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ABSTRACT

In this paper, we propose a pioneering framework called Par-
adisEO-MO-GPU for the reusable design and implementa-
tion of parallel local search metaheuristics (S-Metaheuris-
tics) on Graphics Processing Units (GPU). We revisit the
ParadisEO-MO software framework to allow its utilization
on GPU accelerators focusing on the parallel iteration-level
model, the major parallel model for S-Metaheuristics. It
consists in the parallel exploration of the neighborhood of
a problem solution. The challenge is on the one hand to
rethink the design and implementation of this model opti-
mizing the data transfer between the CPU and the GPU.
On the other hand, the objective is to make the GPU as
transparent as possible for the user minimizing his or her
involvement in its management. In this paper, we propose
solutions to this challenge as an extension of the ParadisEO
framework. The first release of the new GPU-based Par-
adisEO framework has been experimented on the permuted
perceptron problem. The preliminary results are convincing,
both in terms of flexibility and easiness of reuse at imple-
mentation, and in terms of efficiency at execution on GPU.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software
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1. INTRODUCTION
In practice, combinatorial optimization problems become

more and more CPU time consuming and their modeling
is continuously evolving. Therefore, there is a clear need
to a software framework providing efficient parallel near-
optimal optimization methods to solve large size problems.
Using near-optimal search methods such as metaheuristics
is a popular and efficient approach to deal with the highly
combinatorial nature of industrial problems. Even if meta-
heuristics allow to significantly reduce the size of the search
space of large problem instances, the search time remains
prohibitive.

Massively parallel computing, based for instance on GPU
accelerators, is required. Using a software framework is on
the one hand a flexible way to deal with the evolution of
modeling minimizing the design and implementation effort
[3, 10]. On the other hand, it is an efficient mean to provide
a transparent access to parallelism.

Metaheuristics are either single-solution namely S-Meta-
heuristics (e.g. local search methods) or population-based
namely P-Metaheuristics (e.g. evolutionary algorithms). The
focus in this paper is on S-Metaheuristics. During these
two last decades, different parallel approaches and imple-
mentations have been proposed for S-Metaheuristics using
Massively Parallel Processors [4], Networks or Clusters of
Workstations [5] and Shared Memory or SMP machines [6].
These contributions have been later revisited for large-scale
computational grids [15].

Recently, GPU accelerators have emerged as a new power-
ful support for massively parallel computing. A pioneering
work on GPU-based S-Metaheuristics [8] has been proposed.
Such experience has shown that parallel combinatorial opti-
mization on GPU is not straightforward and requires a huge
effort at design as well as at implementation level. The
design of GPU-aware S-Metaheuristics often involves the
cost of a sometimes painful apprenticeship of paralleliza-
tion techniques and GPU computing technologies. In or-
der to free from such burden those who are unfamiliar with
those advanced features, optimization frameworks must in-
tegrate the up-to-date parallelization techniques and allow
their transparent exploitation and accelerators. There exist
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some frameworks for the reusable design and implementa-
tion of S-Metaheuristics. However, these frameworks are
often dedicated to a specific method [2] and are rarely par-
allel.

To the best of our knowledge, there does not exist any soft-
ware framework for GPU-based S-Metaheuristics. In [3], the
authors have proposed a framework called ParadisEO dedi-
cated to the reusable design of parallel and distributed meta-
heuristics for only dedicated parallel hardware platforms.
Later, they have extended the framework in [10] to dynamic
and heterogeneous large-scale environments using Condor-
MW middleware and in [14] to computational grids using
Globus.

In this paper, we extend ParadisEO-MO1 (ParadisEO for
S-Metaheuristics) to deal with GPU accelerators. The chal-
lenges and contributions consist in (1) rethinking the paral-
lel models provided into the framework to manage efficiently
the hierarchical organization of the memories (different la-
tencies and sizes) of the GPU device as well as the interac-
tion of this latter with the CPU ; (2) making the GPU as
transparent as possible for the user minimizing his or her in-
volvement in its management. In this paper, we propose so-
lutions to these challenges as an extension of the ParadisEO
framework.

The focus is on the iteration-level parallel model of S-
Metaheuristics which consists in exploring in parallel the
neighborhood of a problem solution. The first release of
the new GPU-based ParadisEO framework has been imple-
mented using C++ and CUDA [11] and then experimented
on the permuted perceptron problem (PPP). The prelimi-
nary results are convincing, both in terms of flexibility and
easiness of reuse at implementation, and in terms of effi-
ciency at execution on GPU.

