex problem in a reasonably practical time. The complexity of the
problem of interest makes it impossible to search every possible solution
or combination, the aim is to find good feasible solution in an acceptable
timescale. There is no guarantee that the best solutions can be found, and
we even do not know whether an algorithm will work and why if it does
work. The idea is to have an efficient but practical algorithm that will
work most the time and is able to produce good quality solutions. Among
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1.4 A BRIEF HISTORY OF METAHEURISTICS 5

the found quality solutions, it is expected some of them are nearly optimal,
though there is no guarantee for such optimality.

Two major components of any metaheuristic algorithms are: intensifi-
cation and diversification, or exploitation and exploration. Diversification
means to generate diverse solutions so as to explore the search space on the
global scale, while intensification means to focus on the search in a local
region by exploiting the information that a current good solution is found
in this region. This is in combination with with the selection of the best
solutions. The selection of the best ensures that the solutions will converge
to the optimality, while the diversification via randomization avoids the
solutions being trapped at local optima and, at the same time, increases
the diversity of the solutions. The good combination of these two major
components will usually ensure that the global optimality is achievable.

Metaheuristic algorithms can be classified in many ways. One way is
to classify them as: population-based and trajectory-based. For example,
genetic algorithms are population-based as they use a set of strings, so
is the particle swarm optimization (PSO) which uses multiple agents or
particles.

On the other hand, simulated annealing uses a single agent or solution
which moves through the design space or search space in a piecewise style.
A better move or solution is always accepted, while a not-so-good move
can be accepted with a certain probability. The steps or moves trace a tra-
jectory in the search space, with a non-zero probability that this trajectory
can reach the global optimum.

Before we introduce all popular meteheuristic algorithms in detail, let
us look at their history briefly.

1.4 A BRIEF HISTORY OF METAHEURISTICS

Throughout history, especially at the early periods of human history, we
humans’ approach to problem-solving has always been heuristic or meta-
heuristic – by trial and error. Many important discoveries were done
by ‘thinking outside the box’, and often by accident; that is heuristics.
Archimedes’s Eureka moment was a heuristic triumph. In fact, our daily
learning experience (at least as a child) is dominantly heuristic.

Despite its ubiquitous nature, metaheuristics as a scientific method to
problem solving is indeed a modern phenomenon, though it is difficult to
pinpoint when the metaheuristic method was first used. Alan Turing was
probably the first to use heuristic algorithms during the second World War
when he was breaking German Enigma ciphers at Bletchley Park. Turing
called his search method heuristic search, as it could be expected it worked
most of time, but there was no guarantee to find the correct solution,
but it was a tremendous success. In 1945, Turing was recruited to the
National Physical Laboratory (NPL), UK where he set out his design for
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6 CHAPTER 1. INTRODUCTION

the Automatic Computing Engine (ACE). In an NPL report on Intelligent
machinery in 1948, he outlined his innovative ideas of machine intelligence
and learning, neural networks and evolutionary algorithms.

The 1960s and 1970s were the two important decades for the develop-
ment of evolutionary algorithms. First, John Holland and his collaborators
at the University of Michigan developed the genetic algorithms in 1960s
and 1970s. As early as 1962, Holland studied the adaptive system and was
the first to use crossover and recombination manipulations for modeling
such system. His seminal book summarizing the development of genetic
algorithms was published in 1975. In the same year, De Jong finished his
important dissertation showing the potential and power of genetic algo-
rithms for a wide range of objective functions, either noisy, multimodal or
even discontinuous.

In essence, a genetic algorithm (GA) is a search method based on the ab-
straction of Darwinian evolution and natural selection of biological systems
and representing them in the mathematical operators: crossover or recom-
bination, mutation, fitness, and selection of the fittest. Ever since, genetic
algorithms become so successful in solving a wide range of optimization
problems, there have several thousands of research articles and hundreds
of books written. Some statistics show that a vast majority of Fortune
500 companies are now using them routinely to solve tough combinatorial
optimization problems such as planning, data-fitting, and scheduling.

During the same period, Ingo Rechenberg and Hans-Paul Schwefel both
then at the Technical University of Berlin developed a search technique for
solving optimization problem in aerospace engineering, called evolutionary
strategy, in 1963. Later, Peter Bienert joined them and began to construct
an automatic experimenter using simple rules of mutation and selection.
There was no crossover in this technique, only mutation was used to pro-
duce an offspring and an improved solution was kept at each generation.
This was essentially a simple trajectory-style hill-climbing algorithm with
randomization. As early as 1960, Lawrence J. Fogel intended to use simu-
lated evolution as a learning process as a tool to study artificial intelligence.
Then, in 1966, L. J. Fogel, together A. J. Owen and M. J. Walsh, developed
the evolutionary programming technique by representing solutions as finite-
state machines and randomly mutating one of these machines. The above
innovative ideas and methods have evolved into a much wider discipline,
called evolutionary algorithms and/or evolutionary computation.

Although our focus in this book is metaheuristic algorithms, other al-
gorithms can be thought as a heuristic optimization technique. These in-
cludes artificial neural networks, support vector machines and many other
machine learning techniques. Indeed, they all intend to minimize their
learning errors and prediction (capability) errors via iterative trials and
errors.



N
at
u r
e-
In
sp

ire
d M
etaheuristic A

lgorithm
s

S e c o n d E d it ion (
2 0

10
)

Xin-She Yang

c©Luniver Press

1.4 A BRIEF HISTORY OF METAHEURISTICS 7

Artificial neural networks are now routinely used in many applications.
In 1943, W. McCulloch and W. Pitts proposed the artificial neurons as
simple information processing units. The concept of a neural network was
probably first proposed by Alan Turing in his 1948 NPL report concerning
‘intelligent machinery’. Significant developments were carried out from the
1940s and 1950s to the 1990s with more than 60 years of history.

The support vector machine as a classification technique can date back to
the earlier work by V. Vapnik in 1963 on linear classifiers, and the nonlinear
classification with kernel techniques were developed by V. Vapnik and his
collaborators in the 1990s. A systematical summary in Vapnik’s book on
the Nature of Statistical Learning Theory was published in 1995.

The two decades of 1980s and 1990s were the most exciting time for
metaheuristic algorithms. The next big step is the development of simu-
lated annealing (SA) in 1983, an optimization technique, pioneered by S.
Kirkpatrick, C. D. Gellat and M. P. Vecchi, inspired by the annealing pro-
cess of metals. It is a trajectory-based search algorithm starting with an
initial guess solution at a high temperature, and gradually cooling down
the system. A move or new solution is accepted if it is better; otherwise,
it is accepted with a probability, which makes it possible for the system to
escape any local optima. It is then expected that if the system is cooled
down slowly enough, the global optimal solution can be reached.

The actual first usage of memory in modern metaheuristics is probably
due to Fred Glover’s Tabu search in 1986, though his seminal book on Tabu
search was published later in 1997.

In 1992, Marco Dorigo finished his PhD thesis on optimization and nat-
ural algorithms, in which he described his innovative work on ant colony
optimization (ACO). This search technique was inspired by the swarm in-
telligence of social ants using pheromone as a chemical messenger. Then, in
1992, John R. Koza of Stanford University published a treatise on genetic
programming which laid the foundation of a whole new area of machine
learning, revolutionizing computer programming. As early as in 1988, Koza
applied his first patent on genetic programming. The basic idea is to use the
genetic principle to breed computer programs so as to gradually produce
the best programs for a given type of problem.

Slightly later in 1995, another significant progress is the development
of the particle swarm optimization (PSO) by American social psychologist
James Kennedy, and engineer Russell C. Eberhart. Loosely speaking, PSO
is an optimization algorithm inspired by swarm intelligence of fish and birds
and by even human behavior. The multiple agents, called particles, swarm
around the search space starting from some initial random guess. The
swarm communicates the current best and shares the global best so as to
focus on the quality solutions. Since its development, there have been about
20 different variants of particle swarm optimization techniques, and have
been applied to almost all areas of tough optimization problems. There is
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8 CHAPTER 1. INTRODUCTION

some strong evidence that PSO is better than traditional search algorithms
and even better than genetic algorithms for many types of problems, though
this is far from conclusive.

In around 1996 and later in 1997, R. Storn and K. Price developed their
vector-based evolutionary algorithm, called differential evolution (DE), and
this algorithm proves more efficient than genetic algorithms in many ap-
plications.

In 1997, the publication of the ‘no free lunch theorems for optimization’
by D. H. Wolpert and W. G. Macready sent out a shock way to the opti-
mization community. Researchers have been always trying to find better
algorithms, or even universally robust algorithms, for optimization, espe-
cially for tough NP-hard optimization problems. However, these theorems
state that if algorithm A performs better than algorithm B for some opti-
mization functions, then B will outperform A for other functions. That is
to say, if averaged over all possible function space, both algorithms A and B
will perform on average equally well. Alternatively, there is no universally
better algorithms exist. That is disappointing, right? Then, people real-
ized that we do not need the average over all possible functions for a given
optimization problem. What we want is to find the best solutions, which
has nothing to do with average over all possible function space. In addition,
we can accept the fact that there is no universal or magical tool, but we do
know from our experience that some algorithms indeed outperform others
for given types of optimization problems. So the research now focuses on
finding the best and most efficient algorithm(s) for a given problem. The
objective is to design better algorithms for most types of problems, not for
all the problems. Therefore, the search is still on.

At the turn of the 21st century, things became even more exciting. First,
Zong Woo Geem et al. in 2001 developed the harmony search (HS) algo-
rithm, which has been widely applied in solving various optimization prob-
lems such as water distribution, transport modelling and scheduling. In
2004, S. Nakrani and C. Tovey proposed the honey bee algorithm and its
application for optimizing Internet hosting centers, which followed by the
development of a novel bee algorithm by D. T. Pham et al. in 2005 and the
artificial bee colony (ABC) by D. Karaboga in 2005. In 2008, the author of
this book developed the firefly algorithm (FA)1. Quite a few research arti-
cles on the firefly algorithm then followed, and this algorithm has attracted
a wide range of interests. In 2009, Xin-She Yang at Cambridge University,
UK, and Suash Deb at Raman College of Engineering, India, introduced
an efficient cuckoo search (CS) algorithm, and it has been demonstrated
that CS is far more effective than most existing metaheuristic algorithms

1X. S. Yang, Nature-Inspired Meteheuristic Algorithms, Luniver Press, (2008)
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including particle swarm optimization2. In 2010, the author of this book
developed a bat-inspired algorithm for continuous optimization, and its
efficiency is quite promising.

As we can see, more and more metaheuristic algorithms are being devel-
oped. Such a diverse range of algorithms necessitates a systematic summary
of various metaheuristic algorithms, and this book is such an attempt to
introduce all the latest nature-inspired metaheuristics with diverse appli-
cations.

We will discuss all major modern metaheuristic algorithms in the rest
of this book, including simulated annealing (SA), genetic algorithms (GA),
ant colony optimization (ACO), bee algorithms (BA), differential evolution
(DE), particle swarm optimization (PSO), harmony search (HS), the firefly
algorithm (FA), cuckoo search (CS) and bat-inspired algorithm (BA), and
others.
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Chapter 2

RANDOM WALKS AND LÉVY FLIGHTS

From the brief analysis of the main characteristics of metaheuristic algo-
rithms in the first chapter, we know that randomization plays an important
role in both exploration and exploitation, or diversification and intensifi-
cation. The essence of such randomization is the random walk. In this
chapter, we will briefly review the fundamentals of random walks, Lévy
flights and Markov chains. These concepts may provide some hints and
insights into how and why metaheuristic algorithms behave.

2.1 RANDOM VARIABLES

Loosely speaking, a random variable can be considered as an expression
whose value is the realization or outcome of events associated with a ran-
dom process such as the noise level on the street. The values of random
variables are real, though for some variables such as the number of cars on
a road can only take discrete values, and such random variables are called
discrete random variables. If a random variable such as noise at a particular
location can take any real values in an interval, it is called continuous. If a
random variable can have both continuous and discrete values, it is called
a mixed type. Mathematically speaking, a random variable is a function
which maps events to real numbers. The domain of this mapping is called
the sample space.

For each random variable, a probability density function can be used
to express its probability distribution. For example, the number of phone
calls per minute, and the number of users of a web server per day all obey
the Poisson distribution

p(n;λ) =
λne−λ

n!
, (n = 0, 1, 2, ...), (2.1)

where λ > 0 is a parameter which is the mean or expectation of the occur-
rence of the event during a unit interval.

