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Abstract
Biogeography-based optimization (BBO) is a population-based evolutionary algorithm
(EA) that is based on the mathematics of biogeography. Biogeography is the study of
the geographical distribution of biological organisms. We present a simplified version
of BBO and perform an approximate analysis of the BBO population using probability
theory. Our analysis provides approximate values for the expected number of gen-
erations before the population’s best solution improves, and the expected amount of
improvement. These expected values are functions of the population size. We quantify
three behaviors as the population size increases: first, we see that the best solution in
the initial randomly-generated population improves; second, we see that the expected
number of generations before improvement increases; and third, we see that the ex-
pected amount of improvement decreases.
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1 Introduction

1.1 Biogeography-Based Optimization

Mathematical models of biogeography describe the migration, speciation, and extinc-
tion of species (MacArthur and Wilson, 1967), (Lomolino et al., 2009). Species migrate
between islands. Islands that are well suited as residences for biological species are said
to be highly habitable. Features that correlate with habitability include factors such as
rainfall, diversity of vegetation, diversity of topographic features, land area, and tem-
perature. Islands that are highly habitable tend to have many species, while those that
are not very habitable have few species.

Highly habitable islands have a high emigration rate. Emigration occurs as ani-
mals ride flotsam to neighboring islands, or swim to neighboring islands. In the case of
insects and birds, emigration can occur by flying or being carried by the wind. The rea-
son that emigration occurs from habitable islands is due to the accumulation of random
effects on their large populations.

Highly habitable islands have a low immigration rate because they are already
nearly saturated with species, and therefore cannot easily support new species. Con-
versely, islands that are not habitable have a high immigration rate because of their
sparse populations, which allows room for many additional species. The immigration
of new species to islands might raise the habitability of those islands because habitabil-
ity is proportional to biological diversity.

The application of biogeography to optimization was first presented in Simon
(2008) and is an example of how a natural process can be modeled to solve general
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optimization problems. Biogeography is nature’s way of distributing species, and is
analogous to general problem solving. Suppose that we have some problem, and that
we also have a certain number of candidate solutions. A good solution is analogous to
a highly habitable island, and a poor solution is analogous to a less habitable island.
Good solutions are more likely to share their features with other solutions, and poor
solutions are more likely to accept shared features from other solutions. This approach
to problem solving is called biogeography-based optimization (BBO). As with every
other evolutionary algorithm (EA), we might also incorporation mutation and elitism,
although these are not essential features of BBO.

Figure 1 illustrates migration models. The immigration rate λ and the emigration
rate µ of a solution are functions of its fitness. The immigration curve shows that the
least fit solution has the largest immigration rate and smallest emigration rate. The
most fit solution has the smallest immigration rate and the largest emigration rate. S1

in Figure 1 represents a poor solution while S2 represents a good solution.
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Figure 1: Illustration of two candidate problem solutions using symmetric immigra-
tion and emigration curves. S1 is a relatively poor solution while S2 is a relatively
good solution. S1 has a high immigration and a low emigration rate, and S2 has a low
immigration and a high emigration rate.

We have shown the migration curves in Figure 1 as straight lines, but in gen-
eral they might be more complicated curves. We also assume that each solution has
identical migration curves, but in general the migration curves could be adjusted on a
per-solution basis. Nevertheless, the simple model shown in Figure 1 gives a general
description of migration.

There are several different ways to implement the details of BBO. Figure 2 out-
lines the original BBO algorithm (Simon, 2008), which is called partial immigration-
based BBO. In this approach, for each feature in each solution, we probabilistically
decide whether or not to immigrate (i.e., replace that solution feature). If immigration
is selected for a given feature, then the emigrating solution is probabilistically selected
based on fitness (e.g., using roulette wheel selection). Migration and mutation of the
entire population take place before any of the solutions are replaced, which requires
the use of the temporary population z in Figure 2.
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z ← y
Define immigration probability λk ∝ fitness of the k-th solution
Define emigration probability µk = 1− λk
For each solution zk

For each solution feature s
Use λk to probabilistically decide whether to immigrate to zk
If immigrating then

Use the µ values to probabilistically select the emigrating solution yj
zk(s)← yj(s)

end if
Probabilistically decide whether to mutate zk(s)

next solution feature
next solution
y ← z

Figure 2: One generation of a BBO algorithm, where y is the entire population of solu-
tions, yk is the kth solution, and yk(s) is the sth feature of yk.

The BBO migration strategy is similar to the global recombination approach of
evolutionary strategies (ES) (Bäck, 1996), (Bäck et al., 1997), in which many parents
can contribute to a single offspring. Global recombination has also been adapted to
GAs (Eiben, 2003), (Eiben, 2000), but BBO differs from GAs in one important aspect. In
GAs recombination is used to create new solutions, while in BBO migration is used to
change existing solutions. Global recombination in ES is a reproductive process which
creates new solutions, while BBO migration is an adaptive process that modifies ex-
isting solutions. A quantitative comparison between BBO and other EAs is included
in Simon (2008), where 14 benchmark functions, each with 20 dimensions, were stud-
ied. It was shown that BBO and the stud GA (so named for its selection of the best
individual in the population as one of the parents for every crossover operation) per-
formed the best out of eight EAs.