The remainder of the paper is organized as follows. Sec-
tion 2 highlights the principles of parallel iteration-level S-
Metaheuristics and their challenges when using GPU com-
puting. In Section 3, we first describe the major design
features and architecture of ParadisEO. We then present
the design and implementation of ParadisEO-MO on top of
GPU called ParadisEO-MO-GPU. Section 4 shows and com-
ments some experimental results obtained with ParadisEO-
MO-GPU on the PPP. In Section 5, we conclude the paper
and draw some perspectives of the presented work.

2. PARALLEL GPU-BASED S-METAHEURIS-

TICS
In this section, we first present the principles of S-Meta-

heuristics and their associated parallel models focusing on
the parallel exploration of the neighborhood. After that, we
present the challenging issues to be dealt with for the GPU-
acceleration of this latter.

2.1 Principles of S-Metaheuristics
S-Metaheuristics could be viewed as“walks through neigh-

borhoods” meaning search trajectories through the explo-
ration space of the problem being solved. Starting from an
initial solution, the “walks” are performed by an iterative

1ParadisEO-MO (http://paradiseo.gforge.inria.fr) is an
open source framework originally intended to the design and
deployment of parallel hybrid local search metaheuristics
on dedicated clusters and networks of workstations, shared-
memory machines and computational grids.

procedure (see Algorithm 1) that improves the current solu-
tion until a stopping criterion is met.

Algorithm 1 Local search pseudo-code

1: Generate(s0);
2: Specific LS pre-treatment

3: t := 0;
4: repeat
5: m(t) := SelectMove(s(t));
6: st+1 := ApplyMove(m(t), s(t));
7: Specific LS post-treatment

8: t := t+ 1;
9: until Termination criterion(s(t))

At each iteration of the procedure, the neighborhood of
the current solution is generated and evaluated. The evalu-
ation of solutions is performed using a cost function. This
latter associates a fitness value to each solution indicating its
suitability to the problem. Based on the evaluation of the
neighborhood, the best solution is selected to become the
current solution. The process is repeated until a stopping
criterion is found. This criterion could be a fixed number of
iterations or a convergence criterion.

The design of an efficient and effective S-Metaheuristic
requires the definition of at least a solution representation
or encoding scheme, a cost function, a neighborhood model
and the iterative procedure. According to the problem to be
solved, three major solution encodings may be used: binary
encoding (e.g. Knapsack, SAT), vector of discrete values
(e.g. location problem, assignment problem) and permuta-
tion (e.g. TSP, scheduling problems). The cost function
allows to evaluate the quality of the visited solutions. The
neighborhood model determines the regions of the search
space to be visited during the exploration. The iterative
procedures (see Algorithm 1) have a common generic part
but they have some specific (pre and post-treatment) fea-
tures.

For instance, for the Tabu Search S-Metaheuristic (imple-
mented and experimented in this work) [13] a specific list
called tabu list is used. In Tabu Search, the best solution
in the neighborhood is selected as the new current solution
even if it is not improving the current solution. This policy
may generate cycles, i.e. previous visited solutions could be
selected again. To avoid these cycles, the algorithm main-
tains a short-term memory (tabu list) of the moves (solu-
tions) recently applied (visited). In Algorithm 1, the spe-
cific pre-treatment consists in initializing the tabu list and
post-treatment is an update of the tabu list with the most
recently visited solutions.

2.2 Parallelism of S-Metaheuristics
Solving efficiently large size problems using S-Metaheuris-

tics requires the use of parallel computing. Three major
parallel models can be used separately or together in a hier-
archical way: algorithmic-level model, iteration-level model

or solution-level model. The first model consists in deploying
and executing in parallel several S-Metaheuristics in a (non-
)cooperative way with the objective to improve the robust-
ness and effectiveness of the exploration. The iteration-level
model consists in generating and/or evaluating the neighbor-
hood in parallel at each iteration of the algorithm. The third
model is based on the parallel evaluation of the cost func-
tion. Unlike the two first models, the solution-level model is
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problem-dependent. It is exploited when the cost function
is CPU-time intensive and can be parallelized.