Different random variables will have different distributions. Gaussian
distribution or normal distribution is by far the most popular distribu-
tions, because many physical variables including light intensity, and er-

Nature-Inspired Metaheuristic Algorithms, 2nd Edition by Xin-She Yang
Copyright c© 2010 Luniver Press
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12 CHAPTER 2. RANDOM WALKS AND LÉVY FLIGHTS

rors/uncertainty in measurements, and many other processes obey the nor-
mal distribution

p(x;µ, σ2) =
1

σ
√
2π

exp[− (x− µ)2
2σ2

], −∞ < x <∞, (2.2)

where µ is the mean and σ > 0 is the standard deviation. This normal
distribution is often denoted by N(µ, σ2). In the special case when µ = 0
and σ = 1, it is called a standard normal distribution, denoted by N(0, 1).

In the context of metaheuristics, another important distribution is the
so-called Lévy distribution, which is a distribution of the sum of N identi-
cally and independently distribution random variables whose Fourier trans-
form takes the following form

FN (k) = exp[−N |k|β ]. (2.3)

The inverse to get the actual distribution L(s) is not straightforward, as
the integral

L(s) =
1

π

∫ ∞

0

cos(τs)e−α τβdτ, (0 < β ≤ 2), (2.4)

does not have analytical forms, except for a few special cases. Here L(s)
is called the Lévy distribution with an index β. For most applications, we
can set α = 1 for simplicity. Two special cases are β = 1 and β = 2. When
β = 1, the above integral becomes the Cauchy distribution. When β = 2,
it becomes the normal distribution. In this case, Lévy flights become the
standard Brownian motion.

Mathematically speaking, we can express the integral (2.4) as an asymp-
totic series, and its leading-order approximation for the flight length results
in a power-law distribution

L(s) ∼ |s|−1−β , (2.5)

which is heavy-tailed. The variance of such a power-law distribution is
infinite for 0 < β < 2. The moments diverge (or are infinite) for 0 < β < 2,
which is a stumbling block for mathematical analysis.

2.2 RANDOM WALKS

A random walk is a random process which consists of taking a series of
consecutive random steps. Mathematically speaking, let SN denotes the
sum of each consecutive random step Xi, then SN forms a random walk

SN =
N
∑

i=1

Xi = X1 + ...+XN , (2.6)
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2.2 RANDOM WALKS 13

where Xi is a random step drawn from a random distribution. This rela-
tionship can also be written as a recursive formula

SN =

N−1
∑

i=1

+XN = SN−1 +XN , (2.7)

which means the next state SN will only depend the current existing state
SN−1 and the motion or transition XN from the existing state to the next
state. This is typically the main property of a Markov chain to be intro-
duced later.

Here the step size or length in a random walk can be fixed or varying.
Random walks have many applications in physics, economics, statistics,
computer sciences, environmental science and engineering.

Consider a scenario, a drunkard walks on a street, at each step, he
can randomly go forward or backward, this forms a random walk in one-
dimensional. If this drunkard walks on a football pitch, he can walk in
any direction randomly, this becomes a 2D random walk. Mathematically
speaking, a random walk is given by the following equation

St+1 = St + wt, (2.8)

where St is the current location or state at t, and wt is a step or random
variable with a known distribution.

If each step or jump is carried out in the n-dimensional space, the ran-
dom walk discussed earlier

SN =

N
∑

i=1

Xi, (2.9)

becomes a random walk in higher dimensions. In addition, there is no
reason why each step length should be fixed. In fact, the step size can
also vary according to a known distribution. If the step length obeys the
Gaussian distribution, the random walk becomes the Brownian motion (see
Fig. 2.1).

In theory, as the number of steps N increases, the central limit theorem
implies that the random walk (2.9) should approaches a Gaussian distribu-
tion. As the mean of particle locations shown in Fig. 2.1 is obviously zero,
their variance will increase linearly with t. In general, in the d-dimensional
space, the variance of Brownian random walks can be written as

σ2(t) = |v0|2t2 + (2dD)t, (2.10)

where v0 is the drift velocity of the system. Here D = s2/(2τ) is the
effective diffusion coefficient which is related to the step length s over a
short time interval τ during each jump.
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14 CHAPTER 2. RANDOM WALKS AND LÉVY FLIGHTS

s

Figure 2.1: Brownian motion in 2D: random walk with a Gaus-
sian step-size distribution and the path of 50 steps starting at
the origin (0, 0) (marked with •).

Therefore, the Brownian motion B(t) essentially obeys a Gaussian dis-
tribution with zero mean and time-dependent variance. That is, B(t) ∼
N(0, σ2(t)) where ∼ means the random variable obeys the distribution on
the right-hand side; that is, samples should be drawn from the distribution.
A diffusion process can be viewed as a series of Brownian motion, and the
motion obeys the Gaussian distribution. For this reason, standard diffusion
is often referred to as the Gaussian diffusion. If the motion at each step is
not Gaussian, then the diffusion is called non-Gaussian diffusion.

If the step length obeys other distribution, we have to deal with more
generalized random walk. A very special case is when the step length obeys
the Lévy distribution, such a random walk is called a Lévy flight or Lévy
walk.

2.3 LÉVY DISTRIBUTION AND LÉVY FLIGHTS

Broadly speaking, Lévy flights are a random walk whose step length is
drawn from the Lévy distribution, often in terms of a simple power-law
formula L(s) ∼ |s|−1−β where 0 < β ≤ 2 is an index. Mathematically
speaking, a simple version of Lévy distribution can be defined as

L(s, γ, µ) =







√

γ
2π exp[− γ

2(s−µ) ]
1

(s−µ)3/2
, 0 < µ < s <∞

0 otherwise,

(2.11)

where µ > 0 is a minimum step and γ is a scale parameter. Clearly, as
s→∞, we have

L(s, γ, µ) ≈
√

γ

2π

1

s3/2
. (2.12)

This is a special case of the generalized Lévy distribution.
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2.3 LÉVY DISTRIBUTION AND LÉVY FLIGHTS 15

s

Figure 2.2: Lévy flights in consecutive 50 steps starting at the
origin (0, 0) (marked with •).

In general, Lévy distribution should be defined in terms of Fourier trans-
form

F (k) = exp[−α|k|β ], 0 < β ≤ 2, (2.13)

where α is a scale parameter. The inverse of this integral is not easy, as it
does not have analytical form, except for a few special cases.

For the case of β = 2, we have

F (k) = exp[−αk2], (2.14)

whose inverse Fourier transform corresponds to a Gaussian distribution.
Another special case is β = 1, and we have

F (k) = exp[−α|k|], (2.15)

which corresponds to a Cauchy distribution

p(x, γ, µ) =
1

π

γ

γ2 + (x− µ)2 , (2.16)

where µ is the location parameter, while γ controls the scale of this distri-
bution.

For the general case, the inverse integral

L(s) =
1

π

∫ ∞

0

cos(ks) exp[−α|k|β ]dk, (2.17)

can be estimated only when s is large. We have

L(s)→ α β Γ(β) sin(πβ/2)

π|s|1+β , s→∞. (2.18)
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16 CHAPTER 2. RANDOM WALKS AND LÉVY FLIGHTS

Here Γ(z) is the Gamma function

Γ(z) =

∫ ∞

0

tz−1e−tdt. (2.19)

In the case when z = n is an integer, we have Γ(n) = (n− 1)!.
Lévy flights are more efficient than Brownian random walks in exploring

unknown, large-scale search space. There are many reasons to explain this
efficiency, and one of them is due to the fact that the variance of Lévy
flights

σ2(t) ∼ t3−β , 1 ≤ β ≤ 2, (2.20)

increases much faster than the linear relationship (i.e., σ2(t) ∼ t) of Brow-
nian random walks.

Fig. 2.2 shows the path of Lévy flights of 50 steps starting from (0, 0)
with β = 1. It is worth pointing out that a power-law distribution is often
linked to some scale-free characteristics, and Lévy flights can thus show
self-similarity and fractal behavior in the flight patterns.

From the implementation point of view, the generation of random num-
bers with Lévy flights consists of two steps: the choice of a random direction
and the generation of steps which obey the chosen Lévy distribution. The
generation of a direction should be drawn from a uniform distribution, while
the generation of steps is quite tricky. There are a few ways of achieving
this, but one of the most efficient and yet straightforward ways is to use
the so-called Mantegna algorithm for a symmetric Lévy stable distribution.
Here ‘symmetric’ means that the steps can be positive and negative.

A random variable U and its probability distribution can be called stable
if a linear combination of its two identical copies (or U1 and U2) obeys the
same distribution. That is, aU1 + bU2 has the same distribution as cU + d
where a, b > 0 and c, d ∈ <. If d = 0, it is called strictly stable. Gaussian,
Cauchy and Lévy distributions are all stable distributions.

In Mantegna’s algorithm, the step length s can be calculated by

s =
u

|v|1/β , (2.21)

where u and v are drawn from normal distributions. That is

u ∼ N(0, σ2u), v ∼ N(0, σ2v), (2.22)

where

σu =
{ Γ(1 + β) sin(πβ/2)

Γ[(1 + β)/2] β 2(β−1)/2

}1/β

, σv = 1. (2.23)

This distribution (for s) obeys the expected Lévy distribution for |s| ≥ |s0|
where s0 is the smallest step. In principle, |s0| À 0, but in reality s0 can
be taken as a sensible value such as s0 = 0.1 to 1.
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Studies show that Lévy flights can maximize the efficiency of resource
searches in uncertain environments. In fact, Lévy flights have been observed
among foraging patterns of albatrosses and fruit flies, and spider monkeys.
Even humans such as the Ju/’hoansi hunter-gatherers can trace paths of
Lévy-flight patterns. In addition, Lévy flights have many applications.
Many physical phenomena such as the diffusion of fluorescent molecules,
cooling behavior and noise could show Lévy-flight characteristics under the
right conditions.

2.4 OPTIMIZATION AS MARKOV CHAINS

In every aspect, a simple random walk we discussed earlier can be consid-
ered as a Markov chain. Briefly speaking, a random variable ζ is a Markov
process if the transition probability, from state ζt = Si at time t to another
state ζt+1 = Sj , depends only on the current state ζi. That is

P (i, j) ≡ P (ζt+1 = Sj |ζ0 = Sp, ..., ζt = Si)

= P (ζt+1 = Sj |ζt = Si), (2.24)

which is independent of the states before t. In addition, the sequence of ran-
dom variables (ζ0, ζ1, ..., ζn) generated by a Markov process is subsequently
called a Markov chain. The transition probability P (i, j) ≡ P (i→ j) = Pij

is also referred to as the transition kernel of the Markov chain.
If we rewrite the random walk relationship (2.7) with a random move

governed by wt which depends on the transition probability P , we have

St+1 = St + wt, (2.25)

which indeed has the properties of a Markov chain. Therefore, a random
walk is a Markov chain.

In order to solve an optimization problem, we can search the solution by
performing a random walk starting from a good initial but random guess
solution. However, simple or blind random walks are not efficient. To be
computationally efficient and effective in searching for new solutions, we
have to keep the best solutions found so far, and to increase the mobility of
the random walk so as to explore the search space more effectively. Most
importantly, we have to find a way to control the walk in such a way that it
can move towards the optimal solutions more quickly, rather than wander
away from the potential best solutions. These are the challenges for most
metaheuristic algorithms.

Further research along the route of Markov chains is that the devel-
opment of the Markov chain Monte Carlo (MCMC) method, which is a
class of sample-generating methods. It attempts to directly draw samples
from some highly complex multi-dimensional distribution using a Markov
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18 CHAPTER 2. RANDOM WALKS AND LÉVY FLIGHTS

chain with known transition probability. Since the 1990s, the Markov chain
Monte Carlo has become a powerful tool for Bayesian statistical analysis,
Monte Carlo simulations, and potentially optimization with high nonlin-
earity.

An important link between MCMC and optimization is that some heuris-
tic and metaheuristic search algorithms such as simulated annealing to be
introduced later use a trajectory-based approach. They start with some ini-
tial (random) state, and propose a new state (solution) randomly. Then,
the move is accepted or not, depending on some probability. There is
strongly similar to a Markov chain. In fact, the standard simulated an-
nealing is a random walk.

Mathematically speaking, a great leap in understanding metaheuristic
algorithms is to view a Markov chain Monte carlo as an optimization pro-
cedure. If we want to find the minimum of an objective function f(θ) at
θ = θ∗ so that f∗ = f(θ∗) ≤ f(θ), we can convert it to a target distribution
for a Markov chain

π(θ) = e−βf(θ), (2.26)

where β > 0 is a parameter which acts as a normalized factor. β value
should be chosen so that the probability is close to 1 when θ → θ∗. At
θ = θ∗, π(θ) should reach a maximum π∗ = π(θ∗) ≥ π(θ). This requires
that the formulation of L(θ) should be non-negative, which means that
some objective functions can be shifted by a large constant A > 0 such as
f ← f +A if necessary.

