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Abstract

In this paper, we intend to formulate a new meta-
heuristic algorithm, called Cuckoo Search (CS), for
solving optimization problems. This algorithm is
based on the obligate brood parasitic behaviour
of some cuckoo species in combination with the
Lévy flight behaviour of some birds and fruit flies.
We validate the proposed algorithm against test
functions and then compare its performance with
those of genetic algorithms and particle swarm
optimization. Finally, we discuss the implication of
the results and suggestion for further research.

Index Terms: algorithm; cuckoo search; Lévy flight;
metaheuristics; nature-inspired strategy; optimiza-
tion;

1 Introduction

More and more modern metaheuristic algorithms in-
spired by nature are emerging and they become in-
creasingly popular. For example, particles swarm
optimization (PSO) was inspired by fish and bird
swarm intelligence, while the Firefly Algorithm was
inspired by the flashing pattern of tropical fireflies
[2, 3, 6, 21, 22]. These nature-inspired metaheuristic
algorithms have been used in a wide range of opti-

mization problems, including NP-hard problems such
as the travelling salesman problem [2, 3, 6, 8, 10, 21].

The power of almost all modern metaheuristics
comes from the fact that they imitate the best fea-
ture in nature, especially biological systems evolved
from natural selection over millions of years. Two im-
portant characteristics are selection of the fittest and
adaptation to the environment. Numerically speak-
ing, these can be translated into two crucial char-
acteristics of the modern metaheuristics: intensifica-
tion and diversification [3]. Intensification intends to
search around the current best solutions and select
the best candidates or solutions, while diversification
makes sure the algorithm can explore the search space
efficiently.

This paper aims to formulate a new algorithm,
called Cuckoo Search (CS), based on the interesting
breeding bebaviour such as brood parasitism of cer-
tain species of cuckoos. We will first introduce the
breeding bebaviour of cuckoos and the characteris-
tics of Lévy flights of some birds and fruit flies, and
then formulate the new CS, followed by its implemen-
tation. Finally, we will compare the proposed search
strategy with other popular optimization algorithms
and discuss our findings and their implications for
various optimization problems.
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2 Cuckoo Behaviour and Lévy

Flights

2.1 Cuckoo Breeding Behaviour

Cuckoo are fascinating birds, not only because of the
beautiful sounds they can make, but also because of
their aggressive reproduction strategy. Some species
such as the ani and Guira cuckoos lay their eggs in
communal nests, though they may remove others’
eggs to increase the hatching probability of their own
eggs [12]. Quite a number of species engage the ob-
ligate brood parasitism by laying their eggs in the
nests of other host birds (often other species). There
are three basic types of brood parasitism: intraspe-
cific brood parasitism, cooperative breeding, and nest
takeover. Some host birds can engage direct conflict
with the intruding cuckoos. If a host bird discovers
the eggs are not their owns, they will either throw
these alien eggs away or simply abandon its nest and
build a new nest elsewhere. Some cuckoo species
such as the New World brood-parasitic Tapera have
evolved in such a way that female parasitic cuckoos
are often very specialized in the mimicry in colour
and pattern of the eggs of a few chosen host species
[12]. This reduces the probability of their eggs being
abandoned and thus increases their reproductivity.
In addition, the timing of egg-laying of some

species is also amazing. Parasitic cuckoos often
choose a nest where the host bird just laid its own
eggs. In general, the cuckoo eggs hatch slightly ear-
lier than their host eggs. Once the first cuckoo chick
is hatched, the first instinct action it will take is to
evict the host eggs by blindly propelling the eggs out
of the nest, which increases the cuckoo chick’s share
of food provided by its host bird. Studies also show
that a cuckoo chick can also mimic the call of host
chicks to gain access to more feeding opportunity.

2.2 Lévy Flights

On the other hand, various studies have shown
that flight behaviour of many animals and insects
has demonstrated the typical characteristics of Lévy
flights [4, 15, 13, 14]. A recent study by Reynolds and
Frye shows that fruit flies orDrosophila melanogaster,

explore their landscape using a series of straight flight
paths punctuated by a sudden 90o turn, leading
to a Lévy-flight-style intermittent scale free search
pattern. Studies on human behaviour such as the
Ju/’hoansi hunter-gatherer foraging patterns also
show the typical feature of Lévy flights. Even light
can be related to Lévy flights [1]. Subsequently, such
behaviour has been applied to optimization and opti-
mal search, and preliminary results show its promis-
ing capability [13, 15, 19, 20].

