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Preface

Immunological computation (also called artifi cial immune systems [AIS]) is a fi eld 
of study devoted to the development of computational models based on the princi-
ples of the biological immune system (BIS). It is an emerging area that explores and 
employs diff erent immunological mechanisms to solve computational problems.

Th e BIS is a complex, adaptive, highly distributive learning system with several 
mechanisms for defense against pathogenic organisms. It employs several alterna-
tive and complementary mechanisms for defense against foreign pathogens. Th e 
immune system learns, through adaptation, to distinguish between dangerous 
foreign antigens and the body’s own cells or molecules. Clearly, nature has been 
very eff ective in creating organisms that are capable of protecting themselves against 
a wide variety of pathogens such as bacteria, fungi, and parasites.

Th e powerful information-processing capabilities of the immune system, such as 
feature extraction, pattern recognition, learning, memory, and its distributive nature 
provide rich metaphors for its artifi cial counterpart. From 1985 to 2007 there has 
been an increased research interest in immunity-based techniques and their applica-
tions. Some of these models, however, are intended to describe the processes that 
occur in the BIS to have a better understanding of the dynamic behavior of immu-
nological processes and simulate BIS’s dynamic behavior in the presence of antigens/
pathogens. In contrast, immune-inspired models have been developed in an attempt 
to solve complex real-world problems such as anomaly detection, pattern recogni-
tion, data analysis (clustering), function optimization, and computer security.

Th is book is devoted to discussing diff erent immunological mechanisms and 
their relation to information processing and problem solving. Th is is the fi rst book 
that can be used as a textbook in the area of immunological computation; it pres-
ents a compendium of up-to-date work related to immunity-based techniques. 
Each chapter provides a summary, review questions, and exercises for students 
to practice; chapters also include some issues to research further. Th is book is 
also suitable as a reference text for graduate study in computational intelligence, 
bioinspired  computing, AIS, and other related areas. Immunological Computation: 
Th eory and Applications will be of professional interest to scientists, academics, and 
practitioners.
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xiv � Preface

Th is book consists of seven chapters. Chapter 1 summarizes the fundamental 
concepts of immunology necessary to understand the computational models based 
on immunology presented in subsequent chapters. Particularly, some components 
of the BIS such as B cells, T cells, and other lymphocytes are described. Other 
concepts such as antigen, immune response, and an outline of the global process by 
which antigen recognition is achieved are also summarized.

Chapter 2 presents some theoretical models of immune processes. Specifi cally, 
such theories attempt to explain adaptive immune response. For instance, the 
immune system’s ability to “remember” its encounters with antigens to achieve a 
faster response when the same antigen is confronted at a later time is being studied. 
Th us, immune networks and danger theory are discussed. In addition, the main 
computational aspects of the immune system are highlighted at the end of the 
chapter.

Chapter 3 presents general abstractions of some immune elements and processes 
usually used in most computational models. Accordingly, Chapter 3 reviews stan-
dard procedures, representations, and matching rules that are used in all immuno-
logical computation models.

Chapter 4 covers the details of one of the earliest and most well-known immune 
algorithms, which is based on the negative selection (NS) process that occurs in the 
thymus. Th e chapter presents change/anomaly detection techniques inspired by the 
T cell censoring and maturation process in the BIS. Th us, fi rst, the main process 
of NS that results in self–nonself discrimination is described. Th en, the important 
features of the artifi cial NS are presented, followed by diff erent variations of NS 
algorithms.

Chapter 5 concentrates on immune networks. At the beginning of this chapter, 
some immune models algorithms based on clonal selection, and which are very 
closely related to immune networks, are specifi ed. In the rest of the chapter, the 
most important continuous and discrete immune network models are detailed. In 
addition, at the end of this chapter, a generic immune network model is described.

In Chapter 6, some promising immune models, which have been recently pro-
posed, are briefl y discussed. Particularly, such models are based on danger theory, 
cytokine network models, and MHC-based models.

Finally, Chapter 7 highlights how AIS contribute to cross-linking solutions to 
diff erent real-world problems. It briefl y describes a wide variety of applications, 
which include computer security, fault detection and diagnosis, anomaly detection, 
robotics, and data mining among others.

At the end of this book, an indexed bibliography of up-to-date publica-
tions, events, and researchers in immunological computation and related fi elds is 
included.
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1

Chapter 1

Immunology Basics

In medicine, historically, the term “immunity” refers to the condition in which 
an organism can resist diseases, more specifi cally infectious diseases. However, a 
broader defi nition of immunity is the reaction to foreign substances (pathogens), 
which includes primary and secondary immune responses.

Mammals have developed a robust defense system called the immune system 
to deal with foreign and potentially dangerous pathogens. Th e immune system 
consists of a set of organs, cells, and molecules; and their coordinated response in 
the presence of a pathogen is known as the immune response. In a broader sense, the 
physiological function of the immune system is to defend an organism against all 
kinds of harmful substances such as fungi, bacteria, parasites, viruses, and other 
protozoa. However, noninfectious external substances can also generate immune 
responses (Abbas and Lichtman, 2005).

In general, antigens are capable of inducing an immune response as they are 
assumed to be harmful nonself invaders in the body. Th e ability of an antigen to 
induce an immune response probably depends on four main factors: foreignness, 
molecular size, chemical composition and heterogeneity, and susceptibility to anti-
gen processing and antigen presentation.

Th e biological immune system (BIS) has the ability to detect foreign substances, 
and to respond adequately. It is inherently distributed and fault-tolerant, and exhib-
its a complex behavior while interacting with all its constituents. One of the main 
capabilities of the immune system is to distinguish own body cells from foreign 
substances, which is called self/nonself discrimination. In general, the BIS is capable 
of recognizing the dangerous elements and deciding an appropriate response while 
tolerating self-molecules and ignoring many harmless substances.
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2 � Immunological Computation: Theory and Applications

1.1 Functional Elements of the Immune System
Th e immune system is a collection of organs, cells, and molecules responsible for deal-
ing with potentially harmful invaders; it also has other functionalities in the body.

1.1.1 Organs
Th e organs, which constitute the immune system, can be classifi ed into central 
lymphoid organs and peripheral lymphoid organs. Th e purpose of central lymphoid 
organs is to generate and assist mature immune cells (lymphocytes). Such organs 
include the bone marrow and the thymus. However, peripheral lymphoid organs 
facilitate the interaction between lymphocytes and antigens, as the antigen concen-
tration increases in these organs. Peripheral lymphoid organs include lymph nodes, 
the spleen, and mucosal and submucosal tissues of the alimentary and respiratory 
tracts. Figure 1.1 shows the components of the biological immune system.

1.1.1.1 Bone Marrow

In an abstract sense, naive immune cells are initially generated in the bone  marrow 
and are derived through a process called hematopoiesis. During hematopoiesis, 
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Figure 1.1 Functional Components of the immune system.
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Immunology Basics � 3

bone marrow–derived stem cells divide into either mature immune cells (to  perform 
immunological function) or precursors of cells that migrate out of the bone marrow 
to continue their maturation process elsewhere (thymus or germinal center (GC)). 
In addition to red blood cells and platelets, the bone marrow produces B cells, 
natural killer cells, granulocytes, and immature thymocytes.

1.1.1.2 Thymus

In simple terms, the function of the thymus is to produce mature T cells. Some 
immature immune cells (thymocytes), also known as prothymocytes, leave the 
bone marrow and migrate into the thymus. Th rough a maturation process, some-
times referred to as “thymic education,” T cells that are benefi cial to the immune 
system are kept, whereas those T cells that might cause a detrimental autoimmune 
response are eliminated; mature T cells are then released into the bloodstream for 
performing immunological functions.

1.1.1.3 Spleen

Th e spleen is an organ, which is made up of B cells, T cells, macrophages, dendritic 
cells, natural killer cells, and red blood cells. In addition to capturing foreign sub-
stances (pathogens) from the blood that passes through the spleen, migratory mac-
rophages and dendritic cells bring antigens to the spleen through the bloodstream. 
An immune response is initiated when macrophages or dendritic cells present the 
antigen to the appropriate B or T cells. Th is organ can be thought of as an immu-
nological “conference center.” In the spleen, B cells become activated and produce 
large amounts of antibodies in one of its factories, called the general center. Addi-
tionally, old red blood cells are destroyed in the spleen.

1.1.1.4 Lymph Node

Th e function of lymph nodes is to act as an immunologic fi lter for the fl uid known as 
lymph. Lymph nodes are found throughout the body and they are mostly composed 
of T cells, B cells, dendritic cells, and macrophages. Such nodes drain fl uid from most 
of the body tissues. Antigens are fi ltered out of the lymph (a fl uid that contains white 
blood cells) in the lymph nodes before returning the lymph to circulation throughout 
the lymphatic system. Similar to the spleen, macrophages and dendritic cells that 
capture antigens present these to T and B cells, thus initiating an immune response.

1.1.2 Immune Cells and Molecules
Th e immune system is composed of a variety of cells and molecules, which  interact 
among themselves to achieve appropriate immunological responses (biological defense). 
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4 � Immunological Computation: Theory and Applications

Some of those cells that take part in immune response are shown in a hierarchical 
diagram in Figure 1.2. Th e most relevant ones are described in some detail in the fol-
lowing sections.

1.1.2.1 Lymphocytes, T Lymphocytes, and B Lymphocytes

White blood cells, also called lymphocytes, are very important constituents of the 
immune system. Th ese cells are produced in the bone marrow, circulate in the 
blood and lymph system, and reside in various lymphoid organs to perform immu-
nological functions. Th e primary lymphoid organs provide sites where lymphocytes 
mature and become antigenically committed. B and T cells constitute the major 
population of lymphocytes.

T cells are specialized cells of the immune system, which are matured in the 
thymus. Th e thymus produces fi ve subpopulations of T cells as follows:

� Delayed hypersensitivity T cells, which are a type of T cells that produce cyto-
kines that direct the cellular-mediated immune response and phagocytosis.

� Helper T cells, which help the B cells to perform antigen recognition by 
releasing cytokines.

� Cytotoxic T cells, which kill infected self-cells and tumor cells. Th ey also kill 
foreign cells.

Cells of the immune system

Stem cell

Myeloid progenitor

MonocyteMast cell
Basophil

Eosinophil
NeutrophilNatural 

killer cell
B cell
progenitor

T cell
progenitor

Th cell

Tc cell

Memory 
cell

Plasma  
cell

Dendritic cell

Macrophage

Lymphoid stem cell

GranulocytesLymphocytes

Figure 1.2 Immune cells that contribute to immune response.
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� Memory T cells, which form a pool that will remember earlier immune 
responses.

� Suppressor T cells, which inhibit an immune response by suppressing helper 
T cells. As a result, specifi c antibodies will not be produced. Th ese serve to 
suppress false alarms.

As mentioned earlier, B cells are another important class of immune cells, which 
can recognize particular antigens. Th ere are billions of these cells circulating the 
body, constituting an eff ective and distributed anomaly detection and response 
system (Clancy, 1998; Kuby et al., 2000; Sompayrac, 2003). B cells are specialized 
white blood cells produced in the bone marrow and are responsible for producing 
and secreting Y-shaped antibodies, which bind to antigens (see Figure 1.3). Each B 
cell secretes multiple copies of one kind of antibody for antigen match. Activated B 
cells become memory cells or plasma cells; the latter actively secret antibodies.

1.1.2.2 Antibodies

Antibodies (Abs) are a particular kind of molecules, called immunoglobulins found 
in the blood and produced by mature B cells, also known as plasma cells.

An antibody contains four polypeptide chains: two identical light chains
and two identical heavy chains. Each chain comprises a variable region (V ) and a 
constant region (C) (see Figure 1.4). Both V regions combine to form two antigen-
binding sites, also known as antigen-binding regions (ABR).

1.1.2.3 Cytokines, Lymphokines, and Interleukins

Cytokines are a group of proteins and peptides that get secreted by some immune 
cells to infl uence the behavior of other cells. Th ese are chemical messengers allow-
ing intercellular communication by binding to the membrane of a target cell.

B cell

BCR or antibody

Figure 1.3 Illustration of B cell receptors—B cells have immunoglobulin recep-
tors on their surface, which bind to antigens.
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6 � Immunological Computation: Theory and Applications

Cytokines are mainly secreted by lymphocytes; however, they can also be pro-
duced by other immune and nonimmune cells, for example, those cells that secrete 
cytokines when they get damaged (Abbas and Lichtman, 2004; Baumann and 
Gauldie, 1994). Cytokines secreted by lymphocytes are called lymphokines and they 
have a strong infl uence over immune processes. Lymphokines produced by a lym-
phocyte to communicate with other lymphocytes are called interleukins.

1.1.2.4  Peptides, Major Histocompatibility Complex, 
and Antigen Presenting Cells

Th e term peptide refers to a short chain of amino acids, usually obtained by the 
fragmentation of an antigen, and presented to other cells of the immune system by 
antigen presenting cells (APC).

Antigen presentation refers to processing a suspicious foreign particle. Such a 
particle is broken up into peptides, and then such peptides are held on the surface 
of APC, where T cells can recognize them. Several types of cells may serve as APC, 
including macrophages, dendritic cells, and B cells. For instance, macrophages act 
as phagocytes which engulf foreign antigens, and then antigens become interna-
lized, processed, and expressed on the macrophages’ surface.

In contrast, major histocompatibility complex (MHC) proteins act as “sign posts”
that display peptides on the surface of a host cell. All MHC molecules receive 

(a) (b)

c c
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Light chain
Heavy chain

Antigen-binding 
site

Antigen-binding
site

Antigen

Epitope
(antigenic
determinant)c

v

v

SS

v

v
c

C C

Figure 1.4 Details of an antibody molecule—surface Ig contains four polypep-
tide chains: two identical light chains and two identical heavy chains. Each chain
comprises a variable region (V) and a constant region (C). Both V regions 
combine to form two antigen-binding sites. (a) Antibody molecule, (b) enlarged 
antigen-binding site.
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polypeptides from inside the cells they are a part of, and display them on the cell’s 
exterior surface for recognition by T cells.

MHC proteins can be classifi ed into three classes: MHC class I molecules are 
found on almost every nucleated cell of the body. Class I molecules present “endog-
enous” antigens to cytotoxic T cells. Endogenous antigens may be fragments of 
viral proteins or tumor proteins. Presentation of such antigens would indicate inter-
nal cellular alterations, which if not contained could spread throughout the body.

MHC class II molecules are found only on a few specialized cell types, includ-
ing macrophages, dendritic cells, activated T and B cells. Moreover, class II mol-
ecules present “exogenous” antigens to helper T cells. Exogenous antigens might 
be fragments of bacterial cells or viruses that are engulfed and processed by, for 
example, a macrophage and then presented to helper T cells.

MHC class III region encodes for other immune components such as comple-
ment components (e.g., C2, C4, or factor B) and some that encode cytokines (e.g., 
TNF-α).

1.1.2.5 Macrophages and Dendritic Cells

Macrophages are specialized cells, which engulf large particles such as bacteria, 
yeast, and dying cells by a process called phagocytosis. When a macrophage ingests 
a pathogen, the pathogen becomes trapped in a food vacuole, which then fuses with 
a lysosome. Enzymes and toxic oxygen compounds digest the invader within the 
lysosome.

Dendritic cells are immune cells that form part of the mammal immune sys-
tem. Th ese cells are present in small amounts in those tissues that are in contact 
with the external environment such as the skin (where they are often called Lang-
erhans cells) and the inner covering of nose, lungs, stomach, and intestines. In their 
immature state, they can also be found in blood. Once activated, they migrate to 
the lymphoid tissues, where they interact with T- and B cells to initiate and drive 
an immune response.

1.1.3 The Complement System
Th e complement system is a part of humoral immunity; when an infection occurs, 
this system complements the antibacterial activity of antibody. It consists of a set 
of plasma proteins; if one gets activated, it triggers a sequence of reactions on a 
pathogen’s surface that helps to destroy the pathogen and eliminate the infection. 
Th e three main consequences of the complement system are the recruitment of 
infl ammatory immune cells (phagocytes), opsonization of pathogens by antibod-
ies, and killing of pathogens by creating pores in the bacterial membrane leading 
to their death. So the complement activation helps to amplify the eff ects of the 
classical pathway.
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8 � Immunological Computation: Theory and Applications

1.2 Layers of the Immune System
Th e immune system can be envisioned as a multilayer system, each layer consisting 
of diff erent types of defense mechanisms (Kuby et al., 2000; Pathak and Palan, 
2005). Th e three main layers include the anatomic barrier, the innate immunity, 
and the adaptive immunity.

Biological defense mechanisms may be classifi ed into two categories: nonspe-
cifi c and specifi c defense mechanisms (see Figure 1.5). Nonspecifi c defense mecha-
nisms produce the same type of response independent of pathogen that enters the 
body. In contrast, specifi c defense mechanisms are based on recognizing particular 
pathogens. Each one of these defense mechanisms is explained in the following 
sections.

1.2.1 Anatomic Barrier
Th e fi rst layer of the biological defense is the anatomic barrier, composed of the 
skin and the surface of mucous membranes. Intact skin prevents the eruption of 
most pathogens and also inhibits most bacterial growth because of its low pH. In 
contrast, many pathogens enter the body by binding or penetrating through the 
mucous membranes; thus, the role of these membranes is to provide a number 
of nonspecifi c mechanisms that help prevent such invasions. For example, saliva, 
tears, and some mucous secretions, which contain antibacterial and antiviral sub-
stances (Kuby et al., 2000; Sompayrac, 2003), wash away potential invaders.

1.2.2 Innate Immunity
Innate immunity (Woods, 1991) refers to all defense mechanisms against foreign 
pathogens that individuals are born with. Innate immunity is mainly composed of 
the following mechanisms:

� Phagocytic barriers. Some specialized cells (like macrophages, neutrophils, 
and natural killer cells) are able to ingest foreign substances, including whole 

Nonspecific defense mechanisms 

First line of defense: 
Anatomic barrier

Second line of defense: 
Innate immunity 

Third line of defense: 
Adaptive immunity 

Skin
Mucous membranes 
Secretions of skin and mucous 
membranes  

Phagocytic white blood cells 
Antimicrobial proteins 
Inflammatory response 

Lymphocytes  
Antibodies

Specific defense 
mechanisms 

Figure 1.5 Biological defense mechanisms—nonspecifi c and specifi c defense 
mechanisms.
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pathogenic microorganisms. Th is ingestion has two purposes: to kill the anti-
gen and to present fragments of the invader’s proteins to other immune cells 
and molecules.

� Infl ammatory response. Activated macrophages produce cytokines (hormone-
like protein messengers), which induce the infl ammatory response character-
ized by vasodilation and rise in capillary permeability. Th ese changes allow a 
large number of circulating immune cells to be recruited to the site where an 
infection occurs.

1.2.3 Adaptive Immunity
Adaptive immunity (Kuby et al., 2000; Stanley, 2002), also called acquired or spe-
cifi c immunity, represents the part of the immune mechanism that is able to spe-
cifi cally recognize and selectively eliminate foreign microorganisms and molecules. 
Adaptive immunity produces two types of responses in the presence of pathogens: 
humoral immunity and cellular immunity. Th e humoral immunity is based on the 
synthesis of antibodies by B cells; however, in cellular immunity, T cells cause the 
destruction of microorganisms that carry invading antigens and those self-cells that 
have been infected.

� Humoral immunity. Humoral immunity is mediated by antibodies contained 
in body fl uids (known as humors). Th e humoral branch of the immune sys-
tem involves B cell/antigen interaction, and the subsequent proliferation and 
diff erentiation of B cells into antibody-secreting plasma cells. Antibodies 
function as eff ectors of the humoral response by binding to antigens and 
facilitating their elimination.

� Cellular immunity. Cellular immunity is cell-mediated; thus, eff ector T cells, 
generated in response to an antigen, are responsible for cell-mediated immu-
nity. Cytotoxic T lymphocytes (CTLs) participate in cell-mediated immune 
reactions by killing altered self-cells; they play an important role in killing 
virus-infected- and tumor cells. Cytokines secreted by TDH cells can medi-
ate cellular immunity, and activate various phagocytic cells, enabling them 
to kill microorganisms more eff ectively. Th is type of cell-mediated immune 
response is especially important in host defense against intracellular bacteria 
and protozoa (Abbas and Lichtman, 2004; Todd and Spickett, 2005).

1.3 Immune System Dynamics
Th e mechanisms that defi ne the immune system’s dynamic behavior are explained 
in this section.
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10 � Immunological Computation: Theory and Applications

1.3.1 Immune Recognition: Matching and Binding
Several immunological processes require an element (cell or molecule) of the immune 
system to recognize the presence of another element. T cell recognition is based 
on the complementarity between the binding region of the cell molecule and the 
receptor. For instance, antigens are detected when a molecular bond is established 
between the antigen and receptors on the surface of B cells (see Figure 1.6). Because 
of the large size and complexity of most antigens, only parts of the antigen, discrete 
sites called epitopes, get bound to B cell receptors. Multiple receptors bind to an 
antigen with varying affi  nity, that is, the more complementary the structures of the 
epitope and the B cell receptor are, the more likely for a stronger bond to occur.

Accordingly, binding or detection in the immune system is approximate to 
stimulate a primary response. Th is is probably because it is too diffi  cult to evolve 
receptor structures that are exact complementary to epitopes (antigen) never 
encountered before. If precise binding were required, the chances of a random lym-
phocyte binding to a random epitope would be small. An important consequence 
of approximate binding is that a single lymphocyte can detect a subset of epitopes, 
which means that fewer lymphocytes are needed to provide protection against a 
variety of possible pathogens. Th is feature makes the immune system effi  cient in 
terms of time and memory.

A lymphocyte has approximately 105 receptors on its surface; because all of 
these receptors have the same structure (i.e., a lymphocyte is monoclonal), a single 
lymphocyte can only bind to structurally related epitopes. Th ese structurally related 
epitopes defi ne the similarity subset that a lymphocyte can detect. Th e number of 
receptors that bind to pathogens determines the affi  nity of the lymphocyte toward 
a given pathogen. If a bond is very likely to occur, then many receptors may bind 
to pathogen epitopes, resulting in a high affi  nity for that pathogen. However, if a 
bond is unlikely to occur, then few receptors might bind to epitopes, and the lym-
phocyte will have low affi  nity for that pathogen. If the lymphocyte’s affi  nity for the 

Epitopes

B cell receptors (Ab) 

Antigen

Figure 1.6 Antigen recognition by B cells. Immune recognition is based on 
the complementarity between the binding region of a receptor and an antigen 
epitope.
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pathogen exceeds a certain affi  nity threshold, it sends signals to other immune cells, 
which results in immune response. As the affi  nity threshold increases, the number 
of epitope types that can activate the lymphocyte decreases, that is, the similarity 
subset becomes smaller.

1.3.2 Response to Antigens
Th e response to the presence of antigens is composed of two interlinked mecha-
nisms: innate immunity and adaptive immunity.

Th e fi rst one, innate immunity, is achieved by some specialized cells (like mac-
rophages, neutrophils, and natural killer cells) that are able to ingest and kill foreign 
substances, including whole pathogenic microorganisms. Activated macrophages 
produce cytokines, which induce the infl ammatory response, characterized by 
vasodilation and rise in capillary permeability. Th ese changes allow a large number 

of circulating immune cells to be recruited to the infected site. Innate immunity 
provides a fast response against antigens in contrast to adaptive immunity.

When pathogenic microorganisms (e.g., pathogen, virus, and parasites) invade 
an organism, TDH cells can recognize the infection and produce cytotoxic fac-
tor (CF). Th is tells the macrophage to track pathogens at that site. After fi nding 
pathogens, TDH cells produce migration inhibitory factor (MIF) for macrophages 
to refrain them from leaving the reaction site.

In contrast, adaptive (specifi c) immunity is divided into humoral immunity 
and cellular immunity. Humoral immunity amplifi es the innate immune response 
by producing antibodies. Th en, microorganisms are coated with antibodies or 
complement products so that they can easily be recognized (opsonization). Opso-
nization means “preparation for eating” and accordingly, extracellular material is 
then ingested by macrophages. Adaptive immunity requires the development of 
antibodies, which are specifi c to each antigen.

Humoral immune response has the following phases: a macrophage ingests an 
antigen and becomes an APC. Th is APC stimulates helper T cells, which then 
secrete lymphokines. Subsequently, when a B cell recognizes an antigen with the 
presence of lymphokines secreted by helper T cells, it diff erentiates into a plasma 
cell or a memory cell. Alternatively, before this diff erentiation, a B cell can go to a 
GC, where it suff ers somatic hypermutation to increase its affi  nity with the antigen. 
Plasma cells secrete antibodies, which bind to antigens. When an antigen is coated 
with antibody, it can be eliminated in several ways.