By constructing a Markov chain Monte Carlo, we can formulate a generic
framework as outlined by Ghate and Smith in 2008, as shown in Figure 2.3.
In this framework, simulated annealing and its many variants are simply a
special case with

Pt =







exp[−∆f
Tt

] if ft+1 > ft

1 if ft+1 ≤ ft
,

In this case, only the difference ∆f between the function values is impor-
tant.

Algorithms such as simulated annealing, to be discussed in the next
chapter, use a single Markov chain, which may not be very efficient. In
practice, it is usually advantageous to use multiple Markov chains in paral-
lel to increase the overall efficiency. In fact, the algorithms such as particle
swarm optimization can be viewed as multiple interacting Markov chains,
though such theoretical analysis remains almost intractable. The theory of
interacting Markov chains is complicated and yet still under development,
however, any progress in such areas will play a central role in the under-
standing how population- and trajectory-based metaheuristic algorithms
perform under various conditions. However, even though we do not fully
understand why metaheuristic algorithms work, this does not hinder us to
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2.4 OPTIMIZATION AS MARKOV CHAINS 19

Markov Chain Algorithm for Optimization

Start with ζ0 ∈ S, at t = 0
while (criterion)

Propose a new solution Yt+1;
Generate a random number 0 ≤ Pt ≤ 1;

ζt+1 =

{

Yt+1 with probability Pt

ζt with probability 1− Pt
(2.27)

end

Figure 2.3: Optimization as a Markov chain.

use these algorithms efficiently. On the contrary, such mysteries can drive
and motivate us to pursue further research and development in metaheuris-
tics.
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Chapter 3

SIMULATED ANNEALING

One of the earliest and yet most popular metaheuristic algorithms is simu-
lated annealing (SA), which is a trajectory-based, random search technique
for global optimization. It mimics the annealing process in material pro-
cessing when a metal cools and freezes into a crystalline state with the
minimum energy and larger crystal size so as to reduce the defects in
metallic structures. The annealing process involves the careful control of
temperature and its cooling rate, often called annealing schedule.

3.1 ANNEALING AND BOLTZMANN DISTRIBUTION

Since the first development of simulated annealing by Kirkpatrick, Gelatt
and Vecchi in 1983, SA has been applied in almost every area of optimiza-
tion. Unlike the gradient-based methods and other deterministic search
methods which have the disadvantage of being trapped into local minima,
the main advantage of simulated annealing is its ability to avoid being
trapped in local minima. In fact, it has been proved that simulated an-
nealing will converge to its global optimality if enough randomness is used
in combination with very slow cooling. Essentially, simulated annealing is
a search algorithm via a Markov chain, which converges under appropriate
conditions.

Metaphorically speaking, this is equivalent to dropping some bouncing
balls over a landscape, and as the balls bounce and lose energy, they settle
down to some local minima. If the balls are allowed to bounce enough times
and lose energy slowly enough, some of the balls will eventually fall into
the globally lowest locations, hence the global minimum will be reached.

The basic idea of the simulated annealing algorithm is to use random
search in terms of a Markov chain, which not only accepts changes that
improve the objective function, but also keeps some changes that are not
ideal. In a minimization problem, for example, any better moves or changes
that decrease the value of the objective function f will be accepted; how-
ever, some changes that increase f will also be accepted with a probability
p. This probability p, also called the transition probability, is determined
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22 CHAPTER 3. SIMULATED ANNEALING

by

p = e
− ∆E
kBT , (3.1)

where kB is the Boltzmann’s constant, and for simplicity, we can use k to
denote kB because k = 1 is often used. T is the temperature for controlling
the annealing process. ∆E is the change of the energy level. This transition
probability is based on the Boltzmann distribution in statistical mechanics.

The simplest way to link ∆E with the change of the objective function
∆f is to use

∆E = γ∆f, (3.2)

where γ is a real constant. For simplicity without losing generality, we can
use kB = 1 and γ = 1. Thus, the probability p simply becomes

p(∆f, T ) = e−∆f/T . (3.3)

Whether or not we accept a change, we usually use a random number r as
a threshold. Thus, if p > r, or

p = e−
∆f
T > r, (3.4)

the move is accepted.

3.2 PARAMETERS

Here the choice of the right initial temperature is crucially important. For
a given change ∆f , if T is too high (T → ∞), then p → 1, which means
almost all the changes will be accepted. If T is too low (T → 0), then any
∆f > 0 (worse solution) will rarely be accepted as p → 0 and thus the
diversity of the solution is limited, but any improvement ∆f will almost
always be accepted. In fact, the special case T → 0 corresponds to the
gradient-based method because only better solutions are accepted, and the
system is essentially climbing up or descending along a hill. Therefore,
if T is too high, the system is at a high energy state on the topological
landscape, and the minima are not easily reached. If T is too low, the
system may be trapped in a local minimum (not necessarily the global
minimum), and there is not enough energy for the system to jump out the
local minimum to explore other minima including the global minimum. So
a proper initial temperature should be calculated.

Another important issue is how to control the annealing or cooling pro-
cess so that the system cools down gradually from a higher temperature
to ultimately freeze to a global minimum state. There are many ways of
controlling the cooling rate or the decrease of the temperature.
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3.3 SA ALGORITHM 23

Two commonly used annealing schedules (or cooling schedules) are: lin-
ear and geometric. For a linear cooling schedule, we have

T = T0 − βt, (3.5)

or T → T − δT , where T0 is the initial temperature, and t is the pseudo
time for iterations. β is the cooling rate, and it should be chosen in such a
way that T → 0 when t → tf (or the maximum number N of iterations),
this usually gives β = (T0 − Tf )/tf .

On the other hand, a geometric cooling schedule essentially decreases
the temperature by a cooling factor 0 < α < 1 so that T is replaced by αT
or

T (t) = T0α
t, t = 1, 2, ..., tf . (3.6)

The advantage of the second method is that T → 0 when t→∞, and thus
there is no need to specify the maximum number of iterations. For this
reason, we will use this geometric cooling schedule. The cooling process
should be slow enough to allow the system to stabilize easily. In practise,
α = 0.7 ∼ 0.99 is commonly used.

In addition, for a given temperature, multiple evaluations of the objec-
tive function are needed. If too few evaluations, there is a danger that the
system will not stabilize and subsequently will not converge to its global
optimality. If too many evaluations, it is time-consuming, and the system
will usually converge too slowly, as the number of iterations to achieve
stability might be exponential to the problem size.

Therefore, there is a fine balance between the number of evaluations and
solution quality. We can either do many evaluations at a few temperature
levels or do few evaluations at many temperature levels. There are two
major ways to set the number of iterations: fixed or varied. The first uses
a fixed number of iterations at each temperature, while the second intends
to increase the number of iterations at lower temperatures so that the local
minima can be fully explored.

3.3 SA ALGORITHM

The simulated annealing algorithm can be summarized as the pseudo code
shown in Fig. 3.1.

In order to find a suitable starting temperature T0, we can use any
information about the objective function. If we know the maximum change
max(∆f) of the objective function, we can use this to estimate an initial
temperature T0 for a given probability p0. That is

T0 ≈ −
max(∆f)

ln p0
.

If we do not know the possible maximum change of the objective function,
we can use a heuristic approach. We can start evaluations from a very
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24 CHAPTER 3. SIMULATED ANNEALING

Simulated Annealing Algorithm

Objective function f(x), x = (x1, ..., xp)
T

Initialize initial temperature T0 and initial guess x(0)

Set final temperature Tf and max number of iterations N
Define cooling schedule T 7→ αT , (0 < α < 1)
while ( T > Tf and n < N )

Move randomly to new locations: xn+1 = xn + ε (random walk)
Calculate ∆f = fn+1(xn+1)− fn(xn)
Accept the new solution if better
if not improved

Generate a random number r
Accept if p = exp[−∆f/T ] > r

end if

Update the best x∗ and f∗
n = n+ 1

end while

Figure 3.1: Simulated annealing algorithm.

high temperature (so that almost all changes are accepted) and reduce
the temperature quickly until about 50% or 60% of the worse moves are
accepted, and then use this temperature as the new initial temperature T0
for proper and relatively slow cooling.

For the final temperature, it should be zero in theory so that no worse
move can be accepted. However, if Tf → 0, more unnecessary evaluations
are needed. In practice, we simply choose a very small value, say, Tf =
10−10 ∼ 10−5, depending on the required quality of the solutions and time
constraints.

3.4 UNCONSTRAINED OPTIMIZATION

Based on the guidelines of choosing the important parameters such as the
cooling rate, initial and final temperatures, and the balanced number of
iterations, we can implement the simulated annealing using both Matlab
and Octave.

For Rosenbrock’s banana function

f(x, y) = (1− x)2 + 100(y − x2)2,

we know that its global minimum f∗ = 0 occurs at (1, 1) (see Fig. 3.2). This
is a standard test function and quite tough for most algorithms. However,
by modifying the program given later in the next chapter, we can find this
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-2 -1 0 1 2

-2

-1

0

1

2

Figure 3.2: Rosenbrock’s function with the global minimum f∗ = 0 at (1, 1).

Figure 3.3: 500 evaluations during the annealing iterations. The final global best
is marked with •.

global minimum easily and the last 500 evaluations during annealing are
shown in Fig. 3.3.

This banana function is still relatively simple as it has a curved nar-
row valley. We should validate SA against a wide range of test functions,
especially those that are strongly multimodal and highly nonlinear. It is
straightforward to extend the above program to deal with highly nonlinear
multimodal functions.
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26 CHAPTER 3. SIMULATED ANNEALING

f(x)

g(x)

Figure 3.4: The basic idea of stochastic tunneling by transform-
ing f(x) to g(x), suppressing some modes and preserving the
locations of minima.

3.5 STOCHASTIC TUNNELING

To ensure the global convergence of simulated annealing, a proper cooling
schedule must be used. In the case when the functional landscape is com-
plex, simulated annealing may become increasingly difficult to escape the
local minima if the temperature is too low. Raising the temperature, as
that in the so-called simulated tempering, may solve the problem, but the
convergence is typically slow, and the computing time also increases.

Stochastic tunneling uses the tunneling idea to transform the objective
function landscape into a different but more convenient one (e.g., Wenzel
and Hamacher, 1999). The essence is to construct a nonlinear transfor-
mation so that some modes of f(x) are suppressed and other modes are
amplified, while preserving the loci of minima of f(x).

The standard form of such a tunneling transformation is

g(x) = 1− exp[−γ(f(x)− f0)], (3.7)

where f0 is the current lowest value of f(x) found so far. γ > 0 is a scaling
parameter, and g is the transformed new landscape. From this simple
transformation, we can see that g → 0 when f − f0 → 0, that is when f0 is
approaching the true global minimum. On the other hand, if f À f0, then
g → 1, which means that all the modes well above the current minimum
f0 are suppressed. For a simple one-dimensional function, it is easy to see
that such properties indeed preserve the loci of the function (see Fig. 3.4).

As the loci of the minima are preserved, then all the modes that above
the current lowest value f0 are suppressed to some degree, while the modes
below f0 are expanded or amplified, which makes it easy for the system to
escape local modes. Simulations and studies suggest that it can significantly
improve the convergence for functions with complex landscape and modes.

Up to now we have not actually provided a detailed program to show
how the SA algorithm can be implemented in practice. However, before
we can actually do this, we need to find a practical way to deal with con-
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straints, as most real-world optimization problems are constrained. In the
next chapter, we will discuss in detail the ways of incorporating nonlinear
constraints.
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Chapter 4

HOW TO DEAL WITH CONSTRAINTS

The optimization we have discussed so far is unconstrained, as we have
not considered any constraints. A natural and important question is how
to incorporate the constraints (both inequality and equality constraints).
There are mainly three ways to deal with constraints: direct approach,
Lagrange multipliers, and penalty method.

Direct approach intends to find the feasible regions enclosed by the con-
straints. This is often difficult, except for a few special cases. Numeri-
cally, we can generate a potential solution, and check if all the constraints
are satisfied. If all the constraints are met, then it is a feasible solution,
and the evaluation of the objective function can be carried out. If one
or more constraints are not satisfied, this potential solution is discarded,
and a new solution should be generated. We then proceed in a similar
manner. As we can expect, this process is slow and inefficient. A better
approach is to incorporate the constraints so as to formulate the problem
as an unconstrained one. The method of Lagrange multiplier has rigorous
mathematical basis, while the penalty method is simple to implement in
practice.