3 Cuckoo Search

For simplicity in describing our new Cuckoo Search,
we now use the following three idealized rules: 1)
Each cuckoo lays one egg at a time, and dump its
egg in randomly chosen nest; 2) The best nests with
high quality of eggs will carry over to the next gener-
ations; 3) The number of available host nests is fixed,
and the egg laid by a cuckoo is discovered by the host
bird with a probability pa ∈ [0, 1]. In this case, the
host bird can either throw the egg away or abandon
the nest, and build a completely new nest. For sim-
plicity, this last assumption can be approximated by
the fraction pa of the n nests are replaced by new
nests (with new random solutions).

For a maximization problem, the quality or fitness
of a solution can simply be proportional to the value
of the objective function. Other forms of fitness can
be defined in a similar way to the fitness function in
genetic algorithms. For simplicity, we can use the fol-
lowing simple representations that each egg in a nest
represents a solution, and a cuckoo egg represent a
new solution, the aim is to use the new and poten-
tially better solutions (cuckoos) to replace a not-so-
good solution in the nests. Of course, this algorithm
can be extended to the more complicated case where
each nest has multiple eggs representing a set of solu-
tions. For this present work, we will use the simplest
approach where each nest has only a single egg.

Based on these three rules, the basic steps of
the Cuckoo Search (CS) can be summarized as the
pseudo code shown in Fig. 1.

When generating new solutions x
(t+1) for, say, a
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begin

Objective function f(x), x = (x1, ..., xd)
T

Generate initial population of
n host nests xi (i = 1, 2, ..., n)

while (t <MaxGeneration) or (stop criterion)
Get a cuckoo randomly by Lévy flights

evaluate its quality/fitness Fi

Choose a nest among n (say, j) randomly
if (Fi > Fj),

replace j by the new solution;
end

A fraction (pa) of worse nests
are abandoned and new ones are built;

Keep the best solutions
(or nests with quality solutions);

Rank the solutions and find the current best
end while

Postprocess results and visualization
end

Figure 1: Pseudo code of the Cuckoo Search (CS).

cuckoo i, a Lévy flight is performed

x
(t+1)
i

= x
(t)
i

+ α⊕ Lévy(λ), (1)

where α > 0 is the step size which should be related
to the scales of the problem of interests. In most
cases, we can use α = 1. The above equation is es-
sentially the stochastic equation for random walk. In
general, a random walk is a Markov chain whose next
status/location only depends on the current location
(the first term in the above equation) and the tran-
sition probability (the second term). The product
⊕ means entrywise multiplications. This entrywise
product is similar to those used in PSO, but here the
random walk via Lévy flight is more efficient in ex-
ploring the search space as its step length is much
longer in the long run.
The Lévy flight essentially provides a random walk

while the random step length is drawn from a Lévy
distribution

Lévy ∼ u = t−λ, (1 < λ ≤ 3), (2)

which has an infinite variance with an infinite mean.
Here the steps essentially form a random walk pro-

cess with a power-law step-length distribution with
a heavy tail. Some of the new solutions should be
generated by Lévy walk around the best solution ob-
tained so far, this will speed up the local search.
However, a substantial fraction of the new solutions
should be generated by far field randomization and
whose locations should be far enough from the cur-
rent best solution, this will make sure the system will
not be trapped in a local optimum.
From a quick look, it seems that there is some

similarity between CS and hill-climbing in combi-
nation with some large scale randomization. But
there are some significant differences. Firstly, CS is a
population-based algorithm, in a way similar to GA
and PSO, but it uses some sort of elitism and/or se-
lection similar to that used in harmony search. Sec-
ondly, the randomization is more efficient as the step
length is heavy-tailed, and any large step is possi-
ble. Thirdly, the number of parameters to be tuned
is less than GA and PSo, and thus it is potentially
more generic to adapt to a wider class of optimization
problems. In addition, each nest can represent a set
of solutions, CS can thus be extended to the type of
meta-population algorithm.

4 Implementation and Numer-

ical Experiments

4.1 Validation and Parameter Studies

After implementation, we have to validate the algo-
rithm using test functions with analytical or known
solutions. For example, one of the many test func-
tions we have used is the bivariate Michaelwicz func-
tion

f(x, y) = − sin(x) sin2m(
x2

π
)− sin(y) sin2m(

2y2

π
),

(3)
where m = 10 and (x, y) ∈ [0, 5] × [0, 5]. This
function has a global minimum f∗ ≈ −1.8013 at
(2.20319, 1.57049). The landscape of this funciton
is shown in Fig. 2. This global optimum can easily
be found using Cuckoo Search, and the results are
shown in Fig. 3 where the final locations of the nests
are also marked with ⋄· in the figure. Here we have
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Figure 2: The landscaped of Michaelwicz’s function.

used n = 15 nests, α = 1 and pa = 0.25. In most of
our simulations, we have used n = 15 to 50.