The EA which is most like BBO is a GA with global uniform recombination. How-
ever, there are still differences between the two. A conceptual comparison and con-
trast between GAs and BBO is shown in Table 1 and is discussed in more detail in Si-
mon et al. (2009) and Simon et al. (2010). Note in Table 1 that we propose the term
“archipelago” to refer to a set of candidate solutions in BBO. However, in this paper, in
order to retain familiar EA terminology, we use the term “population” to refer to a set
of candidate solutions in BBO.

GA BBO
Set of Solutions Population Archipelago

Solution Chromosome Island
Solution Feature Allele Species
Recombination Crossover Migration

Table 1: Comparison between GA and BBO.
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1.2 Paper Goals and Overview

The goals of this paper are two-fold. Our first goal is to present a simplified version of
BBO, which we do in Section 2. Our second goal is to use probability theory to analyze
some of the mathematical properties of simplified BBO (SBBO), which we do in the fol-
lowing sections. Section 3 derives the probability that the best individual in the SBBO
population improves from one generation to the next. Section 4 derives an approximate
Markov transition matrix for SBBO. Section 5 derives the expected amount of improve-
ment in the best individual over one SBBO generation. We give supporting simulation
results in Section 6, and provide concluding remarks and directions for future work in
Section 7.

A more traditional Markov analysis, along the lines of that discussed for GAs
in Nix and Vose (1992), Davis and Principe (1993), and Reeves and Rowe (2003), has
been presented for the standard BBO algorithm in Simon et al. (2009) and Simon et al.
(2010). In that approach, each Markov state is a population distribution. The limi-
tations of traditional Markov analyses of EAs is that the transition matrix grows fac-
torially with the problem size. Each dimension of the traditional Markov matrix is
(n+N −1)-choose-N , where n is the cardinality of the search space and N is the popu-
lation size. As an example, a ten-bit optimization problem (n = 1024) with a population
size N = 10 results in a transition matrix that has on the order of 1024 elements! Tra-
ditional Markov analysis provides insights into very simple problems, but because of
computational limitations cannot be used for realistic problems.

In this paper we avoid the “curse of dimensionality” by defining the Markov states
differently than those that are traditionally used. We partition the Markov state space
depending on which individual is most fit and which individual has been selected for
immigration. Each dimension of our Markov matrix is only N2, is independent of the
search space cardinality, and is even independent of whether the search space is con-
tinuous or discrete. The limitation of our approach is that our Markov analysis is only
approximate, but the advantage is that we can deal with realistically-sized problems.

2 A Simplified BBO Algorithm

An SBBO algorithm can be formulated by always using the best solution as the emi-
grating island, and using any other solution with equal likelihood as the immigrating
island. The immigrating island is chosen from a uniform probability distribution and
is thus independent of fitness. This is conceptually similar to the stud GA in which the
best chromosome is always chosen as one of the parents, and the other parent is chosen
using standard fitness-based selection (Khatib and Fleming, 1998), (Silva et al., 2005).
In SBBO, the migration curves of Figure 1 are modified to those shown in Figure 3. One
generation of SBBO can be described as follows:

(1) Find the fittest solution. Call this solution xi.
(2) Pick a random solution feature s.
(3) Select the immigrating island xj from a uniform probability distribution (j 6= i).
(4) xj(s)← xi(s).

With SBBO we do not need to evaluate all fitness values each generation. We only
need to keep track of the most fit island. After each generation we compare the new
fitness of the immigrating island with the previous best solution. This requires only
one fitness evaluation per generation.
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Figure 3: Illustration of SBBO migration curves in an n-island population. All solu-
tions have an equal probability of immigration except for the most fit solution, which
has a zero probability of immigration. The most fit solution has a 100% probability of
emigration.

3 Probability Analysis

From this point on, we assume that we are trying to solve a minimization problem.
High fitness corresponds to low cost. We try to minimize cost, which is always non-
negative, and maximize fitness.

Suppose that the cost of a solution xi is denoted as f(xi). We write

xi =
[
xi1 · · · xis

]
(1)

where s is the dimension of the problem and also the number of features in each solu-
tion. If f(xi) is separable, then it can be written as

f(xi) = f1(xi1) + · · ·+ fs(xis) (2)

We make the assumption of separability in order to allow tractability in the following
analysis. If f(xi) is not separable, then (2) will not hold, but it may still hold approxi-
mately. The approximation error in our results from this point on are directly correlated
with the approximation error of (2) and are discussed further in Section 6.1.

If xi is a randomly-chosen island, then f(xi) is a random variable with mean f̄ and
variance σ2. The parameters f̄ and σ can be approximated from a population of islands
{xi}. In the absence of any other information, we assume that the fj(·) function values
on the right side of (2) are independent identically-distributed random variables. Then
the expected value and variance of each fj(·) can be written as

f̄j = f̄/s

σ2
j = σ2/s (3)

Now suppose that we migrate a single solution feature from the lowest-cost island to a
randomly-chosen island. The contribution of a single solution feature to the cost of the
immigrating island can be approximated as the random variable

y ∼ (fmin/s, σ
2/s) (4)

where we are using the notation y ∼ (µ, σ2) to indicate that y is a random variable with
mean µ and variance σ2. If y is a uniform random variable, then it can also be written
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as follows:

y ∼ U [fmin/s− σ
√

3/s, fmin/s+ σ
√

3/s] (5)

where we are using the notation y ∼ U [a, b] to indicate that y is a uniform random
variable whose probability density function (pdf) is nonzero only from a to b (Papoulis
and Pillai, 2002).