4.1 METHOD OF LAGRANGE MULTIPLIERS

The method of Lagrange multipliers converts a constrained problem to an
unconstrained one. For example, if we want to minimize a function

minimize
x∈<n f(x), x = (x1, ..., xn)

T ∈ <n, (4.1)

subject to multiple nonlinear equality constraints

gj(x) = 0, j = 1, 2, ...,M. (4.2)

We can use M Lagrange multipliers λj(j = 1, ...,M) to reformulate the
above problem as the minimization of the following function

L(x, λj) = f(x) +

M
∑

j=1

λjgj(x). (4.3)
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30 CHAPTER 4. HOW TO DEAL WITH CONSTRAINTS

The optimality requires that the following stationary conditions hold

∂L

∂xi
=

∂f

∂xi
+

M
∑

j=1

λj
∂gj
∂xi

, (i = 1, ..., n), (4.4)

and
∂L

∂λj
= gj = 0, (j = 1, ...,M). (4.5)

These M + n equations will determine the n components of x and M
Lagrange multipliers. As ∂L

∂gj
= λj , we can consider λj as the rate of the

change of the quantity L(x, λj) as a functional of gj .
Now let us look at a simple example

maximize
u,v f = u2/3v1/3,

subject to

3u+ v = 9.

First, we write it as an unconstrained problem using a Lagrange multiplier
λ, and we have

L = u2/3v1/3 + λ(3u+ v − 9).

The conditions to reach optimality are

∂L

∂u
=

2

3
u−1/3v1/3 + 3λ = 0,

∂L

∂v
=

1

3
u2/3v−2/3 + λ = 0,

and
∂L

∂λ
= 3u+ v − 9 = 0.

The first two conditions give 2v = 3u, whose combination with the third
condition leads to

u = 2, v = 3.

Thus, the maximum of f∗ is 3
√
12.

Here we only discussed the equality constraints. For inequality con-
straints, things become more complicated. We need the so-called Karush-
Kuhn-Tucker conditions.

Let us consider the following, generic, nonlinear optimization problem

minimize
x∈<n f(x),

subject to φi(x) = 0, (i = 1, ...,M),

ψj(x) ≤ 0, (j = 1, ..., N). (4.6)
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If all the functions are continuously differentiable, at a local minimum x∗,
there exist constants λ1, ..., λM and µ0, µ1, ..., µN such that the following
KKT optimality conditions hold

µ0∇f(x∗) +
M
∑

i=1

λi∇φi(x∗) +
N
∑

j=1

µj∇ψj(x∗) = 0, (4.7)

and

ψj(x∗) ≤ 0, µjψj(x∗) = 0, (j = 1, 2, ..., N), (4.8)

where

µj ≥ 0, (j = 0, 1, ..., N). (4.9)

The last non-negativity conditions hold for all µj , though there is no con-
straint on the sign of λi.

The constants satisfy the following condition

N
∑

j=0

µj +

M
∑

i=1

|λi| ≥ 0. (4.10)

This is essentially a generalized method of Lagrange multipliers. However,
there is a possibility of degeneracy when µ0 = 0 under certain conditions.
There are two possibilities: 1) there exist vectors λ∗ = (λ∗1, ..., λ

∗
M )T and

µ∗ = (µ∗1, .., µ
∗
N )T such that above equations hold, or 2) all the vectors

∇φ1(x∗),∇φ2(x∗), ..., ∇ψ1(x∗), ...,∇ψN (x∗) are linearly independent, and
in this case, the stationary conditions ∂L

∂xi
do not necessarily hold. As the

second case is a special case, we will not discuss this further.
The condition µjψj(x∗) = 0 in (4.8) is often called the complementarity

condition or complementary slackness condition. It either means µj = 0 or
ψj(x∗) = 0. The later case ψj(x∗) = 0 for any particular j means the in-
equality becomes tight, and thus becoming an equality. For the former case
µj = 0, the inequality for a particular j holds and is not tight; however,
µj = 0 means that this corresponding inequality can be ignored. There-
fore, those inequalities that are not tight are ignored, while inequalities
which are tight become equalities; consequently, the constrained problem
with equality and inequality constraints now essentially becomes a mod-
ified constrained problem with selected equality constraints. This is the
beauty of the KKT conditions. The main issue remains to identify which
inequality becomes tight, and this depends on the individual optimization
problem.

The KKT conditions form the basis for mathematical analysis of non-
linear optimization problems, but the numerical implementation of these
conditions is not easy, and often inefficient. From the numerical point of
view, the penalty method is more straightforward to implement.
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4.2 PENALTY METHOD

For a nonlinear optimization problem with equality and inequality con-
straints, a common method of incorporating constraints is the penalty
method. For the optimization problem

minimize
x∈<n f(x), x = (x1, ..., xn)

T ∈ <n,

subject to φi(x) = 0, (i = 1, ...,M),

ψj(x) ≤ 0, (j = 1, ..., N), (4.11)

the idea is to define a penalty function so that the constrained problem is
transformed into an unconstrained problem. Now we define

Π(x, µi, νj) = f(x) +

M
∑

i=1

µiφ
2
i (x) +

N
∑

j=1

νjψ
2
j (x), (4.12)

where µi À 1 and νj ≥ 0 which should be large enough, depending on the
solution quality needed.

As we can see, when an equality constraint it met, its effect or contri-
bution to Π is zero. However, when it is violated, it is penalized heavily
as it increases Π significantly. Similarly, it is true when inequality con-
straints become tight or exact. For the ease of numerical implementation,
we should use index functions H to rewrite above penalty function as

Π = f(x) +
M
∑

i=1

µiHi[φi(x)]φ
2
i (x) +

N
∑

j=1

νjHj [ψj(x)]ψ
2
j (x), (4.13)

Here Hi[φi(x)] and Hj [ψj(x)] are index functions.
More specifically, Hi[φi(x)] = 1 if φi(x) 6= 0, and Hi = 0 if φi(x) = 0.

Similarly, Hj [ψj(x)] = 0 if ψj(x) ≤ 0 is true, while Hj = 1 if ψj(x) > 0.
In principle, the numerical accuracy depends on the values of µi and νj
which should be reasonably large. But how large is large enough? As most
computers have a machine precision of ε = 2−52 ≈ 2.2 × 10−16, µi and νj
should be close to the order of 1015. Obviously, it could cause numerical
problems if they are too large.

In addition, for simplicity of implementation, we can use µ = µi for all
i and ν = νj for all j. That is, we can use a simplified

Π(x, µ, ν) = f(x) + µ

M
∑

i=1

Hi[φi(x)]φ
2
i (x) + ν

N
∑

j=1

Hj [ψj(x)]ψ
2
j (x).

In general, for most applications, µ and ν can be taken as 1010 to 1015. We
will use these values in our implementation.
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Sometimes, it might be easier to change an equality constraint to two
inequality constraints, so that we only have to deal with inequalities in the
implementation. This is because g(x) = 0 is always equivalent to g(x) ≤ 0
and g(x) ≥ 0 (or −g(x) ≤ 0).

4.3 STEP SIZE IN RANDOM WALKS

As random walks are widely used for randomization and local search, a
proper step size is very important. In the generic equation

xt+1 = xt + s εt, (4.14)

εt is drawn from a standard normal distribution with zero mean and unity
standard deviation. Here the step size s determines how far a random
walker (e.g., an agent or particle in metaheuristics) can go for a fixed
number of iterations.

If s is too large, then the new solution xt+1 generated will be too far
away from the old solution (or more often the current best). Then, such a
move is unlikely to be accepted. If s is too small, the change is too small
to be significant, and consequently such search is not efficient. So a proper
step size is important to maintain the search as efficient as possible.

From the theory of simple isotropic random walks, we know that the
average distance r traveled in the d-dimension space is

r2 = 2dDt, (4.15)

where D = s2/2τ is the effective diffusion coefficient. Here s is the step
size or distance traveled at each jump, and τ is the time taken for each
jump. The above equation implies that

s2 =
τ r2

t d
. (4.16)

For a typical length scale L of a dimension of interest, the local search is
typically limited in a region of L/10. That is, r = L/10. As the iterations
are discrete, we can take τ = 1. Typically in metaheuristics, we can expect
that the number of generations is usually t = 100 to 1000, which means
that

s ≈ r√
td

=
L/10√
t d

. (4.17)

For d = 1 and t = 100, we have s = 0.01L, while s = 0.001L for d = 10
and t = 1000. As step sizes could differ from variable to variable, a step
size ratio s/L is more generic. Therefore, we can use s/L = 0.001 to 0.01
for most problems. We will use this step size factor in our implementation,
to be discussed later in the last section of this chapter.



N
at
u r
e-
In
sp

ire
d M
etaheuristic A

lgorithm
s

S e c o n d E d it ion (
2 0

10
)

Xin-She Yang

c©Luniver Press

34 CHAPTER 4. HOW TO DEAL WITH CONSTRAINTS

In order to demonstrate the way we incorporate the constraints and the
way to do the random walk, it is easy to illustrate using a real-world design
example in engineering applications. Now let us look at the well-known
welded beam design.

4.4 WELDED BEAM DESIGN

The welded beam design problem is a standard test problem for constrained
design optimization, which was described in detail in the literature (Rags-
dell and Phillips 1976, Cagnina et al 2008). The problem has four design
variables: the width w and length L of the welded area, the depth d and
thickness h of the beam. The objective is to minimize the overall fabri-
cation cost, under the appropriate constraints of shear stress τ , bending
stress σ, buckling load P and end deflection δ.

The problem can be written as

minimize f(x) = 1.10471w2L+ 0.04811dh(14.0 + L), (4.18)

subject to

g1(x) = τ(x)− 13, 600 ≤ 0
g2(x) = σ(x)− 30, 000 ≤ 0
g3(x) = w − h ≤ 0
g4(x) = 0.10471w2 + 0.04811hd(14 + L)− 5.0 ≤ 0
g5(x) = 0.125− w ≤ 0
g6(x) = δ(x)− 0.25 ≤ 0
g7(x) = 6000− P (x) ≤ 0,

(4.19)

where

σ(x) =
504, 000

hd2
, δ =

65, 856

30, 000hd3
, Q = 6000(14 +

L

2
),

D =
1

2

√

L2 + (w + d)2, J =
√
2 wL[

L2

6
+

(w + d)2

2
], β =

QD

J
,

α =
6000√
2wL

, τ(x) =

√

α2 +
αβL

D
+ β2,

P = 0.61423× 106
dh3

6
(1− d

√

30/48

28
). (4.20)

The simple limits or bounds are 0.1 ≤ L, d ≤ 10 and 0.1 ≤ w, h ≤ 2.0.
If we use the simulated annealing algorithm to solve this problem (see

next section), we can get the optimal solution which is about the same
solution obtained by Cagnina et al (2008)

f∗ = 1.724852 at (0.205730, 3.470489, 9.036624, 0.205729). (4.21)
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It is worth pointing out that you have to run the programs a few times
using values such as α = 0.95 (default) and α = 0.99 to see how the results
vary. In addition, as SA is a stochastic optimization algorithm, we cannot
expect the results are the same. In fact, they will be slightly different, every
time we run the program. Therefore, we should understand and interpret
the results using statistical measures such as mean and standard deviation.

4.5 SA IMPLEMENTATION

We just formulated the welded beam design problem using different nota-
tions from some literature. Here we try to illustrate a point.