The iteration-level model, addressed in this paper, is a
low-level Master-Worker model that does not alter the be-
havior of the heuristic. At the beginning of each iteration,
the master generates the neighborhood of the current solu-
tion. Each worker receives from the master a set of neigh-
bors (partition of the neighborhood). These neighbors are
evaluated and returned back to the master. The neighbors
can also be generated by the workers. In this case, each
worker receives a copy of the current solution, generates one
or several neighbor(s) to be evaluated and returned back to
the master. A challenge of this model is to determine the
granularity of each partition of neighbors to be allocated to
each worker according to the communication delays of the
network. In terms of genericity, as the model is problem-
independent, it is generic and reusable.

2.3 GPU-accelerated S-Metaheuristics
For large-scale combinatorial optimization problems, the

neighborhood of a solution is often extremely large. There-
fore, massively parallel computing is required to generate
and evaluate it. The parallel generation and evaluation of
the neighborhood is a master-worker and problem indepen-
dent regular data-parallel application. GPU computing is
very well-suited for this kind of parallel application. In the
GPU (e.g. CUDA-based) model, the master is the CPU and
the workers are threads executed by the processing cores of
the GPU. Using GPU computing is not straightforward es-
pecially for non-experts in parallel computing. Indeed, a
GPU accelerator provides a hierarchy of memories with dif-
ferent sizes and access latencies. Exploiting efficiently such
a hierarchy is particularly challenging in terms of data man-
agement and thread control.

The challenge is to re-think the design of the parallel ex-
ploration and evaluation of the neighborhood taking into
account the GPU characteristics. Different issues have to
be dealt with: (1) defining an efficient cooperation between
CPU and GPU, which requires to share the work and to op-
timize the data transfer between the two devices; (2) GPU
computing is based on hyper-threading (massively parallel
multi-threading) and the order in which the threads are ex-
ecuted is not known. Therefore, an efficient mapping has to
be defined between each neighboring candidate solution and
a thread designated by a unique identifier assigned by the
GPU runtime; (3) the neighborhood has to be placed effi-
ciently on the different memories taking into account their
sizes and access latencies.

In [8], the authors have proposed the design and the im-
plementation of the parallel evaluation of the neighborhood
model on GPU. The implementation of the proposed ap-
proaches has been performed outside our ParadisEO frame-
work. From an implementation point of view, the challenge
is to provide solutions to these issues in ParadisEO in a way
as transparent as possible for the user.

The parallel iteration-level model is designed according
to the data-parallel single program multiple data model of
CUDA. In this model, a function code called kernel is sent
to the GPU to be executed by a large number of threads
grouped into blocks. As illustrated in Figure 1, the CPU-
GPU task partitioning is such that the CPU hosts and exe-
cutes the whole serial part of the local search method. The
GPU is in charge of the evaluation of the neighborhood of

Figure 1: Parallel evaluation of the neighborhood on
GPU (iteration-level). In this scheme, one thread is
associated with one neighboring solution.

the current solution at each iteration. In order to minimize
the cost of the data transfer from the CPU to GPU, the
neighboring solutions are generated on GPU rather than on
CPU. Indeed, only the current solution is sent to the GPU
and each thread executes the same kernel. This is highly
efficient for large neighborhoods.

The kernel consists in generating and evaluating a neigh-
bor. A mapping function is required to allow each thread
to find its corresponding (set of) neighboring solution(s).
In [8], the mapping function is user-defined. In this work,
we propose inside ParadisEO-MO an automatic mapping
mechanism which can be exploited in a transparent way by
the user application. Once all the neighboring solutions are
generated and evaluated on GPU they are sent back to the
CPU where the best solution is selected. The process is
iterated until a stopping criterion is satisfied.

3. GPU-ENABLED PARADISEO

3.1 The ParadisEO-MO framework
ParadisEO-MO is part of ParadisEO dedicated to S-Meta-

heuristics such as Hill Climbing, Simulated Annealing, Tabu
Search, Iterated Local Search, etc. ParadisEO [3] is a frame-
work dedicated to the reusable design of parallel hybrid
metaheuristics by providing a broad range of features includ-
ing evolutionary algorithms (ParadisEO-EO), local search
heuristics (ParadisEO-MO), parallel and distributed mod-
els (ParadisEO-PEO), different hybridization mechanisms,
etc.