An explanation about cellular immune response follows. Some pathogens can 
escape antibody detection by infecting cells. Th en, infected self-cells stimulate cyto-
toxic T cells, which activate a killing response. T cells must interact with helper T 
cells (using lymphokines) to regulate the destruction of infected cells. Overall pro-
cesses of humoral and cell-mediated immune responses are illustrated in Figure 1.7.

When the immune system has been exposed to an antigen for a second time, it 
reacts quickly and rigorously (measured by the production of antibodies). Th is is called 
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12 � Immunological Computation: Theory and Applications

secondary immune response, in contrast to the fi rst encounter with the antigen, in 
which a slower response, called primary immune response, occurs (see Figure 1.8). 
Th is augmented antibody response is due to the existence of memory cells, which 
rapidly produce plasma cells on antigen stimulation. Th us, the immune system learns 
from encounters with antigens to improve its response in subsequent encounters, pro-
ducing a so-called immunological memory.

1.3.3 T Cell Maturation
T cells are produced by the bone marrow and are initially inert, that is, they are not 
capable of performing their intended functions. To become immune-competent, 
they have to go through a maturation process. In B cells, the maturation process 
occurs in the bone marrow itself. T cells, instead, have to migrate to the thymus 
where they mature.

During maturation, T cells express a unique ABR on their surface called a T 
cell receptor (TCR). Th e generation of various TCRs is controlled by a random 
recombination of diff erent gene segments. Unlike B cells, TCRs can only recog-
nize antigenic peptides that are presented by cell-membrane (MHC) molecules
(see Figure 1.9).

Humoral (antibody-mediated) 
Immune response
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directly activate
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Stimulates Stimulates

StimulatesStimulates
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Figure 1.7 Illustration of humoral and cellular immunity.
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Figure 1.8 Immunological memory—primary and secondary immune 
responses.

Antigen-presenting cell 
(an infected cell)
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(a macrophage)
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Antigen fragment Antigen fragment

T cell receptor T cell receptor

Cytotoxic T cell (TC) Helper T cell (TH)
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Figure 1.9 T cell recognition. T cells can only recognize antigen associated 
with MHC molecules on cell surfaces. (a) T cell recognition of class I MHC 
 molecules, (b) T cell recognition of class II MHC molecules. (From Coutinho,
A., Ann. of Immunol. (Inst. Pasteur.), 131D, 1980; Paul, W. E., Fundamental 
 Immunology. Raven Press, New York, 1993.)
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During T cell maturation, they go through a process of selection, which ensures 
that they are able to recognize nonself peptides presented by MHC molecules. Th is 
process has two main phases: positive selection and negative selection (Coutinho, 
1980; Paul, 1993).

• Positive selection. In positive selection, T cells are tested for recognition of 
MHC molecules expressed on the cortical epithelial cells. If a T cell fails to 
recognize any of the MHC molecules, it is discarded; otherwise, it is kept.

• Negative selection. Th e purpose of negative selection is to test for tolerant self-
cells. T cells that recognize the combination of MHC and self-peptides fail 
this test. Th is process can be seen as a fi ltering of a diversity of T cells, in which 
only those that do not recognize self-peptides are kept (Kappler et al., 1987).

When a T cell encounters antigens associated with an MHC molecule on a cell, 
such a T cell will proliferate and diff erentiate into memory T cells and various 
eff ector T cells. Cellular immunity is accomplished by these generated eff ector T 
cells. Th ere are diff erent types of T cells that interact in a complex way to kill 
altered self-cells (for instance, virus-infected cells) or to activate phagocytic cells 
(Abbas and Lichtman, 2005; Moss et al., 1992).

1.3.4 B Cell Proliferation: Affi nity Maturation
When receptors on the surface of a B cell bind to an antigen, this B cell gets stimu-
lated to undergo proliferation and diff erentiation. Also, when receptors on the sur-
face of a T cell bind to an antigen, such a T cell proliferates. Th is process is called 
clonal selection because antigen binding drives a particular cell for clonal expan-
sion. Th ereby, B cells that are generated become either memory cells or plasma cells. 
Memory cells ensure that subsequent infections by a pathogen receive a more rapid 
response, when plasma cells secrete large amounts of antigen-specifi c antibodies. 
Figure 1.10 illustrates B cell activation by specifi c antigens.

In early stages of the immune response, the affi  nity between antibodies and anti-
gens may be low. But as B cells undergo clonal selection, they clone and mutate repeti-
tively to improve the binding affi  nity between a particular antigen and a B cell type. 
Th is mutation process is called somatic hypermutation. Th en, these activated B cells 
mature into plasma cells, which in turn produce antibodies with a high affi  nity of the 
Ag/Ab bonds. Th e entire process by which new B cells with high affi  nity to an antigen 
are created (clonal selection + somatic hypermutation) is called affi  nity maturation.

Ultimately, affi  nity maturation will lead to the production of a pool of 
antibody-secreting plasma cells and a pool of memory cells. Plasma cells are 
matured B cells that form a large endoplasmic reticulum for massively synthesizing 
and secreting specifi c antibodies. In contrast, memory cells are B lymphocytes with 

the same specifi city receptors as those on the original activated B cell (Perelson and 
Oster, 1979).
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1.3.4.1 Germinal Center

Lymph nodes are small nodular aggregates of lymphocyte-rich tissue situated along 
lymphatic channels throughout the body. A lymph node consists of an outer cortex 
and an inner medulla; and lymph nodes contain aggregates of cells called follicles, 
and evolve a specialized area called germinal center (GC).

Antigen receptor Antigens

Variety of B cells

Cell proliferation

Clone of plasma cells Clone of memory cells

Antibodies secreted 
into circulation

Figure 1.10 Basic concepts of the clonal expansion.
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A GC is dynamically formed when antigen-activated B cells migrate into pri-
mary follicles of the peripheral lymphoid organs. However, the formation of GCs 
requires B cell activation and migration, T- and B cell interactions, and a network of 
follicular dendritic cells (FDC). A GC provides a specialized microenvironment to 
perform many critical immune functions such as a B cell’s somatic hypermutation, 
clonal expansion, affi  nity maturation, and diff erentiation as memory or plasma 
cells. A GC is a biological immune system’s functional module, which plays a major 
role in immune response (MacLennon, 1994; Todd and Spickett, 2005).

Figure 1.11 shows various zones where specifi c B- and T cell activities take place. 
Th e purpose of these activities is to generate a group of B cells that has the highest 
capability of recognizing a stimulating antigen (Liu et al., 1996; Th orbecke and 
Tsiagbe, 1998).

As shown in Figure 1.12, the number of centrocytes increases in the GC, two 
distinct regions begin to be distinguished:

 1. Th e dark zone, where proliferation centroblasts are packed closely together 
and where there are few follicular dendritic cells, it is formed in a few days 
within a primary lymphoid follicle.

 2. Th e light zone, in which centroblasts give rise to centrocytes that enter the 
follicular dendritic cells network, thereby, densely packed centrocytes make 
contact with the numerous cells of the follicular dendritic cell network.

Helper T cells that migrate to the primary follicle along with the activated B cells 
also undergo some clonal expansion and can be seen intermingled with centrocytes 
in the light zone. Centrocytes that fail to take up antigen from follicular dendtritic 
cells, die and are phagocytosed by local macrophages; also, cell death in the GC is 

T cell zone

Artery Vein

GC

B cell follicular
area

Figure 1.11 A diagram showing a section of a splenic lymph node.
(From Thorbecke, G. J. and V. K. Tsiagbe. The Biology of Germinal Centers in 
 Lymphoid Tissue, Springer, Berlin, 1998; Liu, Y. J., G. Grouard, O. de Bouteiller, 
and J. Banchereau. Int. Rev. Cytol., 166, 139–179, 1996.)
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seen to occur in the area of the light zone rich in follicular dendritic cells (Abbas 
and Lichtman, 2004; Hollowood and Goodlad, 1998). Th e exchange signals that 
induce further proliferation of the participating T and B cells, and diff erentiation 
of the latter results in producing either memory B cells or plasma cells (Hames and 
Glover, 1996; Harvard Medical School, 2005; Liu et al., 1996).

From an information-processing point of view, GCs can be viewed as produc-
tion factories where highly specialized immune cells and molecules are evolved 
through an elegant recruitment process.

1.3.5 Apoptosis and Lysis
Apoptosis refers to programed cell death (cell suicide), the body’s normal method of 
disposing damaged, unwanted, or unneeded cells. Lysis refers to the death of a cell 
by bursting, often by viral or osmotic mechanisms that compromise the integrity 
of the cellular membrane.

Plasma cell

Light zone

Dark zone

Memory cell

Helper T cell

Centrocyte

With processed antigen  
attempts to make-specific  
interaction with T cell

Newly formed 
centrocyte
attempts to bind  
antigen on FDC

Selected

Failed selection

Death by apoptosis
FDC

Centroblasts
Mutate Ig V region genes and  
proliferate to produce centrocytes

Figure 1.12 Different compartments of a GC such as light zone (selection 
chamber) and dark zone (for centroblasts).
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1.4 Circulatory Mechanism
As seen earlier, the immune system is an inherently distributed system that consists 
of a variety of specialized cells, enzymes, and other serum proteins, which are spread 
throughout the body. Immune cells, particularly, lymphocytes circulate constantly 
through the blood, lymph, lymphoid organs, and tissue spaces (Figure 1.13). Th ey 
visit primary and secondary lymphoid organs to interact with foreign antigens. Stud-
ies show that lymphocytes circulate through blood for 2–12 hours before appearing 
in a particular lymphoid organ (Kuby et al., 2000).
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Figure 1.13 Circulation of immune cells through the blood (white) and lymph 
vasculature (black) to major organs of lymphatic systems. (From Kuby, J. et al., 
Immunology, 3rd edition. W. H. Freeman, New York, 2000.)
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Th is feature allows a maximum number of antigenically committed lympho-
cytes to encounter and interact with antigens within a relatively short period of 
time to generate a specifi c immune response. Diff erent populations of lymphocytes 
circulate at primary and secondary lymphoid organs and are carefully controlled to 
ensure those appropriate B- and T-cell populations (naive, eff ector, and memory) 
are recruited into diff erent locations. Th is diff erential migration of lymphocyte 
subpopulations at diff erent locations of the body is called traffi  cking or homing.

As lymphocytes recirculate, they tend to home at various secondary lymphoid 
organs. Secondary lymphoid organs trap antigens and present them in pieces on the 
surface of APCs to be recognized by immune cells. Th ese organs provide specialized 
environments to support clonal expansion and diff erentiation of antigen-activated 
lymphocytes into eff ector and memory cells. Interestingly, memory cells exhibit 
selective homing to the type of tissue in which they fi rst encountered an antigen. 
Presumably, this ensures that a particular memory cell will return to the location 
where it is most likely to reencounter a subsequent antigenic challenge.

Experiments have shown that when a particular antigen is injected, antigen-
 specifi c T cells disappear from circulation within 48 hours. Th is suggests that 
specifi c T cells encounter an antigen in peripheral lymph organs and cease recir-
culating within such a time period. Th is process is closely regulated to guarantee 
steady-state levels of each blood cell type. Cell division and diff erentiation of each 
lineage is balanced by programed cell death known as apoptosis. Such a behavior 
provides increased sophistication without centralized control.

1.5 Regulatory Mechanisms
Immune response mechanisms are self-regulatory by nature. Th ere is no central organ 
that controls immune functions. Th e regulation of immune responses can be broadly 
divided into two branches: humoral immunity, mediated by B cells and their products 
and cellular immunity, mediated by T cells. Both branches follow a similar sequence 
of defense steps: proliferation, activation, induction, diff erentiation and secretion, 
attack, suppression, and memory; however, they do it in diff erent ways.

When an antigen enters the body, self-regulatory mechanisms determine (infl u-
enced by prior exposure to antigen) the branch of the immune system to be acti-
vated, the intensity of the response, and its duration. Specifi cally, regulation of both 
humoral and cellular immunity is conducted by a population of T cells referred 
to as either helper or suppressor cells, which either augment or suppress immune 
responses. T cells regulate immune responses by releasing soluble molecules, col-
lectively referred to as cytokines to activate B cells. Subsequently, B cells follow 
one of two pathways: they either diff erentiate into plasma cells, which are basically 
antibody-secreting factories, or they give rise to GCs, specialized structures within 
lymphoid organs, where they undergo somatic mutation (a process called affi  nity 
maturation).
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Th e importance of self-regulatory mechanisms is evident in clonal expansion (in 
humoral immunity) due to the presence of an antigen; this is also observed when 
specifi c immune cells are reduced after the clearance of antigens. Such a control of 
antibody production is thought of as an idiotypic regulatory network (Jerne, 1974).

Moreover, B cell clonal expansion and proliferation are closely regulated to pre-
vent uncontrolled immune response. Th is second signal helps to ensure tolerance 
and discrimination between dangerous and harmless invaders. So the purpose of this 
accompanying signal in identifying nonself is to minimize false alarms and to gene-
rate a decisive response in case of a real danger. Figure 1.14 depicts defense strategies 
(outer layers), involvement of immune cells and molecules (inner circle), and their 
interconnecting mechanisms in the biological defense system (Whitton, 1998).

1.6 Signaling and Message-Passing Mechanism
In the immune system, signal diff usion and dialogue are noticeable as two kinds of 
communication schemes. Th ey play a major role in sharing and passing information 
during the immune response. In immune diff usion, the message is passed from one 
immunocomponent to others without any feedback. Another scheme is called immune 
dialogue, where the immune system components continuously exchange molecular 
signals with their counterparts. Immune sensitivity is determined by context, where 
an immune cell and a pathogen play on one another. Th e body is under constant 
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Figure 1.14 Overall immunity (coverage) with different defense mechanisms. 
(From Whitton, J. L., Curr. Top. Microbiol. Immunol., 232, 1–14, 1998.)
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 challenge from a continuum of hostile behaviors and needs to respond judiciously 
through a coordinated decision process (Tew et al., 1997).

Th e protein interferon (IFN) is produced by cells when they are invaded by 
viruses; it is released into the bloodstream or intercellular fl uid to induce healthy 
cells to manufacture an enzyme that counters the infection. Figure 1.15 illustrates 
the release of IFN by infected cells during virus infection. Since the receptor for 
IFN has a common structure among diff erent host cells, the IFN that is produced 
by a virus-infected cell can bind to a receptor of the neighboring cell and enters it. 
IFN induces the production of IFN-regulated proteins within the neighboring cell; 
such proteins inhibit the virus replication inside the cell.

Th e following is a list of reasons why signaling is important in biological defense:

� It allows a cell to move a signal from outside to inside.
� Signaling results in changes to the cell, allowing it to appropriately respond 

to a stimulus.
� It allows signaling and message passing among various functional components.
� It allows response to external stimuli such as cytokines, growth factors, hor-

mones, tissue repair or remodeling, and stress.
� Tissue-specifi c regulation is the hallmark of virus-driven cytotoxic T cells 

expansion in immune response.
� Signaling regulates diff erentiation and development, and immune response.

Additionally, cells communicate with surroundings through their surface receptors 
that recognize extracellular signal and convert into intracellular signal, which then 

Figure 1.15 Illustration of IFN signaling mechanism.
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transmit toward the nucleus to develop proper response. Th is cellular communica-
tion process results in

• Surface marker changes
• Changes in cellular distribution
• Environmental changes
• Destruction of foreign invaders
• Destruction of anomalous cells

1.7 Summary
Th is chapter is intended for the readers having no or little knowledge of the BIS, and 
discusses topics that are available in basic immunology textbooks. However, this 
chapter neither covers latest fi ndings nor provides enough information for immu-
nologists as this book is primarily intended for researchers interested in abstract 
biological concepts and developing artifacts.

Th is chapter summarizes the basic elements of the BIS. Particularly, roles of 
various organs, immune cells (such as B cells, T cells, and other lymphocytes), and 
the overall process by which an antigen recognition occurs are described. Th us, the 
purpose of this chapter is to provide an abstract view of the biological immune sys-
tem and its important mechanism that inspired to develop computational models.

1.8 Review Questions
 1. Write short notes on antigen, antibody, innate immunity, and adaptive 

immunity.
 2. What is the role of B cells in immune response?
 3. What is the role of T cells in immune response?
 4. What is the role of helper T cells?
 5. What are the main diff erences between humoral immunity and cell- mediated 

immunity?
 6. What is the main distinction between self/nonself recognition?
 7. What is the role of APCs in immune response?
 8. Explain the statement “antigen recognition is approximate.”
 9. How is the circulatory system involved in immune response?
 10. What is the purpose of immune memory?
 11. What is the relationship between antibodies and B cells?
 12. Explain the terms clonal selection, somatic hypermutation, and affi  nity 

maturation.
 13. Describe with a diagram the clonal expansion process.
 14. Which are the immune system’s features that make it inherently distributed 

and fault-tolerant?
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 15. Compare the roles of B- and T cells in immune response.
 16. What are the two selection processes that are used in T cell maturation?
 17. What is traffi  cking (or homing)?
 18. What is a GC? What is the role of a GC in the immune system?
 19. Under what conditions does a GC start forming in a lymph node?
 20. What happens when the number of centrocycles increases in the GC? Defi ne.
 21. Which are the two stages involved in the centrocycle? Explain briefl y.
 22. What happens when a high rate of mutation couples with clonal competition? 

Discuss its eff ects.
 23. Match immune concepts in column A with their corresponding concepts in 

column B.

Immune System Structure

Column A Column B

Bone marrow Direct the cellular-mediated immune response and 
phagocytosis

Hematopoiesis Its function is to produce mature T cells
Thymus Formation of blood cells process
Spleen Specialized cells, which engulf large particles by a 

process called phagocytosis
Lymph nodes Organs where all the immune system’s cells are initially 

derived from
Cytokines It consists of an outer cortex and an inner medulla
Helper T cells Antigen-binding proteins present on a B cell membrane
Antibodies Aid B cells to perform antigen recognition by releasing 

cytokines
MHC proteins It is an immunologic fi lter of the blood
Macrophages They act as “sign posts” that display peptides on the 

surface of a host cell
Complement system System of molecules that leads a sequence of events 

on the surface of a pathogen that helps destroy it

 24. Complete the missing words (fi ll in the blanks) in the following diagram.

∗

∗

∗
∗
∗

∗
∗
∗
∗

Biological defense system

defense mechanism defense mechanism

First line defense: Third line defense:Second line defense:
immunity

Skin

Skin's secretion
Mucous membranes

Antimicrobial proteins
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 25. What are the roles of MHC molecules in recognizing antigenic peptides?
 26. Which are the mechanisms that defi ne the immune system’s dynamical 

behavior?
 27. Why does the immune system react in a stronger and faster fashion when it 

is exposed to an antigen for a second time?
 28. Explain the functional diff erences between ABRs in T and B cells during 

maturation.
 29. Explain positive and negative selection during T cell maturation.
 30. Order the following list of processes with respect to their temporal occur-

rence in B cell activation. Explain each process.

• An antibody on the surface of a B cell binds to an antigen. 
 
 
• Clonal selection 

• Antibodies become either memory cells or plasma cells 
 
 
• Somatic hypermutation  

• Affi  nity maturation  

• Production of a pool of antibody-secreting plasma cells and memory cells
 
 

 31. How is the circulatory system involved in immune response?
 32. Do humoral and cellular immunity follow a similar sequence of defense 

steps?
 33. Explain the diff erence between immune diff usion and immune dialogue.
 34. Why is signaling important in biological defense?
 35. Draw a diagram showing diff erent strategies and mechanisms providing over-

all immune defense (coverage).
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Chapter 2

Theoretical Models 
of Immune Processes

A feature of the adaptive immune response is its ability to “remember” its encoun-
ters with antigens to achieve a faster response when the same antigen is confronted 
at a later time. However, the mechanisms involved in this behavior are not fully 
understood. Th ere are several theories in the literature about how this behavior is 
achieved (Burnet, 1959; Celada and Seiden, 1996; Matzinger, 2002; Oprea and 
Perelson, 1997; Varela and Stewart, 1990).

One hypothesis states that B lymphocytes that have reacted to an antigen simply 
remain in a dormant state for years, waiting for a recurrence of the same antigen. 
It is known that B lymphocytes can remain in a memory state for periods of weeks 
or possibly months; however, it is not known if they can survive for years without 
being stimulated. Some immunologists think that a kind of internal restimulation 
keep this immune memory preserved for a long time. Another hypothesis suggests 
that the antigen itself (or some partially degraded form) is sequestered in lymph 
nodes and other organs and stimulate the immune system through periodical expo-
sure to the antigen, thereby reinforcing the memory.

In the following sections, some works intended to model various immunologi-
cal principles and mechanisms are described to better understand the biological 
processes and simulate its dynamic behavior during the immune response.

2.1 Clonal Selection Theory
Burnet (1959) proposed “clonal selection theory” to explain the proliferation of 
immune cells in the presence of an antigen. Th is theory states that an  antigen 
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selects (or induces) a particular lymphocyte (to produce clones) from a large 
number of lymphocytes. Given the large variety of lymphocyte receptors in the 
expressed repertoire, whether the receptors on any particular lymphocyte detects 
the antigen can be viewed as a random event. On activation, however, this lym-
phocyte proliferates through the process called cloning. Figure 2.1 illustrates 
clonal expansion and selection of B lymphocytes in the presence of an antigen 
(Hightower, 1996).

Th e main properties of clonal selection are (Burnet, 1976; Stewart et al., 1989)

� Elimination of self-reacting clones
�  Proliferation and diff erentiation of mature lymphocytes through antigenic 

simulation

Antigen

B cell

Antibody
Antigen

B cell stimulated by
antigen, proliferates

Clone
stimulated
by antigenB cell clones produce

same or similar
antibodies

Figure 2.1 Clonal expansion (and selection) of B cells in the presence of an 
antigen.

CRC_AU6545_C002.indd   28CRC_AU6545_C002.indd   28 7/5/2008   3:03:22 PM7/5/2008   3:03:22 PM



Theoretical Models of Immune Processes � 29

�  Restriction of one pattern to one diff erentiated cell and retention of this pat-
tern by clonal descendants

�  Generation of new random genetic changes subsequently expressed as diverse 
antibody patterns by a form of accelerated somatic mutation

Other researchers also investigated the clonal selection to understand how cer-
tain types of B and T lymphocytes are selected for destruction of specifi c antigens 
invading our body.

2.2 Immune Network Theory
Th e “immune network (IN) theory” was developed by Niels K. Jerne (Jerne, 1974) in 
an attempt to explain how the immune memory gets formed. He hypothesized that 
the immune system acts as a regulated network of antibodies and anti- antibodies, 
called an “idiotypic network,” which recognizes one another (even in the absence 
of antigens) rather than being a set of isolated clones (antibodies of the same speci-
fi city) that respond only when stimulated by antigens. According to Jerne, B and
T cells form a complex circuitry of interacting cells that functions either to stimulate 
or to suppress the immune activation. Although there is evidence of the existence 
of the idiotypic network, its physiological relevance has been much debated. More-
over, the complexity of idiotypic networks has made it diffi  cult to predict whether 
administration of anti-idiotype antibodies or T cells bearing anti-idiotype receptors 
up- or down-regulate immune responsiveness (Kuby et al., 2000).

Mature B lymphocytes carry highly specifi c receptors (antibodies) on their sur-
face. Th ese receptors are stimulated by complementary structures and such stimu-
lation causes proliferation of particular antibodies (Figure 2.2). Th e portion on an 
antigen’s surface that an antibody is able to recognize is called an epitope, and the 
corresponding part of an antibody used to recognize antigens is called a paratope; 
an antibody’s epitope is called an idiotype (see Figure 2.3).

According to Jerne’s theory, a sequence of events forms an idiotypic network as fol-
lows. First, an antigen is recognized by B cells, which secrete antibodies Ab1. Ab1 anti-
bodies themselves are also recognized by “anti-idiotypic” B cells that secrete antibodies 
Ab2. Th us, further interactions can lead to Ab3 antibodies that recognize Ab2 and so 
on. In an idiotypic network, there is no intrinsic diff erence between an antigen and 
antibody; and any node of the network can bind to and be bound to by any other.

Several IN models have been proposed, which can be classifi ed into three genera-
tions, where each version of IN incorporates additional features of immune processes.

2.2.1 First-Generation Immune Networks
First generation IN (FGIN) model tries to predict the number of diff erent types of 
antibodies (clone) present in the blood. Th e increase or decrease of the  number of 
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clones depends on its interactions with idiotypically related clones and the antigen; 
thereby, the increased number of each clone determines the strength of immune 
response. In this aspect, FGIN theory competes with clonal selection theory.

FGIN models concentrate on the interactions among free antibody molecules, 
giving little or no attention to the biology of the cells that produced such antibod-
ies; thus, the internal state of B cells and its interaction with other B and T cells is 
not considered (Coutinho, 1989).

Epitope 1

Epitope 2

Antigen

Figure 2.2 The portion of an antigen that is recognized by an antibody is 
called an epitope, and an antigen may have multiple epitopes.