As the input to a function is a vector (either column vector or less often
row vector), we have to write

x =
(

w L d h
)

= [x(1) x(2) x(3) x(4)]. (4.22)

With this vector, the objective becomes

minimize f(x) = 1.10471 ∗ x(1)2 ∗ x(2)+ 0.04811 ∗ x(3) ∗ x(4)(14.0+ x(2)),

which can easily be converted to a formula in Matlab. Similarly, the third
inequality constraint can be rewritten as

g3 = g(3) = x(1)− x(4) ≤ 0. (4.23)

Other constraints can be rewritten in a similar way.
Using the pseudo code for simulated annealing and combining with the

penalty method, we can solve the above welded beam design problem using
simulated annealing in Matlab as follows:

% Simulated Annealing for constrained optimization

% by Xin-She Yang @ Cambridge University @2008

% Usage: sa_mincon(0.99) or sa_mincon;

function [bestsol,fval,N]=sa_mincon(alpha)

% Default cooling factor

if nargin<1,

alpha=0.95;

end

% Display usage

disp(’sa_mincon or [Best,fmin,N]=sa_mincon(0.9)’);

% Welded beam design optimization

Lb=[0.1 0.1 0.1 0.1];
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Ub=[2.0 10.0 10.0 2.0];

u0=(Lb+Ub)/2;

if length(Lb) ~=length(Ub),

disp(’Simple bounds/limits are improper!’);

return

end

%% Start of the main program -------------------------

d=length(Lb); % Dimension of the problem

% Initializing parameters and settings

T_init = 1.0; % Initial temperature

T_min = 1e-10; % Finial stopping temperature

F_min = -1e+100; % Min value of the function

max_rej=500; % Maximum number of rejections

max_run=150; % Maximum number of runs

max_accept = 50; % Maximum number of accept

initial_search=500; % Initial search period

k = 1; % Boltzmann constant

Enorm=1e-5; % Energy norm (eg, Enorm=1e-8)

% Initializing the counters i,j etc

i= 0; j = 0; accept = 0; totaleval = 0;

% Initializing various values

T = T_init;

E_init = Fun(u0);

E_old = E_init; E_new=E_old;

best=u0; % initially guessed values

% Starting the simulated annealing

while ((T > T_min) & (j <= max_rej) & E_new>F_min)

i = i+1;

% Check if max numbers of run/accept are met

if (i >= max_run) | (accept >= max_accept)

% reset the counters

i = 1; accept = 1;

% Cooling according to a cooling schedule

T = cooling(alpha,T);

end

% Function evaluations at new locations

if totaleval<initial_search,

init_flag=1;

ns=newsolution(u0,Lb,Ub,init_flag);
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else

init_flag=0;

ns=newsolution(best,Lb,Ub,init_flag);

end

totaleval=totaleval+1;

E_new = Fun(ns);

% Decide to accept the new solution

DeltaE=E_new-E_old;

% Accept if improved

if (DeltaE <0)

best = ns; E_old = E_new;

accept=accept+1; j = 0;

end

% Accept with a probability if not improved

if (DeltaE>=0 & exp(-DeltaE/(k*T))>rand );

best = ns; E_old = E_new;

accept=accept+1;

else

j=j+1;

end

% Update the estimated optimal solution

f_opt=E_old;

end

bestsol=best;

fval=f_opt;

N=totaleval;

%% New solutions

function s=newsolution(u0,Lb,Ub,init_flag)

% Either search around

if length(Lb)>0 & init_flag==1,

s=Lb+(Ub-Lb).*rand(size(u0));

else

% Or local search by random walk

stepsize=0.01;

s=u0+stepsize*(Ub-Lb).*randn(size(u0));

end

s=bounds(s,Lb,Ub);

%% Cooling

function T=cooling(alpha,T)

T=alpha*T;
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function ns=bounds(ns,Lb,Ub)

if length(Lb)>0,

% Apply the lower bound

ns_tmp=ns;

I=ns_tmp<Lb;

ns_tmp(I)=Lb(I);

% Apply the upper bounds

J=ns_tmp>Ub;

ns_tmp(J)=Ub(J);

% Update this new move

ns=ns_tmp;

else

ns=ns;

end

% d-dimensional objective function

function z=Fun(u)

% Objective

z=fobj(u);

% Apply nonlinear constraints by penalty method

% Z=f+sum_k=1^N lam_k g_k^2 *H(g_k)

z=z+getnonlinear(u);

function Z=getnonlinear(u)

Z=0;

% Penalty constant

lam=10^15; lameq=10^15;

[g,geq]=constraints(u);

% Inequality constraints

for k=1:length(g),

Z=Z+ lam*g(k)^2*getH(g(k));

end

% Equality constraints (when geq=[], length->0)

for k=1:length(geq),

Z=Z+lameq*geq(k)^2*geteqH(geq(k));

end

% Test if inequalities hold

function H=getH(g)
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if g<=0,

H=0;

else

H=1;

end

% Test if equalities hold

function H=geteqH(g)

if g==0,

H=0;

else

H=1;

end

% Objective functions

function z=fobj(u)

% Welded beam design optimization

z=1.10471*u(1)^2*u(2)+0.04811*u(3)*u(4)*(14.0+u(2));

% All constraints

function [g,geq]=constraints(x)

% Inequality constraints

Q=6000*(14+x(2)/2);

D=sqrt(x(2)^2/4+(x(1)+x(3))^2/4);

J=2*(x(1)*x(2)*sqrt(2)*(x(2)^2/12+(x(1)+x(3))^2/4));

alpha=6000/(sqrt(2)*x(1)*x(2));

beta=Q*D/J;

tau=sqrt(alpha^2+2*alpha*beta*x(2)/(2*D)+beta^2);

sigma=504000/(x(4)*x(3)^2);

delta=65856000/(30*10^6*x(4)*x(3)^3);

tmpf=4.013*(30*10^6)/196;

P=tmpf*sqrt(x(3)^2*x(4)^6/36)*(1-x(3)*sqrt(30/48)/28);

g(1)=tau-13600;

g(2)=sigma-30000;

g(3)=x(1)-x(4);

g(4)=0.10471*x(1)^2+0.04811*x(3)*x(4)*(14+x(2))-5.0;

g(5)=0.125-x(1);

g(6)=delta-0.25;

g(7)=6000-P;

% Equality constraints

geq=[];

%% End of the program --------------------------------
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How to Get the Files

To get the files of all the Matlab programs provided in this book, readers
can send an email (with the subject ‘Nature-Inspired Algorithms: Files’)
to Metaheuristic.Algorithms@gmail.com – A zip file will be provided
(via email) by the author.
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Chapter 5

GENETIC ALGORITHMS

Genetic algorithms are probably the most popular evolutionary algorithms
in terms of the diversity of their applications. A vast majority of well-known
optimization problems have been tried by genetic algorithms. In addition,
genetic algorithms are population-based, and many modern evolutionary
algorithms are directly based on genetic algorithms, or have some strong
similarities.

5.1 INTRODUCTION

The genetic algorithm (GA), developed by John Holland and his collabo-
rators in the 1960s and 1970s, is a model or abstraction of biological evo-
lution based on Charles Darwin’s theory of natural selection. Holland was
the first to use the crossover and recombination, mutation, and selection
in the study of adaptive and artificial systems. These genetic operators
form the essential part of the genetic algorithm as a problem-solving strat-
egy. Since then, many variants of genetic algorithms have been developed
and applied to a wide range of optimization problems, from graph colour-
ing to pattern recognition, from discrete systems (such as the travelling
salesman problem) to continuous systems (e.g., the efficient design of air-
foil in aerospace engineering), and from financial market to multiobjective
engineering optimization.

There are many advantages of genetic algorithms over traditional opti-
mization algorithms, and two most noticeable advantages are: the ability
of dealing with complex problems and parallelism. Genetic algorithms can
deal with various types of optimization whether the objective (fitness) func-
tion is stationary or non-stationary (change with time), linear or nonlinear,
continuous or discontinuous, or with random noise. As multiple offsprings
in a population act like independent agents, the population (or any sub-
group) can explore the search space in many directions simultaneously.
This feature makes it ideal to parallelize the algorithms for implementa-
tion. Different parameters and even different groups of encoded strings can
be manipulated at the same time.

Nature-Inspired Metaheuristic Algorithms, 2nd Edition by Xin-She Yang
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Chapter 10

FIREFLY ALGORITHM

10.1 BEHAVIOUR OF FIREFLIES

The flashing light of fireflies is an amazing sight in the summer sky in
the tropical and temperate regions. There are about two thousand firefly
species, and most fireflies produce short and rhythmic flashes. The pat-
tern of flashes is often unique for a particular species. The flashing light is
produced by a process of bioluminescence, and the true functions of such
signaling systems are still being debated. However, two fundamental func-
tions of such flashes are to attract mating partners (communication), and
to attract potential prey. In addition, flashing may also serve as a protec-
tive warning mechanism to remind potential predators of the bitter taste
of fireflies.

The rhythmic flash, the rate of flashing and the amount of time form
part of the signal system that brings both sexes together. Females respond
to a male’s unique pattern of flashing in the same species, while in some
species such as Photuris, female fireflies can eavesdrop on the biolumines-
cent courtship signals and even mimic the mating flashing pattern of other
species so as to lure and eat the male fireflies who may mistake the flashes
as a potential suitable mate. Some tropic fireflies can even synchronize
their flashes, thus forming emerging biological self-organized behavior.

We know that the light intensity at a particular distance r from the light
source obeys the inverse square law. That is to say, the light intensity I
decreases as the distance r increases in terms of I ∝ 1/r2. Furthermore,
the air absorbs light which becomes weaker and weaker as the distance
increases. These two combined factors make most fireflies visual to a limit
distance, usually several hundred meters at night, which is good enough
for fireflies to communicate.

The flashing light can be formulated in such a way that it is associated
with the objective function to be optimized, which makes it possible to
formulate new optimization algorithms. In the rest of this chapter, we will
first outline the basic formulation of the Firefly Algorithm (FA) and then
discuss the implementation in detail.

Nature-Inspired Metaheuristic Algorithms, 2nd Edition by Xin-She Yang
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Firefly Algorithm

Objective function f(x), x = (x1, ..., xd)
T

Generate initial population of fireflies xi (i = 1, 2, ..., n)
Light intensity Ii at xi is determined by f(xi)
Define light absorption coefficient γ
while (t <MaxGeneration)
for i = 1 : n all n fireflies

for j = 1 : n all n fireflies (inner loop)
if (Ii < Ij), Move firefly i towards j; end if

Vary attractiveness with distance r via exp[−γr]
Evaluate new solutions and update light intensity

end for j
end for i
Rank the fireflies and find the current global best g∗
end while

Postprocess results and visualization

Figure 10.1: Pseudo code of the firefly algorithm (FA).

10.2 FIREFLY ALGORITHM

Now we can idealize some of the flashing characteristics of fireflies so as
to develop firefly-inspired algorithms. For simplicity in describing our new
Firefly Algorithm (FA) which was developed by Xin-She Yang at Cam-
bridge University in 2007, we now use the following three idealized rules:

• All fireflies are unisex so that one firefly will be attracted to other
fireflies regardless of their sex;

• Attractiveness is proportional to the their brightness, thus for any two
flashing fireflies, the less brighter one will move towards the brighter
one. The attractiveness is proportional to the brightness and they
both decrease as their distance increases. If there is no brighter one
than a particular firefly, it will move randomly;

• The brightness of a firefly is affected or determined by the landscape
of the objective function.

For a maximization problem, the brightness can simply be proportional
to the value of the objective function. Other forms of brightness can be
defined in a similar way to the fitness function in genetic algorithms.

Based on these three rules, the basic steps of the firefly algorithm (FA)
can be summarized as the pseudo code shown in Figure 11.1.
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10.3 LIGHT INTENSITY AND ATTRACTIVENESS

In the firefly algorithm, there are two important issues: the variation of
light intensity and formulation of the attractiveness. For simplicity, we
can always assume that the attractiveness of a firefly is determined by its
brightness which in turn is associated with the encoded objective function.

In the simplest case for maximum optimization problems, the brightness
I of a firefly at a particular location x can be chosen as I(x) ∝ f(x).
However, the attractiveness β is relative, it should be seen in the eyes
of the beholder or judged by the other fireflies. Thus, it will vary with
the distance rij between firefly i and firefly j. In addition, light intensity
decreases with the distance from its source, and light is also absorbed in
the media, so we should allow the attractiveness to vary with the degree of
absorption.