The immigrating island can have any fitness f ∈ [fmin, fmax]. Therefore, before a
solution feature is replaced in the immigrating island, that feature contributes a cost
that can be approximated as the random variable

z ∼ (f/s, σ2/s)

∼ U [f/s− σ
√

3/s, f/s+ σ
√

3/s] (6)

where the second expression for z applies if it is uniform. SBBO replaces a random
solution feature in the immigrating island with a feature from the emigrating island.
The probability that this feature replacement results in the immigrating island’s fitness
becoming lower than the emigrating island’s fitness can be written as

ps = Prob(z − y > f − fmin)
= Prob(y < z −∆f) (7)

where ∆f is the difference between the total cost of the immigrating and emigrating
islands before migration. Figure 4 pictures this probability for two uniform random
variables. The probability that the previously-best island is replaced by a new best
island due to migration is equal to the probability that a random variable taken from
the z distribution, minus a random variable taken from the y distribution, is greater
than f − fmin.

 ymin fmin/s  zmin ymax   f/s  zmax  

pd
f

pdf of y, emigrating feature

pdf of z, immigrating feature

Figure 4: Sample probability distribution functions of an emigrating and immigrating
solution feature. The probability that the immigrating island is better than the emigrat-
ing island after migration is equal to the probability that z − y > f − fmin.
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Equation (7) can be written as

ps =
∫ zmax

zmin

∫ z−∆f

ymin

pdf(y)pdf(z) dy dz (8)

However, the upper limit of the inner integral must be greater than the lower limit of
the outer integral. This implies that

z −∆f > ymin

z > ymin + ∆f (9)

which changes the lower limit of the outer integral of (8) accordingly. Also, (8) applies
to a specific immigrating island with fitness f . If the immigrating island is chosen
randomly, then the fitness of the immigrating island can range from fmin to fmax. These
ideas lead to a more general expression for (8) as

ps =
∫ fmax

fmin

∫ zmax

ymin+f−fmin

∫ z−f+fmin

ymin

pdf(y) pdf(z) pdf(f) dy dz df (10)

The pdf’s in the above equation are entirely problem-dependent. Given a population,
fmin and fmax are known. The pdf of f can be approximated by generating a large
enough population of solutions. Similarly, the pdf of y and z can be approximated
by quantifying the cost contribution of a large sample of randomly-selected solution
features.

Equation (10) gives the probability that the best individual in a population is re-
placed after a single generation of SBBO. This probability is approximately constant
from one generation to the next, assuming that the population does not change much
between generations. So the probability that there is no improvement in the global best
of the population after each generation is (1− ps). Therefore, on average we expect the
best solution of the population to improve after k generations, where

(1− ps)k = 0.5

k =
log(0.5)

log(1− ps) (11)

As the SBBO population increases, we have a better chance of beginning the op-
timization process with a smaller initial cost. But a larger population also typically
causes the difference (fmax − fmin) to increase, which in turn causes ps to decrease.
This causes k, the expected number of generations between improvements in (11), to
increase. We see that a larger population size results in a better initial solution but a
longer time between improvements in SBBO. This is illustrated qualitatively in Fig-
ure 5.

Small populations collapse to a single solution more quickly than large popula-
tions. This is intuitively obvious and is discussed quantitatively in the next section. As
illustrated in Figure 5, improvements are not only more often for smaller populations,
but also larger in magnitude. This is explored quantitatively in Section 5.
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Figure 5: Illustration of the effect of population size on SBBO. A large population has
a better initial solution, but more generations between improvements, and smaller im-
provements. A small population has a poorer initial solution, but fewer generations
between improvements, and larger improvements.

4 Markov Analysis of the Simplified BBO

We define the Markov states of the n-island SBBO as follows.

• State i ∈ [1, n]: The ith island is the most fit population member and the immigrat-
ing island has not yet been selected.

• State k ∈ [n+ (i− 1)(n− 1) + j], where i ∈ [1, n] and j ∈ [1, n− 1]: The ith island is
the most fit population member and island mij has been selected for immigration,
where

mij =
{

j j < i
j + 1 j ≥ i (12)

We see that an n-member population has n2 states. As a simple illustrative example,
consider a three-member population. The nine Markov states would consist of the
following, where we use I to denote the immigrating island.

1. The first island is the most fit and I has not yet been selected.

2. The second island is the most fit and I has not yet been selected.

3. The third island is the most fit and I has not yet been selected.

4. The first island is the most fit and the second island has been selected for immigra-
tion.

5. The first island is the most fit and the third island has been selected for immigra-
tion.

6. The second island is the most fit and the first island has been selected for immigra-
tion.

7. The second island is the most fit and the third island has been selected for immi-
gration.
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8. The third island is the most fit and the first island has been selected for immigra-
tion.

9. The third island is the most fit and the second island has been selected for immi-
gration.

The Markov transition probabilities for the general SBBO algorithm can be summarized
as follows.

• If the SBBO is in state i ∈ [1, n] then we have an equally likely probability of transi-
tioning to state n+i(n−1)+j for each j ∈ [1, n−1]. The probability of transitioning
to each of these states is 1/(n− 1).