Paratope

Idiotype

Antibody

2
3

Ag

Activation

Positive response

Suppression

Negative response

Ab1

Figure 2.3 Antibodies are recognized by anti-antibodies by matching their 
idiotopes to another antibody’s paratopes.
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2.2.2 Second-Generation Immune Networks
Th e second-generation IN (SGIN) refers to a specifi c class of networks that tries to 
model natural autonomous behavior of the immune system (Varela and Coutinho, 
1991). Experimental and theoretical studies on naturally activated T and B cells (cells 
activated without the presence of antigens) shows that natural serum antibodies and 
activated B cells infl uence other (activated B and T) cells, whereas resting B and
T cells do not have such eff ects. Th e SGIN model postulates that interactions of B 
cells in the network are determined by their affi  nity to preexisting soluble antibodies 
and self-antigens and have distinct functional consequences, according to a bell-
shaped dose response curve, which empirically determined it (Varela and Coutinho, 
1991). Th us, both very low and very high levels of interactions lead to cell death, 
whereas intermediate levels of interaction (for increased binding strength) result in

 1. Cell survival in the resting state
 2. Cell minimal proliferation
 3. Cell proliferation with little or no antibody secretion

Th erefore, SGINs try to model the immune system’s autonomous behavior, that is, 
its behavior in the absence of antigens. Also, these models involve the notion of net-
work “dynamics” and metadynamics, which include the rate of production of new 
B cells, turnover rates in the resting lymphocyte compartment, and the rates of their 
activation and diff erentiation to antibody-secreting plasma cells.

Th e main contribution of SGIN model is that it brought two views of the immune 
system into compatibility, clonal selection and network theories (Coutinho, 1989). 
Although the clonal selection theory tries to explain the specifi city and amplifi ca-
tion of immune responses to external antigens, this IN theory looks for explana-
tions to the way “preimmune” repertoires are selected, how natural lymphocytes are 
activated, self-tolerance, and the biology of autoreactive cells.

To summarize, the aspects of SGIN models are as follows:

• INs are made up of B lymphocyte clones, which are connected through 
 idiotypic interactions. Interactions of these INs with T lymphocytes are 
neglected or not considered.

• Th e strength of activation and population dynamics of each lymphocyte clone 
is controlled by the strength of receptor ligation in soluble Ig molecules.

• Soluble Ig molecules are the main mediators of idiotypic interactions because 
they can rapidly diff use through the body fl uids, in a much higher proportion 
than those present as membrane Ig receptors in the lymphocytes.

Other versions of SGIN models (De Boer, 1989; Neumann, 1992; Wiesbuch et al., 
1990) do not distinguish between free and cell membrane–bound immunoglobu-
lins; however, it has shown that such assumption does not alter the main conclu-
sions of SGIN models.
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2.2.3 Third-Generation Immune Networks
As a result of criticizing SGIN models and questioning the assumption that T cell 
help is never a limiting factor for B-lymphocyte proliferation or antibody produc-
tion, Stewart and Carneiro (1999) proposed an extended version of the model (pro-
posed by Varela et al., 1988), which is known as third generation INs (TGIN).

TGINs introduced the concepts of the central immune system (CIS) and periph-
eral immune system (PIS). Th e CIS represents a group of activated, autoreactive, and 
interconnected lymphocytes, which represents 10–15 percent of the total number of 
lymphocytes. Th e PIS contains the remaining 85–90 percent of all type of lympho-
cytes that are encountered in lymphoid organs (Stewart and Carnerio, 1999).

Th e CIS is composed of a network of clones, which exhibits autonomous activ-
ity and integrates antigens into its ongoing regulatory dynamics. However, the PIS 
is composed of lymphocyte clones, which remain in a resting state unless they are 
specifi cally activated by an antigen resulting in immune response. Th us, the PIS 
only represents potential network targets for eventual recruitment through activa-
tion, in case this network space evolves to include them. Th erefore, PIS takes care of 
reactions with the immunizing antigens. In contrast, CIS deals with body antigens. 
It is also assumed that resting lymphocytes are disconnected from regulatory infl u-
ence from the network, thus providing them ideal conditions to respond to external 
antigens. Th erefore, conventional antigens provide specifi c stimulation according 
to Burnet’s clonal selection theory (Burnet, 1959).

TGIN models incorporate B and T cell cooperation to accommodate both 
structural and functional properties of CIS and PIS in a coherent way, and also 
explain how the CIS and PIS distinction can emerge from the self-organizing 
properties of the network. To defi ne the frontier between CIS and PIS, the TGIN 
model (Stewart and Carneiro, 1999) assumed that any given lymphocyte clone 
belongs either to the CIS or to the PIS at any given time; they showed distinc-
tion between the structure and function and exhibit cooperation between B and
T lymphocytes. New antibodies produced through antigenic experiences enter 
the network and alter its organization, thus allowing the formation of a “sys-
temic memory.” However, expanded clones fi nd their internal legends in the net-
work structure for their long-term preservation, even in the absence of external 
antigens.

In TGINs, the B cell activation is considered to occur in two steps:

• Induction. Th e activation of lymphocytes based on the degree of stimula-
tion on a receptor by cross-linking agents such as anti-idiotypic circulating 
antibodies or self-antigens. In this model, the induction is described by a 
characteristic lognormal function, as in SGINs.

• Cooperation between an induced B cell and activated T cell. Th is cooperation 
leads to the “full” activation of the B cell. Th us, a function that describes 
the competition of B cells to get help from T cells is defi ned as a function of 
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the B or T cell affi  nities over the total set of B or T cells. An induced B cell 
cooperates with an activated T cell if it engages its T cell receptor by either 
acting as an antigen-presenting cell (APC) or anti-antibody (anti-idiotypic 
interaction).

Dynamic behavior of T cell clones is similar to that of B cell clones; however,
T cell clones are only driven by antigenic peptides on APCs. Specifi c peptides from 
antibodies expressed and produced by B lymphocytes are not considered due to 
their low individual concentration and frequency. Th ereby, a bounded dynamics 
of T cell clones is attained if and only if their receptors are considered a part of the 
idiotypic network.

2.3 Multiepitope Immune Network
Th is approach tried to map the IN theory into a parallel distributed processing 
(PDP) (Vertosick and Kelly, 1989). Th ey argued that B lymphocytes (or lympho-
cyte clones) can act as the units that compose a PDP network, that is,

• Receive inputs (from APCs, antigens, and cytokines)
• Generate output (antibody)
• Remember antigenic specifi city
• Convert inputs (antigenic stimulation) into output (antibody secretion) in a 

quantitative fashion

Th e PDP IN architecture can be designed to be multilayered, where lymphocytes, 
plasma cells, and the lymphocytes that produce anti-idiotypic antibodies are con-
sidered as input, output, and hidden units, respectively (Figure 2.4).

Th e connection weights between two lymphocytes can be defi ned in terms of 
its affi  nities toward one another. Th e learning behavior of the immune system uses 
an unsupervised, local (Hebbian) learning rule. Th is model also includes cytokines, 
which are responsible for the clonal expansion of the population and subsequent 
alteration of the connection strengths of a PDP composed of clonal units. Th e 
simulated annealing technique is used to fi nd the lowest energy confi guration of 
the PDP network, by altering the shape of the activation functions of the units. 
Using this model, complex antigen patterns (consisting of multiple epitopes) can be 
learned and stored within the network.

2.4 Modeling the Germinal Center
Germinal centers (GCs) are the sites (in the follicles of the secondary lymphoid 
nodes) where antigen-stimulated B cells complete their affi  nity maturation  process 
(Berek et al., 1991; Casamayor-Palleja et al., 1997; MacLennan). Particularly, GC 
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performs many critical immunological functions by providing a specialized micro-
environment for proliferation of B cells through clonal expansion and somatic 
hypermutations (Celada and Seiden, 1996; Jacob et al., 1991; Kepler and Perelson, 
1993; Leanderson et al., 1986; Liu et al., 1989), giving rise to plasma and memory 
B cells. Details of GC formation are covered in Chapter 1.

Th e GC initially contains only dividing centroblasts (Camacho et al., 1998), 
but shortly evolves into dark and light zones (Liu et al., 1989). Figure 2.5 shows the 
GC mechanisms, where the dark and light zones are involved in clonal expansion 
and clonal selection, respectively.

Th ere are several mathematical models (diff erential equations) developed to 
simulate the GC dynamics (Kesmir and Boer, 1999). For example, the OP model 
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Figure 2.4 The immune system as a neural network. (From Vertosick, F. T. and 
R. H. Kelly, J. Theoretical Biol., 150, 225–237, 1991; Vertosick, F. T., and R. H. 
Kelly, Immunology, 66, 1–7, 1989)
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(Oprea and Perelson, 1997) assumed that the dark zone of GC is mainly for 
 proliferation of centroblasts and no selection of centrocytes occurs at this stage. 
When the number of centroblasts reaches a certain number, proliferation stops 
and selection of centrocytes begins. Th e selected centrocytes are used for anti-
gen (Ag) binding with the follicular dendritic cell (FDC) network and thus form
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Figure 2.5 Illustration of different processes in a GC.
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Ag complexes. Th e involvement of T cells in the GC dynamics is not included in this 
model. Th e set of ordinary diff erential equations used in this model are as follows:
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where S is the number of free FDC sites, S0 the total initial number of FDC sites, 
φ(t) = t n/k n + t n, k = 6, n = 40, i the affi  nity class, Bi the centroblasts, Ci the 
centrocytes, [Ci − S] the complex of centrocytes with FDC, Ri the rescued centro-
cytes, Mi the memory, mR the migration rate of the respective cells, pcb the constant 
centroblast proliferation rate, dB the death rate, LB the centroblasts that are not in 
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the affi  nity class, αLB the rate at which LB die, kr the reverse rate constant, Ri the 
rescued centrocytes that migrate out of GC with rate mRRi, and η a fraction that 
enters the memory compartment.

Although the Kesmir–Boer model (Kesmir and Boer, 1999) includes the T cell 
dynamics, it contradicts with the OP model because it allows proliferation and 
selection almost simultaneously and allows the proliferation of centrocyte complex 
(C* ) and T cells after centrocyte selection. Th e set of diff erential equations used in 
Kesmir–Boer model is as follows:
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where CA = (C.A)/(S + A), S is a saturation constant, P the C * recycle probability, 
µ the C disappear rate, ρ the B cell division rate, δB the B cell death rate, δT the T cell 
death rate, d the B to C phenotype conversion rate, z the A decay rate, u the C to C * 
uptake rate, σ the initial T infl ux, and p the C * proliferation rate.

Another recent model called the Dasgupta, Kozma, and Pramanik (DKP) model 
modifi ed the Kesmir–Boer model and simulated the GC dynamic with a cascade of 
three Hopfi eld neural networks. It assumed that the migrated centroblasts are selected 
by Ag and T cells for forming a complex within the FDC network. Th is complex may 
dissociate into memory or plasma cells and a centrocyte complex (C * ) that feedback 
to the proliferation chamber for further production of high-affi  nity centroblasts.
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In DKP GC simulation model, there are three basic chambers (proliferation, 
selection, and memory), each providing the excitatory and inhibitory (optional) layers 
to allow nontrivial oscillatory dynamics in each GC subunit (Pramanik et al., 2002).

2.5 Danger Theory
Th ere has been a long-standing debate among immunologists on the validity of 
the classical self/nonself (SNS) discrimination theory (Bretscher and Cohn, 1970; 
 Hoff mann, 1975) and its importance in the detection and recognition processes. 
Some alternative views have been proposed, such as the danger theory (DT) 
( Matzinger, 1994), integrity model (Dembic, 2000), and the self-assertion model 
(Varela and Coutinho, 1991).

Th e self-assertion model considers the danger as a result of the interaction 
between external stimulus and current state of the immune system; also, the 
same stimulus can produce diff erent responses at diff erent times (Bersini, 2002). 
According to this approach, the reaction to an antigen will depend on the system’s 
evolution, which also includes the history of all previous external stimuli; thereby, 
it is assumed that an organism is in a sate of homeostasis—some metabolic equilib-
rium actively maintained by complex biological mechanisms that operate through 
autonomous behavior to counterbalance disrupting changes. Th is approach sug-
gests that more attention should be devoted to self-regulation mechanisms, which 
allow the immune system to maintain a viable organization, despite the presence 
of numerous diff erent dynamic elements with complex behaviors (Varela and 
Coutinho, 1991).

Th e DT (Matzinger, 1994), which is claimed to be a more realistic approach 
compared to the classical SNS discrimination model (Von Boehmer and Kisielow, 
1990; Bretscher and Cohn, 1970; Hoff mann, 1975), is discussed next. In an SNS 
discrimination model, the word “foreign” is used to mean “that to which the 
immune system should respond,” whereas the term “self” means “that to which the 
immune system should be tolerant.” In DT model, the self is considered as harmless 
elements to which the body develops tolerance, which may also include antigens 
such as commensal organisms and parasites that do not cause any cellular damage. 
Accordingly, the immune system becomes tolerant to antigens that are not neces-
sarily the same as self, which do not pose any danger (Figure 2.6).

In DT, the immune response is determined by the presence or absence of alarm 
signals; some “danger signals” such as tissue damage triggers a myriad of immune 
reactions and responses and APCs are activated by endogenous cellular alarm sig-
nals from distressed or injured cells.

According to Matzinger (1994), our bodies are never completely tolerant. As 
long as the thymus and bone marrow are producing new B and T cells, there will 
be a few new circulating self-reactive lymphocytes. Th us, a question that arises 
is “what stimulates these self-reactive cells and what maintains the response.”
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She considers that there are, at least, four diff erent categories of stimulus, which 
cause diff erent types of autoimmune diseases.

 1. An unrecognized infection in the target tissue. Th is is not actually an autoim-
mune disease, because self-antigens are not the primary target. In this case, 
although the immune system attempts to eliminate a pathogen, it ends up 
damaging the target tissue.

 2. Molecular mimicry by a pathogen that has some similarity to a self-tissue. Some 
pathogen-specifi c T cells also detect self-antigens and then, they respond 
against both the pathogen and the self-tissues.

 3. Bad death. Th is category is only considered in the DT model, as there are 
no infectious agents and foreign components. Cells die permanently in our 
bodies, and such deaths are controlled by some genes, which are subject to 
mutations as all genes do. However, such mutations could induce alarm sig-
nals to initiate immune responses. Also, environmental toxins that cause cell 
damage could lead to the release of such alarm signals.

 4. Th e wrong class. As antibodies and cytokines released during an immune 
response are potent molecules that are intended to eliminate pathogens, they 
can damage some tissues, which are more sensitive to certain eff ector mol-
ecules than others. In this case, the immune system can kill a tissue with the 
wrong class of immunity, although the response is not intended to attack that 
particular tissue.

Figure 2.7 shows an abstract view of the antigen universe and illustrates the parti-
tions considered in classical SNS discrimination model and DT. According to the 
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Figure 2.6 Illustration of the DT model, which includes alarm signals as a part 
of immune response.
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SNS model, the self-set consists of subsets a and c; thus, self-elements in a and c are 
labeled as “−”, whereas nonself subsets b, d, e, and f are labeled as “+”. However, 
according to the infectious nonself model (INS), only part of nonself is considered 
infectious; thereby, nonself subsets e and f are labeled as “+”. However, in DT 
(Matzinger, 2002), a subset of self is also considered to trigger alarm signals. Th ere-
fore, self-subset c and nonself subsets d and e are labeled as “+”.

2.6 Computational Aspects of the Immune System
From the point of view of information processing, the biological immune system 
exhibits many interesting characteristics; some of which are (Dasgupta, 1999)

• Pattern matching. Th e immune system is able to recognize specifi c antigens 
and generate appropriate responses. Th is is accomplished by a recognition 
mechanism based on chemical binding of receptors and antigens. Th is bind-
ing depends on their molecular shapes and electrostatic charges.

• Feature extraction. Generally, immune receptors do not bind to a complete 
antigen, but rather to portions of it (peptides). Accordingly, the immune sys-
tem can recognize an antigen just by matching segments of it. Peptides are 
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Figure 2.7 An abstract view of the antigen universe based on SNS, INS, and 
DT models.
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 presented to lymphocyte receptors by APCs. Th erefore, such APCs act as fi lters 
that can extract the important information and remove the molecular noise.

• Learning and memory. A major feature of the adaptive immune system is that 
it is able to learn through its interaction with the environment. Th e fi rst time 
an antigen is detected, a primary response is induced, which includes prolif-
eration and subsequent reduction of lymphocytes. Some of these lymphocytes 
are kept as memory cells. Th e next time the same antigen is detected, memory 
cells generate a faster and more intense response (secondary response). Accord-
ingly, memory cells work as an associative (highly) distributed memory.

• Diversity. Clonal selection and hypermutation mechanisms are constantly 
testing diff erent detector confi guration for known and unknown antigens. 
Th is is a highly combinatorial process that explores the space of possible con-
fi gurations looking for close-to-optimum receptors that can cope with all 
types of antigens. Exploration is balanced with exploitation by favoring the 
reproduction of promising individuals.

• Distributed processing. Unlike the nervous system, the immune system is not 
centrally controlled. Detection and response can be executed locally and 
immediately without communicating with any central organ. Th is distrib-
uted behavior is accomplished by billions of immune molecules and cells that 
circulate around the blood and lymph systems and are capable of making 
decisions in a local collaborative environment.

• Self-regulation. Depending on the severity of the attack, response of the 
immune system can range from very light and almost imperceptible to very 
strong. A stronger response uses a lot of resources to help ward off  the attacker. 
Once the invader is eliminated, the immune system regulates itself to stop the 
delivery of new resources and release the used ones.

• Self-protection. By protecting the body as a whole, the immune system is also 
protecting itself. It means that there is no other additional system to pro-
tect the immune system; hence, it can be said that the immune system is 
self-defended.

2.7 Summary
Th is chapter discusses some theoretical models based on abstract immunological 
processes. Among these processes, the clonal selection theory has been studied since 
the 1950s to understand how certain types of B and T lymphocytes are selected for 
destruction of specifi c antigens invading our body.

Th e IN theory has been investigated extensively by many theoretical immu-
nologists, and three generations of this theory were developed to simulate complex 
dynamic behavior of the immune system. Another approach used multiepitope IN 
model and mapped into a PDP as a neural network. Th e GC is a complex  system and 
hence, it is diffi  cult to model all its internal mechanisms. Th e more the functions of 
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the GC become apparent, the more is the scope of understanding its immunological 
behavior. Matzinger proposed DT so as to explain how the immune system responds 
although APC-activating alarm signals arise from the damaged tissues.

Th is chapter ends with highlighting a number of features observed in adaptive 
immunity from the computational point of view. Th us, the purpose of this chapter 
is to provide diff erent models so that the characteristics of immune response can be 
better understood.

2.8 Review Questions
 1. Explain the clonal expansion process. What is the purpose of clonal expan-

sion? How does clonal selection take place?
 2. What will happen if there is no mutation in the immune process?
 3. What is an idiotypic network?
 4. What is the main idea behind IN theory?
 5. Discuss the following statement “there is no intrinsic diff erence between an 

antigen and an antibody in an idiotypic network.”
 6. What motivated the development of diff erent generations of IN models?
 7. Explain the main features of the diff erent IN generations.
 8. Associate each one of the following characteristics to one of the three IN 

generations discussed in this chapter.
a. Try to predict the amount of each kind of antibodies (clone) present in the 

blood.
b. Try to explain and describe specifi c clonal immune responses to external 

antigens.
c. Th is theory competes with clonal selection theory.
d. Th is theory is based on the postulate that interactions of B cells with the 

network are determined by their affi  nity to preexisting soluble antibodies 
and self-antigens.

e. Interactions of B cells with the network have distinct functional conse-
quences according to a bell-shaped dose response curve.

f. Try to model autonomous behavior of the immune system.
g. It considers free antibodies as well as active B and T cells and 

self-antigens.
h. Th ese models involved the notion of network dynamics and concept of 

metadynamics.
i. It brought two views of the immune system into compatibility, clonal 

selection and network theories.
j. Introduced the concept of a central immune system.
k. It incorporates B and T cells cooperation.
l. B cell activation process is considered to occur in two steps: induction and 

cooperation.
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 9. Illustrate with a diagram, a multiepitope IN approach as a PDP with input or 
output and hidden layers.

 10. Mention two diff erent models of the GC? Explain how they diff er.
 11. Why is somatic hypermutation necessary during the B cell affi  nity matura-

tion process?
 12. Explain the main ideas of DT and the integrity model.
 13. Explain the four diff erent stimuli categories proposed in DT.
 14. Mention the computational features of adaptive immune systems.
 15. Try to formulate some computational aspects of the immune system diff erent 

from the ones explained in this chapter.
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Chapter 3

Immunity-Based 
Computational Models

Th e fi eld of immunological computation (IC) or artifi cial immune system (AIS) 
has been evolving steadily (Dasgupta, 1999; Forrest et al., 1994; Tarakanov and 
 Dasgupta, 2000) since 1985. Th ere has been an increasing interest in the devel-
opment of computational models inspired by several immunological principles 
(Perelson and Oster, 1979; Percus et al., 1993). Some models intend to mimic the 
abstract mechanisms in the biological immune system (BIS) to better understand 
its natural processes and simulate its dynamic behavior in the presence of antigens 
or pathogens; others, however, emphasize on designing artifacts—computational 
algorithms, techniques using simplifi ed concepts (sometime obsolete) of various 
immunological processes, and functionalities (Farmer et al., 1986; Hofmeyr and 
Forrest, 2000; De Castro and Von Zuben, 2000; Stepney et al., 2004). Table 3.1 
summarizes the mostly studied computational models of BIS, whereas the details 
of these are described in Chapters 4 through 6. It shows the use of specifi c immu-
nological concepts in diff erent models and their intended applications (discussed 
in Chapter 7).

Common terminologies that are used in most immune algorithms and their 
corresponding terms used in machine learning are listed in Table 3.2.

Th is chapter focuses on describing some common features that are used in most 
immunity-based models. Th ey use computational features like shape–space repre-
sentation, affi  nity measures, and immunity-based processes  (Figure 3.1).
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3.1 Shape–Space and Affi nity
Perelson and Oster (1979) introduced a shape–space (or representation space) con-
cept to represent antibody or antigen binding (see Figure 3.2). Accordingly, anti-
gens and antibodies are characterized by their physicochemical binding properties, 
which are represented as coordinate points in such space, typically, a Euclidean 

Table 3.1  Immunity-Based Computational Models and Specifi c 
Immunological Concepts

Immunological Concepts 
and Entities Immunity-Based Models

Computational 
Problem

Self or nonself 
recognition T cell

Negative selection algorithms 
(Forrest et al., 1994)

Anomaly, fault, and 
change detection

Idiotypic network, 
immune memory, 
and B cell

Immune network theory 
(Hunt and Cooke, 1995)

Learning (supervised 
and unsupervised)

Clonal expansion, affi nity 
maturation, and B cell

Clonal selection algorithm 
(De Castro and Von Zuben, 
2000)

Search and 
optimization

Innate immunity DT (Aickelin and Cayzer, 2002) Defense strategy

Table 3.2  Machine Learning versus Immunology Terminology

Machine Learning Immune Models

Detectors, clusters, classifi ers, 
and strings

T cells, B cells, and antibodies

Positive samples, training data, 
and patterns

Self-cells, self-molecules, and immune 
cells

Incoming data, verifying data 
samples, and test data

Antigens, pathogens, and epitopes

Distance and similarity measures Affi nity measure in the shape–space
String-matching rule Complementary rule and other rules

Shape−space

Affinity

Immunity-based

processes

Immunological  models 

Figure 3.1 Major components of immunity-based models.
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space (Figure 3.3). Binding properties include geometric shape,  hydrophobicity, 
charge, etc. (Noest et al., 1997). In computational models, the notion of affi  nity 
between antibodies and antigens is defi ned based on a distance measure between 
points in the shape–space. Specifi cally, a small distance between an antibody and 
an antigen represents high affi  nity between them. It should be noticed that in some 
cases,  coordinates are not given explicitly but the distance between antibodies and 
antigens is provided.

In Figure 3.3, the big outer circle V, crosses (X), and small inner circles Vε rep-
resent the shape–space, antigens, and affi  nity (coverage) of antibodies,  respectively. 

Antigen-
binding
sites

Antibody A

Antibody B
Antibody C

Epitopes
(antigenic
determinants)

Antigen

Figure 3.2 Antibody and antigen binding. An antigen may bind to several 
antibodies.

Vε

Vε

Vε

V
×

×
×

×

×
×

×

ε

ε

ε

Figure 3.3 Antigens and antibodies are represented as points in an N- dimensional 
(Euclidean) space.
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Th us, ε specifi es a recognition threshold; if the affi  nity between an antibody and an 
 antigen (X) is less than ε (i.e., the antigen lies inside the  affi  nity region of an anti-
body), then the antigen is said to match (bind) the antibody (Balthrop et al., 2002).