In the simplest form, the light intensity I(r) varies according to the
inverse square law

I(r) =
Is
r2
, (10.1)

where Is is the intensity at the source. For a given medium with a fixed
light absorption coefficient γ, the light intensity I varies with the distance
r. That is

I = I0e
−γr, (10.2)

where I0 is the original light intensity. In order to avoid the singularity
at r = 0 in the expression Is/r

2, the combined effect of both the inverse
square law and absorption can be approximated as the following Gaussian
form

I(r) = I0e
−γr2 . (10.3)

As a firefly’s attractiveness is proportional to the light intensity seen by
adjacent fireflies, we can now define the attractiveness β of a firefly by

β = β0e
−γr2 , (10.4)

where β0 is the attractiveness at r = 0. As it is often faster to calculate
1/(1 + r2) than an exponential function, the above function, if necessary,
can conveniently be approximated as

β =
β0

1 + γr2
. (10.5)

Both (10.4) and (10.5) define a characteristic distance Γ = 1/
√
γ over which

the attractiveness changes significantly from β0 to β0e
−1 for equation (10.4)

or β0/2 for equation (10.5).
In the actual implementation, the attractiveness function β(r) can be

any monotonically decreasing functions such as the following generalized
form

β(r) = β0e
−γrm , (m ≥ 1). (10.6)
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For a fixed γ, the characteristic length becomes

Γ = γ−1/m → 1, m→∞. (10.7)

Conversely, for a given length scale Γ in an optimization problem, the
parameter γ can be used as a typical initial value. That is

γ =
1

Γm
. (10.8)

The distance between any two fireflies i and j at xi and xj , respectively,
is the Cartesian distance

rij = ‖xi − xj‖ =

√

√

√

√

d
∑

k=1

(xi,k − xj,k)2, (10.9)

where xi,k is the kth component of the spatial coordinate xi of ith firefly.
In 2-D case, we have

rij =
√

(xi − xj)2 + (yi − yj)2. (10.10)

The movement of a firefly i is attracted to another more attractive
(brighter) firefly j is determined by

xi = xi + β0e
−γr2ij (xj − xi) + α εi, (10.11)

where the second term is due to the attraction. The third term is random-
ization with α being the randomization parameter, and εi is a vector of
random numbers drawn from a Gaussian distribution or uniform distribu-
tion. For example, the simplest form is εi can be replaced by rand − 1/2
where rand is a random number generator uniformly distributed in [0, 1].
For most our implementation, we can take β0 = 1 and α ∈ [0, 1].

It is worth pointing out that (10.11) is a random walk biased towards the
brighter fireflies. If β0 = 0, it becomes a simple random walk. Furthermore,
the randomization term can easily be extended to other distributions such
as Lévy flights.

The parameter γ now characterizes the variation of the attractiveness,
and its value is crucially important in determining the speed of the con-
vergence and how the FA algorithm behaves. In theory, γ ∈ [0,∞), but
in practice, γ = O(1) is determined by the characteristic length Γ of the
system to be optimized. Thus, for most applications, it typically varies
from 0.1 to 10.

10.4 SCALINGS AND ASYMPTOTICS

It is worth pointing out that the distance r defined above is not limited to
the Euclidean distance. We can define other distance r in the n-dimensional
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hyperspace, depending on the type of problem of our interest. For example,
for job scheduling problems, r can be defined as the time lag or time in-
terval. For complicated networks such as the Internet and social networks,
the distance r can be defined as the combination of the degree of local
clustering and the average proximity of vertices. In fact, any measure that
can effectively characterize the quantities of interest in the optimization
problem can be used as the ‘distance’ r.

The typical scale Γ should be associated with the scale concerned in
our optimization problem. If Γ is the typical scale for a given optimization
problem, for a very large number of fireflies nÀ k where k is the number of
local optima, then the initial locations of these n fireflies should distribute
relatively uniformly over the entire search space. As the iterations proceed,
the fireflies would converge into all the local optima (including the global
ones). By comparing the best solutions among all these optima, the global
optima can easily be achieved. Our recent research suggests that it is
possible to prove that the firefly algorithm will approach global optima
when n→∞ and tÀ 1. In reality, it converges very quickly and this will
be demonstrated later in this chapter.

There are two important limiting or asymptotic cases when γ → 0 and
γ → ∞. For γ → 0, the attractiveness is constant β = β0 and Γ → ∞,
this is equivalent to saying that the light intensity does not decrease in an
idealized sky. Thus, a flashing firefly can be seen anywhere in the domain.
Thus, a single (usually global) optima can easily be reached. If we remove
the inner loop for j in Figure 11.1 and replace xj by the current global
best g∗, then the Firefly Algorithm becomes the special case of accelerated
particle swarm optimization (PSO) discussed earlier. Subsequently, the
efficiency of this special case is the same as that of PSO.

On the other hand, the limiting case γ →∞ leads to Γ→ 0 and β(r)→
δ(r) which is the Dirac delta function, which means that the attractiveness
is almost zero in the sight of other fireflies. This is equivalent to the case
where the fireflies roam in a very thick foggy region randomly. No other
fireflies can be seen, and each firefly roams in a completely random way.
Therefore, this corresponds to the completely random search method.

As the firefly algorithm is usually in the case between these two extremes,
it is possible to adjust the parameter γ and α so that it can outperform
both the random search and PSO. In fact, FA can find the global optima
as well as the local optima simultaneously and effectively. This advantage
will be demonstrated in detail later in the implementation.

A further advantage of FA is that different fireflies will work almost
independently, it is thus particular suitable for parallel implementation. It
is even better than genetic algorithms and PSO because fireflies aggregate
more closely around each optimum. It can be expected that the interactions
between different subregions are minimal in parallel implementation.
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Figure 10.2: Landscape of a function with two equal global maxima.

10.5 IMPLEMENTATION

In order to demonstrate how the firefly algorithm works, we have imple-
mented it in Matlab/Octave to be given later.

In order to show that both the global optima and local optima can be
found simultaneously, we now use the following four-peak function

f(x, y) = e−(x−4)
2−(y−4)2 + e−(x+4)

2−(y−4)2 + 2[e−x2−y2 + e−x2−(y+4)2 ],

where (x, y) ∈ [−5, 5] × [−5, 5]. This function has four peaks. Two local
peaks with f = 1 at (−4, 4) and (4, 4), and two global peaks with fmax = 2
at (0, 0) and (0,−4), as shown in Figure 10.2. We can see that all these
four optima can be found using 25 fireflies in about 20 generations (see Fig.
10.3). So the total number of function evaluations is about 500. This is
much more efficient than most of existing metaheuristic algorithms.

% Firefly Algorithm by X S Yang (Cambridge University)

% Usage: ffa_demo([number_of_fireflies,MaxGeneration])

% eg: ffa_demo([12,50]);

function [best]=firefly_simple(instr)

% n=number of fireflies

% MaxGeneration=number of pseudo time steps

if nargin<1, instr=[12 50]; end

n=instr(1); MaxGeneration=instr(2);

rand(‘state’,0); % Reset the random generator

% ------ Four peak functions ---------------------

str1=‘exp(-(x-4)^2-(y-4)^2)+exp(-(x+4)^2-(y-4)^2)’;

str2=‘+2*exp(-x^2-(y+4)^2)+2*exp(-x^2-y^2)’;

funstr=strcat(str1,str2);

% Converting to an inline function

f=vectorize(inline(funstr));
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% range=[xmin xmax ymin ymax];

range=[-5 5 -5 5];

% ------------------------------------------------

alpha=0.2; % Randomness 0--1 (highly random)

gamma=1.0; % Absorption coefficient

% ------------------------------------------------

% Grid values are used for display only

Ngrid=100;

dx=(range(2)-range(1))/Ngrid;

dy=(range(4)-range(3))/Ngrid;

[x,y]=meshgrid(range(1):dx:range(2),...

range(3):dy:range(4));

z=f(x,y);

% Display the shape of the objective function

figure(1); surfc(x,y,z);

% ------------------------------------------------

% generating the initial locations of n fireflies

[xn,yn,Lightn]=init_ffa(n,range);

% Display the paths of fireflies in a figure with

% contours of the function to be optimized

figure(2);

% Iterations or pseudo time marching

for i=1:MaxGeneration, %%%%% start iterations

% Show the contours of the function

contour(x,y,z,15); hold on;

% Evaluate new solutions

zn=f(xn,yn);

% Ranking the fireflies by their light intensity

[Lightn,Index]=sort(zn);

xn=xn(Index); yn=yn(Index);

xo=xn; yo=yn; Lighto=Lightn;

% Trace the paths of all roaming fireflies

plot(xn,yn,‘.’,‘markersize’,10,‘markerfacecolor’,‘g’);

% Move all fireflies to the better locations

[xn,yn]=ffa_move(xn,yn,Lightn,xo,yo,...

Lighto,alpha,gamma,range);

drawnow;

% Use "hold on" to show the paths of fireflies

hold off;

end %%%%% end of iterations

best(:,1)=xo’; best(:,2)=yo’; best(:,3)=Lighto’;

% ----- All subfunctions are listed here ---------

% The initial locations of n fireflies

function [xn,yn,Lightn]=init_ffa(n,range)
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Figure 10.3: The initial locations of 25 fireflies (left) and their final locations
after 20 iterations (right).

xrange=range(2)-range(1);

yrange=range(4)-range(3);

xn=rand(1,n)*xrange+range(1);

yn=rand(1,n)*yrange+range(3);

Lightn=zeros(size(yn));

% Move all fireflies toward brighter ones

function [xn,yn]=ffa_move(xn,yn,Lightn,xo,yo,...

Lighto,alpha,gamma,range)

ni=size(yn,2); nj=size(yo,2);

for i=1:ni,

% The attractiveness parameter beta=exp(-gamma*r)

for j=1:nj,

r=sqrt((xn(i)-xo(j))^2+(yn(i)-yo(j))^2);

if Lightn(i)<Lighto(j), % Brighter and more attractive

beta0=1; beta=beta0*exp(-gamma*r.^2);

xn(i)=xn(i).*(1-beta)+xo(j).*beta+alpha.*(rand-0.5);

yn(i)=yn(i).*(1-beta)+yo(j).*beta+alpha.*(rand-0.5);

end

end % end for j

end % end for i

[xn,yn]=findrange(xn,yn,range);

% Make sure the fireflies are within the range

function [xn,yn]=findrange(xn,yn,range)

for i=1:length(yn),

if xn(i)<=range(1), xn(i)=range(1); end

if xn(i)>=range(2), xn(i)=range(2); end

if yn(i)<=range(3), yn(i)=range(3); end

if yn(i)>=range(4), yn(i)=range(4); end

end
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In the implementation, the values of the parameters are α = 0.2, γ = 1
and β0 = 1. Obviously, these parameters can be adjusted to suit for solving
various problems with different scales.

10.6 FA VARIANTS

The basic firefly algorithm is very efficient, but we can see that the solutions
are still changing as the optima are approaching. It is possible to improve
the solution quality by reducing the randomness.

A further improvement on the convergence of the algorithm is to vary
the randomization parameter α so that it decreases gradually as the optima
are approaching. For example, we can use

α = α∞ + (α0 − α∞)e−t, (10.12)

where t ∈ [0, tmax] is the pseudo time for simulations and tmax is the max-
imum number of generations. α0 is the initial randomization parameter
while α∞ is the final value. We can also use a similar function to the
geometrical annealing schedule. That is

α = α0θ
t, (10.13)

where θ ∈ (0, 1] is the randomness reduction constant.
In addition, in the current version of the FA algorithm, we do not ex-

plicitly use the current global best g∗, even though we only use it to decode
the final best solutions. Our recent studies show that the efficiency may
significantly improve if we add an extra term λεi(xi − g∗) to the updating
formula (10.11). Here λ is a parameter similar to α and β, and εi is a
vector of random numbers. These could form important topics for further
research.

10.7 SPRING DESIGN

The design of a tension and compression spring is a well-known benchmark
optimization problem. The main aim is to minimize the weight subject
to constraints on deflection, stress, surge frequency and geometry. It in-
volves three design variables: the wire diameter x1, coil diameter x2 and
number/length of the coil x3. This problem can be summarized as

minimize f(x) = x21x2(2 + x3), (10.14)

subject to the following constraints

g1(x) = 1− x32x3
71785x41

≤ 0,
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g2(x) =
4x22 − x1x2

12566(x31x2 − x41)
+

1

5108x21
− 1 ≤ 0,

g3(x) = 1− 140.45x1
x22x3

≤ 0,

g4(x) =
x1 + x2
1.5

− 1 ≤ 0. (10.15)

The simple bounds on the design variables are

0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3, 2.0 ≤ x3 ≤ 15.0. (10.16)

The best solution found in the literature (e.g., Cagnina et al. 2008) is

x∗ = (0.051690, 0.356750, 11.287126), (10.17)

with the objective
f(x∗) = 0.012665. (10.18)

We now provide the Matlab implementation of our firefly algorithm to-
gether with the penalty method for incorporating constraints. You may
need a newer version of Matlab to deal with function handles. If you run
the program a few times, you can get the above optimal solutions. It is
even possible to produce better results if you experiment the program for
a while.