• If the SBBO is in state n + i(n − 1) + j for some i ∈ [1, n] and some j ∈ [1, n − 1],
then we have a probability ps of transitioning to statemij , and a probability (1−ps)
of transitioning to state i. ps is given in (10) and is the probability that migration
to island mij results in that island becoming more fit than island i, which is the
emigrating island. (1 − ps) is the probability that after migration the emigrating
island is still better than the immigrating island.

The state transition matrix is denoted asQ, whereQij is the probability of transitioning
from state j to state i. In order to write Q, we first introduce some auxiliary variables.

Ln−1 =
1

n− 1
[

1 · · · 1
]T ∈ R(n−1)×1

Pi =




ps
. . .

ps
(1− ps) · · · (1− ps) (1− ps) · · · (1− ps)

ps
. . .

ps




← ith row (13)

where the unspecified elements of Pi are zero. Pi is obtained by taking the (n−1)×(n−
1) identity matrix, multiplying it by ps, and then inserting as the ith row a vector which
has each element equal to (1− ps). Pi is therefore a matrix of dimension n× (n− 1).

Given these definitions we can write the n2×n2 Markov transition matrix for SBBO
in block-matrix form as

Q =




0 · · · 0 P1 · · · Pn
Ln−1

. . .
Ln−1


 (14)

where the unspecified elements are equal to zero, and the number of Ln−1 matrices is
equal to n.
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Q2 describes the probability of transitioning from one state to another state after
two state transitions. This can be calculated from (14) as

Q2 =




∑n
j=1 PjL

(j)
n−1,n 0 · · · 0

0 L
(1)
n−1,nP1 · · · L

(1)
n−1,nPn

...
...

...
0 L

(n)
n−1,nP1 · · · L

(n)
n−1,nPn




(15)

where the (n − 1) × n matrix L(j)
n−1,n contains all zeros except for the jth column, each

of whose elements is equal to 1/(n− 1). The upper left n× n block of Q2 describes the
transition probability from each of the first n states to each of the first n states after two
state transitions. We use the symbol T to denote this transition matrix.

T =
n∑

j=1

PjL
(j)
n−1,n (16)

Theorem 1 T is a regular transition matrix for ps ∈ (0, 1).

Proof: See Appendix A.

Theorem 2

T k =
1

(n− 1)k
(NIn + ps1n)k

=
1

(n− 1)k


NkIn + ps

k∑

j=1

nk−jN j−1pk−js

(
k

j − 1

)
1n


 (17)

where 1n is the n× n matrix that contains all ones, and k-choose-j is denoted as
(
k
j

)
=

k!
j! (k − j)! (18)

Proof: See Appendix A.
Note that computing T k requires about log2 k matrix multiplications with the first

expression of (17), but does not require any matrix multiplications with the second
expression of (17).

Theorem 3 SBBO reaches a population with uniform fitness as the number of generations
approaches infinity.

Proof: See Appendix A.
Example: Appendix B gives a simple example of the theory up to this point.

5 Expected Improvement in the Simplified BBO

Section 3 gave the probability of improvement in one SBBO generation. This section
discusses the expected improvement in the best population member, assuming that
immigration improved the solution to the optimization problem.

Suppose that the best individual has cost fmin, and it emigrates a solution feature to
an individual with cost f . The improvement in the cost of the immigrating individual is
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denoted as ∆f , which we consider to be positive if the cost decreases. Before migration,
the replaced solution feature in the immigrating island contributed a cost z to the island
as given in (6). The emigrating solution feature contributes a cost y as given in (4). The
change in cost ∆f due to immigration is therefore a random variable approximately
given as

∆f = z − y
∼ (f/s− fmin/s, 2σ2/s)
∼ (µ1, σ

2
1) (19)

where µ1 and σ1 are auxiliary variables defined by the above equation. We want to
compute the expected value of cost improvement, given that improvement occurred
due to migration. This can be written as

E(∆f |f −∆f < fmin) = E(∆f |∆f > f − fmin)

=
∫ fmax

f−fmin

∆f pdf ′(∆f) d∆f (20)

The upper limit in the integral is fmax because we are assuming that f(x) ≥ 0 for all
x, which implies that ∆f ≤ fmax. The function pdf ′(∆f) is the same as the pdf given
in (19), except it is scaled so that it has an area of one between (f − fmin) and fmax.

If (19) is a Gaussian pdf, then (20) can be written as

E(∆f |∆f > f − fmin) =
∫ fmax

f−fmin

x

cxσ1

√
2π

exp
(−(x− µ1)2

2σ2
1

)
dx

where cx =
1
2

[
erf
(
fmax − µ1

σ1

√
2

)
− erf

(
f − fmin − µ1

σ1

√
2

)]

and erf(x) =
2√
π

∫ x

0

exp
(−t2) dt (21)

Equation (21) is for a specific value of f . Since the immigrating island is randomly
selected, we take the expected value of (21) with respect to f to obtain

E(∆f |∆f > f − fmin) =
∫ fmax

fmin

∫ fmax

f−fmin

x

cxσ1

√
2π

exp
(−(x− µ1)2

2σ2
1

)
dxpdf ′(f) df

(22)
The function pdf ′(f) is the pdf of f , but scaled so that it has an area of one between
fmin and fmax. If f has a mean of f̄ and a variance of σ2, as discussed in the text
following (2), and if f is Gaussian, then (22) can be written as