3.1.1 Representation Schemes
Th e entities involved in immune algorithms are mainly B- and T cells, antibodies, 
and antigens. Representations that are used in most immune algorithms are

Binary strings
Strings over fi nite alphabets (other than binary)
Real-valued vectors
Hybrid representation where each entity consists of several features and each 
feature may be of a diff erent type; for instance, integer, real value, boolean 
value, or categorical information

Th e binary representation, in general, can subsume other representations, that is, 
any data type can be represented as a sequence of bits in the memory of a computer 
(although their treatment diff ers). In theory, any matching rule defi ned on a high-
level representation can be expressed as a binary matching rule. Many models use 
binary representation. Although binary string representation has some advantages 
(any type of data can be represented in binary form, it is easy to analyze, and it is 
good to represent categorical data), it also has limitations—it is diffi  cult to interpret 
in the original problem space, presents scalability issues, and is diffi  cult to directly 
apply on some conventional techniques that assume continuous spaces (Gonzalez et 
al., 2003). Th erefore, the other types of representations have been investigated for 
use in immune algorithms (Stibor et al., 2005).

3.2 Affi nity Measures
To defi ne the notion of affi  nity between a T or B cell and an antigen, diff erent 
similarity or distance measures are introduced. If a string representation is used, a 
Hamming distance may be suitable. However, in the case of binary strings, other 
distance measures have been used. Although a Euclidean distance may be used 
when using a real-valued vector representation, other distance measures have also 
been used.

A T cell is considered to detect foreign antigens in a certain region of the shape–
space. Th is is due to the fact that antigen matching is not exact, but approximate. 
Th us, a T cell will match variations of a specifi c antigen. A T cell model is called 
a detector; a detector is characterized by a set of attributes and a “matching rule,” 
which is based on a distance measure (Gonzalez et al., 2003). Generally, a detector 
can be implemented as either a production rule or a neural network or a software 

�
�
�
�
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agent, among others; however, such type of implementations may be diffi  cult to 
analyze (Hofmeyr, 1999).

Usually, a detector describes a region of the shape–space; therefore, it may be 
defi ned by a formal representation of a subspace of the shape–space. For instance, 
when the shape–space is a Euclidean space, a detector could have the shape of a 
 hypersphere; thus, it may be defi ned by a hypersphere’s equation, which is  determined 
by two parameters—its center and radius (Figure 3.4). Another  example of a  detector 
is a hyperrectangle, which can be characterized by two of its (opposite) corners, simi-
lar to the way a rectangle is specifi ed in two dimensions by the left-hand side lower 
corner and right-hand side upper corner. Th ereby, in the case of binary representa-
tions, a detector may be defi ned by a binary string (which may be thought of as 
the “center” of the detector) and threshold value; the  detector will  represent all the 
strings that are at a distance from the center below such threshold.

In specifi c applications, a set of variables will defi ne the shape–space. Th erefore, 
a detector is defi ned on a data space; and although a detector could be defi ned 
as one of the points in the dataset, in general, this is not the case. A detector is 
rather defi ned as a set of data points. Intuitively, the “size” of the set associated to 
a  detector will indicate its specifi city; thus, the larger the set, the more general the 
detector will be. Accordingly, the smaller the set of points covered by a detector, the 
more specifi c the detector.

A matching rule is a key concept in immune algorithms, because it is used to 
determine when a detector matches a data item. A particular immune algorithm 
is distinguished by the way entities are modeled, as well as the matching rule and 
the mechanisms to generate the detectors. It is important to note that the matching 
rule is used in both detector generation and detection.

�
v�

×

×
× c

Figure 3.4 A detector represents a subset of the shape–space, in fact, a subset 
of the nonself space. A detector corresponds to an N-dimensional hypersphere; 
a hypersphere may be represented by its center (c) and radius (ε), where Vε 
denotes the hypersphere’s volume.
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Regardless of the representation, a matching rule M may be defi ned in terms 
of an affi  nity measure. Accordingly, d M x that denotes “d matches x” is defi ned as 
d M x if and only if x “belongs” to the set defi ned by the detector d.

Th e quotations mean that it is necessary to defi ne a notion of a point belonging 
to a set. In classical set theory, a point either belongs to a set or does not; however, 
a diff erent notion like the one in fuzzy set theory may be used, where a degree of 
membership to the universal set is defi ned (Gonzalez, 2003).

3.3 String-Matching Rules
A matching rule, which defi nes “matching” or “recognition,” and the  distance 
 measure that the former is based on are the cornerstones in any detection, 
 classifi cation, or recognition algorithms. Th e choice of a matching rule depends on 
the representation scheme and type of data. For instance, if you are dealing with 
categorical data, then a string representation may be more suitable, and a matching 
rule such as r-contiguous bits (rcb) or r-chunks can be used (Percus et al., 1993). In 
this  subsection, several string-matching rules are described in detail.

3.3.1 Hamming Distance
Th e Hamming distance between two strings is defi ned as the number of diff erent 
characters between the two strings. Th e Hamming distance h(x,y) between two 
strings x and y is expressed as

 

h x y X Yi i
i

N

( , ) �
�

⊕( )∑
1  

where N is the string length, Xi and Yi denote the ith bit of string n and y, respec-
tively, Xi ⊕ Yi the Xor logic operation, when dealing with binary strings; for other 
alphabets, Xi ⊕ Yi is zero if the two symbols are equal and one otherwise.

3.3.2 Binary Distance
Some extensions of the Hamming distance, for binary strings, have been proposed 
based on the relative number of bits that match or diff er; such extensions are based 
on the following basic measures:
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Xi and Yi denote the ith bit of string x and y, respectively; a counts the number of 
1s that match at the same positions of both strings; similarly, d counts the number 
of 0s that match at the same positions of both strings; b counts the number of 1s 
in string x that do not match string y; and c counts the number of 0s in string x 
that do not match string y. Th ese values are combined to defi ne diff erent similarity 
functions as follows:

 1. Russel and Rao

 
f a

a b c d
�

� � �  

 2. Jacard and Needham

 
f a

a b c
�

� �  

 3. Kulzinski

 
f a

b c
�

� �1  

 4. Sokal and Michener

 
f a d

a b c d
�

�
� � �  
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 5. Rogers and Tanimoto

 
f a d

a d b c
�

�
� � �2( )  

 6. Yule

 
f ad bc

ad bc
�

�
�  

3.3.3 Edit Distance
Th e edit distance between two strings s1 and s2 is defi ned as the minimum num-
ber of string transformations required to change s1 into s2 where the possible 
string transformations are (i) changing a character, (ii) inserting a character, and 
(iii) deleting a character. Th e edit distance is also called “Levenshtein” distance, and 
it is a generalization of the Hamming distance.

3.3.4 Value Difference Metric
Value diff erence metric (VDM) distance is defi ned as (Hamaker and Boggess, 
2004)

 

VDM( ) vdm( ) weight( )x y x y xi i
i

N

i, ,�
�1

∑ ⋅
 

where

 

vdm( ) ( ) ( )x y P c x P c yi i i i
c C

, � �
 
( )
∈
∑ 2

 

and

 

weight( ) ( )x P c xi i
c C

� 
 2

∈
∑

 

P(c  |  xi) denotes the probability that xi be equal to the character c in the alphabet C.
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3.3.5 Landscape-Affi nity Matching
Th is matching rule was proposed to capture the ideas of matching biochemical and 
physical structures and approximate matching in the immune system (Harmer et al., 
2002). An input string and antibody strings are sampled as bytes and  converted 
into positive integer values to generate a landscape. Two strings are then compared 
using a sliding window. In fact, three diff erent similarity measures are defi ned as 
follows:

 1. Diff erence-matching rule

 

f X Yi i
i

N

difference � �
�


 

1

∑
 

 2. Slope-matching rule

 

f X X Y Yi i i i
i

N

slope ( ) ( )� � � �� �
�


 
1 1
1

∑
 

 3. Physical matching

 

f X Y i X Yi i i i
i

N

physical � � � � ��
�

( ) min( , ( ))1
1

3 
�
 ∀∑
 

3.3.6 R-Contiguous Bits Matching
Th e rcb matching rule, introduced by Percus et al. (1993), is defi ned as follows: If x 
and y are equal-length strings defi ned over a fi nite alphabet, match(x, y) is true if x 
and y agree in at least r contiguous locations.

As an example, if x = ABADCBAB and y = CAGDCBBA, then match(x, y) 
is true for r ≤ 3 and false for r > 3. In the case of binary strings, a matching 
rule typically used is rcb (Forrest et al., 1994) where a detector d is specifi ed by a 
binary string c and threshold value r, and d matches a string x if rcb of c matches 
the corresponding bits (at the same positions) of x. It was originally designed to 
consider approximate matching between two strings. Th e choice of rcb simplifi es 
mathematical analysis and is a good model for approximate T cell matching. Th e 
parameter r determines a detector’s degree of specifi city; the smaller the value of r, 
the more general is the detector.
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3.3.7 R-Chunk Matching Rule
Balthrop et al. (2002) introduced a generalization of rcb matching rule called r-chunk 
matching rule. As in rcb matching rule, a detector is specifi ed by a binary string c and 
parameter r. An r-chunk detector d is said to match a string x if all bits of c are equal 
to the r bits of x in the window specifi ed by c. In contrast to the rcb matching rule, the 
r-chunk approach allows the use of detectors of any size. Th is fact has an improvement 
on the ability of the detectors to cover the self-space. Th e diff erence from rcb rule is 
that the matching window is specifi ed for each individual detector. A group of r-chunk 
detectors that cover all possible windows has the same eff ect as an rcb detector.

In mathematical terms, x = e1e2 … em (an element in the shape–space) and d = 
(p; d1d2 … dr) with r ≤ m, p ≤ m − r + 1 match according to the r-chunk rule if and 
only if ei = di for i = p, …, p + r − 1. In other words, element x matches detector d 
if, at position p, there is a sequence of length r where all the characters are identical.

3.3.8 Real-Valued Vector Matching Rules
Some distance measures that have been used to defi ne matching rules in real-valued 
vector representation are explained in the following sections.

3.3.8.1 Euclidean Distance

A Euclidean distance is defi ned as

 

d x y x y x yi i
i

( , ) � � � �( )∑ 2 �� ��
 

Euclidean distance can be modifi ed when all the dimensions do not have equal 
weights by multiplying each component of the vectors by specifi c weights. Other 
distance measures can be used to defi ne real-valued matching rule in a similar way 
to Euclidean distance. Th e choice of distance measures mainly relies on the type of 
data and domain knowledge of the specifi c application. Several distance  measures 
summarized by Hamaker and Boggess (2004) are presented in the  following 
sections.

3.3.8.2 Partial (Euclidean) Distance

It is a variation of the Euclidean distance, and it is defi ned over some elements of 
a vector, as opposed to the whole vector. It is equivalent to the Euclidean distance 
projected on a lower dimensional subspace of the original space. In other words, 
the Euclidean distance is not calculated over all the elements of the vector, but it is 
calculated taking into account only some elements. Th is is similar to the way some 
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of all the available bits are used in matching two strings, in the rcb rule. Here, also 
the size of a window needs to be specifi ed. In an N-dimensional space, the partial 
distance between x and y, for a window size w, is defi ned as

 

d x y x ys s
i

w

i i
( , ) ( )� �

�

2

1

∑
 

where si belongs to {1, 2, …, N}.

3.3.8.3 Minkowski Distance

It is also known as λ-norm distance, and it is defi ned as

 
d x y x yi i( , ) � �
 


� �∑( )
1

 

When λ = 1, it becomes the Manhattan distance, also known as the city block 
distance. If λ = 2, it is equivalent to a Euclidean distance.

3.3.8.4 Chebyshev Distance

It is also known as the infi nity norm distance, denoted by D∞, and it is defi ned as 
the maximum of the diff erences for all features

 d(x, y) = max{| xi – yi | for i = 1, …, n}  

3.3.9 Mixed Representation
Some distance measure defi ned for mixed data, that is, continuous and categorical 
data, are explained in the following sections.

3.3.9.1 Heterogeneous Euclidean-Overlap Metric

Heterogeneous Euclidean-overlap metric (HEOM) distance is defi ned for mixed 
data, that is, continuous and categorical data.

 

HEOM heom( , ) ( )x y x yi i
i

N
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2
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where
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overlap(x, y) denotes the Hamming distance defi ned as
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and rangei is a scaling factor for the ith continuous variable.

3.3.9.2 Heterogeneous Value Difference Metric

Heterogeneous value diff erence metric (HVDM) metric is defi ned as

 

HVDM hvdm( , ) ( )x y x yi i
i

N
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2

1
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3.3.10 Considerations about Representation
In Gray encoding, two consecutive strings diff er only by 1 bit; thereby, affi  nity in 
problem space is to some extent maintained in shape–space. A real number x in [0,1] 
can be represented in a binary encoding, using the transformation fl oor(255x + 
0.5) and then encoding it in 8 bits. Th erefore, binary encoding is not suitable to 
achieve good generalization, because matching rules should accurately represent 
data proximity in the problem space.

Matching rules also have eff ects in searching the shape–space. For instance, rcb 
matching rule produced a gridlike shape; r-chunk matching rule generated similar 
but simpler shapes; Hamming distance and Rogers and Tanimoto (R&T) matching 
rules produced a “fractal”-like shape. Th e shape of areas covered by rcb and r-chunk 
matching rules were not aff ected by changing encoding from binary to Gray. Th is 
was not really unexpected because similarity between two real values is not refl ected 
in their binary representations (Gonzalez et al., 2003; Ji and Dasgupta, 2004).
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3.4 Affi nity Maturation
Affi  nity maturation is a process of variation and selection that occurs among stimu-
lated B cells. Variation is achieved by somatic hypermutation, whereas the selection 
among cloned B cells is performed to better match the pathogen at hand (Celada 
and Seiden, 1996).

Generally, when two immune entities match, for instance, an antibody matches 
an antigen or two B cells stimulate one another, they undergo some proliferation and 
diff erentiation processes, which correspond to an abstraction of clonal selection. Also, 
somatic hypermutation is used as a mechanism to introduce variation in a population 
of immune entities. Depending on their representation, such a process consists of 
applying some variation process, analogous to a mutation operator in an evolutionary 
algorithm. For example, if immune entities are represented as binary strings, a bit 
mutation operator can be applied. In contrast, if a real-value representation is consid-
ered, a Gaussian mutation may be suitable. Generally, any type of variation operator 
can be applied as long as it guarantees a good exploration of the shape–space.

3.5 Solving Problems Applying Immunity-Based Models
To apply an immunity-based model to solve problems in a specifi c domain, one 
should select a specifi c model according to the type of problem that is being solved 
(De Castro and Timmis, 2002; Harmer et al., 2002). Th e fi rst step is to iden-
tify the salient features of the problem and decide how they can be modeled; and 
a representation scheme for each entity should be chosen, specifi cally, a string-, 
real-valued vector, or hybrid representation. Next, an appropriate affi  nity measure 
should be used according to the defi ned matching rule and immune algorithm. In 
many immune algorithms, it is necessary to introduce new entities to accomplish 
the desired search and optimization task. Figure 3.5 shows these steps to solve a 
problem by using an immunity-based model.

Figure 3.5 Problem solving by using immunity-based models.

Application domain

Representation

Affinity measures

Immune algorithms

Solution 

Immune entities
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3.6 Summary
Th is chapter describes the general aspects of immunity-based models. First, the 
shape–space concept, which is very important to represent the elements that are 
involved in immune processes, is introduced. Th en, some matching rules that 
are very important to determine the affi  nity or similarity between immune ele-
ments are explained in detail. Accordingly, some distance measures that have been 
used in immune  modeling are presented. Finally, some general operations that are 
inspired in immunology and have been applied in artifi cial immune models are 
summarized.

3.7 Review Questions
 1.  List the main elements necessary to defi ne an immune model. Explain the 

relations among such elements. 
 2. Consider a particular representation for the immune elements. Th en consider 

a particular immune algorithm and change the immune representation. Does 
the performance of the algorithm change? In general, do the results depend 
on a particular representation?

 3. Defi ne other matching rules diff erent from the ones described in this 
chapter.

 4. Consider a particular representation for the immune elements (same as 
 question 2).

 5. Defi ne three diff erent types of clonal selection operators.
 6. Defi ne three diff erent types of somatic hypermutation.
 7. Defi ne some ways to introduce new random elements in the population.
 8. Defi ne three diff erent types of affi  nity maturation.
 9. Defi ne other representations for immune entities.
 10. Defi ne other formal representations for the immune entities. What advan-

tages do your representations have with respect to those that have been used 
in immune algorithms?

 11. List the advantages and disadvantages of processing strings with arbitrary 
length versus fi xed length strings.

 12. List the advantages and disadvantages of using
 a. Binary string representation
 b. Real-valued vector representation
 c. Hybrid representation
 13. Why would a Hamming distance be suitable when a string representation is 

used? Is it suitable for other representations?
 14. Is it possible to defi ne a detector using a hybrid representation? Illustrate a 

hybrid representation by an example.
 15. Associate immune elements to each arrow in the following fi gure.
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 16. Complete the following statements:
 a. Th e ————— the set points a detector covers, the more ————— 

the detector is.
 b. In affi  nity maturation, the ————— the affi  nity of a B cell for patho-

gens present, the —————— likely it is that the B cell will clone.
 c. Any type of variation operator can be applied as long as it guarantees a 

good ——————— of the ———————.
 17. List the three main features that characterize a particular immune algorithm.
 18. Why may the choice of a matching rule depend on a particular type of data? 

Could you give an example where a specifi c matching rule does not work on 
a particular data?

 19. Give a formal representation where the best string-matching rule could be
 a. Edit distance
 b. Hamming distance
 c. Binary distance
 d. Value diff erence metric
 e. Landscape-affi  nity matching
 f. rcb matching
 g. R-chunk matching rule
 20. Defi ne and solve a problem by using immune models. Write the necessary 

information to specify your problem with respect to the elements in the boxes 
in Figure 3.5.
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Chapter 4

T Cell–Inspired 
Algorithms

Th is chapter presents change/anomaly detection techniques inspired by the T cell 
censoring and maturation process in the biological immune system. First, the 
main process of negative selection (NS) that results in self/nonself discrimination 
is described. Th en, the important features of artifi cial NS are presented. Finally, 
 diff erent variations of negative selection algorithm (NSA) have been considered. 
Th ere is a signifi cant amount of work on this topic area; therefore, for better read-
ability, this chapter has been divided into three parts.

4.1 Self/Nonself Discrimination
An important mechanism of the adaptive immune system is the “self/nonself rec-
ognition” (Coutinho, 1980). Th e immune system is able to recognize which cells 
are its own (self) and which are foreign (nonself); thus, it is able to build its defense 
against the attacker instead of self-destructing. As mentioned earlier (Chapter 1), 
T cells of enormous diversity are fi rst assembled with a “pseudorandom genetic 
rearrangement process” and those that recognize self-cells are eliminated before the 
rest are deployed into the immune system to recognize and attack foreign patho-
gens. Th erefore, T cells go through a process of selection that ensures that they are 
able to recognize nonself peptides presented by major histocompatibility complex 
(MHC). Th is process has two main phases: positive selection (PS) and NS.

During the PS phase, T cells are tested for recognition of MHC molecules 
expressed on the cortical epithelial cells. If a T cell fails to recognize any of the 
MHC molecules, it is discarded; otherwise, it is kept.
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Th e purpose of NS is to test for tolerance of self-cells. T cells that recognize the 
combination of MHC and self-peptides fail this test. Th is process can be viewed 
as a fi ltering of a big diversity of T cells; only those T cells that do not recognize 
self-peptides are kept (Kappler et al., 1987).

4.2 Negative Selection Algorithms
Forrest et al. (1994) proposed a computational model of self/nonself  discrimination, 
which is called the “NSA or NS algorithm.” Th is algorithm models the T cell 
 maturation process that occurs in the thymus. Several variations of NSAs have been 
proposed after the original version was introduced (Forrest et al., 1994); however, the 
main features of the original algorithm still remain. Particularly, the goal of NS is to 
cover the nonself space with an appropriate set of detectors (shown in Figure 4.1).

Two important aspects of an NSA are as follows:

 1. Th e target concept of the algorithm is the complement of a self-set.
 2. Th e goal is to discriminate between self and nonself patterns, while only self-

samples are available (one-class learning; Tax, 2001).

Th ere are two steps in NSAs as follows: “detector generation” and “nonself 
detection.” In the fi rst step, a set of detectors is generated by some random-
ized process that uses a collection of self as the input. Candidate detectors that 
match any of the self-samples are eliminated, whereas unmatched ones are kept.  

Figure 4.1 Illustration of the self and nonself regions.

Self

Self
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“Matching rules” (described in Chapter 3) are usually designed inspired by T cell/
antigen affi  nity measures. A specifi c NSA is characterized by the way candidate 
detectors are generated and the criteria used to select the detectors. Figure 4.2 
shows the major steps in an NSA.

In the detection stage, the stored detectors (generated in the fi rst stage) 
are used to check whether new incoming samples correspond to self or nonself 
instances. If an input sample matches a detector, then it is identifi ed as part of 
nonself, which in most applications, means that an anomaly/change has occurred 
(see Figure 4.3).

Basic NS Algorithm: Generic Negative Selection Algorithm

Input: S ⊆ U ≡ Self or normal data, l, r ∊ N, where l is the string 
length and r is a matching threshold

Output: a set of detectors D ⊆ U

 1 begin
 2 Generate a set (D) of detectors, such that each fails to match any 

 element in S.
 3 Monitor new sample δ ∊ U by continually checking the detectors 

(in D) against δ. If any detector matches δ, classify it as nonself.
 4 end

Figure 4.2 Detector generation process—censoring phase of NSAs.
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No
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Enough detectors?
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A particular NSA is characterized by the way detectors are represented, the rule 
used to determine the match between a sample and detectors, and the mechanisms 
to generate and discard self-reactive candidate detectors. Most works on NSAs have 
assumed one of the following schemes for encoding problem space: binary and real-
valued vector representation.

Th e remainder of the sections are grouped under three parts: the fi rst part 
 (Sections 4.3 through 4.5) describes various detector generation schemes using 
string representation in NSA algorithms, the second part (Sections 4.6 through 
4.8) covers detector generation schemes for real-valued and hybrid representation, 
and the third part (Section 4.9) covers the concepts of negative databases (NDB) 
and algorithms to generate NDBs.

4.3 Negative Detector Generation Schemes
In string representation, each detector is represented as a string of fi xed length over 
a fi nite alphabet (for binary, 0 and 1). Diff erent approaches have been developed 
to generate negative detectors having varying degree of complexity. Th e algorithm 
described fi rst is an exhaustive approach, which appears to be analogous to the 
natural NS process.

4.3.1  An Exhaustive Approach (Generating 
Detectors Randomly)

In the original description of the NSA (Forrest et al., 1994), candidate detectors 
were generated randomly and then tested (censored) to see if they matched any 

Figure 4.3 Monitoring phase of an NSA.
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self-string. If a match was found, then such a candidate was rejected, otherwise, 
it was accepted. Th is process was repeated until a desired number of detectors were 
 generated. A probabilistic analysis was used to estimate the number of detectors 
required to provide a desired level of reliability. Th is straightforward approach is 
given in the following algorithmic form (see Algorithm 1; note that although self is 
considered as a set, for most applications it is a collection of data/patterns rather).

NS Algorithm 1: Exhaustive approach in 
(binary) negative detector generation

Input: l, r, T ∊ N where 1 ≤ r ≤ l and S ⊂ U; l = string length, r = 
matching threshold, T = repertoire size

Output: Set D ⊂ U detectors generated using r-contiguous bits (rcb) 
matching rule

 1 begin
 2 D : = φ
 3 while |D| < T do
 4 Generate randomly bit string d ∊ U
 5 if d does not match any string in S then
 6 D : = D ∪ {d}

 7 end

Th e major limitation of such random generation approach appears to be computa-
tional diffi  culty of generating valid detectors, which grows exponentially with the 
size of self. Also for many choices of l (“length”) and r (“recognition threshold”) 
and compositions of self, random generation of strings for detectors may be pro-
hibitive. Th us, this random approach is not effi  cient. Subsequently, a number of 
detector generation approaches were proposed; these are presented in detail in the 
following text.

4.3.2  A Dynamic Programming Approach 
(Linear-Time Algorithm)

Given a collection of (equal-sized) self-strings S and a matching rule with partial 
“matching threshold r,” called the “r-contiguous bits” (rcb, described in Chapter 3). 
Th is algorithm works in two phases (D’haeseleer et al., 1996) as follows:

To count recurrences to defi ne an enumeration of all unmatched strings 
(not r-matched) by S in the string space for the given self-set
To generate a detector set (according to the repertoire size) by the counting 
recurrence, which is used to pick the detectors at random from the set of 
candidate unmatched strings

�

�
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Th is dynamic programming approach (D’haeseleer et al., 1996) runs in linear time 
with the size of self. To present the algorithm, some notation should be introduced 
fi rst: let s denote a binary string and ŝ  the string s stripped of its leftmost bit, s ⋅ b, 
where b∊{0,1} denotes s appended with b.