% -------------------------------------------------------%

% Firefly Algorithm for constrained optimization %

% by Xin-She Yang (Cambridge University) Copyright @2009 %

% -------------------------------------------------------%

function fa_mincon_demo

% parameters [n N_iteration alpha betamin gamma]

para=[40 150 0.5 0.2 1];

% This demo uses the Firefly Algorithm to solve the

% [Spring Design Problem as described by Cagnina et al.,

% Informatica, vol. 32, 319-326 (2008). ]

% Simple bounds/limits

disp(’Solve the simple spring design problem ...’);

Lb=[0.05 0.25 2.0];

Ub=[2.0 1.3 15.0];

% Initial random guess

u0=(Lb+Ub)/2;

[u,fval,NumEval]=ffa_mincon(@cost,@constraint,u0,Lb,Ub,para);
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% Display results

bestsolution=u

bestojb=fval

total_number_of_function_evaluations=NumEval

%%% Put your own cost/objective function here --------%%%

%% Cost or Objective function

function z=cost(x)

z=(2+x(3))*x(1)^2*x(2);

% Constrained optimization using penalty methods

% by changing f to F=f+ \sum lam_j*g^2_j*H_j(g_j)

% where H(g)=0 if g<=0 (true), =1 if g is false

%%% Put your own constraints here --------------------%%%

function [g,geq]=constraint(x)

% All nonlinear inequality constraints should be here

% If no inequality constraint at all, simple use g=[];

g(1)=1-x(2)^3*x(3)/(7178*x(1)^4);

tmpf=(4*x(2)^2-x(1)*x(2))/(12566*(x(2)*x(1)^3-x(1)^4));

g(2)=tmpf+1/(5108*x(1)^2)-1;

g(3)=1-140.45*x(1)/(x(2)^2*x(3));

g(4)=x(1)+x(2)-1.5;

% all nonlinear equality constraints should be here

% If no equality constraint at all, put geq=[] as follows

geq=[];

%%% End of the part to be modified -------------------%%%

%%% --------------------------------------------------%%%

%%% Do not modify the following codes unless you want %%%

%%% to improve its performance etc %%%

% -------------------------------------------------------

% ===Start of the Firefly Algorithm Implementation ======

% Inputs: fhandle => @cost (your own cost function,

% can be an external file )

% nonhandle => @constraint, all nonlinear constraints

% can be an external file or a function

% Lb = lower bounds/limits

% Ub = upper bounds/limits

% para == optional (to control the Firefly algorithm)

% Outputs: nbest = the best solution found so far

% fbest = the best objective value

% NumEval = number of evaluations: n*MaxGeneration

% Optional:

% The alpha can be reduced (as to reduce the randomness)

% ---------------------------------------------------------
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% Start FA

function [nbest,fbest,NumEval]...

=ffa_mincon(fhandle,nonhandle,u0, Lb, Ub, para)

% Check input parameters (otherwise set as default values)

if nargin<6, para=[20 50 0.25 0.20 1]; end

if nargin<5, Ub=[]; end

if nargin<4, Lb=[]; end

if nargin<3,

disp(’Usuage: FA_mincon(@cost, @constraint,u0,Lb,Ub,para)’);

end

% n=number of fireflies

% MaxGeneration=number of pseudo time steps

% ------------------------------------------------

% alpha=0.25; % Randomness 0--1 (highly random)

% betamn=0.20; % minimum value of beta

% gamma=1; % Absorption coefficient

% ------------------------------------------------

n=para(1); MaxGeneration=para(2);

alpha=para(3); betamin=para(4); gamma=para(5);

% Total number of function evaluations

NumEval=n*MaxGeneration;

% Check if the upper bound & lower bound are the same size

if length(Lb) ~=length(Ub),

disp(’Simple bounds/limits are improper!’);

return

end

% Calcualte dimension

d=length(u0);

% Initial values of an array

zn=ones(n,1)*10^100;

% ------------------------------------------------

% generating the initial locations of n fireflies

[ns,Lightn]=init_ffa(n,d,Lb,Ub,u0);

% Iterations or pseudo time marching

for k=1:MaxGeneration, %%%%% start iterations

% This line of reducing alpha is optional

alpha=alpha_new(alpha,MaxGeneration);

% Evaluate new solutions (for all n fireflies)

for i=1:n,
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zn(i)=Fun(fhandle,nonhandle,ns(i,:));

Lightn(i)=zn(i);

end

% Ranking fireflies by their light intensity/objectives

[Lightn,Index]=sort(zn);

ns_tmp=ns;

for i=1:n,

ns(i,:)=ns_tmp(Index(i),:);

end

%% Find the current best

nso=ns; Lighto=Lightn;

nbest=ns(1,:); Lightbest=Lightn(1);

% For output only

fbest=Lightbest;

% Move all fireflies to the better locations

[ns]=ffa_move(n,d,ns,Lightn,nso,Lighto,nbest,...

Lightbest,alpha,betamin,gamma,Lb,Ub);

end %%%%% end of iterations

% -------------------------------------------------------

% ----- All the subfunctions are listed here ------------

% The initial locations of n fireflies

function [ns,Lightn]=init_ffa(n,d,Lb,Ub,u0)

% if there are bounds/limits,

if length(Lb)>0,

for i=1:n,

ns(i,:)=Lb+(Ub-Lb).*rand(1,d);

end

else

% generate solutions around the random guess

for i=1:n,

ns(i,:)=u0+randn(1,d);

end

end

% initial value before function evaluations

Lightn=ones(n,1)*10^100;

% Move all fireflies toward brighter ones

function [ns]=ffa_move(n,d,ns,Lightn,nso,Lighto,...

nbest,Lightbest,alpha,betamin,gamma,Lb,Ub)

% Scaling of the system

scale=abs(Ub-Lb);
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% Updating fireflies

for i=1:n,

% The attractiveness parameter beta=exp(-gamma*r)

for j=1:n,

r=sqrt(sum((ns(i,:)-ns(j,:)).^2));

% Update moves

if Lightn(i)>Lighto(j), % Brighter and more attractive

beta0=1; beta=(beta0-betamin)*exp(-gamma*r.^2)+betamin;

tmf=alpha.*(rand(1,d)-0.5).*scale;

ns(i,:)=ns(i,:).*(1-beta)+nso(j,:).*beta+tmpf;

end

end % end for j

end % end for i

% Check if the updated solutions/locations are within limits

[ns]=findlimits(n,ns,Lb,Ub);

% This function is optional, as it is not in the original FA

% The idea to reduce randomness is to increase the convergence,

% however, if you reduce randomness too quickly, then premature

% convergence can occur. So use with care.

function alpha=alpha_new(alpha,NGen)

% alpha_n=alpha_0(1-delta)^NGen=0.005

% alpha_0=0.9

delta=1-(0.005/0.9)^(1/NGen);

alpha=(1-delta)*alpha;

% Make sure the fireflies are within the bounds/limits

function [ns]=findlimits(n,ns,Lb,Ub)

for i=1:n,

% Apply the lower bound

ns_tmp=ns(i,:);

I=ns_tmp<Lb;

ns_tmp(I)=Lb(I);

% Apply the upper bounds

J=ns_tmp>Ub;

ns_tmp(J)=Ub(J);

% Update this new move

ns(i,:)=ns_tmp;

end

% -----------------------------------------

% d-dimensional objective function

function z=Fun(fhandle,nonhandle,u)

% Objective
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z=fhandle(u);

% Apply nonlinear constraints by the penalty method

% Z=f+sum_k=1^N lam_k g_k^2 *H(g_k) where lam_k >> 1

z=z+getnonlinear(nonhandle,u);

function Z=getnonlinear(nonhandle,u)

Z=0;

% Penalty constant >> 1

lam=10^15; lameq=10^15;

% Get nonlinear constraints

[g,geq]=nonhandle(u);

% Apply inequality constraints as a penalty function

for k=1:length(g),

Z=Z+ lam*g(k)^2*getH(g(k));

end

% Apply equality constraints (when geq=[], length->0)

for k=1:length(geq),

Z=Z+lameq*geq(k)^2*geteqH(geq(k));

end

% Test if inequalities hold

% H(g) which is something like an index function

function H=getH(g)

if g<=0,

H=0;

else

H=1;

end

% Test if equalities hold

function H=geteqH(g)

if g==0,

H=0;

else

H=1;

end

%% ==== End of Firefly Algorithm implementation ======
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Chapter 12

CUCKOO SEARCH

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms,
developed in 2009 by Xin-She Yang of Cambridge University and Suash Deb of
C. V. Raman College of Engineering. CS is based on the brood parasitism of
some cuckoo species. In addition, this algorithm is enhanced by the so-called
Lévy flights, rather than by simple isotropic random walks. Recent studies show
that CS is potentially far more efficient than PSO and genetic algorithms.

12.1 CUCKOO BREEDING BEHAVIOUR

Cuckoo are fascinating birds, not only because of the beautiful sounds they can
make, but also because of their aggressive reproduction strategy. Some species
such as the ani and Guira cuckoos lay their eggs in communal nests, though they
may remove others’ eggs to increase the hatching probability of their own eggs.
Quite a number of species engage the obligate brood parasitism by laying their
eggs in the nests of other host birds (often other species).

There are three basic types of brood parasitism: intraspecific brood parasitism,
cooperative breeding, and nest takeover. Some host birds can engage direct
conflict with the intruding cuckoos. If a host bird discovers the eggs are not their
owns, they will either get rid of these alien eggs or simply abandon its nest and
build a new nest elsewhere. Some cuckoo species such as the New World brood-
parasitic Tapera have evolved in such a way that female parasitic cuckoos are
often very specialized in the mimicry in colour and pattern of the eggs of a few
chosen host species. This reduces the probability of their eggs being abandoned
and thus increases their reproductivity.

In addition, the timing of egg-laying of some species is also amazing. Parasitic
cuckoos often choose a nest where the host bird just laid its own eggs. In general,
the cuckoo eggs hatch slightly earlier than their host eggs. Once the first cuckoo
chick is hatched, the first instinct action it will take is to evict the host eggs by
blindly propelling the eggs out of the nest, which increases the cuckoo chick’s
share of food provided by its host bird. Studies also show that a cuckoo chick
can also mimic the call of host chicks to gain access to more feeding opportunity.

Nature-Inspired Metaheuristic Algorithms, 2nd Edition by Xin-She Yang
Copyright c© 2010 Luniver Press
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12.2 LÉVY FLIGHTS

On the other hand, various studies have shown that flight behaviour of many an-
imals and insects has demonstrated the typical characteristics of Lévy flights. A
recent study by Reynolds and Frye shows that fruit flies orDrosophila melanogaster,
explore their landscape using a series of straight flight paths punctuated by a sud-
den 90o turn, leading to a Lévy-flight-style intermittent scale free search pattern.
Studies on human behaviour such as the Ju/’hoansi hunter-gatherer foraging pat-
terns also show the typical feature of Lévy flights. Even light can be related to
Lévy flights. Subsequently, such behaviour has been applied to optimization and
optimal search, and preliminary results show its promising capability.

12.3 CUCKOO SEARCH

For simplicity in describing our new Cuckoo Search, we now use the following
three idealized rules:

• Each cuckoo lays one egg at a time, and dumps its egg in a randomly
chosen nest;

• The best nests with high-quality eggs will be carried over to the next
generations;

• The number of available host nests is fixed, and the egg laid by a cuckoo
is discovered by the host bird with a probability pa ∈ [0, 1]. In this case,
the host bird can either get rid of the egg, or simply abandon the nest and
build a completely new nest.

As a further approximation, this last assumption can be approximated by a
fraction pa of the n host nests are replaced by new nests (with new random
solutions).

For a maximization problem, the quality or fitness of a solution can simply be
proportional to the value of the objective function. Other forms of fitness can be
defined in a similar way to the fitness function in genetic algorithms.

For the implementation point of view, we can use the following simple rep-
resentations that each egg in a nest represents a solution, and each cuckoo can
lay only one egg (thus representing one solution), the aim is to use the new and
potentially better solutions (cuckoos) to replace a not-so-good solution in the
nests. Obviously, this algorithm can be extended to the more complicated case
where each nest has multiple eggs representing a set of solutions. For this present
work, we will use the simplest approach where each nest has only a single egg.
In this case, there is no distinction between egg, nest or cuckoo, as each nest
corresponds to one egg which also represents one cuckoo.

Based on these three rules, the basic steps of the Cuckoo Search (CS) can be
summarized as the pseudo code shown in Fig. 12.1.