E(∆f |∆f > f − fmin) =
∫ fmax

fmin

∫ fmax

f−fmin

x

cxcyσ1σ2π
exp

(−(x− µ1)2

2σ2
1

)
×

exp
(−(f − f̄)2

2σ2

)
dx df

cy =
1
2

[
erf
(
fmax − f̄
σ
√

2

)
− erf

(
fmin − f̄
σ
√

2

)]
(23)
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6 Simulation Results

SBBO was simulated on some benchmark functions in order to confirm the theoretical
results of the preceding sections. For each function, we ran 100 Monte Carlo SBBO
simulations with population sizes of 4, 20, and 100. We recorded the average num-
ber of generations that was required to improve the best population member. We also
recorded the average improvement of the best population member. We compared these
numbers with the expected number of generations before improvement as given in (11),
and the expected improvement amount as given in (23). Table 2 shows the results
for four-dimensional benchmarks, and Table 3 shows the results for ten-dimensional
benchmarks. More information about the benchmark functions, including their do-
mains, can be found in Bäck (1996), Aluffi-Pentini et al. (1985), Yao et al. (1999), Cai and
Wang (2006), Feng et al. (1998), and Li et al. (2008).

Note that (11) and (23) in Tables 2 and 3 are calculated on the basis of pdf’s, fmin,
fmax, and f̄ . These quantities are not available analytically, and so they must be approx-
imated on the basis of random populations. We therefore used 100 random populations
to approximate these quantities so that we could calculate (11) and (23).

We make the following observations about Tables 2 and 3.

1. For a given benchmark, the number of generations before improvement increases
as the population size increases. This confirms the intuitive result that the proba-
bility per generation of finding a better solution decreases as the population size
increases.

2. The expected number of generations before finding a better solution as calculated
from (11) matches reasonably well with the simulation results. The simulation
results can vary widely from run to run as shown by the large standard deviations,
but the theoretical results are well within one standard deviation from the mean of
the simulation results.

3. The expected improvement amount from (23) matches reasonably well with the
simulation results. Also, as shown qualitatively in Figure 5, we see from Tables 2
and 3 that for each benchmark the expected improvement decreases as the popu-
lation size increases.

6.1 Approximation Errors

Although we see good correlation between the theoretical and simulation results, there
are still noticeable differences between the two sets of results. This is due to the ap-
proximations that were used in obtaining (11) and (23). These approximations include
the following assumptions.

1. We assumed separability, as seen in (2). Many problems are separable, but many
others are not. For real-world problems we cannot always tell whether or not the
problem is separable. We made the assumption of separability in order to allow
tractability in our analysis. Table 4 gives the average approximation errors from
the previous section, and shows that (as expected) the approximation errors are
smaller for the separable cost functions than for the non-separable functions.

2. We made the assumption of identical pdf’s for each solution feature as seen
in (3). In other words, we assumed that each solution feature contributes an equal
amount to the fitness of the cost function.
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Benchmark Population Expected # gens. Expected improvement
Function Size Eq. (11) Simulation Eq. (23) Simulation
Ackley 4 3.7 3.9 ± 4.5 0.48 1.3 ± 2.0
(Nonseparable) 20 30 20 ± 25 0.85 1.0 ± 1.2

100 11 54 ± 59 1.2 0.90 ± 1.1
Griewank 4 6.2 6.1 ± 3.4 11 11 ± 8.5
(Nonseparable) 20 20 19 ± 21 9.8 4.9 ± 6.2

100 82 85 ± 144 0.0 1.6 ± 2.6
Penalty 1 4 7.4 5.1 ± 3.8 3.3e7 (3.2 ± 4.6)e7
(Nonseparable) 20 17 21 ± 21 3.4e6 (1.3 ± 3.0)e6

100 49 64 ± 83 2.6e5 (1.3 ± 5.4)e5
Penalty 2 4 6.6 6.4 ± 4.8 4.8e7 (3.8 ± 5.5)e7
(Nonseparable) 20 16 17 ± 15 1.7e7 (6.1 ± 9.2)e6

100 53 74 ± 66 2.4e6 (1.7 ± 4.9)e6
Rastrigin 4 3.6 3.9 ± 3.0 5.1 5.2 ±5.7
(Separable) 20 20.4 22 ± 29 4.3 4.1 ±3.8

100 66 97 ± 146 2.6 2.9 ± 3.0
Schwefel 2.21 4 3.6 2.6 ± 0.9 6.8 14.3 ± 9.7
(Nonseparable) 20 25 25 ± 29 10 7.7 ± 6.1

100 186 138 ± 165 0.0 3.6 ± 3.9
Schwefel 2.26 4 4.9 4.8± 3.9 156 148 ±112
(Separable) 20 9.8 12 ± 13 98 94 ± 68

100 43 43 ± 62 90 70 ± 48
Shubert 4 4.9 3.8 ± 2.7 1.2 1.3 ± 1.1
(Separable) 20 27 22 ± 29 0.69 0.52 ± 0.50

100 46 47 ± 51 0.93 0.24 ± 0.24
Sine Product 4 5.8 4.8 ± 3.4 0.15 0.13 ± 0.12
(Separable) 20 21 19 ± 17 0.097 0.055 ± 0.065

100 34 45 ± 46 0.064 0.012 ± 0.018
Sphere 4 4.0 3.9 ± 2.7 3.6 3.9 ±3.7
(Separable) 20 25 24± 21 2.1 1.9 ±2.0