ParadisEO is a C++ LGPL extensible open source frame-
work based on a clear conceptual separation of the meta-
heuristics from the problems they are intended to solve. Par-
adisEO is one of the rare frameworks that provide the most
common parallel and distributed models. These models are
portable on distributed-memory machines and shared-mem-
ory multi-processors as they are implemented using standard
libraries such as MPI and Pthreads. The models can be ex-
ploited in a transparent way. One has just to instantiate
their associated ParadisEO components.
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Figure 2: A layered architecture of ParadisEO-MO-
GPU.

3.2 Architecture of ParadisEO-MO-GPU
ParadisEO-MO-GPU is a framework which is a coupling

between ParadisEO-MO and CUDA for the design and im-
plementation of reusable S-Metaheuristics on GPU. It is
composed by a set of new C++ abstract and predefined
classes that enables an easy and transparent development of
S-Metaheuristics on GPU accelerators. The architecture of
ParadisEO-MO-GPU is layered as illustrated in Figure 2.

The user layer indicates the different problem-dependent
components that must be defined: input data, the evalua-
tion function, neighbor and neighborhood representations.
The software layer supplies the ParadisEO-MO components
including optimization solvers embedding S-Metaheuristics.
The ParadisEO-GPU module provides a CUDA interface al-
lowing the transparent interaction with the hardware layer.
The hardware layer supplies the different transparent tools
provided by ParadisEO-GPU such as the allocation and
copy of data or the parallel generation and evaluation of the
considered neighborhood. In addition, the platform offers
predefined neighborhood and mapping wrappers adapted to
hardware characteristics to deal with binary and permuta-
tion problems.

The layered architecture of ParadisEO-MO-GPU has been
designed in such a way that the user does not need to build
his or her own CUDA code for the specific problem to be
solved. Indeed, ParadisEO-GPU provides facilities for auto-
matic execution of S-Metaheuristics on GPU. The only thing
that must be user-managed is the different components de-
scribed in the user level quoted above.

3.3 ParadisEO-MO-GPU Components
Figure 3 illustrates the major components of the platform.

The advantage of the decomposition into components is to
separate the components that must be defined by the user
and those which are generic and provided in ParadisEO-
MO-GPU.

Initially, to implement a sequential S-Metaheuristic, the
user must overload required classes of ParadisEO-MO. The
classes coding the problem-specific part are abstract classes
to be specialized and implemented by the user. To GPU-en-
able their S-Metaheuristics, users need to derivate their own

Figure 3: The major components of ParadisEO-MO-
GPU

classes with a bench of new provided ones. In the following
components, the main modifications to take into account are
detailed:

• Solution representation. Some keywords must be spec-
ified by the user to indicate which part of the structure
will be executed on GPU. Some predefined extensions
for binary or permutation representations are already
provided in the ParadisEO-GPU module.

• Neighborhood. According to the neighborhood used in
the S-Metaheuristic, the user needs to make an ex-
plicit function call to a predefined mapping function.
It will automatically allow to find the right association
between a neighbor and a GPU thread.

• Problem data inputs. The user must specify which in-
puts of the problem to be solved will be allocated on
GPU. This can be achieved by introducing additional
keywords.

• Solution evaluation. The solution which generates the
neighborhood is currently evaluated on CPU. There-
fore, this component does not need to be extended.

• Neighborhood evaluation. In this component, struc-
tures which are likely to be allocated and managed on
GPU must be indicated by the user. Every private
structures specific to a neighbor (such as an array)
must be declared in a static way. Furthermore, the
user might translate multidimensional arrays into one-
dimensional ones.

To summarize, regarding the new user-defined classes, the
user must indicate the structures which are likely to be ac-
cessed on the GPU device. This strict restriction enables
more efficiency and flexibility. Indeed, on the one hand,
unnecessary structures for the generation and evaluation of
the neighborhood should not be automatically allocated on
GPU to reduce the complexity memory space. On the other
hand, some additional structures required for the neighbor-
hood evaluation might be copied for each iteration of the S-
Metaheuristic whilst some others are transferred only once
during the program. Such a restriction makes it possible
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to avoid undesirable transfers which would lead to a perfor-
mance decrease.

Regarding the components supplied in the software frame-
work, the associated classes constitute a hierarchy of classes
implementing the invariant part of the code. The different
features of these generic components are the following:

• Memory allocation and deallocation. According to the
specification made by the user, this generic component
enables the automatic allocation on GPU of the differ-
ent structures used for the problem. Type inference
and size detection are managed by this component.
The same goes on for the deallocation.