From the figure, we can see that, as the optimum is
approaching, most nests aggregate towards the global
optimum. We also notice that the nests are also dis-
tributed at different (local) optima in the case of mul-
timodal functions. This means that CS can find all
the optima simultaneously if the number of nests are
much higher than the number of local optima. This
advantage may become more significant when deal-
ing with multimodal and multiobjective optimization
problems.

We have also tried to vary the number of host nests
(or the population size n) and the probability pa. We
have used n = 5, 10, 15, 20, 50, 100, 150, 250, 500 and
pa = 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.4, 0.5. From
our simulations, we found that n = 15 and pa = 0.25
are sufficient for most optimization problems. Re-
sults and analysis also imply that the convergence
rate, to some extent, is not sensitive to the parame-
ters used. This means that the fine adjustment is not
needed for any given problems. Therefore, we will use
fixed n = 15 and pa = 0.25 in the rest of the simula-
tions, especially for the comparison studies presented
in the next section.
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Figure 3: Search paths of nests using Cuckoo Search.
The final locations of the nests are marked with ⋄· in
the figure.

4.2 Test Functions

There are many benchmark test functions in litera-
ture [5, 17, 16], and they are designed to test the
performance of optimization algorithms. Any new
optimization algorithm should also be validated and
tested against these benchmark functions. In our
simulations, we have used the following test func-
tions.
De Jong’s first function is essentially a sphere func-

tion

f(x) =

d
∑

i=1

x2
i , xi ∈ [−5.12, 5.12], (4)

whose global minimum f∗ = 0 occurs at x∗ =
(0, 0, ..., 0). Here d is the dimension.
Easom’s test function is unimodal

f(x, y) = − cos(x) cos(y) exp[−(x− π)2 − (y − π)2],
(5)

where

(x, y) ∈ [−100, 100]× [−100, 100]. (6)

It has a global minimum of f∗ = −1 at (π, π) in a
very small region.
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Shubert’s bivariate function

f(x, y) = −
5

∑

i=1

i cos[(i+1)x+1]

5
∑

i=1

cos[(i+1)y+1)],

(7)
has 18 global minima in the region (x, y) ∈ [−10, 10]×
[−10, 10]. The value of its global minima is f∗ =
−186.7309.
Griewangk’s test function has many local minima

f(x) =
1

4000

d
∑

i=1

x2
i
−

d
∏

i=1

cos(
xi√
i
) + 1, (8)

but a single global mimimum f∗ = 0 at (0, 0, ..., 0) for
all −600 ≤ xi ≤ 600 where i = 1, 2, ..., d.
Ackley’s function is multimodal

f(x) = −20 exp

[

− 0.2

√

√

√

√

1

d

d
∑

i=1

x2
i

]

− exp[
1

d

d
∑

i=1

cos(2πxi)] + (20 + e), (9)

with a global minimum f∗ = 0 at x∗ = (0, 0, ..., 0)
in the range of −32.768 ≤ xi ≤ 32.768 where i =
1, 2, ..., d.
The generalized Rosenbrock’s function is given by

f(x) =
d−1
∑

i=1

[

(1 − xi)
2 + 100(xi+1 − x2

i
)2
]

, (10)

which has a minimum f(x∗) = 0 at x∗ = (1, 1, ..., 1).
Schwefel’s test function is also multimodal

f(x) =

d
∑

i=1

[

− xi sin(
√

|xi| )
]

, −500 ≤ xi ≤ 500,

(11)
with a global minimum of f∗ = −418.9829d at x∗

i
=

420.9687(i = 1, 2, ..., d).
Rastrigin’s test function

f(x) = 10d+

d
∑

i=1

[x2
i − 10 cos(2πxi)], (12)

has a global minimum f∗ = 0 at (0, 0, ..., 0) in a hy-
percube −5.12 ≤ xi ≤ 5.12 where i = 1, 2, ..., d.

Michalewicz’s test function has d! local optima

f(x) = −
d

∑

i=1

sin(xi)
[

sin(
ix2

i

π
)
]2m

, (m = 10), (13)

where 0 ≤ xi ≤ π and i = 1, 2, ..., d. The global
mimimum is f∗ ≈ −1.801 for d = 2, while f∗ ≈
−4.6877 for d = 5.