100 36 45 ± 46 0.0 0.5 ± 1.0
Step 4 7.4 8.2 ± 6.0 1496 1522 ± 1241
(Separable) 20 17 17 ± 19 981 911 ± 890

100 78 58 ± 57 68 235 ± 291
Weierstrass 4 5.3 5.0 ± 5.4 0.59 0.68 ± 0.37
(Separable) 20 15 18 ± 16 0.48 0.45 ± 0.36

100 53 60 ± 75 0.36 0.31 ± 0.33

Table 2: Theoretical and simulation results for 4-dimensional benchmarks. The four
right-most columns show the expected number of generations until the first improve-
ment in the best problem solution, and the expected amount of that improvement. Sim-
ulation results are based on 100 Monte Carlo runs and are shown as mean ± one stan-
dard deviation.
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Benchmark Population Expected # gens. Expected improvement
Function Size Eq. (11) Simulation Eq. (23) Simulation
Ackley 4 13 13 ± 14 0.074 0.18 ± 0.21
(Nonseparable) 20 65 40 ± 44 0.0 0.36 ± 0.38

100 20 113 ± 113 3.6 0.38 ± 0.36
Griewank 4 11 11 ± 9.4 16 18 ± 14
(Nonseparable) 20 46 34 ± 35 11 9.6 ± 9.4

100 116 124 ± 122 10 6.1 ± 9.2
Penalty 1 4 13 15 ± 21 3.6e7 (3.4 ± 3.1)e7
(Nonseparable) 20 44 44 ± 42 1.6e7 (1.4 ± 2.0)e7

100 192 161 ± 144 4.1e6 (1.5 ± 3.5)e6
Penalty 2 4 13 15 ± 15 7.0e7 (7.5 ± 7.3)e7
(Nonseparable) 20 43 43 ± 36 2.2e7 (3.0 ± 3.6)e7

100 197 134 ± 132 4.2e6 (4.5 ± 9.9)e6
Rastrigin 4 8.6 9.9 ± 9.9 7.8 6.9 ± 6.3
(Separable) 20 38 38±46 4.8 5.5 ± 4.5

100 128 126 ±132 4.0 4.7 ± 4.8
Schwefel 2.21 4 13 16 ± 14 1.6 7.3 ± 5.7
(Nonseparable) 20 98 71 ± 65 3.3 5.1 ± 5.0

100 17 272 ± 233 4.9 3.6 ± 3.0
Schwefel 2.26 4 15 15 ± 16 147 145 ±116
(Separable) 20 45 49 ± 42 114 136 ± 112

100 109 102 ± 136 139 104 ± 88
Shubert 4 11 11 ± 12 2.8 3.3 ± 3.1
(Separable) 20 41 36 ± 39 1.4 1.4 ± 1.7

100 133 129 ± 108 1.1 0.92 ± 1.0
Sine Product 4 9 9 ± 8 0.19 0.21 ± 0.22
(Separable) 20 48 47 ± 44 0.15 0.15 ± 0.15

100 125 130 ± 114 0.14 0.056 ± 0.081
Sphere 4 11 11 ± 12 5.1 5.1 ± 4.7
(Separable) 20 38 40 ± 35 3.7 3.9 ± 4.2

100 140 150 ± 150 2.9 1.3 ± 1.7
Step 4 9.3 9.3 ± 10.6 2081 2076 ± 1802
(Separable) 20 76 62 ± 79 1280 1014 ± 1262

100 115 133 ± 122 392 948 ± 1095
Weierstrass 4 11 11 ± 11 0.48 0.58 ± 0.47
(Separable) 20 37 39 ± 44 0.33 0.48 ± 0.35

100 109 107 ± 127 0.58 0.37 ± 0.30

Table 3: Theoretical and simulation results for 10-dimensional benchmarks. The four
right-most columns show the expected number of generations until the first improve-
ment in the best problem solution, and the expected amount of that improvement. Sim-
ulation results are based on 100 Monte Carlo runs and are shown as mean ± one stan-
dard deviation.
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3. We made the assumption of normality in Section 5. That is, we assumed that a
uniformly distributed population of solutions gives a normally distributed fitness
function. Although this is only an approximation, it is a reasonable one in view of
the central limit theorem (Papoulis and Pillai, 2002), which says that a combination
of independent random variables tends toward a Gaussian random variable.

Non-separable functions Separable functions
Dimensions # Generations Improvement # Generations Improvement

4 26% 67% 14% 30%
10 29% 34% 5% 25%

Table 4: Average percent errors between the theoretical and simulation results in Ta-
bles 2 and 3. As expected, the errors are smaller for the separable functions than for the
non-separable functions.

In spite of these assumptions and approximations, the simulation and theoretical
results in the previous section are still close enough that the theory can be used to at
least qualitatively predict SBBO performance. However, future work should be pur-
sued to relax some of these assumptions.

For example, given a real-world problem with an unknown functional form, sep-
arability can be tested by evaluating the cost function at various values of the inde-
pendent variables. Furthermore, individual contributions of independent variables to
fitness, and correlations between independent variables, can be tested. Depending on
the results of these statistical tests, (2) can be modified for a specific problem. For ex-
ample, it could be rewritten as

f(xi) = α1f1(xi1) + α2f2(xi2) + ρ12f1(xi1)f2(xi2) (24)

where α1, α2, and ρ12 are determined from statistical tests. The analysis in Sections 3
and following could then be repeated for this form of the cost function.