• Data transfers. At each iteration, the transfer of the
candidate solution which is used to generate the neigh-
borhood is automatically performed from CPU to GPU.
Moreover, this component also ensures the transparent
copy of the neighborhood results (fitnesses) from GPU
to CPU. Type inference and size detection of the dif-
ferent structures are also supported.

• Parallel evaluation of the neighborhood. This compo-
nent manages the kernel of the neighborhood evalua-
tion. Concepts involving kernel such as thread blocks
and block grids are completely hidden to the user.

• Neighborhood resulting evaluations. This structure is
manipulated in a transparent manner to store the re-
sults of the neighbors evaluated on GPU (fitnesses
structure). Afterwards, this structure is sent back to
the CPU to continue the local search process in a se-
quential manner.

• Mapping functions. Predefined mapping functions con-
trol the generation of the neighborhood on GPU. They
consist in associating one thread with a specific neigh-
bor. Such a mapping differs according to the used
neighborhood.

• Memory management. Based on the user specifica-
tions, this component manages all the previous struc-
tures which are stored on global memory. This man-
agement is performed in a transparent way to the user.

The decomposition of the components in ParadisEO-MO-
GPU allows to separate the features specific to S-Meta-
heuristics (ParadisEO-MO) from those which are related to
the GPU code. This separation of concerns makes it pos-
sible to split the software framework into distinct features
that overlap in functionality as little as possible.

3.4 A Case Study: Parallel Evaluation of a
Neighborhood

The ParadisEO-MO-GPU execution is illustrated in Fig-
ure 4 through an UML sequence diagram. The scenario
shows the design and implementation of the parallel neigh-
borhood evaluation on GPU. At each iteration, the different
stages of the parallel evaluation process on GPU are the
following:

1. The neighborhood componentmoCudaNeighborhood pre-
pares all the steps for the parallel generation of the
neighborhood on GPU. The initialization consists in
setting a mapping table between GPU threads and
neighbors. Thereafter, the associated data are sent

Figure 4: The parallel generation and evaluation of
a neighborhood provided in ParadisEO-MO-GPU.

only once to the GPU global memory since the map-
ping structure does not change during the execution
process of S-Metaheuristics. The last step relies on
the evaluation kernel invocation. It will be informed
later on its termination to retrieve the pre-computed
fitnesses structure.

2. Before proceeding to the parallel evaluation, the com-
ponentmoCudaEval configures the kernel withm threads
such that each thread is associated exactly with one
neighbor evaluation (m designates the neighborhood
size). During the first iteration, the component allo-
cates the neighborhood fitnesses structure in which the
result of the evaluated neighbors will be stored. Other-
wise, in any case, it only sends to the GPU device the
candidate solution which generates the neighborhood.

3. The componentmoCudaKernelEval modelizes the main
body which will be executed by m concurrent threads
on different input data. A first step consists in getting
the thread identifier then the set of its associated data.
This mechanism is done through the mapping table
previously mentioned. The second step calculates the
evaluation of the corresponding neighbor. Finally, the
resulting fitness is stored in the corresponding index of
the fitnesses structure.

4. The worker component moCudaEvalFunc is the spe-
cific object with computes on the GPU device the
neighbor evaluation and returns back the produced re-
sult to the CPU.

Once the entire neighborhood has been carried out in par-
allel on GPU, the pre-calculated fitness structure is copied
back to the CPU and given as input to the ParadisEO-
MO module. In this way, the S-Metaheuristic continues the
neighborhood exploration (iteration) on the CPU side. In-
stead of reevaluating each neighbor, the corresponding fit-
ness value will be retrieved from the pre-computed fitnesses
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Figure 5: Automatic construction of the mapping
function.

structure. Hence, this mechanism has the advantage of al-
lowing both the deployment of any S-Metaheuristic and the
use of toolboxes provided in ParadisEO-MO (e.g. statistical
or fitnesses landscape analysis, checkpoint monitors, etc.)

3.5 Automatic Construction of the Mapping
Function

As previously said, the advantage of generating the neigh-
borhood on GPU is to reduce drastically the data transfers
since the whole neighborhood does not have to be copied.
However, the main difficulty is to find an efficient mapping
between a GPU thread and neighbor candidate solution(s).
In other words, the issue is to say which solution must be
handled by which thread. The answer is dependent of the so-
lution representation. In [8, 9], we provided some mappings
for the main neighborhood structures of the literature. How-
ever, from an implementation point of view, they are still
user-managed. Indeed, the neighborhood structure strongly
depends on the target optimization problem representation.