4.3 Comparison of CS with PSO and

GA

Recent studies indicate that PSO algorithms can out-
perform genetic algorithms (GA) [8] and other con-
ventional algorithms for many optimization prob-
lems. This can partly be attributed to the broad-
casting ability of the current best estimates which
potentially gives better and quicker convergence to-
wards the optimality. A general framework for eval-
uating statistical performance of evolutionary algo-
rithms has been discussed in detail by Shilane et al.
[18].
Now we will compare the Cuckoo Search with PSO

and genetic algorithms for various standard test func-
tions. After implementing these algorithms using
Matlab, we have carried out extensive simulations
and each algorithm has been run at least 100 times so
as to carry out meaningful statistical analysis. The
algorithms stop when the variations of function val-
ues are less than a given tolerance ǫ ≤ 10−5. The
results are summarized in the following tables (see
Tables 1 and 2) where the global optima are reached.
The numbers are in the format: average number of
evaluations (success rate), so 927±105(100%) means
that the average number (mean) of function evalua-
tions is 927 with a standard deviation of 105. The
success rate of finding the global optima for this al-
gorithm is 100%.
We can see that the CS is much more efficient in

finding the global optima with higher success rates.
Each function evaluation is virtually instantaneous
on modern personal computer. For example, the
computing time for 10,000 evaluations on a 3GHz
desktop is about 5 seconds.
For all the test functions, CS has outperformed

both GA and PSO. The primary reasons are two
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Table 1: Comparison of CS with genetic algorithms

Functions/Algorithms GA CS
Multiple peaks 52124± 3277(98%) 927± 105(100%)

Michalewicz’s (d=16) 89325± 7914(95%) 3221± 519(100%)
Rosenbrock’s (d=16) 55723± 8901(90%) 5923± 1937(100%)
De Jong’s (d=256) 25412± 1237(100%) 4971± 754(100%)
Schwefel’s (d=128) 227329± 7572(95%) 8829± 625(100%)
Ackley’s (d=128) 32720± 3327(90%) 4936± 903(100%)

Rastrigin’s 110523± 5199(77%) 10354± 3755(100%)
Easom’s 19239± 3307(92%) 6751± 1902(100%)

Griewank’s 70925± 7652(90%) 10912± 4050(100%)
Shubert’s (18 minima) 54077± 4997(89%) 9770± 3592(100%)

Table 2: Comparison of CS with Particle Swarm Op-
timisation
Functions/Algorithms PSO CS

Multiple peaks 3719± 205(97%) 927± 105(100%)
Michalewicz’s (d=16) 6922± 537(98%) 3221± 519(100%)
Rosenbrock’s (d=16) 32756± 5325(98%) 5923± 1937(100%)
De Jong’s (d=256) 17040± 1123(100%) 4971± 754(100%)
Schwefel’s (d=128) 14522± 1275(97%) 8829± 625(100%)
Ackley’s (d=128) 23407± 4325(92%) 4936± 903(100%)

Rastrigin’s 79491± 3715(90%) 10354± 3755(100%)
Easom’s 17273± 2929(90%) 6751± 1902(100%)

Griewank’s 55970± 4223(92%) 10912± 4050(100%)
Shubert’s (18 minima) 23992± 3755(92%) 9770± 3592(100%)

folds: A fine balance of randomization and intensi-
fication, and less number of control parameters. As
for any metaheuristic algorithm, a good balance of
intensive local search strategy and an efficient explo-
ration of the whole search space will usually lead to
a more efficient algorithm. On the other hand, there
are only two parameters in this algorithm, the popu-
lation size n, and pa. Once n is fixed, pa essentially
controls the elitism and the balance of the randomiza-
tion and local search. Few parameters make an algo-
rithm less complex and thus potentially more generic.
Such observations deserve more systematic research
and further elaboration in the future work.

5 Conclusions

In this paper, we have formulated a new meta-
heuristic Cuckoo Search in combination with Lévy
flights, based on the breeding strategy of some cuckoo
species. The proposed algorithm has been validated
and compared with other algorithms such as genetic
algorithms and particle swarm optimization. Sim-
ulations and comparison show that CS is superior
to these existing algorithms for multimodal objective
functions. This is partly due to the fact that there
are fewer parameters to be fine-tuned in CS than in
PSO and genetic algorithms. In fact, apart from the
population size n, there is essentially one parame-
ter pa. Furthermore, our simulations also indicate
that the convergence rate is insensitive to the param-
eter pa. This also means that we do not have to fine
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tune these parameters for a specific problem. Sub-
sequently, CS is more generic and robust for many
optimization problems, comparing with other meta-
heuristic algorithms.
This potentially powerful optimization strategy

can easily be extended to study multiobjecitve opti-
mization applications with various constraints, even
to NP-hard problems. Further studies can focus on
the sensitivity and parameter studies and their pos-
sible relationships with the convergence rate of the
algorithm. Hybridization with other popular algo-
rithms such as PSO will also be potentially fruitful.
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flight for light, Nature, 453, 495-498 (2008).

[2] Bonabeau E., Dorigo M., Theraulaz G., Swarm Intel-
ligence: From Natural to Artificial Systems. Oxford
University Press, (1999)

[3] Blum C. and Roli A., Metaheuristics in combinatorial
optimization: Overview and conceptural comparision,
ACM Comput. Surv., 35, 268-308 (2003).

[4] Brown C., Liebovitch L. S., Glendon R., Lévy flights
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