The assumption of Gaussian cost functions could also be relaxed, either for other
general cases or for specific optimization problems. In the general case, the analysis in
Section 5 could be repeated for fitness distributions other than Gaussian. In case we
have a specific optimization problem, the fitness distribution could be numerically ob-
tained by generating a random population of solutions. We could then fit a weighted
sum of Gaussians to the empirical distribution (Alspach, 1974). The double integral on
the right side of (23) would then be replaced with a weighted sum of integrals. Kernels
other than Gaussian could also be used to approximate the cost function pdf (Simonoff,
1998), (Devroye and Lugosi, 2001), which would change (21) and the following equa-
tions.

In summary, the analysis in this paper has been conducted with specific assump-
tions (separability, identical pdf’s, and normality), but the more important point is that
our analysis provides a general framework that can be used even when the specific
assumptions in this paper do not hold. The work presented in this paper opens up a
wide range of future research possibilities.

6.2 Computational Effort

The computational effort required to obtain the theoretical results in this paper depends
on the level of accuracy required. The bulk of the theory computation is dominated by
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the numerical calculation of the triple integral in (10) and the double integral in (23). In
this paper we used the MATLAB R© integration functions “dblquad” and “triplequad.”
The computer time required for these functions strongly depends on their error toler-
ance parameters. A smaller error tolerance gives more accurate integration results but
requires more integrand evaluations. For the results in this paper we used an error
tolerance of 10−8 (the default MATLAB tolerance is 10−6). Ironically, as the population
size and the number of dimensions increase, the computational effort often decreases,
as shown in Table 5. This is because a larger population size and a higher dimensional-
ity results in a wider distribution of the cost function, that is, a larger standard deviation
for pdf(f ) in (10), and larger values for σ and σ1 in (23). This in turn results in smoother
integrands and faster convergence of the integration routines.

Population Dimension
Size 4 10

4 149 98
20 99 81

100 77 117

Table 5: Average MATLAB computational effort (seconds) on a 2.0 GHz PC for the cal-
culation of the triple integral of (10) and the double integral of (23) for each benchmark.
The computation time in the table is dominated by that of (10).

However, the reason for our theoretical analysis is not to reduce computational ef-
fort relative to simulation. In fact, computational effort cannot even be fairly compared
between theory and simulation. Theory only gives the expected number of genera-
tions to the first improvement, and the expected amount of improvement. Simulation,
though, typically runs for a specified number of generations, or until some type of con-
vergence is achieved.

The reason for our theoretical analysis is to propose new tools for the study of
BBO populations, and more generally, for populations of other types of EAs. Since the
characteristics of random population distributions depend on the specific problem, the
problem dimension, and the population size, the results of our analysis will also change
with these parameters. Our tools include analytical expressions that could therefore be
studied to learn how BBO behavior (and perhaps other EA behavior in future work)
depends on these parameters. In addition, changes to the BBO setup (elitism, mutation,
migration curve shape, etc.) could possibly be incorporated into our analysis in the
future to see how these changes affect BBO behavior.

These issues can all be studied by simulation also, but simulation results are diffi-
cult to generalize. For example, a simulation might tell us that a population size of n
provides a good performance/computation tradeoff for a particular problem. But anal-
ysis might tell us that a population size of n provides a good performance/computation
tradeoff for all problems with a prescribed level of separability and with a specific fit-
ness distribution.

6.3 Uniformity

Figures 6 and 7 show how the normalized fitness range of SBBO changes with the
number of generations. Theorem 3 predicted that SBBO would reach a uniform pop-
ulation, and Figures 6 and 7 confirm this. In agreement with intuition, the number of
generations before reaching uniformity is proportional to both the population size and
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the problem dimension. Interestingly, the fitness range increases at the beginning of
the simulations as fmin rapidly decreases. This is especially true for small populations
(compare with Figure 5). Later in the simulations, all of the individuals improve until
eventually uniformity is achieved.
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Figure 6: Normalized (fmax− fmin) averaged over 14 benchmarks and 100 simulations:
four-dimensional results.
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Figure 7: Normalized (fmax− fmin) averaged over 14 benchmarks and 100 simulations:
ten-dimensional results.

Note that a uniform population is not necessarily desirable. There is no guarantee
that a uniform population is optimal. It is only with mutation that we can be sure
of obtaining an optimal solution for a given optimization problem. In fact, this is a
conclusion that can be generally inferred from this paper. See Reeves and Rowe (2003)
for a discussion of this idea as applied to GAs.

In theory, the number of generations until SBBO reaches uniformity could be pre-
dicted by Theorem 3. This theorem gives us the ratio of the largest and smallest el-
ements of the Markov transition matrix, so when that ratio falls below some small
threshold after a certain number of generations, we can assume that the population
is uniform and no more improvement is possible. In practice, however, this is difficult
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to calculate because Theorem 3 assumes that ps is constant, whereas ps actually changes
with each generation. The use of the Markov theory in Section 4 to predict the number
of generations until uniformity is reached has therefore been left for future work.

7 Conclusion

A simplified BBO (SBBO) algorithm has been presented in this paper. SBBO has been
analyzed using probability theory in order to find three related quantities: the proba-
bility per generation that its population optimum improves, the state transition matrix
of the algorithm, and the expected amount of improvement in the population opti-
mum. These quantities are inexact in light of assumptions and approximations that
were made, but they match benchmark function simulation results reasonably well.