To deal with these issues, mappings for different neigh-
borhoods could be hard-coded in the software framework.
However, such a solution does not ensure any flexibility.
Hence, we propose to add a supplementary layer in terms
of transparency for the deployment of S-Metaheuristics on
GPU. The main idea is to find a generic mapping which is
common for a set of neighborhoods. To achieve this, we pro-
vide an automatic construction of the mapping function for
k-swaps and k-Hamming distance neighborhoods. Figure 5
depicts such a construction of a mapping table. In this ex-
ample, each neighbor associated to a particular thread can
retrieve its three corresponding indexes from the mapping
table.

Considering a given vector of size n and a given neigh-
borhood whose neighbors are composed of k indexes with
k in {1, 2, 3, ...}, the size of the associated neighborhood is

exactly m = n×(n-1)×...×(n-k+1)
k!

. The resulting mapping ta-
ble associates each thread id with a set of k indexes. Each
index can be respectively retrieved from the mapping table
with the access pattern:

{id, id +m, ..., id+ (k-2)×m, id+ (k-1) ×m}

The corresponding mapping table will be used at each it-
eration of the local search. This table is dynamically con-
structed on CPU according to the neighborhood size and
transferred only once to the GPU global memory during the
program execution.

4. APPLICATION TO THE PERMUTED PER-

CEPTRON PROBLEM

4.1 Problem Formulation and Resolution
In [12], Pointcheval introduced a cryptographic identifica-

tion scheme based on the perceptron problem, which seems
to be suited for resource constrained devices such as smart
cards. An ǫ-vector is a vector with all entries being either
+1 or -1. Similarly, an ǫ-matrix is a matrix in which all
entries are either +1 or -1. The PPP is defined as follows:

Definition 1. Given an ǫ-matrix A of size m × n and

a multi-set S of non-negative integers of size m, find an ǫ-
vector V of size n such that {{(AV )j/j = {1, . . . ,m}}} = S.

A PPP solution can be represented with a binary encod-
ing. Part of the full evaluation of a solution can be seen as a
matrix-vector product. Therefore, the evaluation of a neigh-
bor can be performed in linear time. As the iteration-level
parallel model does not change the semantics of the sequen-
tial S-Metaheuristic, the effectiveness in terms of quality of
solutions is not addressed here. In [9], the authors have
investigated how the increase of the size of neighborhood al-
lows to improve the quality of the solutions. Indeed, theoret-
ical and experimental studies have shown that the increase
of the neighborhood size may improve the quality of the ob-
tained solutions [1]. Nevertheless, as it is generally CPU
time-consuming, this mechanism is not often fully exploited
in practice. Indeed, experiments using large neighborhoods
are often stopped without reached. Thereby, in designing
S-Metaheuristics, there is often a trade-off between the size
of the neighborhood to use and the computational complex-
ity to explore it. To deal with such issues, only the use of
massive parallelism allows to design methods based on large
neighborhood structures.

In this paper, the objective is to assess the impact in terms
of efficiency of an implementation done with ParadisEO-
MO-GPU compared with an optimized version done outside
the software framework. To measure such a difference, three
neighborhoods based on increasing Hamming distances are
considered for the experiments. In such neighborhoods, a
neighbor is produced by flipping respectively 1, 2 and 3 bits
of the candidate solution.

4.2 Experimentation with ParadisEO-MO-GPU
The considered PPP instances are the challenging ones

presented in [12] for cryptanalysis applications. A Tabu
Search S-Metaheuristic has been implemented in four differ-
ent versions: 1) a ParadisEO-MO implementation on CPU
and its counterpart on GPU; 2) an optimized CPU imple-
mentation and its associated GPU version. ParadisEO ver-
sions are pure object-based implementations whilst the op-
timized ones are pointer-based made outside the software
framework.

Experiments have been carried out on top of an Intel Core
i7 970 3.2 Ghz with a GTX 480 card (15 multiprocessors
with 32 cores). To measure the acceleration factors, only
a single-core CPU has been considered using the Intel i7
turbo mode (3.46 Ghz). For the two first neighborhoods,
30 executions for each different version are considered. The
stopping criterion of the S-Metaheuristic has been set to
10000 iterations. The average time has been measured in
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Table 1: Measures in terms of efficiency of a
ParadisEO-MO-GPU implementation with an opti-
mized version made outside the platform. The per-
muted perceptron problem has been considered with
a neighborhood based on a Hamming distance of one
(n neighbors).