Also, “a template” of order r is a size l string consisting of l − r blank symbols 
and r fully specifi ed contiguous bits. ti ,s denotes a template in which the r specifi ed 
bits start at position i and are given by the r-bit substring of s. A right (left) comple-
tion of a template t is a template with all the blanks to the right (left) replaced by 
bits. Th erefore, (a,b] denotes the integer interval (a + 1) … b.

4.3.2.1 Phase I: Solving the Counting Recurrence

Let Ci[s] be the number of right completions of ti,s unmatched by any string in S, for 
1 ≤ i ≤ (l − r + 1). Th e templates in the array Ci[s] will enumerate all the possible 
ways two strings can match each other over rcb. Ci[s] can be computed recursively, 
the number of unmatched right completions at i can be computed based on the 
number of right completions at i + 1 as follows: if ti,s is directly matched in S, 
Ci[s] is 0, otherwise, the completions of ti,s consist of those with a 0 bit following 
the r bits of s, and those with a 1 bit instead. Th ese are exactly the number of right 
completions for ŝ  ⋅ 0 and ŝ  ⋅ 1, respectively.
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Also, Cl−r+1[s] will be 0, if the template tl–r+1,s is matched in S, and 1 otherwise
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To illustrate the preceding recurrence equations, an example is presented in the 
following text (taken from D’haeseleer, 1996).

Let l = 6 and r = 3. Let s1 = 110100 and s2 = 100101 are strings in S. Consider 
the patterns 110***, *101**, **010*, and ***100. Th ese patterns are matched by s1. 
Th us, C1[110] = C2[101] = C3[010] = C4[100] = 0. Now consider the pattern 
**110*. Th is template is matched by neither s1 nor s2. However, the pattern **110* 
does not have any unmatched right completions C3[110] = C4[100] + C4[101] = 0. 
Th e right completions of **110* are **1100 and **1101, which are matched by s1 
and s2, respectively.
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4.3.2.2 Phase II: Generating Strings Unmatched by S

Note that C1[s] denotes the number of unmatched l-bit strings starting with the 
r-bit binary string s. Th e total number of strings unmatched by S is

 

T C s
s S

� 1[ ]
∈
∑

 

C1[⋅] can be thought of as a partitioning of the space of unmatched strings into 
 partitions of size C1[s] for each initial r-bit string s. Given that among all the 
unmatched strings starting with s, C2[ŝ  ⋅ 0] have a 0 bit next, whereas C2[ŝ  ⋅ 1] have 
a 1 bit next. Th erefore, C2[⋅] can be seen as a subsequent partition of the  original 
space.  Likewise, C3[⋅] to Cl−r+1[⋅] will defi ne corresponding partitions of the 
space. Each partition after Cl−r+1[⋅] will consist of one single l-bit string. Th ereby, 
unmatched strings can be matched from 1 to T, using the lexicographic (natural) 
order. Th us, to generate a number NR of unmatched strings, you can just generate 
NR random numbers in {1, …, T }. If k ∈ {1, …, T }, the kth unmatched string uk is 
determined as follows. Perform a binary search on C1[⋅] to fi nd s1 such that

 

P c s k Q c s
s s s s

1 1 1 1

1 1
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� �

[ ] [ ]∑ ∑
 

All unmatched strings in (P1, Q1] have s1 as their r-bit prefi x, where uk is the string 
that we are interested in the partition of unmatched strings numbered (P1 + 1), …, 
Q1; therefore, the fi rst r bits of uk are given by s1.

For each i = 2, …, (l − r + 1), the (r + i − 1)th bit of string uk can be 
 established by determining the partition where k falls. To illustrate this, assume 
that the bit at position (r + 1) needs to be determined. Let us partition the interval 
into intervals I10 = (P1, P1 + C2[ŝ1 ⋅ 0]) and I11 = 

(P1 + C2[ŝ1 ⋅ 0], Q 1), correspond-
ing to the strings concatenated with either a 0 or a 1. On one hand, a bit b1 = 0 is 
 concatenated to the string if k is in I10, and on the other, a bit b1 = 1 is added to the 
string if k is in I11. Subsequent intervals (Pi, Qi] are then computed according to
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Th us, s2= ŝ1 ⋅ b1 ⋅ k is in interval (P2, Q2), which can again be divided into two 
intervals I20 = (P2, P2 + C3[ŝ 2 ⋅ 0]) and I21 = (P2 + C3[ŝ 2 ⋅ 0], Q2). Th en, bit b2 is 
defi ned by checking if it falls in I20 or I21. Similar processes are followed to compute 
the subsequent bits.
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Th e pseudocode of this two-phase linear time algorithm is presented as follows:

NS Algorithm 2: Dynamic programming approach

Input: l, r, t ∊ N where 1 ≤ r ≤ l, t = o(r) and s ∊ S and ŝ  denotes 
string s stripped of leftmost bit, and S ⊂ U

Output:  Array C[s] number of unmatched strings by any string in S, 

where the strings are examined from left to right

Phase I: Solving the counting recurrence

 1 begin
 2 for 1  ≤  i  ≤  l − r + 1

 3  while |Ci [s] | ≤ |t |do
 4   if ti,s  matches with any bit string of S then
 5    Ci [s] : = 0
 6   else
 7    Ci [s] : = Ci+1 [ŝ  ⋅ 0] + Ci+1 [ŝ  ⋅ 1] 
 8  endwhile

 9 endfor
10 end

Phase II: Generating strings unmatched by S
 1 begin

 2 Total number of unmatched by S: T C s
s S

� 1[ ]
∈∑ , where C1[s] 

denotes the number of unmatched l-bit string 
 3 If k ∊ {1,2, …, T } then
 4   the kth matched string uk is determined from steps 5 to 11
 5   First interval (P1, Q1] is calculated as 

    
P c s k Q c s

s s s s
1 1 1 1

1 1

� �[ ] [ ]
� �

� �∑ ∑

 6   Subsequent intervals (Pi, Qi] are calculated as from steps 7 to 10
 7   for  i = 2, …, (l − r + 1)
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 10   endfor
 11 endif
 12 end
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It is important to note that this algorithm requires storing an array C that  represents 
all the possible ways two strings can match over rcb. Th ereby, the algorithm runs in 
linear time in the sizes of the self-set and a detector set for specifi c values of param-
eters l and r. However, this algorithm requires exponential time and space in r, the 
matching threshold. Clearly, this is a problem while dealing with long strings, and 
thereby, higher values of the threshold value r.

4.3.3 A Greedy Algorithm for Detector Generation
A greedy method for generating negative detectors was suggested by D’haeseleer 
et al. (1996), which can provide a better detector coverage of the complement 
space with varying degrees of computational complexities. Th is algorithm tries to 
locate detectors (instead of selecting them at random as in the second phase of 
the  previous approach) as far apart as possible to avoid possible overlapping. At 
each step, the algorithm picks a detector that matches as many unmatched nonself 
strings as possible.

Th e same array structure is used as in the previous algorithm, but to construct the 
array C in phase I, the strings are examined from right to left, that is, from Cl−r+1[] to 
C1[]. A second array C′ is then constructed by scanning the strings from left to right, 
and computing the subsequent levels using a similar recurrence relation for C. Let 
Di[s] = Ci[s] × C′i [s] be the number of unmatched fully specifi ed bits  corresponding 
to “template” ti,s, where C′I is the number of nonmatching left completions.

If a specifi c template has a zero entry in D, then all strings containing that tem-
plate will match some string in S. Also, for all the templates with nonzero entries in D, 
the corresponding strings do not match with any string in S.

NS Algorithm 3: A greedy approach

Phase I: Generate valid detector templates

In this stage, two arrays, denoted as DS and DR, are created. Array DS 
is used to keep track of the templates that the algorithm picks from 
during the detector construction process. Th e detectors with nonzero 
entries in DS will be called “valid detector templates.”

Phase II: Generate strings unmatched by S

DR indicates, for each template, the number of yet unmatched strings 
by previously generated detectors. To generate a new detector, those 
 templates matching the most unmatched nonself strings are selected. 
Th e array DR is updated each time a new detector is generated by 
 keeping CR and C′R (instead of DR) and updating them incrementally. 
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At the beginning, R (the detectors set) is empty, and CR and C′R are ini-
tialized to their maximum values: CR,i[s] = 2(l−r+1−i) and C′R,i[s] = 2(i−1), 
which correspond to DR,i[s] = 2(l−r).

When a new detector is generated, the algorithm scans DR looking for its largest 
entry. If two templates have the same largest entry, then one of the templates is 
picked at random. Th en, the algorithm traverses DR to the left and to the right 
 starting at such a template, each time either a “0” or a “1” is appended to the 
 starting template, depending on which one corresponds to the template with the 
highest number of yet unmatched strings by R. Th en, arrays CR and C′R are updated 
to refl ect that a new detector has been added to R. Th is is done incrementally by 
setting those entries in CR and C′R that correspond to templates that match the 
detector to zero, and then recalculating the appropriate values for such entries.

Th e process of choosing a detector and updating CR and C′R is repeated until all 
valid detector templates have zero entries in DR. Th us, at the end, for any template 
that is not in S, there are no more strings that have not been matched by a  detector 
yet. In other words, the generated detectors cover all the unmatched strings that 
can possibly be covered as the algorithm keeps track of the number of nonself 
strings that have not been matched by any detector.

However, tuning a detector generation algorithm requires determining what 
is considered an optimal performance. If the goal is to minimize the number of 
 detectors required for a fi xed reliability level and the self-set, then the string length 
(l), m (the alphabet size), r (the matching threshold), and the matching rule for 
generating detectors need to be carefully chosen. In brief, the complexity of the 
detector generation process depends on the matching rule.

Singh (2002) extended the greedy algorithm to bigger alphabets. Th is is 
 relevant in cases where the semantics of the information may get lost in binary 
 representation. A lower number of false-positives were reported compared to results 
using binary representation.

4.3.4 Other Variants in Detector Generation

4.3.4.1 NSMutation Algorithm

NSMutation (Ayara et al., 2002) is a modifi ed version of exhaustive algorithm, 
which introduces somatic hypermutation mechanism to improve performance. 
Particularly, instead of elimination of the  candidate detector that matches the self-
data, guided mutation is performed to attempt to make them valid detectors. Th e 
probability of mutation is considered as directly proportional to affi  nity between 
the candidate and self-sample. Th e  diff erence in complexity comes from the time to 
mutate the matching region of length r of detector candidate. Mutation is limited 
to the region of length r, the upper bound of mutating is mr. Matching threshold 
(r), detector lifetime rate, and mutation probability are major control parameters 
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that can infl uence the  performance of NSMutation algorithm. Generally, NSMuta-
tion is unique when

Compared with exhaustive algorithm because NSMutation checks and solves 
the problem of redundant detector. Consequently, it reduces the total number 
of detectors.
Compared with exhaust algorithm, it is tunable to balance between high 
coverage and effi  cient generation.
Compared with linear, greedy, and binary template algorithm, which are 
highly restrictive to the rcb matching rule, NSMutation is more extensible.

4.3.4.2 Binary Template

In another approach, Wierzchon (2000) used binary string and an rcb matching rule 
to develop a deterministic algorithm to generate detectors that are more  effi  cient in 
terms of minimal number of detectors (or receptors). Here, instead of generating a 
candidate detector randomly, it used a concept called “template.”

A template is a string of length l over the alphabet {0, 1, *}, where l is the original 
length of the string, * stands for “do not care.” Each template ti,w has the substring 
of length k starting on position i that equals a binary string w of length k, and the 
remaining bits are all *s. Note that k has the same meaning as r in rcb matching rule. 
Th e set of all possible templates, T, thus contains (l − k + 1) ⋅ 2k diff erent  elements. 
T can be split into two disjoint subsets: TS consisting of all the templates contained in 
at least one self-string and TN, the set of remaining  templates that are used to  construct 
detector (receptor) strings. Typically, TS is a low fraction of T ⋅ T can be represented as 
a matrix that has 2k rows, one for each diff erent w, and (l − k + 1)  columns, one for 
each starting point i. Th is notation makes it easier to analyze it numerically. Given a 
detector r, the number of unique strings from U detected by r is

 
D l k l k l k k ll k l k l k( , ) ( ) ,� � � � � � �� � � �2 2 2 ( )1− ⋅ ⋅1 for2

2

Th is result can be extended from a binary alphabet to an alphabet of m symbols,

D l k m l k m m m l k m mm
l k l k l k( , ) ( ) ( ) ,� � � � � � �� � � �− ⋅ − ⋅ ⋅ ⋅1 11 1 [( ) ( ) ] for kk l

�
2

Th e discriminative power of a detector set, however, is not the sum of all D(l, k)s 
because diff erent detectors can recognize common strings. Using a statistical 
approach, the average number of strings detected by n detectors is

 d(l, k, n) = (1 − Pf (l, k, n)) ⋅ 2l 

where Pf (l, k, n) is the failure probability.

 Pf (l, k, n) = (1 − P(l, k))n ≈ e−n ⋅ p(l,k) 

�

�

�
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where the approximation is valid for large n and small P(l, k), the probability that 
two random strings match. For an “ideal” detector set, the coverage is fi xed. For 
a given number of detectors that are not “ideal,” detectors are chosen so that a 
maximum number of diff erent templates are used. For implementation of the algo-
rithm, a binary tree is used to represent the connection between the self-templates. 
Following the tree representation, all possible “self-strings” are reconstructed and 
those that are not self-strings can be found. Th ese nonself, or undetectable, strings 
can come from two sources: strings that can be built from templates in TS, or self-
templates and those that have nonself templates (templates in TN).

4.3.4.3 DynamiCS

A variation of NSA introduces “dynamic clonal selection algorithm (DynamiCS)” 
to deal with a nonself detection problem in a continuously changing environment 
(Kim and Bentley, 2002). In particular, DynamiCS is based on Hofmeyr’s idea 
(Hofmeyr and Forrest, 2000) of dynamics of three diff erent populations: imma-
ture, mature, and “memory detector” populations. Initial “immature detectors” 
are generated with random “genotypes.” Using an NS, new immature detectors are 
added to keep the total number after a predefi ned number of generations (“toleriza-
tion period” T). If a detector is within its predefi ned “life span” L and the match 
counts are larger than a predefi ned “activation threshold” A, it becomes a memory 
detector. “Mature detectors” are used on all given antigens. However, a human 
security offi  cer’s confi rmation (costimulation) is necessary to make the detector a 
memory detector, which makes the approach dependent on human interaction.

An enhanced NS algorithm (Hofmeyr, 1999) with multiple secondary 
 representations was introduced to reduce the number of trials needed to generate 
detectors on the structured self as much as three orders of magnitude less. Th e sug-
gested secondary representations included pure permutation, imperfect hashing, 
and substring hashing.

4.3.4.4 Schemata-Based Detection Rules

Hang and Dai (2004) introduced a new idea in detector generation by converting 
the data space into schemata space. Such a conversion compresses the data space. 
Th e problem space is n-dimensional vector space including categorical and numeric 
features. For real-valued features, a schema r is defi ned as the conjunction of the 
intervals as in the rules. Common schemata are those that are common in a group 
of rules. A number of common schemata are fi rst evolved through a coevolutionary 
genetic algorithm (GA) in self-data space. Th e population used in the coevolution-
ary GA consists of a number of non-inter-breeding subpopulations. Species are 
initialized randomly, and new species are added into the population until the total 
number of species reaches a certain value. Th en all the species are decoded into 
common schemata. Detectors are then constructed in the complementary space 
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of the schemata using the traditional “generate-and-test” strategy. Th e candidate 
detector (detection rule) is rejected if it contains any common schemata.

4.4 Analysis of Negative Selection Algorithms
NSAs are based on the following argument (Forrest et al., 1994): given a reasonably 
large number of possible strings, the probability of two randomly chosen strings 
matching each other is relatively low; if the detector set is generated randomly and 
the abnormal strings can be considered as random to some extent, the probability 
that an abnormal string matches some detector increases with the number of detec-
tors. Defi ning “failure probability” Pf  as the probability that the detector set fails 
to detect a change, the main conclusion of Forrest et al. (1994) is

 
Pf ≈ e P M N R�

 

where PM is the probability of a match between two random strings and NR is the 
number of detectors in the detector set. PM is largely decided by three major control 
parameters: m, the number of alphabet symbols; l, the length of string; and r, the 
number of contiguous bits (rcb) used in the matching rule.

4.4.1 Complexity of Detector Generation
D’haeseleer et al. (1996) analyzed an “exhaustive detector generating algorithm,” 
and noted that a run fi nishes when the required number of detectors are gener-
ated; the number of detectors is chosen separately as a control parameter. Th e time 
complexity is
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where PM is the “matching probability,” the probability that a randomly chosen 
string and a detector match, NS is the size of the self-set. Th e space complexity is 
O(l ⋅ NS ). For specifi c matching rules, such as the dynamic programming approach 
(or linear time algorithm) with the rcb matching rule (D’haeseleer et al., 1996), its 
time complexity is O((1 − r) ⋅ NS) + O((1 − r) ⋅ 2r) + O(l ⋅ NR ) and space complex-
ity is O((1 − r)2 ⋅ 2r), where l is the string length; r is the number of contiguous bits 
in the matching rule (rcb). Th is is more costly in space than the exhaustive algo-
rithm. Also depending on the rcb matching rule, the greedy algorithm (D’haeseleer 
et al., 1996) has higher time complexity O((l − r) ⋅ 2 r ⋅ NR) and the same space 
complexity as the preceding algorithm, but it provides the maximum coverage for a 
given number of detectors, and the number of unmatched nonself strings is known 
(Balthrop et al., 2002).
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Complexity of diff erent negative detector generating algorithms (exhaustive, 
linear, greedy, binary template, and NSMutation) is summarized in Table 4.1 
(taken from Ayara et al., 2002). Th e symbols used are as follows: NS, number of 
self-data; NR, number of mature detectors; NR0, number of candidates; r, matching 
threshold; m, alphabet size (m = 2 for binary representation); and l, string length.

As shown in Table 4.1, the time complexities of the exhaustive algorithm and 
NSMutation are exponential with respect to the size of self. All the others have  linear 
time complexity. However, when the matching threshold r approaches length l, the 
linear complexities may behave similarly to that of the exhaustive and NSMutation 
algorithms due to the exponential value mr in their time complexities. NSMutation 
has a higher space complexity than that of the exhaustive algorithm. Th e linear, 
greedy, and binary template algorithms all have higher space complexity, although 
the binary template has the lowest among them. Th e greedy algorithm with higher 
alphabet, proposed by Singh (2002), has a time complexity of O(mr ⋅ (l − r) ⋅ NR ), 
where NR is the prespecifi ed number of detectors, and m the size of alphabet. Th e 
space complexity is O(mr ⋅ (l − r)2).

4.4.2 Immunological Holes
An important concept in detector generation is the notion of “immunological 
hole.” An immunological “hole” corresponds to a set of nonself strings for which 
no antibody exists that fails to match the self. Th e concept of holes is applied to a 
large class of potential matching rules. For example, in the r-contiguous-symbols 
matching rule, if the self contains two strings ABC and A’BC’, where A, A’, B, C, 
and C’ are substrings, and B contains (r − 1) symbols, then there is no antibody 
that will detect the nonself strings ABC’ and A’BC. Th us, counting the number 
of holes under diff erent conditions, determining how big the holes are in practice 
for a specifi c problem, and devising methods for detecting holes (e.g., by storing 
 antibodies with diff erent r values) are interesting problems.

Table 4.1 Complexity of Different Detector Generation Algorithm

NS Algorithm Time Complexity Space Complexity

Exhaustive approach 
(Forrest et al., 1994)

O (ml ⋅ NS) O (l ⋅ NS)

Dynamic programming 
(D’haeseleer et al., 1996)

O ((l − r + 1 ⋅ NSMr) + O
((l − r + 1) ⋅ mr) + O(l ⋅ NR)

O ((l − r + 1)2 ⋅ mr))

Greedy algorithm 
(D’haeseleer et al., 1996)

O ((l − r + 1) ⋅ NSMr) + O
((l − r + 1) ⋅ mr ⋅ NR)

O ((l − r + 1)2 ⋅ mr))

Binary template 
(Wierzchon, 2000)

O (mr ⋅ NS) + O ((l − r + 1) ⋅ 
mr ⋅ NR)

O ((l − r + 1) ⋅ mr) + O(NR)

NSMutation (Ayara et al., 
2002)

O (ml ⋅ NS) + O (NR ⋅ mr) + 
O (NR )

O (l (NS + NR))
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Th e existence of holes imposes a lower bound on the failure probability Pf  you 
can achieve with a detection method because it will always fail to detect holes (see 
Table 4.2). D’haeseleer et al. (1996) reported that the required number of detec-
tors to achieve a certain acceptable Pf  without taking holes into account the real 
Pf achieved with this detector set may be substantially higher than expected. Fur-
ther, the failure probability associated with the holes themselves does not improve 
by distributing the algorithm if we use the same matching rule at all the sites.

D’haeseleer et al. (1996) gave an analysis of the number of detectors for a given 
failure probability, Pf  , or the fraction of nonself strings that are not covered by the 
detector set. Denoting the information content (or entropy) of a self-set S of size NS 
as H(S), and the information about S that is missing in the detector set R as H(S|R), 
it is concluded that the diff erence between H(S) and H(S|R), called “mutual infor-
mation” of S and R, is

 I(S; R) ≡ H(S) − H (S|R) ≈ NS ⋅ log2 (1/Pf ) 
For string length l and alphabet size m, the lower bound of detector size
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Table 4.2  Shows the Number of Holes and Best Achievable Pf for Different 
Confi gurations

LS
a NS

b Lb rb PM
c Number of Holesd

Lowest 
Possible Pf

e

500 B 250 16 10 0.00391 634 0.0097
9 0.00879 4,438 0.0677
8 0.01953 21,076 0.3216

1 KB 250 32 11 0.00562 2,649 6.1676e-07
10 0.01172 24,911 5.8000e-06
9 0.02441 2,150,714 0.0005
8 0.05078 5.1815e + 08 0.1206

500 16 11 0.00171 882 0.0135
10 0.00391 3,854 0.0588
9 0.00879 24,937 0.3805

Note:  These results were calculated on randomly generated self of sizes 500 bytes (B), 
1 kilobytes (KB).

a Size of the dataset.
b Parameters chosen for the matching rule (rcb).
c Corresponding matching probability PM.
d Number of holes present.
e Resulting best achievable failure rate Pf.
Source:  Reported by D’haeseleer P., S. Forrest and P. Helman, An immunological 

approach to change detection: Algorithms, analysis and implications. 
 Proceedings of the 9th IEEE Computer Security Foundations Workshop, 
pp. 18–26, Los Alamitos, CA, June, 1996.
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Figure 4.4 The fi gure illustrates the construction of holes from a given set of 
self using CC. (a) Holes (h1 = 1110, h2 = 0100) are constructed by s1 = 0110, 
s2 = 1010, and s3 = 1100. (b) An additional hole h3 can be constructed by the 
already found hole h1 = 1110 and n1 = 0011.

r − 1 r − 1 

 s1 =   01   11   10     = {0110, 1110, 1010}     = {s1, h1, s2} 

 s2 =   10   01   10      = {1010, 0110, 1110}     = {s2, s1, h1} 

 s3 =   11   10   00    = {1100, 0100}                 = {s3, h2} 

h1=   11   11    10    = {1110, 0010}               = {h1, n2} 

n
1
 =   00   01    11    = {0011, 1111}               = {n1, h3 } 

(a)

(b)

Another lower bound for NR can be given in terms of matching probability PM, the 
probability that a string and a detector that are randomly chosen match each other 
according to the specifi c matching rule is

 NR ≥ (1 − Pf )/PM 

It is shown that the holes are unavoidable. For example, in a partial matching 
rule (rcb), two self-strings together may eliminate all detectors that are necessary 
to detect certain nonself strings. Given a string h and a matching rule M, if M 
has constant matching probability PM, a self-set of size NS = |M′(h)| = PM ⋅ NU , 
where M′(h) is the set of the detectors matching string h, always suffi  ces to induce 
holes.