When generating new solutions x(t+1) for, say, a cuckoo i, a Lévy flight is
performed

x
(t+1)
i = x

(t)
i + α⊕ Lévy(λ), (12.1)

where α > 0 is the step size which should be related to the scales of the problem
of interests. In most cases, we can use α = O(L/10) where L is the characteristic
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Cuckoo Search via Lévy Flights

Objective function f(x), x = (x1, ..., xd)
T

Generate initial population of n host nests xi

while (t <MaxGeneration) or (stop criterion)
Get a cuckoo randomly/generate a solution by Lévy flights

and then evaluate its quality/fitness Fi

Choose a nest among n (say, j) randomly
if (Fi > Fj),

Replace j by the new solution
end

A fraction (pa) of worse nests are abandoned
and new ones/solutions are built/generated

Keep best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while

Postprocess results and visualization

Figure 12.1: Pseudo code of the Cuckoo Search (CS).

scale of the problem of interest. The above equation is essentially the stochastic
equation for a random walk. In general, a random walk is a Markov chain whose
next status/location only depends on the current location (the first term in the
above equation) and the transition probability (the second term). The product ⊕
means entrywise multiplications. This entrywise product is similar to those used
in PSO, but here the random walk via Lévy flight is more efficient in exploring
the search space, as its step length is much longer in the long run.

The Lévy flight essentially provides a random walk whose random step length
is drawn from a Lévy distribution

Lévy ∼ u = t−λ, (1 < λ ≤ 3), (12.2)

which has an infinite variance with an infinite mean. Here the steps essentially
form a random walk process with a power-law step-length distribution with a
heavy tail. Some of the new solutions should be generated by Lévy walk around
the best solution obtained so far, this will speed up the local search. However, a
substantial fraction of the new solutions should be generated by far field random-
ization and whose locations should be far enough from the current best solution,
this will make sure that the system will not be trapped in a local optimum.

From a quick look, it seems that there is some similarity between CS and
hill-climbing in combination with some large scale randomization. But there are
some significant differences. Firstly, CS is a population-based algorithm, in a
way similar to GA and PSO, but it uses some sort of elitism and/or selection
similar to that used in harmony search. Secondly, the randomization in CS is
more efficient as the step length is heavy-tailed, and any large step is possible.
Thirdly, the number of parameters in CS to be tuned is fewer than GA and PSO,
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and thus it is potentially more generic to adapt to a wider class of optimization
problems. In addition, each nest can represent a set of solutions, CS can thus be
extended to the type of meta-population algorithms.

12.4 CHOICE OF PARAMETERS

After implementation, we have to validate the algorithm using test functions with
analytical or known solutions. For example, one of the many test functions we
have used is the bivariate Michalewicz function

f(x, y) = − sin(x) sin2m(
x2

π
)− sin(y) sin2m(

2y2

π
), (12.3)

where m = 10 and (x, y) ∈ [0, 5] × [0, 5]. This function has a global minimum
f∗ ≈ −1.8013 at (2.20319, 1.57049). This global optimum can easily be found
using Cuckoo Search, and the results are shown in Fig. 12.2 where the final
locations of the nests are also marked with ¦ in the figure. Here we have used
n = 15 nests, α = 1 and pa = 0.25. In most of our simulations, we have used
n = 15 to 50.

From the figure, we can see that, as the optimum is approaching, most nests
aggregate towards the global optimum. We also notice that the nests are also
distributed at different (local) optima in the case of multimodal functions. This
means that CS can find all the optima simultaneously if the number of nests
are much higher than the number of local optima. This advantage may become
more significant when dealing with multimodal and multiobjective optimization
problems.

We have also tried to vary the number of host nests (or the population size
n) and the probability pa. We have used n = 5, 10, 15, 20, 30, 40, 50, 100,
150, 250, 500 and pa = 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5. From our
simulations, we found that n = 15 to 40 and pa = 0.25 are sufficient for most
optimization problems. Results and analysis also imply that the convergence
rate, to some extent, is not sensitive to the parameters used. This means that
the fine adjustment is not needed for any given problems.

12.5 IMPLEMENTATION

% -------------------------------------------------------

% Cuckoo algorithm by Xin-She Yang and Suasg Deb %

% Programmed by Xin-She Yang at Cambridge University %

% -------------------------------------------------------

function [bestsol,fval]=cuckoo_search(Ngen)

% Here Ngen is the max number of function evaluations

if nargin<1, Ngen=1500; end

% d-dimensions (any dimension)

d=2;

% Number of nests (or different solutions)
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Figure 12.2: Search paths of nests using Cuckoo Search. The final locations of
the nests are marked with ¦ in the figure.

n=25;

% Discovery rate of alien eggs/solutions

pa=0.25;

% Random initial solutions

nest=randn(n,d);

fbest=ones(n,1)*10^(100); % minimization problems

Kbest=1;

for j=1:Ngen,

% Find the current best

Kbest=get_best_nest(fbest);

% Choose a random nest (avoid the current best)

k=choose_a_nest(n,Kbest);

bestnest=nest(Kbest,:)

% Generate a new solution (but keep the current best)

s=get_a_cuckoo(nest(k,:),bestnest);

% Evaluate this solution

fnew=fobj(s);

if fnew<=fbest(k),

fbest(k)=fnew;

nest(k,:)=s;

end

% discovery and randomization

if rand<pa,
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k=get_max_nest(fbest);

s=emptyit(nest(k,:));

nest(k,:)=s;

fbest(k)=fobj(s);

end

end

%% Post-optimization processing

%% Find the best and display

[fval,I]=min(fbest)

bestsol=nest(I,:)

%% Display all the nests

nest

%% --------- All subfunctions are listed below -----------

%% Choose a nest randomly

function k=choose_a_nest(n,Kbest)

k=floor(rand*n)+1;

% Avoid the best

if k==Kbest,

k=mod(k+1,n)+1;

end

%% Get a cuckoo and generate new solutions by ramdom walk

function s=get_a_cuckoo(s,star)

% This is a random walk, which is less efficient

% than Levy flights. In addition, the step size

% should be a vector for problems with different scales.

% Here is the simplified implementation for demo only!

stepsize=0.05;

s=star+stepsize*randn(size(s));

%% Find the worse nest

function k=get_max_nest(fbest)

[fmax,k]=max(fbest);

%% Find the current best nest

function k=get_best_nest(fbest)

[fmin,k]=min(fbest);

%% Replace some (of the worst nests)

%% by constructing new solutions/nests

function s=emptyit(s)

% Again the step size should be varied

% Here is a simplified approach

s=s+0.05*randn(size(s));
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% d-dimensional objective function

function z=fobj(u)

% Rosenbrock’s function (in 2D)

% It has an optimal solution at (1.000,1.000)

z=(1-u(1))^2+100*(u(2)-u(1)^2)^2;

If we run this program using some standard test functions, we can observe that
CS outperforms many existing algorithms such as GA and PSO. The primary
reasons are: 1) a fine balance of randomization and intensification, and 2) fewer
number of control parameters. As for any metaheuristic algorithms, a good
balance of intensive local search and an efficient exploration of the whole search
space will usually lead to a more efficient algorithm. On the other hand, there
are only two parameters in this algorithm, the population size n, and pa. Once
n is fixed, pa essentially controls the elitism and the balance of randomization
and local search. Few parameters make an algorithm less complex and thus
potentially more generic. Such observations deserve more systematic research
and further elaboration in the future work.

It is worth pointing out that there are three ways to carry out randomization:
uniform randomization, random walks and heavy-tailed walks. The simplest way
is to use a uniform distribution so that new solutions are limited between upper
and lower bounds. Random walks can be used for global randomization or local
randomization, depending on the step size used in the implementation. Lévy
flights are heavy-tailed, which is most suitable for the randomization on the
global scale.

As an example for solving constrained optimization, we now solved the spring
design problem discussed in the chapter on firefly algorithm. The Matlab code
is given below

% Cuckoo Search for nonlinear constrained optimization

% Programmed by Xin-She Yang @ Cambridge University 2009

function [bestsol,fval]=cuckoo_spring(N_iter)

format long;

% number of iterations

if nargin<1, N_iter=15000; end

% Number of nests

n=25;

disp(’Searching ... may take a minute or so ...’);

% d variables and simple bounds

% Lower and upper bounds

Lb=[0.05 0.25 2.0];

Ub=[2.0 1.3 15.0];

% Number of variables

d=length(Lb);

% Discovery rate

pa=0.25;

% Random initial solutions

nest=init_cuckoo(n,d,Lb,Ub);

fbest=ones(n,1)*10^(10); % minimization problems
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Kbest=1;

% Start of the cuckoo search

for j=1:N_iter,

% Find the best nest

[fmin,Kbest]=get_best_nest(fbest);

% Choose a nest randomly

k=choose_a_nest(n,Kbest);

bestnest=nest(Kbest,:) ;

% Get a cuckoo with a new solution

s=get_a_cuckoo(nest(k,:),bestnest,Lb,Ub);

% Update if the solution improves

fnew=fobj(s);

if fnew<=fbest(k),

fbest(k)=fnew;

nest(k,:)=s;

end

% Discovery and randomization

if rand<pa,

k=get_max_nest(fbest);

s=emptyit(nest(k,:),Lb,Ub);

nest(k,:)=s;

fbest(k)=fobj(s);

end

end

%% Find the best

[fmin,I]=min(fbest)

bestsol=nest(I,:);

% Show all the nests

nest

% Display the best solution

bestsol, fmin

% Initial locations of all n cuckoos

function [guess]=init_cuckoo(n,d,Lb,Ub)

for i=1:n,

guess(i,1:d)=Lb+rand(1,d).*(Ub-Lb);

end

%% Choose a nest randomly

function k=choose_a_nest(n,Kbest)

k=floor(rand*n)+1;

% Avoid the best

if k==Kbest,
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k=mod(k+1,n)+1;

end

%% Get a cuckoo with a new solution via a random walk

%% Note: Levy flights were not implemented in this demo

function s=get_a_cuckoo(s,star,Lb,Ub)

s=star+0.01*(Ub-Lb).*randn(size(s));

s=bounds(s,Lb,Ub);

%% Find the worse nest

function k=get_max_nest(fbest)

[fmax,k]=max(fbest);

%% Find the best nest

function [fmin,k]=get_best_nest(fbest)

[fmin,k]=min(fbest);

%% Replace an abandoned nest by constructing a new nest

function s=emptyit(s,Lb,Ub)

s=s+0.01*(Ub-Lb).*randn(size(s));

s=bounds(s,Lb,Ub);

% Check if bounds are met

function ns=bounds(ns,Lb,Ub)

% Apply the lower bound

ns_tmp=ns;

I=ns_tmp<Lb;

ns_tmp(I)=Lb(I);

% Apply the upper bounds

J=ns_tmp>Ub;

ns_tmp(J)=Ub(J);

% Update this new move

ns=ns_tmp;

% d-dimensional objective function

function z=fobj(u)

% The well-known spring design problem

z=(2+u(3))*u(1)^2*u(2);

z=z+getnonlinear(u);

function Z=getnonlinear(u)

Z=0;

% Penalty constant

lam=10^15;

% Inequality constraints

g(1)=1-u(2)^3*u(3)/(71785*u(1)^4);

gtmp=(4*u(2)^2-u(1)*u(2))/(12566*(u(2)*u(1)^3-u(1)^4));
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g(2)=gtmp+1/(5108*u(1)^2)-1;

g(3)=1-140.45*u(1)/(u(2)^2*u(3));

g(4)=(u(1)+u(2))/1.5-1;

% No equality constraint in this problem, so empty;

geq=[];

% Apply inequality constraints

for k=1:length(g),

Z=Z+ lam*g(k)^2*getH(g(k));

end

% Apply equality constraints

for k=1:length(geq),

Z=Z+lam*geq(k)^2*getHeq(geq(k));

end

% Test if inequalities hold

% Index function H(g) for inequalities

function H=getH(g)

if g<=0,

H=0;

else

H=1;

end

% Index function for equalities

function H=getHeq(geq)

if geq==0,

H=0;

else

H=1;

end

% ----------------- end ------------------------------

This potentially powerful optimization algorithm can easily be extended to
study multiobjective optimization applications with various constraints, even to
NP-hard problems. Further studies can focus on the sensitivity and parameter
studies and their possible relationships with the convergence rate of the algo-
rithm. Hybridization with other popular algorithms such as PSO and differential
evolution will also be potentially fruitful.
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453, 495-498 (2008).



N
at
u r
e-
In
sp

ire
d M
etaheuristic A

lgorithm
s

S e c o n d E d it ion (
2 0

10
)

Xin-She Yang

c©Luniver Press

12.5 IMPLEMENTATION 115

2. Bradley D., Novel ‘cuckoo search algorithm’ beats particle swarm optimiza-
tion in engineering design (news article), Science Daily, May 29, (2010). Also
in Scientific Computing (magazine), 1 June 2010.

3. Brown C., Liebovitch L. S., Glendon R., Lévy flights in Dobe Ju/’hoansi
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