Instance ParadisEO-MO Optimized version
CPU GPU Acc. CPU GPU Acc.

73-73 0.5 1.1 ×0.4 0.3 0.8 ×0.4
81-81 0.6 1.2 ×0.5 0.4 1.0 ×0.4

101-117 1.0 1.4 ×0.7 0.7 1.2 ×0.6
121-137 1.4 1.5 ×0.9 1.1 1.3 ×0.8
151-167 2.1 1.7 ×1.2 1.7 1.5 ×1.1
171-187 2.7 1.9 ×1.4 2.3 1.7 ×1.4
201-217 3.8 2.2 ×1.7 3.3 1.9 ×1.7

seconds. The standard deviation is not represented since
its value is pretty low. The Kolmogorov-Smirnov’s test has
been applied to check the normal distribution of the data
set.

Table 1 reports the results obtained for the Tabu Search
based on a Hamming distance of one. From the instance
m = 171 and n = 187, both GPU versions start to yield
positive accelerations (from ×1.1 to ×1.2). As long as the
instance size increases, the acceleration factor grows accord-
ingly (from ×1.3 to ×1.7). The acceleration factor for this
implementation is not really significant. This can be ex-
plained by the fact that since the neighborhood is relatively
small (n threads), the number of threads per block is not
enough to fully cover the memory access latency. Further-
more, since the execution time for CPU versions is not mean-
ingful, one can also argue on the use of GPU computing in
that case. To measure the efficiency of the GPU-based im-
plementation of this neighborhood, bigger PPP instances
such as the ones used in [8] should be considered.

An experiment on larger scale concerns a Tabu Search
using a neighborhood based on a Hamming distance of two.
For this neighborhood, the evaluation kernel is executed by
n×(n-1)

2
threads. The obtained results from experiments are

reported in Table 2.
For the first instance (m = 73, n = 73), acceleration fac-

tors are already significant (from ×8.2 and ×13.1). As long
as the instance size increases, the acceleration factor grows
accordingly. A peek performance is obtained for the last in-
stance (efficient speed-ups varying from ×29.5 to ×41.8). A
thorough examination of the acceleration factors points out
that the performance obtained with ParadisEO-MO-GPU
are not so far from an optimized implementation. The per-
formance degradation which occurs is certainly due to the
additional cost provided by ParadisEO-MO.

Indeed, regarding the two CPU versions, initially, there
is already a performance gap regarding the execution time
(between 68% and 86%). This difference can be explained
by the overhead caused by the creation of generic objects in
ParadisEO whereas the optimized version on CPU is a pure
pointer-based implementation. Indeed, the Tabu Search in
ParadisEO-MO is a specialized instantiation of a common
template to any S-Metaheuristic whilst the optimized ver-
sion is a specific Tabu Search implementation. This may also
clarify the performance difference between the two different
GPU counterparts in which the same phenomenon occurs.
However, for such a transparent exploitation and flexibility,

the obtained results are really convincing. A conclusion of
this experiment indicates that the performance results of the
GPU version provided by ParadisEO are not much degraded
compared to the GPU pointer-based one.

As previously said, the definition of the neighborhood is
a major step for the performance improvement of the algo-
rithm. Indeed, the increase of the neighborhood size may
improve the quality of the obtained solutions. However, its
exploitation for solving real-world problems is possible only
by using a great computing power. The next experiment il-
lustrates that for a very large neighborhood obtained with a
Hamming distance of 3. For such neighborhood, the evalu-

ation kernel is executed by n×(n-1)×(n-2)
6

threads. Since the
execution was too much CPU time consuming, only 5 exe-
cutions have been performed. Table 3 presents the obtained
results for such a large neighborhood.