Further work could focus on reducing the approximation errors that were used
to obtain the theoretical results in this paper. In this paper we assumed separable fit-
ness functions, equal fitness contribution from each independent variable, and normal
distributions for the fitness and for the contribution of each parameter to total fitness.
The development in this paper could be generalized so that it matches other problem
characteristics, or so that those assumptions could be relaxed. Future work could also
include the extension of our analysis to other types of EAs.
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Appendix A

Proof of Theorem 1

From (16) we see that T is a sum of n matrices. If ps ∈ (0, 1), then each element in the
jth column of the jth matrix in the sum is greater than zero. So when these matrices
are added together, the result is a matrix that contains all nonzero elements.

Theorem 1 can also be proven with a more intuitive argument. Tij is the probability
that island j is replaced by island i as the most fit island after one migration. But the
probability that island j migrates to island i is nonzero, 1/(n − 1) to be exact, and the
probability that this migration results in island i replacing island j as the most fit island
is given by the nonzero quantity of (10).

By expanding the sum in (16) it can be seen that

T =
1

n− 1
(NIn + ps1n) (25)

where N = n− 1− nps, In is the n× n identity matrix, and 1n is the n× n matrix that
contains all ones. QED

Proof of Theorem 2

It can be seen from (25) that (17) holds for k = 1. Suppose that (17) holds for some value
of k. Then

T k+1 =
1

(n− 1)k+1


NkIn + ps

k∑

j=1

nk−jN j−1pk−js

(
k

j − 1

)
1n


 (NIn + ps1n)
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=
1

(n− 1)k+1


Nk+1In + ps

k∑

j=1

nk−jN jpk−js

(
k

j − 1

)
1n +Nkps1n+

p2
s

k∑

j=1

nk−j+1N j−1pk−js

(
k

j − 1

)
1n




=
1

(n− 1)k+1


Nk+1In + ps

k∑

j=1

nk−jN jpk−js

(
k

j − 1

)
1n+

ps

k+1∑

j=1

nk−j+1N j−1pk−j+1
s

(
k

j − 1

)
1n




=
1

(n− 1)k+1


Nk+1In + ps

k∑

j=1

nk−jN jpk−js

(
k

j − 1

)
1n+

ps

k+1∑

j=1

nk−jN jpk−js

(
k
j

)
1n + nkpk+1

s 1n




=
1

(n− 1)k+1


Nk+1In + ps

k∑

j=1

nk−jN jpk−js

[(
k

j − 1

)
+
(
k
j

)]
1n+

nkpk+1
s 1n

)
(26)

Recall from (Chuan-Chong and Khee-Meng, 1992, p. 69) that
(

k
j − 1

)
+
(
k
j

)
=
(
k + 1
j

)
(27)

Use this in (26) to obtain

T k+1 =
1

(n− 1)k+1


Nk+1In + ps

k∑

j=1

nk−jN jpk−js

(
k + 1
j

)
1n + nkpk+1

s 1n




=
1

(n− 1)k+1


Nk+1In + ps

k∑

j=0

nk−jN jpk−js

(
k + 1
j

)
1n




=
1

(n− 1)k+1


Nk+1In + ps

k+1∑

j=1

nk+1−jN j−1pk+1−j
s

(
k + 1
j − 1

)
1n


 (28)

which completes the proof of (17) by induction. QED

Proof of Theorem 3

Equation (17) shows that the diagonal elements of T k are all equal, and the off-diagonal
elements are all equal. The difference between a diagonal element and an off-diagonal
element is [(n− 1− nps)/(n− 1)]k. This difference approaches 0 as k →∞. Therefore,

lim
k→∞

T k = 1n/n (29)
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In other words, as the number of generations approaches infinity, each island in the
population has an equal probability of being the most fit member of the population.
This means that each island is equally fit. QED

Appendix B

Here we give a simple example to illustrate the theory of Sections 1–4. Suppose we have
a two-dimensional (s = 2) fitness function that is uniformly distributed between fmin =
1 and fmax = 2. Then y in (5) is uniformly distributed between ymin = 1/2− 1/

√
8 and

ymax = 1/2 + 1/
√

8, and z in (6) is uniformly distributed between zmin = f/2 − 1/
√

8
and zmax = f/2 + 1/

√
8. The magnitudes of the pdf’s of y and z are both equal to

√
2

between their minimum and maximum values. ps can be calculated from (10) as

ps = (7/3−
√

2)/4 ≈ 0.23 (30)

Now suppose that we have n = 3 members in our SBBO population. The transition
matrix of (14) is then equal to

Q =




0 0 0 (1− ps) (1− ps) ps 0 ps 0
0 0 0 ps 0 (1− ps) (1− ps) 0 ps
0 0 0 0 ps 0 ps (1− ps) (1− ps)

0.5 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0
0 0 0.5 0 0 0 0 0 0




(31)
Note that each column of Q sums up to one. The transition matrix of the first three
states can be calculated from the upper left block of (15) or (16) as

T =




(1− ps) ps/2 ps/2
ps/2 (1− ps) ps/2
ps/2 ps/2 (1− ps)


 (32)

where we again notice that each column of T sums up to one. We can easily verify that
limk→∞ T k = 1n/3, which confirms Theorem 3 and Equation (29).
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