Esponda et al. (2003) have shown that the holes can be constructed by “cross-
over closure” (CC) method under various matching criteria. Accordingly, for a 
given set S of strings, and a fi xed 1 ≤ r ≤ l, applying the construction method 
on S, only holes can be constructed that are “crossed” combinations of bits in S. 
For  example, assuming the string length, l = 4, rcb = 2, and for three self-strings 
s1 = 0110, s2 = 1010, and s3 = 1100, it is possible to construct holes h1 = 1110 and 
h2 = 0100 as follows (Figure 4.4):

Th ese examples have shown that the CC is a proper subset of the possible strings, 
and holes can be generated by the genetic algorithm’s crossover operator for a set of 
bit strings, S. Also r-chunk matching rule can be viewed as a generalization of the 
rcb matching rule, which is related with the concept of CC.
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In another work, Stibor et al. (2004) developed a deterministic algorithm to 
generate all possible detectors using the r-chunk matching rule. Such a detector 
set is called a “perfect detector set,” Dperfect, which contains a minimal number of 
detectors that recognize all elements in U \S, where U is the representation space 
and S is the self-set (assuming all self-strings are included in S). Th e perfect detector 
set does not solve the problem of the holes. Instead, it clarifi es the fact that holes are 
impossible to correct even when the complete self-set and proper matching rule are 
given. Th e algorithm uses a hash table H data structure to insert, delete, and search 
effi  ciently Boolean values, which are indexed with a composite key of r-chunk string 
concatenated with detector position p. It is divided into three phases. Th e total 
space size is O(|∑|r). Th e time complexity of the entire three phases is

 O((l − r) ⋅ |∑|r) + O( |S| ⋅ (l − r + 1)) + O( |∑|r) = O( |∑|r) 

Th e average number of generable detectors, depending on a self-set S, r-chunk 
length r, and alphabet size ∑ was estimated as
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However, it is hardly possible to have perfect coverage as for any string representa-
tion, but a matching rule with variable threshold may possibly fi ll the holes better.

4.5  Empirical Analysis: Binary Matching 
Rules and Detector Coverage

Th e original NS algorithm (described earlier) is very general and should work with 
any representation space and matching rule. It is clear that the algorithmic effi  ciency 
of generating good detectors varies with the type of representation space  (continuous, 
discrete, hybrid, etc.), the detector representation, and the process that determines 
the matching (rule) ability of a detector.

Gonzalez et al. (2003a) analyzed and compared the eff ect of diff erent binary 
matching rules (described in Chapter 3) in NS: r-contiguous matching, r-chunk 
matching, Hamming distance matching, and its variation “Rogers and Tanimoto 
(R&T) matching” to establish guidelines in selecting the matching rules for NSAs. 
Experiments were carried out on a two-dimensional space (unit square) using 
 diff erent encoding schemes: binary and Gray encoding, and observed the eff ect of 
matching rules on the area covered by individual detectors.

Experiments showed that the binary matching rules were not able to produce 
a good coverage of the nonself space. Th e r-chunk matching rule generated 
 satisfactory coverage of the nonself space (Figure 4.5b); however, the self-space was 
covered by some lines resulting in erroneously detecting the self as nonself (false 
alarms). Th e Hamming-based matching rules generated an even more  stringent 
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result  (Figure 4.5d) that covers almost the entire self-space. Th e parameter r, which 
works as a threshold, controls the detection sensitivity. A smaller value of r gener-
ates more general detectors (i.e., covering a larger area) and decreases the detection 
sensitivity. However, for a more complex self-set, changing the value of r from 8 
(Figure 4.5b) to 7 (Figure 4.5c) generates a coverage with many holes in the nonself 
area, and still with some portions of the self covered by detectors. Th erefore, this 
problem is not with the setting of the correct value for r, but a fundamental limita-
tion of the binary representation that is not capable of capturing the semantics of 
the problem space. Th e performance of the Hamming-based matching rules is even 
worse; it produces a coverage that overlaps most of the self-space (Figure 4.5d).

In summary, advantages of string representation are (1) any data can be  eventually 
represented in binary form; (2) it is easy to analyze; and (3) it is good for textual 
or categorical information. Its limitations include the comprehensibility problem 
(diffi  cult to interpret in the original problem space), the potential  scalability issue 
(string size and matching threshold value), and some diffi  culty in combining with 
other techniques (conventional algorithms, machine learning, etc.). Accordingly, 
the representation and matching rule for an NSA needs to be chosen in such a way 
that it accurately represents the data proximity in the problem space.

4.6 Real-Valued Negative Selection Algorithms
Th e real-valued representation encodes each data item as a vector of real numbers, 
where, the representation (self/nonself ) space, U corresponds to a subset of Rn; 
only samples of one class are assumed. Specifi cally, such samples are considered to 
be representative data from the self-space. Th en, based on these samples, a model 
of the self-set is built. For instance, the self-set can be considered to consist of all 
points within a certain distance from each sample point.

Diff erent versions of real-valued negative selection (RNS) algorithms were pro-
posed so far; they include

A heuristic algorithm to generate “hyperspherical detectors”
NS with detection rules (an evolutionary algorithm to generate the “hyper-
cube detector”
Randomized RNS (an algorithm for generating hyperspherical detectors 
using random process to optimize the distribution of detectors)
V-detector algorithms
NS with fuzzy detection rules (an evolutionary algorithm to generate “fuzzy 
rule detector”)

Moreover, RNS algorithms can also be classifi ed as (1) the “classical”  generation-
and-elimination strategy (Gonzalez, 2003); (2) evolutionary approaches, for example, 
GA (Dasgupta and Gonzalez, 2002); (3) one-shot randomized algorithm 
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�

�

�
�
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(Ji and Dasgupta, 2004a and 2004b); or (4) optimization with aftermath adjust-
ment  (Dasgupta et al., 2004). Th ese algorithms are described in the following text.

In RNS, a detector is defi ned by an n-dimensional vector that corresponds to 
the center and by a real value that represents its radius; therefore, a detector can be 
seen as a hypersphere in Rn. Th e detector-antigen matching rule is expressed by the 
“membership function” of the detector, which is a function of the detector- antigen 
Euclidean distance and the radius of the detector. Th is approach is similar to the NS 
greedy algorithm (D’haeseleer, 1995b), but in a real-valued representation space.

Th e input to the algorithm is a set of self-samples represented by n-dimen-
sional points (vectors). Th e algorithm tries to evolve another set of points (called 
 detectors) that cover the nonself space. Th is is accomplished by an iterative process 
that updates the position of the detector driven by the following two goals:

Move the detector away from self-points
Keep the detectors separated to maximize the covering of nonself space

Th e logical steps of the algorithm are shown in Figure 4.6, which are described in 
the pseudocode (NS Algorithm 4).

�
�

Figure 4.6 Shows an iteration of the RNS algorithm. This approach is  similar 
to greedy algorithm but uses real-valued space. (From D’haeseleer P. An 
 immuno logical approach to change detection: Theoretical results.  Proceedings 
of the 9th IEEE Computer Security Foundations Workshop, pp. 18–26, 
Los Alamitos, CA, June 1996; D’haeseleer, P. Further Effi cient Algorithms for 
Generating Antibody Strings, Technical Report CS95-3, The University of 
New Mexico, Albuquerque, NM, 1995a.)

For each detector ‘d

Does ‘d  match
any self point?

Yes

Yes

No

No
‘d.age  > ‘t  ? Move ‘d  away

from other
detectors

‘d.age  ++
Move ‘d  away

from self

‘d.age  = 0
Discard ‘d
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Th e parameter r “specifi es” the radius of detection of each detector of fi xed size. 
Accordingly, for a new sample, s is detected by a detector d, if the distance between 
d and s is at most r. Because we do not want the detectors to match self-points, the 
shortest allowable distance for a good detector to the self-set is r. Th erefore, the 
parameter r also specifi es the allowed variability in the self-space.

To determine if a detector d matches a self-point, the algorithm calculates 
the  k-nearest neighbors of d in the self-set. It then calculates the median distance 
of these k neighbors.  If this distance is less than r, the detector d is considered to 
match self. Th is strategy makes the algorithm more robust to noise and outliers.

Th e function µd ( x) is the matching function used for single the detector d. It 
indicates the degree of matching between x, an element of the self/nonself space, 
and d. It is defi ned as

 
�

� �

d

d x
rx e( ) �

− � 2

22
 

Each detector has an assigned age that is increased at each iteration, if it is inside the 
self-set. If the detector becomes old, that is, it reaches the maturity age t and has not 
been able to move out of the self-space, it will be replaced by a new randomly gener-
ated detector. Th e age is reset to zero when the detector is outside of the self-space.

Th e parameter η represents the size of the step used to move the detectors. To 
guarantee that the algorithm converges to a stable state, it is necessary to decrease 

this parameter at each iteration in such a way that limi → ∞ ηi = 0. Th e following 
updating rule is used:

 
� � �

i o
ie� �

 

NS Algorithm 4 describes an RNS algorithm.

NS Algorithm 4: Real-valued-negative-selection, rns(r,η,t,k)
  r radius of detection
  η  adaptation rate, i.e., the rate at which the detectors will adapt on 

each step
  t once a detector reaches this age it will be considered to be mature
  k number of neighbors to take into account

 1 while stopping criteria is not satisfi ed
 2  for each detector d do
 3   NearCells ← k-nearest neighbors of d in the Self set
 4   NearCells is ordered with respect to the distance to d
 5   NearestSelf ←median of NearCells
 6   If dist (d, NearestSelf) < r Th en

 7    

 

dir
c NearCells d c

c NearCells d c
←

−
−

∑
∑

( )

( )
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 8   If age of d > t Th en  detector is old
 9  Replace d by a new random detector
10  else
11   Increase age of d
12   d ← d + η. dir
13  endIf
14  else
15  age of d ← 0

16  dir
d d d

d d d
dd Detectors

dd Detectors

�
�

�

( )( )

( )( )


 � 



 � 








∈

∈

∑
∑

17 d = d + η. dir
18  endIf
19 endFor
20 endWhile

4.6.1 Detector Generation Using Evolutionary Algorithms
Dasgupta and Gonzalez (2002) used a GA to evolve a set of rules (detectors) to cover 
the nonself space (Figure 4.7). Th e self-space consisted of a set S, a subset of [0, 1]n; 
accordingly, a data point was represented as a feature vector x = (x1, …, xn) in [0, 1]n. 

A detection rule was considered to be good if it did not cover any positive 
sample (the self) and it covered a large area of the nonself space. A detector was then 
represented as a “detector rule” in the form

 Ri : if condi then nonself, for i = 1, …, m 

where condi = X1 in [lowi
1, highi

1] and … and Xn in [lowi
n, highi

n],

Figure 4.7 Generation of negative detection rules using a GA.
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where m is the number of detection rules and n the dimension of the Euclidean 
space, specifi cally, the unit n-dimensional. Th us, the condition part of each rule 
defi nes a hypercube on In. Th e evolution algorithm then evolved a set of rules and 
each chromosome encoded the condition part of a rule. Accordingly, in a two-
dimensional space such detectors defi ned a rectangular shape as shown in Figure 4.8.

In this approach, a level of abnormality concept was introduced, which may 
be thought of as a degree of membership in the nonself set; instead of only two 
values to determine self or nonself, several discrete values were considered. Th us, 
a variability parameter v that represented the level of variability of a nonself point 
from normal (self) data was defi ned. Although v itself was not considered as part of 
the chromosome, diff erent values of v were used to generate a hierarchical negative 
detection rules, which were grouped into diff erent levels. Consequently, rules at 
level 1 contained rules at level 2, rules at level 2 contained rules at level 3, and so on. 
Th is is true because points within a certain distance s from self-samples can match 
rules at level k, whereas rule at level k + 1 can match self-points that are within 
a distance higher than s. Also, v can be interpreted as the radius of a hypersphere 
around each self-sample (Figure 4.8). 

Th e fi tness for a rule R was defi ned as

 fi tness(R) = volume(R) − α × num-self-samples(R) 

where num-self-samples(R) denotes the number of self-samples that match rule 
(detector) R, in other words, the number of self-samples that matches the subspace 
defi ned by rule R; volume(R) denotes the volume of the hyperrectangle represented 
by R, mathematically,

 

volume R high lowi i
i

n

( ) ( )�
�

�
1

∏
 

Figure 4.8 Self/nonself space. (a) Approximation of the nonself space by 
rectangular interval rules. (b) Levels of deviation from the normal in the 
nonself space.
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In this case, a new sample x was considered to match (satisfy) a rule R, denoted by 
x ∈ R if the hypersphere with center at x and radius v intercepts the  hyperrectangle 
defi ned by R. Th e parameter α denotes a coeffi  cient of sensitivity, which for a  specifi c 
rule determines the trade-off  between the volume covered by it and its  interception 
with the self-set. Th us, the total fi tness is calculated as the sum of the fi tness of all 
evolved rules minus the overlapping between the hyperrectangles defi ned by the 
rules.

A “sequential niching” algorithm was used to evolve a set of suitable rules to 
cover the nonself space (Dasgupta and Gonzalez, 2002). In this case, several runs 
of the evolu tionary algorithm were needed, and a suitable rule was obtained at the 
end of each run. Gonzalez and Dasgupta (2002) used a “deterministic crowding 
(DC)  niching technique,” which performed better in covering the complementary 
space; thus, a smaller set of rules was obtained to estimate the amount of devia-
tion more precisely. Th is new niching technique also allowed the generation of 
multiple rules in a single run instead of multiple runs as in “sequential niching.” In 
the DC niching approach, a distance measure between two detectors c and p was 
defi ned as

 
dist c p

volume p volume p c
volume p

( , )
( ) ( )

( )
�

� ∩

 

where c and p are child and parent individuals, respectively. Note that this distance 
measure is not symmetric because it gives more importance to the area of the parent 
that is not covered.

Th e pseudocode for negative selection with detection rules (NSDR) algorithm 
using the DC are given in the following.

NS Algorithm 5: NS-detector-rules (S’, num_levels,{v1, …, vnumLevels})

Input: S: set of self samples

num_levels:  number of deviation levels

{v
1, …, vnumLevels}: allowed variability for each level

Output: Change Detection rules.

 1 For i  = 1 to num_levels
 2  initialize population with random individuals
 3  For j = 1 to num_gen
 4  For k = 1 to pop_size/2
 5   select two individuals, (parent1, parent2), with uniform prob-

ability and without replacement
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 6   apply crossover to generate an off spring (child)
 7   mutate child
 8    If dist (child, parent1) < dist(child, parent2) ^ fi tness(child) >  

  fi tness(parent1)
 10    Th en parent1←child
 11    ElseIf dist (child, parent1)>= dist(child, parent2)
 12    ^ fi tness(child) > fi tness(parent2)
 13    Th en parent2 ← child
 14   EndIf
 15   EndFor
 16  EndFor

 17 extract the best individuals from the population and add them 
to the fi nal solution

 18 EndFor

4.6.2 Negative Selection with Fuzzy Detection Rules 
Gonzalez (2003) applied fuzzy rules instead of crisp rules for detectors. Th at is, 
given a set of self-samples, the algorithm will generate fuzzy detection rules in the 
nonself space that can determine if a new sample is normal or abnormal. Results 
have shown that the use of fuzzy rules improves the accuracy of the method and 
produces a measure of deviation from the normal that does not need to partition 
the nonself space.

A fuzzy detection rule has the following structure:

 
If thenx T x Tn n1 ∈ ∧ ∈1 … non_self

 

where
(x

1, …, xn) = element of the self/nonself space being evaluated
Ti = fuzzy set

^ = fuzzy conjunction operator (in this case, min)

Th e fuzzy set Ti  is defi ned by a combination of basic fuzzy sets (linguistic values).

Given a set of linguistic values S = {S1, …, Sm} and subset T Si
� ⊆  associated to 

each fuzzy set Ti, 

 

T Si j
S Tj i

�
∈�
∪

 

where ∪ corresponds to a fuzzy disjunction operator (here addition operator) 
defi ned as follows:

 � � �A B A Bx x x∪ ( ) min{ ( ) ( ), }� � 1  
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An example of fuzzy detection rules in the self/nonself space with dimension n = 3 
and linguistic values S = {L, M, H} is as follows:

 
If thenx L x L M x M H1 2 3( ) ( ) non_self∈ ∧ ∈ ∪ ∧ ∈ ∪

 

Here, the basic fuzzy sets correspond to a fuzzy division of the real interval [0.0, 1.0] 
using triangular and trapezoidal fuzzy membership functions. Figure 4.9 shows an 
example of such a division using fi ve basic fuzzy sets representing the linguistic 
values “low,” “medium-low,” “medium,” “medium-high,” and “high.”

Given a set of rules {R1, …, Rk}, each one with a condition part Condi, the 
degree of abnormality of a sample x is defi ned by

 
�non_self ( ) max { ( )}

, ,
x Cond x

i k
i�

�1 …  

where Condi (x) represents the fuzzy true value produced by the evaluation of Condi  
in x and µnon_self (x) represents the degree of membership of x to the nonself set; 
thus, a value close to 0 means that x is normal and a value close to 1 indicates that 
x is abnormal.

To generate the fuzzy rule detectors, the same evolutionary algorithm described 
in Section 6.1 (NSDR with DC) was used. However, the use of fuzzy rules does 
not require the generation of rules for diff erent levels of deviation. Th us, all the 
detection rules are generated in a single run.  However, the use of fuzzy rules 
requires changes to the chromosome representation, fi tness evaluation, and dis-
tance calculation, which are discussed in the following text.

Each individual (chromosome) in the GA represents the condition part of a 
rule because the consequent part is same for all rules (i.e., the sample belongs to 
 nonself). As described earlier, a condition is a conjunction of atomic conditions. 

Figure 4.9 Partition of the interval [0, 1] in basic fuzzy sets.
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Each atomic condition, xi∈Ti, corresponds to a gene in the chromosome that is 
represented by a sequence (si1, …, sim) of bits, where m = |S| (the size of the set of 
linguistic values) and sij = 1 if and only if Sj ⊆ Ti. Th at is, the bit sij is “on” if and 
only if the corresponding basic fuzzy set Sj is part of the composite fuzzy set Tj. 
Figure 4.10 shows the structure of a chromosome which is n × m bits long (n is the 
dimension of the space and m the number of basic fuzzy set). Hamming distance 
was used as a distance measure. For example, if the sj

i bit (see Figure 4.10) in both 
parent and child fuzzy rule detectors is set to 1, both individuals include the atomic 
sentence xi ∊ sj, that is, they use the jth fuzzy set to cover some part of the ith 
attribute. Th en, the more bits the parent and the child have in common, the more 
common area they cover.

Th e fi tness of a rule Ri is calculated by taking into account the following two 
factors: the fuzzy true value produced when the condition part of a rule, Condi, is 
evaluated for each element x from the self-set:

 
selfC ering R

Cond x

Self
ix Selfov ( )
( )

�
∈∑ 




 
  

Th e fuzzy measure of the volume of the subspace represented by the rule:

 

volume R measure Ti
i

n

( ) ( )�
�1
∏

 

where “measure” (Ti) corresponds to the area under the membership function of 
the fuzzy set Ti.

Th e fi tness is defi ned as follows:

 fi tness(R) = C ⋅ (1 − selfCovering(R)) + (1 − C) ⋅ volume(R) 

where C, 0 ≤ C ≤ 1, is a coeffi  cient that determines the amount of penalization 
that a rule suff ers if it covers normal samples. Th e closer the coeffi  cient to 1, the 
higher the penalization value (values between 0.8 and 0.9 were used).

Th e pseudocode in NS Algorithm 6 show the details of Negative Selection 

with Fuzzy Detection Rules (NSFDR) implementation; the time complexity of the 
 algorithm is O(num_gen ⋅ pop_size ⋅ |Self ’ |).

Figure 4.10 Structure of the chromosome representing the condition part of a 
rule. Each gene represents an atomic condition xi∊Ti and each bit si

j is “on” if and 
only if the corresponding basic fuzzy set Sj is part of the composite fuzzy set Tj.
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NS Algorithm 6: NS-fuzzy-detector-rules (Self )

Input: Self ’: set of self samples; Fuzzy Membership function

Output: A Fuzzy Rule set as Negative Detectors

  1 initialize population with random individuals
  2 for j = 1 to num_gen
 3   for k = 1 to pop_size/2
 4     select two individuals, (parent1, parent2), with uniform 

probability and without replacement
 5    apply crossover to generate an off spring (child)
 6    mutate child
 7    if dist(child, parent1) < dist(child, parent2)

   ^ fi tness(child) > fi tness(parent1)
 8    then parent1 ← child
 9    elseIf dist(child, parent1) ≥ dist(child, parent2)
10    ^ fi tness(child ) > fi tness(parent2)
11    then parent2 ← child
12    endIf
13   endFor
 14 endFor
 15 Take the better individuals from the population and add them to 

the detector set

4.6.3  Randomized Approaches in Generating 
(Fixed Size) Spherical Detectors

Gonzalez et al. (2003b) proposed a randomized approach based on “Monte Carlo 
integration” (Monte, 1995; Liu, 2001) to generate negative detectors. Th is approach 
assumed that all detectors had the same shape and size; particularly, hyperspheres 
of a fi xed radius in an n-dimensional space were considered. Particularly, (1) Monte 
Carlo integration was used to estimate the volume of the self and nonself space, 
and it is also used to compute a rough estimate of the number of detectors needed 
to cover the nonself space; then (2) “simulated annealing” was used to optimize the 
detector distribution in the nonself space. Because the detectors are hyperspheres, 
the volume of the eff ective coverage of a detector was approximated as the volume 
of the inscribed hypercube:

 
V r
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n
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Gonzalez et al. (2003b) assumed that the self-set Ŝ consisted of a collection of 
neighborhoods around each one of the self-sample points, S′; each neighborhood 
is defi ned as a hypersphere of radius rs around a sample point. Th erefore, the set Ŝ 
may be defi ned as

 Ŝ : = {x ∈ U : there exists s in S′, ||s – x|| ≤ rself} 

and the volume of Ŝ is described as

 
V x dx

S SU :� χ∫ ( )
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x S
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Monte Carlo methods are well-established techniques with a strong mathematical 
foundation used for volume estimation, and they are being used here to estimate 
the coverage of a set of detectors. Also, this technique is useful in probabilistically 
estimating the overlap among detectors with diff erent shapes, which otherwise will 
be cumbersome if a geometrical approach is followed.

Figure 4.11 illustrates the generation of hyperspherical detectors using Monte 
Carlo integration and simulated annealing.

Figure 4.11 A heuristic algorithm to generate hyperspherical negative detectors.
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4.6.3.1 Estimation of Detector Volume and Overlap

Let X = [0, 1]n be the system state space and A ⊆ X a subset of X, whose volume 
needs to be computed. Also, a typical assumption is that it is hard to compute the 
volume of A analytically. If x is drawn from a uniform distribution on X, then 
P (x ∈ A) = volume of A, denoted as V(A) because V([0, 1]n) = 1. Th en the problem 
of computing V(A) can be seen as the problem of estimating P(x ∈ A).

Th erefore, let U be a random variable uniformly distributed on X, denoted by 
U ∼ U(0, 1). Let U1, U2, …, Un be a sequence of “independent and  identically 
distributed (iid)” U(0, 1) random variables. Th en, the sequence X1, X2, …, XN of 
random variables, generated as follows, are uniformly iid in [0, 1]n, denoted by Xi 
∼ U([0, 1]n).

 X1= (U1, …, Un) 

 X2 = (Un+1, …, U2n) 

…

 XN = (U(N−1)n+1, …, UnN) 

To estimate the volume of A, generate a sequence X1, X2, …, XN, as defi ned earlier. 
Th en, an estimation of the volume of A may be computed as

 
V A

i X A
N
i

( )
{ : }

�
∈

 

where |·| denotes the number of points in a set. In other words, the volume of A is 
estimated as the fraction of points that lie in A. An estimate of the volume of A can 
also be expressed as

 
V A

Y
N

ii

N
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with Yi = IA (Xi), where IA(·) denotes the indicator function of set A. Y1, Y2, …, 
YN is a sequence of independent Bernoulli random variables, with P(Yi = 1) =
P X dx dx V Ai nA

( ) , , ( ).� �… …1∫∫
Th e main advantage of this method is that it is possible to calculate a confi dence 

interval for the estimated volume V̂ (A) as follows. To estimate the volume with a 
confi dence of (1 − α), using the “Chernoff  bound,” it can be shown that if
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However, as the dimensionality increases V(A) approaches zero exponentially 
quickly, which will require a sample size exponentially large. Nevertheless, in many 
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practical applications, dimensionality is such that reasonably small sample sizes are 
suffi  cient.

Monte Carlo integration was used to estimate VŜ  by generating m uniformly 
distributed random sample points and calculating an estimate of VŜ  as
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S ii
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where xi, i = 1, ..., m, is the sequence of the sample points. Th e interval of confi -
dence of such an estimate can be calculated for a given allowed error. Particularly, 
an interval of confi dence equal to 0.998 was considered; therefore, the correspond-
ing allowed error was calculated from the right-hand side of the inequality in the 
following equation:
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Once an estimate of the volume of self-space has been calculated, and an estimation 
of the eff ective coverage (volume) of a detector has also been computed, an estimation 
of the number of detectors necessary to cover the nonself space can be obtained.