In general, for the same problem instance, the obtained
acceleration factors are much more important than for the
previous neighborhoods. For example, for the first instance,
the obtained speed-up already varies from ×17.7 to ×19.8.
GPU keeps accelerated the process as long as the size grows.
A very significant acceleration alternates from ×34.1 to ×53
for the biggest instance (m = 201, n = 217). Regarding the
difference between ParadisEO-MO implementations and the
optimized ones, the performance degradation is more impor-
tant between the CPU versions (from 53% to 70%). Indeed,
the increase of the neighborhood size may induce more cre-
ations of objects. This is also the same case for the perfor-
mance degradation regarding the GPU counterparts. Nev-
ertheless, according to the reported time measurements, the
performance results of ParadisEO-MO-GPU are still satis-
factory for such allowed transparency.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a step towards a Par-

adisEO framework for the reusable design and implementa-
tion of the GPU-based parallel metaheuristics. The focus is
set on S-Metaheuristics and the iteration-level parallel ex-
ploration of the neighborhood of a solution. We have re-
visited the design and implementation of this last model in
ParadisEO-MO to allow its efficient execution and its trans-
parent use on GPU. In order to minimize the cost of the
data transfer between CPU and GPU the neighborhood of
the current solution is generated and evaluated on GPU at
each iteration. To do that mapping functions are defined
and implemented into ParadisEO-MO allowing to assign a
thread identifier to each neighboring solution. These map-
ping functions may be used in a fully transparent way for
binary and permutation-based problem representations.

The implementation in ParadisEO-MO using CUDA has
been experimentally validated on a cryptographic applica-
tion and compared to the same implementation realized out-
side ParadisEO. The experimental results show that the per-
formance degradation that occurs between the two imple-
mentations is satisfactory. Indeed, for such a flexibility and
an easiness of reuse at implementation, the results obtained
with ParadisEO-MO-GPU are really promising (accelera-
tions up to ×34). S-Metaheuristics based on large neigh-
borhoods are unpractical on traditional machines because
of their high computational cost. Hence, the use of Par-
adisEO-MO-GPU is a viable solution. Furthermore, we are
strongly convinced that the overall performance provided by
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Table 2: Measures in terms of efficiency of a ParadisEO-MO-GPU implementation with an optimized version
made outside the platform. The permuted perceptron problem has been considered with a neighborhood

based on a Hamming distance of two (n×(n-1)
2

neighbors).

Instance ParadisEO-MO Optimized version Perf. degradation
CPU GPU Acc. CPU GPU Acc. CPU GPU

73-73 19.8 2.4 ×8.2 17.1 1.3 ×13.1 86% 54%
81-81 26 2.8 ×9.3 22 1.6 ×13.8 84% 57%

101-117 61 3.9 ×15.6 51 2.2 ×23.2 83% 56%
121-137 106 5.2 ×20.4 91 2.9 ×31.3 86% 56%
151-167 193 8.0 ×24.1 134 4.1 ×32.7 69% 51%
171-187 305 11.3 ×26.9 208 5.6 ×37.1 68% 49%
201-217 455 17.6 ×29.5 343 8.2 ×41.8 75% 46%

Table 3: Measures in terms of efficiency of a ParadisEO-MO-GPU implementation with an optimized version
made outside the platform. The permuted perceptron problem has been considered with a neighborhood

based on a Hamming distance of three (n×(n-1)×(n-2)
6

neighbors).

Instance ParadisEO-MO Optimized version Perf. degradation
CPU GPU Acc. CPU GPU Acc. CPU GPU

73-73 565 32 ×17.7 303 15.3 ×19.8 54% 47%
81-81 877 44 ×19.9 464 21 ×22.1 53% 47%

101-117 2468 99 ×24.9 1375 50 ×27.5 56% 50%
121-137 4887 182 ×26.8 3137 89 ×35.2 64% 48%
151-167 11983 401 ×29.9 7781 190 ×41.0 65% 49%
171-187 20239 612 ×33.1 13089 288 ×45.4 64% 47%
201-217 37956 1111 ×34.1 26706 504 ×53.0 70% 45%

ParadisEO-MO-GPU will be much better for other problems
requiring more computational calculations (e.g. in [7]).

The first release of ParadisEO-MO on GPU is available on
the ParadisEO website2. Tutorials and documentation are
provided to facilitate its reuse. This release is dedicated to
parallel S-Metaheuristics based on the iteration-level parallel
model. In the short run, this release will be first extended
to the algorithmic (multi-start) and solution-level parallel
models. Second, it will be extended to other problem repre-
sentations such as discrete representation and other solution
methods. Third, it will be validated on a wider range of
problems. In the long run, ParadisEO will be revisited fol-
lowing the same roadmap for population-based metaheuris-
tics (P-Metaheuristics) such as evolutionary algorithms on
GPU.
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