Simulated annealing was used to fi nd a good distribution of the detectors. Th e 
set of initial detectors is generated at random; subsequently, detectors are iteratively 
redistributed to approach the optimal distribution. Th is process was done to opti-
mize an “objective function” C(D) that measured the coverage of a set of detectors 
D. Th us, C(D) is defi ned as

 C(D) = Overlapping(D) + β × SelfCovering(D), 

where D = {d1, …, dnumab
} is a set of detectors (antibodies); numab is the number of 

detectors in D; overlapping(D) is a function used to calculate the overlap between 
the detectors in D defi ned as
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and “SelfCovering” is a function that is used to “penalize” a detector when it 
matches any self-sample, and it is calculated as
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4.6.4  An Iterative Approach in Generating 
(Variably Sized) Negative Detectors

Dasgupta et al. (2004) used real-valued representation on [0, 1]n, but it introduced a 
diff erent way to generate hyperspherical negative detectors. Th is approach is  similar 
to NSMutation (Ayara et al., 2002) but in real-valued space. At the  beginning, an 
initial population of candidate detectors is generated at random. Such  detectors 
then mature through an iterative process. In each iteration, the radius of each 
detector is calculated as rd = D − rs, where rs is the variability around a self-point 
(see Figure 4.12a).

During an iterative process, detectors are moved away from self-input data and 
the other existing detectors. During this process, the detectors are ranked accord-
ing to their coverage. Th e larger detectors are considered better fi t and selected to go 
to the next generation. Th e smaller detectors are discarded and replaced with clones 
of the better-fi t detectors. A clone of a detector is generated by moving the center of 
the original detector by a fi xed distance to its proximity. In addition, new random 
detectors are introduced to explore new areas of the nonself space. Th e detector 
generation process terminates when a set of mature detectors that can provide sig-
nifi cant coverage of nonself coverage are evolved.

Let d = (c, rd) be a detector. During the generation stage, the center of a detec-
tor is moved according to the following equation:

 
c c dir

dir
new � � �

� �  

Figure 4.12 The computational steps used during the detector maturation 
process are illustrated as follows: (a) shows a way to calculate and update 
the radius of a detector; (b) if a candidate detector overlaps with an existing 
 detector (or self-points), then the candidate detector (i.e., its center c) is moved 
in the opposite direction to its nearest neighbor detector; (c) given a mature 
detector, a clone is created at a distance equal to its radius, and the direction 
where it is created is selected at random.
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where dir = c − cnearest is the direction in which the center is moved; cnearest is the 
center of either the nearest detector or the nearest self-point (see Figure 4.12b). In 
contrast, cloning of a better-fi t detector is described by

 
c c r dir

dir
clone old old� �

� �  

where cclone is the center of a detector clone and cold and rold are the center and radius 
of the original detector, respectively. Because the detectors have hyperspherical 
shapes, overlap is necessary to cover the continuous nonself space (see Figure 4.12c). 
However, detectors are evaluated by the eff ective coverage, which is computed as 
their actual volume, but excluding overlap with other detectors (see Figure 4.13).

Th e overlapping measure of a detector d is computed as the sum of its overlap 
with the rest of detectors as
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w(d, d′) is the overlap measure between two detectors and m is the dimension of 
the feature space. Th is measure estimates the volume of the overlapped region.

Th erefore, the following parameters are used during the detector generation 
process:

rs =  threshold value of a self-point (a point at a distance greater than or equal 
to rs from a self-sample is considered to be as part of nonself)

α = parameter used to specify the off set when a detector is moved
ξ = maximum allowed overlap

�

�
�

Figure 4.13 The overlap between two detectors d and d′ is computed in terms 
of the distance (D) between their centers (c, c′) and radii (rd, rd′).
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4.6.4.1 Testing Process

Th e detection process is straightforward—the generated detectors are matched with 
new samples in test datasets. If a sample pattern, x is activated by (i.e., lies inside the 
recognition hypersphere of) a detector y = (c, r), then an estimated distance from 
x to the self-set is computed as µ(x, y) = r-dist(x, c), where dist(x, c) is the distance 
between sample pattern x and the center of detector y. Th en, the degree of abnor-
mality A(x) of a matched pattern x is computed as the minimum of µ(x, y) among 
all activated detectors, y, that is,

 A(x) = min{µ(x, y)| y is activated by x} 

Figure 4.14 shows the fl ow diagram of the iterative approach of generating variable-
sized negative detectors.

Figure 4.14 Flow diagram shows the steps of the variable-sized detector 
generation.
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4.6.5 A Statistical Method: V-Detector Algorithm
Ji and Dasgupta (2004a, 2004b) proposed a new RNS algorithm called  “V-detector,”  
which has two main features as follows:

Variable-sized detector to achieve large coverage of nonself space with limited 
number of detectors
Estimation of the coverage using the generation process itself

Th is algorithm uses the conventional generate-and-test strategy of NS in a real-
valued representation of data space on [0, 1]n. Detector generation is performed by 
randomly generating a set of uniformly distributed random samples on In as possible 
centers of the detectors. If a point lies inside the self-set or it has already been covered 
by existing detectors, it is simply discarded. Also, the algorithm keeps track of the 
failed attempts to generate new detectors by such random points, which is further 
used to estimate the current coverage. If a new point either lies inside nonself or has 
not been covered by any detector, then it will give origin to a new detector given 
as a hypersphere whose radius is the maximum radius that will not make it match 
any self-sample. If the number of consecutive failed attempts that fall on a covered 
point reaches a limit m, the generation stage terminates with enough confi dence 
that the coverage is suffi  cient. However, the value of m is not prespecifi ed; it is 
rather decided by the estimated coverage as

 
m �

1
1� �  

where α is the current estimated coverage. Th e preceding equation may be explained 
as follows. If there is one uncovered point in a sample of size m′, an estimate of the 
proportion of uncovered volume is 1/m′, and the estimate of the coverage is then 
given by

 
��

�
� 1

1
�

m  

Actually, if there is no uncovered point in a sample of size m′, there is a bet-
ter than average chance that the actual coverage is larger than α′. Because m is 
decided by  the earlier mentioned equation, after obtaining m consecutive points 
that are all covered, we can estimate that the actual coverage is very likely to be 
at least α.

An RNS with a constant size detector was used to compare it to the V-detector 
NS approach. Th e V-detector algorithm works well as long as the number of detec-
tors is not taken into account. Overlap is not an important issue in the detector 
generation process as long as the new detector contributes to the coverage.

�

�
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Th e main disadvantages of the V-detector approach are as follows:

Th e number of detectors is large compared to similar methods
Larger detectors do not necessarily contribute more to the coverage because 
they may overlap other detectors

NS Algorithm 7: Generate a negative detector set of V-detectors

Input S: set of self samples; 

rs: self radius 
p: target coverage
ψ: signifi cant level for hypothesis testing
Tmax: maximum number of detectors

Output: A set of V-Detectors

 1 n ← max{5/p, 5/(1 − p)} {sample size required for hypothesis testing}
 2 D ← ∅
 3 repeat
 4 t ← 0{counter of “already covered” candidates}
 5 N ← 0{counter of valid candidates}
 6 C ← ∅ {the collection of valid candidates}
 7 x ← random sample from [0, 1]n

 8 r ← ∞
 9 for all si in S do {censored by self samples}
 10 d ← Euclidean distance between si and x
11 if d ← rS then
 12   go to 7
 13  else
 14   r ← min {r, d}
 15  end if
 16  end for
 17 N ← N + 1
 18  for all di in D = {di, i = 1, 2, ….} do {censored by existing 

detectors}
 19   dd ← Euclidean distance between di and x
 20   if dd < r(di) then {r(di) is the radius of detector di}
 21    t ← t + 1

 

22

    

z t
np p

np
p

→
( )1 1�

�
�

 23    if z > z then
 24      return D

�
�
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 25     else
 26      go to 31
 27     end if
 28    end if
 29   end for
 30 C ← C ∪ < x, r > {save a new candidate}
 31 if N = n then
 32   D ← D ∪ C
 33   go to 4
 34  else
 35   go to 7
 36 end if
 37   until |D| = Tmax {Exception case: too many detectors to handle}

4.6.6 Multishaped Negative Detector Generation
Th is algorithm extends the model of RNS by incorporating multiple hypershape 
(hypersphere, hyperrectangle, or hyperellipse) detector representation in the unit 
hypercube [0, 1]n (Balachandran et al., 2007). Th ese detectors are evolved applying 
a “structured genetic algorithm” (st. GA) with a niching technique for guiding the 
search. A st. GA is a particular form of evolutionary algorithm, which incorporates 
redundant genetic material controlled by a gene activation mechanism (Dasgupta 
and McGregor, 1994). It utilizes multilayered genomic structures (hierarchical 
chromosome) in which genes can be either active or passive (see Figure 4.15). An 
activation mechanism enables and disables the encoded genes, and high-level genes 
activate or deactivate sets of low-level genes. Th e redundancy is used to maintain 
genetic diversity to explore diff erent areas of the parameter space.

In this work, a structured GA gene with a two-level representation is used, 
where the level 1 gene set holds the control information that either activates or 

Figure 4.15 Generalized representation of a chromosome with n different 
gene sets.
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deactivates genes at level 2. Any gene set at level 2 can be expressed for fi tness mea-
sure (shown in Figure 4.16).

Although each individual (chromosome) encodes multiple shapes, namely, 
hypersphere, hyperrectangle, and hyperellipse, it expresses only one shape in the 
“phenotypic space.” Accordingly, “hypersphere genes” indicate the hypersphere 
n-dimensional  center c and radius R, “hyperrectangle genes” hold information 
of the two points that specify the minimum and maximum coordinates in each 
 dimension (e.g., the lower-left and upper-right corners of a rectangle in two dimen-
sions), and “hyperellipse genes” contain its n-dimensional center ω, n semi-axes 
lengths li, and a square “orthonormal matrix V” of size n × n, which specifi es the 
orientation of the hyperellipse.

Th us, each detector shape, d in n-dimensional unit hyperspace is represented as

Hypersphere, d(c, r), with the center and the radius
Hyperrectangle, d[mini, maxi] for each i = 1, 2, …, n dimension
Hyperellipse, d(p − ω)T A(p − ω) < 1, where A = VΛVT and Λ = (λi,j) is an 
n × n diagonal matrix such that λi i = 1/li2

Accordingly, a sample (with center x and variability v) forming the hypersphere s(x, v) 
is considered matched (using some distance measure dist(·)) by a detector, d of shape

Hyper-sphere-shaped detector if dist(c, x) < (v + r)
Hyper-rectangle-shaped detector if the circumscribed hypercube around the 
sample hypersphere intersects the detector

�
�
�

�
�

Figure 4.16 A single chromosome having a high-level control and low-level 
parameters encoding three different hypershapes: hyperspheres, hyperrectangles, 
and hyperellipses.
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Hyper-ellipse-shaped detector if the closest point of the sample hypersphere 
to the center of the hyperellipse is inside it as shown in Figure 4.17 (Shapiro 
et al., 2005).

A number of runs of the evolutionary algorithm are required for a given self-set 
to generate a population of feasible detectors to cover the nonself space. Th en, the 
best detector is selected to be added to the detector set, D. Figure 4.18 presents a 
pseudocode for the “evolutionary detector generation.”

Each time a new detector is added to the detector list, the list is sorted in descend-
ing order based on coverage. Th e coverage is computed using a Monte Carlo esti-
mation as follows: each detector is evaluated against a sequence of random points 
uniformly distributed in [0, 1]n to measure the percentage covered; the matched 
points are subsequently removed from the list. If any of the current detectors has 
an eff ective coverage of zero, it is assumed that the contribution of this detector is 
negligible and it is thus eliminated from the detector list.

�

Figure 4.17 Determining the overlap of a hyperellipse detector with the 
self-set.
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Figure 4.18 An evolutionary algorithm to generate multishaped detectors.
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A detector, D provides a better coverage if the volume of D is as large as possible, 
while minimizing the overlap of D with S (the self-set) and the Detectors Set. Th us, 
the “fi tness function” is defi ned as

 fi tness(D) = eff ective-coverage(D) − C(m) × m 

 eff ective-coverage(D) = V̂ (D) − β 

 

C m h m
S

m C m m( ) tan
ln

� � � �






if 0, and ( ) 0 if 0

 

where V̂ (D) is an estimate of the volume of D, β an estimation of the net overlap 
of D with the detector set, m the number of self-points that D matches, and C(m) 
a “penalization factor” computed taking into account the number of self-points 
that D matches. Th e estimates of V̂ (D) and β are obtained using a “Monte Carlo 
technique.”

Balachandran et al. (2007) used tournament selection, two point crossover, 
and bit fl ip mutation in st. GA implementation. Th ese operators are applied to 
each component of each gene of the chromosome. A specifi c mutation operator was 
used on the hyperellipse orientation matrix V: column vectors Si and S j, 1 ≤ i, j ≤ n, 
are chosen at random, a real value θ is chosen from a “Gaussian distribution” with 
µ = 0 and σ = π/2, and two components of vectors Si and Sj to be mutated are 
picked at random and calculated as
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Each run of the algorithm ends when certain coverage is reached, or when the 
 algorithm fails to increase the coverage above a certain threshold for a certain 
 number of iterations.

Th is work (Balachandran et al., 2007) showed a way to develop a unifi ed frame-
work for generating multishaped detectors in RNS algorithm. Results showed that 
multishaped detectors can provide better coverage compared to any single-shaped 
detectors. Th e uniform representation scheme and the evolutionary mechanism 
used in this work also serve as a baseline to include other shapes for effi  cient cover-
age of nonself space.

4.7  Applicability Issues of Real-Valued 
Negative Selection Algorithms

Real-valued representation seems appropriate if the underlying problem is  continuous 
and can capture some continuous properties in the problem space. Th e paper by 
Ji and Dasgupta (2006) tries to clarify some issues raised on the  applicability and 
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weakness of NSAs, especially those in real-valued representation. Other than the 
general diffi  culties in learning algorithms, such as high dimensionality, there exist 
some issues with RNS, which are as follows:

Because the matching process in an NSA (or any learning algorithms) is 
built on the concept of affi  nity or distance, the results based on some con-
verted discrete data may be fallacious. For example, the converted points will 
be  distributed on separated (parallel) planes in the real space. Th e distance 
within one plane should not be interpreted in the same way as the distance 
between the planes. Th e connotation of being closer or farther apart is not 
the same as in the original data space. Th erefore, the converted real-valued 
data not only fail to contribute to measure the distance or affi  nity between 
two points, they also limit the reasonable choice of a threshold for other fi elds 
in data.
Th e matching rule usually takes the form of a distance measure; selection of 
a specifi c matching rule should be according to the representation and detec-
tor shape.
Detector coverage depends on the interpretation of training data, which in 
most cases are incomplete (one-class classifi cation problem). Th e statistical 
estimate of coverage using random sampling does not take the probability 
distribution of the data to be tested into consideration. Th us, the notion of 
enough coverage is always bias, which depend on how diff erent the actual dis-
tribution is from uniform distribution. Detection rate, in contrast, depends 
on the actual distribution of test data.

Although the issues of NSAs’ applicability is still an open debate, many diffi  culties 
reported in recent years are not related to the RNS algorithm itself. For example, 
the diffi  culty of high dimensionality, decision on optimal control parameters, and 
a good data model of the application domain are all important implementation 
issues for all methods.

4.8 Positive Selection (Detection)
In contrast to NS, “positive detection techniques” are widely used in pattern rec-
ognition, clustering, and other domains, where they generate a set of detectors that 
match self-points (instead of nonself points). In this case, a model of the self-set 
(training data) is used to classify a sample as part of either self or nonself. A simple 
model of a positive detection could be built using a nearest neighbor approach. If a 
point lies in a neighborhood of a sample self-point, then it will be labeled as belong-
ing to the self-set (Figure 4.19).

Generally, a positive detector defi nes the neighborhood by assuming a hyper-
sphere with a certain radius centered on each of the self-points. Moreover, detectors 
can be defi ned in a more sophisticated way by using some clustering algorithm 

�

�

�
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on the self-sample points. Th erefore, a sample point can be classifi ed as belonging 
to a cluster by measuring its distance to it. A measure of the distance from a sample 
to a cluster may be defi ned in terms of the Euclidean distance to the “cluster cen-
troid.” Another way to defi ne such distance is a “normalized Euclidean distance” 
defi ned as

 
dist s K

K
() �

� �
�
�

 

where K is the cluster centroid and σK the standard deviation that represents the 
sparseness of the cluster.

A basic positive characterization approach can be defi ned using a  nearest 
 neighbor criterion. A “crisp characterization,” will classify a feature vector as 
normal or abnormal. However, a “noncrisp characterization” can be considered by 
introducing degrees of “abnormality,” represented by a values in the interval [0, 1], 
with 1 indicating “normal” and 0 “abnormal.” Th us, a function µnonself, defi ned on 
[0, 1]n associate to each feature vector, measures the distance to the nearest self-
sample point. In this case, no additional model of the self-space was considered; 
the self-sample points were considered as the defi nition of the self-sub-space. Th us, 
µnonself is defi ned as

 
�nonself x D x self d x s s self( ) ( , ) min{ ( , ) : }� � ∈

 

where d(x, s) denotes the distance between x and a self-sample point s. Th us, 
D(x, self ) is the distance from x to the closest point in the self-sample set. Other 
distance measures such as a “Minkowski metric” can also be used.

Figure 4.19 PS approaches. The goal of PS is to cover the self-set with an 
appropriate set of detectors.

Self-detectors 

Nonself set 
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Dasgupta and Gonzalez (2002) compared the negative characterization 
approach to a positive characterization method (“kd-tree”). Although the positive 
characterization approach gave more precise results, it was more costly in time and 
space when compared to the negative characterization technique. In another work, 
Gonzalez (2003) made a comparison of “hybrid neuro-immune system” (HNIS) 
and “self-organizing maps” (SOM) for anomaly detection application.

Ji and Dasgupta (2006) used “support vector machine” (SVM) as the positive 
detection technique and compared with the V-detector algorithm. SVM appears 
to have provided more generalization, but the performance primarily depends on a 
suitable choice of the kernel function.

Both PS and NS can be a reasonable choice based on various reasons. An 
 application with a large amount of self-data seems appropriate for NS.

4.9 Negative Database
Th e negative database (NDB; Esponda et al., 2004; Esponda, 2005) is one of latest 
developments in NSAs. Accordingly, the “self” is a database that stores a  collection 
of data records referred to as positive database (PDB), and the  complementary data-
base, NDB, constitutes all possible records that are not in DB. Th e  interesting 
property of this representation concerns the diffi  culty of inferring DB from a given 
NDB, thus, enhancing the privacy of the sensitive information without any 
encryption.

4.9.1 Negative Database Representation
Given an arbitrary set of strings l-length defi ned over {0, 1, *}, where * is the “don’t 
care” symbol, determining which strings are not represented in NDB is an NP-
hard problem. As all the possible strings that are not in DB constitute the NDB, 
NDB = U − DB, where U denotes the universe defi ned over the same alphabet 
(Esponda et al., 2004). A string s is in DB if and only if it fails to match all entries 
in the NDB (Table 4.3).

Table 4.3  Example of a DB, Its Corresponding U-DB, 
and a Possible NDB Representing U-DB

DB (Self) (U-DB) NDB (Nonself)

010 000 *00
101 001 0*1

011 *11
100
110
111
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4.9.2  Representation of Negative Databases 
as Satisfi ability Problems

Esponda et al. (2004, 2007a) show that there is a natural mapping from NDBs 
to the satisfi ability (SAT) problems. For example, an instance of 3-SAT can 
be  represented as the instance of NDB, and this can be done in the following 
manner:

 1. Th e Boolean formula can be written in conjunctive normal form (CNF) and 
can be defi ned over some variables or literals (e.g., xi).

 2. Th is Boolean formula can be mapped to NDB, where each clause  corresponds 
to a negative record in NDB. Each variable or literal in the clause can be 
 represented as

 a. 1 if the literal or variable is appeared as negated
 b. 0 if the literal or variable is appeared as unnegated (xi)
 c. * if the literal is not appeared in the clause
 3. Th e resulting expression returns true for every assignment that is not in the 

PDB, and false for each truth assignment.

In the preceding example (Table 4.4), there are fi ve literals or variables: x1, x2, x3, x4, 
x5. If any literal is present in the clause or Boolean formula, then 0 or 1 is assigned in 
the NDB depending on the negation of variable or unnegated  variable. In  particular, 
if the variable is unnegated then there will be 0 in the NDB; in contrast, if the vari-
able is negated, then there is 1 for that variable in NDB. But if the variable is not 
present in the formula, then an asterisk “*” is assigned for that variable. Th erefore, 
the total number of bits in each of the NDB record depends on the number of 
literals. In the fi rst formula (Table 4.4), x3 and x4 are not  present; therefore, in the 
NDB, “*” is assigned in their positions. Also, x1 and x2 are not negated, therefore 
0 is assigned, whereas x5 is in the negated form, therefore 1 assigned for it.

4.9.3 Approaches to Generate Negative Databases
Esponda et al. (2004) proposed two algorithms for the creation of NDBs: (1) a 
deterministic algorithm and (2) a randomized algorithm. In particular, the fi rst 

Table 4.4 Representation of NDB as CNF

Boolean Formula NDB

(x1 or x2 or x̄5) and 00**1

(x̄2 or x3 or x5) and *10*0

(x2 or x̄4 or x̄5) and *0*11

(x̄1 or x̄3 or x4) 1*10*
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approach is a monolithic model for NDB construction, which is called the prefi x 
algorithm; and the other is called the randomized algorithm, which is a more com-
plex approach for the NDB creation.

4.9.3.1 Prefi x Algorithm

Th e prefi x algorithm is an iterative way of building longer prefi xes of assigned 
values, and demonstrates a simple construction of NDBs having the property of 
isomorphism. Isomorphism is an ideal goal for NDBs because it guarantees no 
false-positives, whereas most probabilistic generators have some tolerance to false-
positives. False-negatives (incorrectly classifying data that is in the positive dataset) 
should be avoided by defi nition. Th is algorithm produces NDB of size O(l |DB|) 
where l is the length of each record in bits (Figure 4.20).

4.9.3.2 Randomized Algorithm

Although the prefi x algorithm given in Figure 4.20 is very simple and generates 
compact NDB, the weakness of this algorithm is that any single positive record will 
have its counterpart represented in the last record of the NDB with only the last bit 
complemented. In larger PDBs, there are no proven hardness properties, and the 
simplicity of the algorithm makes it easy to reverse in many cases.

Th e randomized algorithm by Esponda et al. (2004) presents more complex 
steps for NDB creation. It is a more realistic problem creator because it is probabi-
listic and does not follow any direct sequence of decisions for generating NDBs. Th e 
algorithm’s complexity relative to the prefi x algorithm leads to the intuition of being 

Figure 4.20 The prefi x algorithm. (From Esponda F., S. Forrest and P. Helman. 
Enhancing Privacy through Negative Representations of Data. UNM Computer 
Science Technical Report TR-CS-2004-18, March 2004.) 

Prefix algorithm
Let wi denote an i -bit prefix and Wi a set
of i -length bit patterns.
1.      i ← 0
2.      Set Wi to the empty set
3.      Set Wi+1 to every pattern not present in
         DB s wi+1 but with prefix in Wi
4.      for each pattern Vp in Wi+1{
5.            Create a record using Vp as its prefix
               and the remaining positions set to the
               don t care symbol.
6.            Add record to N D B.}
7.      Increment i by one
8.      Set Wi to every pattern in DB s wi
9.      Return to step 3 as long as i < l.

‘

‘

‘
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“hard to reverse,” but this specifi c algorithm does not provide any properties that 
can be used to prove the empirical performance of any given NDB  (Figure 4.21). 

In Figure 4.21, the main loop generates all prefi xes that are not represented by 
the PDB similar to the prefi x algorithm. It then uses a Pattern_Generate function 
to randomize the wildcards and assign positions in the bit positions at the end of 
the prefi x. Th e algorithm can generate every possible entry that is not a positive 
record. An example of NDBs generated by the preceding two algorithms is shown 
as follows (Table 4.5):

Table 4.5  Column 1 Gives an Example of DB and Column 2 Gives 
NDB Generated by Prefi x Algorithm and Column 
3 Gives NDB Generated by Randomized Algorithm

DB Prefi x NDB Randomized NDB

0011 10** 10**
0101 000* *00*
1100 011* 011*
1111 0010 0*10

0100 0*00
1101 1*01
1110 **10

*110
*010

Figure 4.21 Algorithm B, the randomized NDB algorithm. This generates an 
NDB that is intuitively diffi cult to reverse, but it is not tunable and provides no 
guarantee of “hardness.” (From Esponda F., S. Forrest and P. Helman.  Enhancing 
Privacy through Negative Representations of Data. UNM Computer Science 
Technical Report TR-CS-2004-18, March 2004.)

Randomize_NDB algorithm
Let wi denote an i -bit prefix and Wi a set
of i-length patterns.
1.      i ← [log2( l )]
2.      Initialize Wi to the set of every pattern
         of i bits.
3.      Set Wi+1 to every pattern not present in
          DB s wi +1 but with prefix in Wi
4.       for each pattern Vp in Wi+1 {
5.             Randomly choose 1 ≤ j ≤ l
6.             for k = 1 to j do {
7.                   Vpg ← Pattern_Generate (�(DB ),Vp)
8.                    Insert Vpg in NDB.}}
9.      Increment i by one
10.     Set Wi to every pattern in DB s wi
11.      Return to step 3 as long as i < l.

‘

‘
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Esponda et al. (2006) proposed a distributed NDB model, which not only 
fi xed some properties of the monolithic database but also created some new ones of 
its own. Th e main disadvantage of the model is the size of the database. Because 
one database stores one record, the size of the composite database grows as a linear 
function of the number of positive records.

4.9.4 Operations on Negative Database
Basic database operations such as initialization, insertion, and deletion are used 
to describe the NDB. Th e proposed algorithms for these operations may cause the 
size of the NDB to grow unreasonably. It is important for any implementation to 
control the number of entries that match a particular string. Some operations can 
be described as follows (Esponda et al., 2006):

Insert operation. Th ere are two inputs for this operation: NDB and the string x 
(to be inserted) and outputs an NDB′ database that matches every string 
matched by NDB and every string matched by x.

Delete operation. Th ere are two inputs for this operation: NDB and the string x 
(to be inserted) and outputs an NDB′ database that matches every string 
matched by NDB and removes every string matched by x.

Morph operation. Th is operation takes NDB as input and outputs NDB′ of same 
binary string but both NDB and NDB′ are diff erent as some records of NDB 
are not in NDB′ and vice versa. Th is allows NDBs to have in diff erent repre-
sentations for the same data.

4.9.4.1 Negative Algebra

Th ere are many algebraic operations for NDB such as relational algebra opera-
tions for sets. Th ese operations include negative select, negative union, cartesian 
product, join and intersection, negative cartesian product, and negative join. 
Some of these operations are described as follows (see Esponda et al., 2007b for 
details):

Negative intersection (∩
_

). Th is is just the opposite of the intersection operation 
on the sets, that is, this operation uses De Morgan’s law and will union the 
elements of both the NDB (Esponda et al., 2007b). Th e negative intersection 
can be defi ned as follows:

 
NDB NDB NDB NDB } NDB3 1 2 1� �∩ ∈ ∪ ∈{ { }x x y y
 
 2  

 Table 4.6 illustrates the example of negative intersection (∩– ).
Negative union (∪− ). Th is operation is opposite of the intersection operation 

for sets, where only those strings or records which are common to both 
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input NDBs are placed in the resultant NDB, and can be defi ned as 
follows:

NDB NDB NDB M NDB NDB3 � � �1 2 1 2∪ ∈ ∧ ∈{ , , ( )}z z x y x y x y
 �  

where

Coalesce x y�  =  Two strings x and y of length n coalesce into string 
z iff  x matches y and for all 1 ≤ i ≤

Match xMy : Two strings, x and y, match iff  for all i ((x[i] = y[i]) ∨ 
(x[i] = *) ∨ (y[i] = *))

Th erefore, when the two strings in both databases are exactly the same (compar-
ing each bit of the string, i.e., xMy), then this string is appended into the NDB3, 
for example (Table 4.7).
Negative join. Th is operation results in the NDB, which contains all the strings 

except those that are in the join of two PDBs: DB1, DB2. An example of nega-
tive join is given in Table 4.8.

Table 4.8 Negative Join (  ) of NDB1 and NDB2

NDB1 NDB2 NDB3 = NDB1  NDB2

10** 0*100 10***
011* 1*011 011**
000* *0100 000**

0*100
1*011
*0100

Table 4.7 Negative Union of NDB1 and NDB2

NDB1 NDB2 NDB NDB   NDB  3 1 2� ∪

10** 0*10 0110
011* 1*01 1001
000* *010

Table 4.6 Negative Intersection of NDB1  and NDB2

NDB1 NDB2 NDB NDB   NDB  3 1 2� ∩  

10** 0*10 10**
011* 1*01 011*
000* *010 000*

0*10
1*01
*010
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In summary (as described by Esponda et al., 2006), a properly designed NDB can 
act as a privacy-preserving storage system, which has the following properties:

Hard to reverse. Given an NDB, there should be no algorithm for obtaining 
the positive-image PDB that is more effi  cient than exhaustive search.
Singleton NDB. Each hard-to-reverse entry in NDB represents either a string 
in PDB, or no string at all, that is, reversing the database does not introduce 
“false”-positive entries.
Easy to update. Th ere should be effi  cient algorithms for adding and deleting 
entries from the PDB.
Obfuscated size. Th e size of the positive-image PDB should not be visible from 
the NDB.
Probabilistic. A particular binary string s that belongs to PDB should have 
many possible representations in NDB.

However, Danezis et al. (2007) described an effi  cient implement cryptographic 
hash function to achieve the same functionalities as NDBs with security guaranteed.

4.10 Summary
Th is chapter discusses various elements of NSAs in detail (Ceong et al., 2003; 
 Dasgupta, 1999a,b; Esponda and Forrest, 2002; Kim and Bentley, 2001; Stibor et al., 
2005, 2006). Diff erent NSAs are  characterized by their representation schemes, 
matching rules, and detector  generation processes. Th e detector generation mecha-
nism in NSAs, as described in the original model (Forrest et al., 1994), is a randomized 
algorithm that  generates candidates and then eliminates those that match self- samples 
or training data. Except for the diff erence in the matching rules developed later, 
most NSAs using string  representation have the same or similar detector generation 
process. In  contrast, a few deterministic generation algorithms were also designed. 
In many cases, they were described so as to study the algorithmic complexity and 
 detector coverage analytically (Ayara et al., 2002; D’haeseleer et al., 1996;  Wierzchon, 
2000). Because string representations provide a more convenient platform for such 
analysis, deterministic algorithms are often discussed in such representations. 
Kaers et al. (2003) categorized major detector generation algorithms into two types: 
those built heavily on the assumption of the string representation: linear, greedy, 
and binary template and those relatively independent of the “antibody morphol-
ogy”: exhaustive and NSMutation.

Th e NSAs’ uniqueness and strength can be grouped into two levels. Th e 
 fundamental level includes some features that make this method really special:

No prior knowledge of nonself is required (D’haeseleer et al., 1996).
It is inherently distributable; no communication between detectors is needed 
(D’haeseleer et al., 1996).
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It can hide the self-concept (Esponda et al., 2004). At the other level, it has 
various strengths that may not be totally unique to this method.
Compared with other change detection methods, NSAs do not depend on 
the knowledge of defi ned “normal.” Consequently, checking activity of each 
site can be based on a unique signature of each while the same algorithm is 
used over multiple sites.
Th e quality of the check can be traded off  against the cost of performing a 
check (Forrest et al., 1994).
If the process of generating detectors is costly, it can be distributed to mul-
tiple sites because of its inherent parallel characteristics.
Detection is tunable to balance between coverage (matching probability) and 
the number of detectors (D’haeseleer, 1996).

Some limitations of the string representation in NSA are as follows:

Binary matching rules are not able to capture the semantics of some complex 
self/nonself spaces.
It is not easy to extract meaningful domain knowledge.
In some cases, a large number of detectors are needed to guarantee a desired 
level of detection (Scalability issue).
It is diffi  cult to integrate the NS algorithm with other immune algorithms.
Crisp boundary of self and nonself may be hard to defi ne.

In real-valued representation, detectors are represented by hypershapes in an 
n-dimensional space. Th e algorithms use geometrical heuristics to distribute the 
detectors in a uniform way on the nonself space.

Some limitations of the real-valued representation in NSA are as follows:

Th e issue of geometrical shapes
Th e handling of dimensionality
Th e estimation of coverage
Th e selection of distance measure

Ji and Dasgupta (2006), in a recent study, pointed out that NSAs are not appro-
priate to be used as a general classifi cation method because they use  samples from 
one class in training. Th ere exist inconsistency in the terminology and the assump-
tions used in NSAs to clarify the confusion or misunderstanding in  applicability 
 (Freitas and Timmis, 2003). Compared with binary or string representation, for-
mal  analysis is needed for the genre of real-valued representation.

NSAs play an important role in the research of artifi cial immune systems (AIS). 
Chronological development of NSA and its variants are reported by Ji and  Dasgupta 
(2007).
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4.11 Research Questions
 1. Study the characteristics for matching rules.
 2. How hard is it to fi nd detectors that do not match self with diff erent 

 representations and matching rule?
 3. How many detectors are required providing reasonable protection?
 4. How does the number of detectors scale with size of self?
 5. How to pick l, r, NR, and other parameters in binary NS algorithm?
 6. Develop a suitable test suite for evaluating NS algorithms?
 7. How to address various applicability issues of real-valued NS algorithms?
 8. Develop a real-world application of NDB. Compare the results with other 

methods.
 9. Design and implement a new NDB algorithm.
 10. Use various negative operations (algebra) to implement an effi  cient NDB.

4.12 Review Questions
 1. What are diff erent NSAs? Which is the main goal of these algorithms?
 2. What are the main features of the NS process that occurs in biological 

immune systems?
 3. Which immune natural process is simulated by artifi cial NS?
 4. Write a pseudocode showing the major steps of an NSA.
 5. List some real-world applications where NSAs could be used.
 6. Why only samples from one class are suffi  cient for an NSA?
 7. What are the main stages in an NSA?
 8. Classify the following statements into either describing detector generation 

phase or monitoring/testing/detection phase:
A set of detectors are generated by some randomized process.
Candidate detectors that match any of the self-samples are eliminated, 
whereas a subset of the remaining ones is kept.
Matching rules are based on T cell/antigen affi  nity measures.
Detectors are used to check whether new incoming patterns correspond to 
self or nonself instances.
If an input pattern matches a detector, then it is identifi ed as part of 
nonself.

 9. Give a specifi c problem and representation where a binary representation is a 
better choice than a real-valued vector representation.

 10. What are the advantages of binary representation over real-valued vector rep-
resentation, if any?

 11. What are the advantages of real-valued vector representation over binary rep-
resentation, if any?

�
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 12. What is the major limitation of the random generation approach in the origi-
nal description of the NSA?

 13. What are the two phases of the NS dynamic programming approach described 
in the chapter?

 14. Given l = 4, r = 2 and S1 = 0 0 0 0, S2 = 1 0 0 1, S3 = 0 1 1 0, and S4 = 
0 1 0 1? Could you list the nonself strings as possible detectors?

 15. What are the time and space complexity of the dynamic programming 
approach in negative detector generation?

 16. What are the advantages of the greedy algorithm over the dynamic program-
ming approach?

 17. What does the following statement mean?
  “obtain a better coverage of the string space”
 18. Analyze the following statements:

Generating detectors at random will take exponential time in the set of the 
size of the sample self-set (S) and r matching
Th e dynamic programming approach will run in linear time in the size of 
S and the number of detectors, but grows exponentially in r
Th e greedy approach will also run in linear time in the size of S and the 
number of detectors, and grows exponentially in r

 19. Explain the notion of immunological hole. Why is it an important concept in 
detector generation?

Illustrate with examples (self-set) where holes exist?
Illustrate how the holes can be generated using crossover closure for a 
given set of self-strings.

 20. Explain the main idea behind RNS algorithms.
 21. Explain the main ideas behind the following approaches:

Detector generation using an evolutionary algorithm
Randomized NS
Fuzzy NS
V-detector NS
NSA
Multishaped NS
Combining NS and classifi cation techniques

 22. Mention some applicability issues of binary NSA. Mention some  applicability 
issues of real-valued NSA.

 23. What is an NDB? Mention diff erent NDB algorithms and compare them.
 24. Illustrate with an example to show the equivalence between the NDB and 

CNF. How does it relate to SAT problem?
 25. Mention diff erent operations used in NDB. Illustrate with an example 

 negative algebra, for example, negative union and negative join.
 26. What are the desired properties of an NDB design to use as a privacy-preserving 

storage system?
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Chapter 5

B Cell–Inspired Algorithms

Th is chapter describes clonal selection algorithms and artifi cial immune networks 
(AINs), which are mainly inspired by B cells’ response to antigens. First, the 
main features of clonal selection algorithms and their similarities to evolutionary 
approaches are presented. Th en, continuous and discrete immune network (IN) 
models are discussed. Finally, diff erent versions of IN model are described briefl y.

5.1 Clonal Selection Algorithms
Clonal selection algorithms are developed based on the clonal selection theory 
(Burnet, 1959) proposed nearly 50 years ago. Th e main immunological elements 
used are

Maintenance of a specifi c memory set
Selection and cloning of most stimulated antibodies
Removal of poorly stimulated or nonstimulated antibodies
Affi  nity maturation (hypermutation) of activated immune cells
Generation and maintenance of a diverse set of antibodies

Clonal selection algorithms (De Castro and Von Zuben, 2000), however, are very 

similar to a kind of evolutionary algorithm; namely, evolutionary strategies (Beyer 
and Schwefel, 2002), although they have a diff erent biological inspiration. Clonal 
selection algorithms are also population-based search and optimization algorithms 
generating a memory pool of suitable antibodies for solving a particular problem.
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In clonal selection algorithms, each antibody and antigen is represented by a set 
of attributes {x1, x2, …, xn}. Th us, antibodies and antigens may be represented as 
either n-dimensional points in a metric space such as Euclidean space or use binary 
encoding of the attributes; however, other representations are also used.

Th e antigenic affi  nity of each antibody is typically defi ned based on a  metric, 
usually, the Euclidean distance. Also, some operators are defi ned to introduce 
genetic variation to the antibodies based on their antigenic affi  nities. First, a 
 cloning operator is defi ned to make exact copies (clones) of those antibodies having 
higher  antigenic affi  nities; the higher the antigenic affi  nity, the higher the number 
of clones an  antibody can generate. Th en some genetic variation is introduced to 
these antibodies (through a mutation operator) to allow them for better matching 
with the antigens.

Although several variations of clonal selection algorithms have been  introduced, 
most algorithms have similar features as that of the basic clonal selection algorithm 
(De Castro and Von Zuben, 2000) presented in Figure 5.1 (the diff erent steps of 
the fl ow diagram are shown in Figure 5.2).

During the affi  nity maturation process, when mutated antibodies are added to 
the current population to reselect the best individuals and keep them as the mem-
ory of current antigen, it is necessary to compute the affi  nities of the new antibodies 
toward the antigen; therefore, the whole set of antibodies need to be ranked, and 
subsequently, a selection process needs to be performed.

Pr
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Clone

C

Maturate
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(3)
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(5)
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Figure 5.1 Generic clonal selection algorithm.
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                        2.2. clonal selection and expansion  

     select a subset of antibodies in P with highest

     affinities 

     generate exact copies (clones) of antibodies with

     highest affinities according to their affinities, 

     the higher the affinity, the higher the number of 

     clones 

2.3. affinity maturation
mutate all clones at a rate inversely proportional to

     their affinities with current antigen

     add mutated antibodies to P and re-select the best  

     individuals to keep them as the memory of current 

     antigen 

                          2.4. metadynamics  

clonal selection algorithm( ) 

1. Initialization 

Create initial random population of antibodies P 

2.Antigenic presentation 

while not stopping criterion met do 

          for each antigen do

                        2.1. Affinity evaluation 

                               present current antigen to current antibody 

                               population P 

    for each antibody do 

     compute antibody affinity with current antigen 

replace antibodies with lowest affinities by randomly 

generated new antibodies

Figure 5.2 Description of the generic clonal selection algorithm.
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In Table 5.1, the generic clonal selection algorithm is compared with a basic 
 evolutionary algorithm. It is to be noted that diff erences primarily lie in the 
 terminology used. In clonal selection algorithms, the mechanism to select the  fi ttest 
antibodies is based on their affi  nities with the antigens. Th erefore,  traditional  selection 
mechanisms used in evolutionary computation, such as proportionate selection or 
tournament selection are easily adapted to be used in clonal selection algorithms. In 
evolutionary algorithms, typically, the probability that an individual be selected is 
determined by its fi tness. Th e case is the same for the antibody or antigen affi  nities.

Several versions of clonal selection algorithms (ClonAlg) are proposed by De 
Castro and Von Zuben (2000) and De Castro (2003) and are used to perform 
 pattern recognition and multimodal function optimization tasks. Th e algorithm 
is depicted in Figure 5.3.

Th ere are diff erent versions of clonal selection algorithm; the version of clonAlg 
applied to pattern recognition problems assumes a set of patterns to be recognized 
as input, whereas the version used for optimization assumes an objective function 
to be optimized.

5.2 Immune Network Models
Th e basic IN models (Anderson et al., 1973; Neuman, 1992; Vertosick and Kelly, 
1989) tried to model  network properties of immune cells in the absence of foreign anti-
gens. Th ese immune networks are mostly considered as idiotypic networks (Burnet, 
1957; De Boer and Hogeweg, 1989). Generally, an antibody could be represented as 
a pair (p, e), where p is the antibody’s collection of paratopes and e the set of  epitopes. 
Each antibody has two paratopes and two epitopes, which are the specialized parts of 
the antibody that identify and are identifi ed by other molecules, respectively.

Table 5.1 Clonal Selection Algorithms versus Evolutionary Algorithms

Features Evolutionary Algorithm
Clonal Selection 

Algorithm

Search space Set of chromosomes Set of antibodies
Candidate solution, 
individuals 

Chromosome Antibody

Individual representation Any (strings, real vectors, 
etc.)

Any (strings, real vectors, 
etc.)

Population size Fixed Fixed
Fitness function 
(performance measure)

Fitness based on the 
function

Affi nity

Operators Chromosome selection Clone selection
Mutation Hypermutation
Crossover
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clonAlg( ) 

1) Randomly choose an antigen Agj and present it to all Abs in the repertoire 

AB. 

2) Determine the vector f j that contains the affinity of Agj to all the Abs in AB. 

3) Select the n Abs from AB with the highest affinity, which will form a new

set Ab j
{n} of high-affinity in relation to Agj.  

4) The n selected Abs will be cloned (reproduced) independently and  

proportionally to their antigenic affinities, generating a repertoire Cj of clones: 

the higher the antigenic affinity, the higher the number of clones generated for 

each of the selected Abs. 

5) The repertoire Cj is submitted to an affinity maturation process, which  

mutates antibodies inversely proportional to the antigenic affinity, generating a 

population of mature clones: the higher the affinity, the smaller the mutation 

rate.

6) Determine the affinity f j* of the mature clones Cj* in relation to 

antigen Agj. 

7) From this set of mature clones Cj*, reselect the one with highest 

affinity (Abj
*) in relation to Agj to be a candidate to enter the set of

memory antibodies (Ab{m}). If the antigenic affinity of this Ab in relation 

to Agj is larger than its respective memory Ab, then Abj
* will replace

this memory Ab. 

8) Finally, replace the lowest affinity Ab’s from  Ab j
{r }, in relation to 

Agj, by new individuals in. 

Figure 5.3 The clonal selection algorithm (clonAlg). (From De Castro, L. N. 
and F. J. Von Zuben, in Proceedings of Genetic and Evolutionary Computation 
 Conference (GECCO) 2000, 36–37.)
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Th ese models consider interactions between antibodies and antigens as com-
plementary antigen–antibody matches or among antibodies themselves; however, 
exact matching between antibody and antigen (i.e., between paratope and epitope) 
is not used. Instead, some antibody–antigen matching measure (complementary 
measure) is defi ned such that if its value is below some threshold, the antibody 
does not react to the antigen at all. Binding between an antigen and an antibody 
depends on how well an antibody’s paratopes match an antigen’s epitope; the closer 
this match, the stronger the bind. Also, a similarity or affi  nity measure needs to be 
defi ned to measure how well two antibodies match.

In case of AINs, antibodies and antigens need to be explicitly defi ned, which is 
called a shape–space. Other elements are also to be considered in an AIN model, 
which include

 1. Number of antigen epitopes. Some models consider one epitope, others  consider 
several epitopes.

 2. Number of antibody epitopes. Some models do not consider any epitope at all, 
others consider one or several epitopes.

 3. Number of antibody paratopes. Some models consider one or two paratopes.
 4. Types of binding interaction between antibodies. Some models consider only 

paratope–paratope interaction, only paratope–epitope or both paratope–
paratope interactions and paratope–epitope binding.

When an antibody has one paratope, it can bind to one epitope at a time; but, when 
it has two paratopes, one paratope can bind to an antigen, whereas the other may 

bind to an antibody with a similar epitope to the antigen.
Most AIN applications start with an input dataset that corresponds to a set 

of antigens stimulating an immune network, which goes through a dynamic pro-
cess, until it reaches stability. Depending on the application, either the concen-
tration of each type of antibodies or the structure of the AIN or both are used as 
results.

All models assume an initial confi guration of the IN; in some cases, the initial 
confi guration of the IN is produced at random. Th e IN undergoes a stimulation 
process caused by the set of foreign antigens to the network; however, some models 
consider analyzing the IN’s intrinsic behavior when no antigens are present.

An IN is also represented as a graph, where nodes, edges, and arrows represent 
antibodies, the interactions among them, (see Figure 5.4) and stimulation to the 
AIN by foreign antigens, respectively.

IN models (De Boer, 1989) can be classifi ed into two categories: continuous- 
and discrete models. In continuous models, the immune response is assumed to 
be continuous, as opposed to discrete models where it is in discrete time steps. 
Continuous models are described by a set of diff erential equations, and its purpose 
is mainly in modeling biological phenomenon. However, discrete models are typi-
cally abstract functional models, which are called AINs, and its purpose is to solve 
real-world computational problems.
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5.2.1 Continuous Immune Network Models
Continuous IN models are defi ned as a set of diff erential equations that attempt 
to predict the concentration of a fi nite number of antibodies in the IN at a certain 
time, during or after an immune response. Models based on diff erential equations 
do not focus on the structure of the IN, but on the antibody and foreign antigen 
concentration, although they assume that all antibodies interact with one another 
and the antigens interact with all antibodies as well.

Th e change in the concentration of a specifi c antibody is represented as the sum 
of two terms:

 dxi/dt = ∆xi = internal network dynamics + antigen driven dynamics (5.1)

where xi is the concentration of type i antibody at a given time. Th e fi rst term 
 models the interaction among antibodies, that is, the eff ect of stimulation and 
suppression of antibody paratopes by other antibody epitopes; this term describes 
natural death of antibodies. In contrast, the second term models the stimulation of 
antibodies by antigens.

.

..
...

Antigens 

Antibodies

Figure 5.4 Illustration of an IN. Nodes, edges, and arrows represent antibod-
ies, interaction among them, and stimulation to the AIN by foreign antigens, 
respectively.
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Also, in continuous models, a set of equations are used to predict the concentra-
tion of specifi c antigens and is defi ned as

 dyi/dt = ∆yi = antigen elimination + natural antigen birth or death (5.2)

where yi is the concentration of antigen of type i at a given time t.
Th erefore, one IN model can be distinguished from another by noticing how 

each one of these terms represents the dynamic interaction processes. Diff erent 
models are also characterized by the way they represent antibodies, including the 
number of paratopes, epitopes, and antigens.

A more specifi c form of Equation 5.2 may be given by

 ∆xi = internal interactions − antibody damping + antigen driving (5.3)

where the fi rst term represents the natural dynamics of the idiotypic network as a 
result of antibody–antibody interactions; the second term models the reduction of 
cells in the absence of stimulation by antigens; whereas the third term represents 
the antigenic eff ects.

5.2.1.1 Jerne’s Idiotypical Network

Jerne’s (1974) model (Weisbuch et al., 1990) introduced the following equation to 
describe the change of lymphocytes of a certain type:

 

dx
dt

x f E K t x g I K t k k xi
i j j
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� �

( ) ( )
1 1

1, , , ,∑ ∑ 2

 

(5.4)

where the fi rst term represents the total stimulation of lymphocytes of type i by 
excitatory signals as a sum of excitatory signals received from stimulating lympho-
cytes. Accordingly, f(Ej, Kj, t) is a measure of excitatory signals from idiotypes in 
Ej on a type i lymphocyte at time t. Ki is a constant associated with the strength of 
the affi  nity between lymphocyte of type i and idiotypes in Ej. In a similar fashion, 
the second term expresses the total eff ect of inhibitory signals from other lympho-
cytes on a lymphocyte of type I; thus, Ij expresses a lymphocyte whose combining 
sites recognize idiotypes on type I cells. In addition, k1 is the rate at which type i 
lymphocytes enter the network and k2 is a natural death rate of type i lymphocytes 
in the absence of antigen.

In this model, a diff erential equation describes the change in the concentration 
of lymphocytes of each type. Th us, the network presents a dynamic behavior even 
in the absence of stimulating antigens. To describe the dynamic behavior of a for-
eign antigen, an additional term needs to be included to represent the interaction 

of corresponding type i lymphocyte with external antigens.
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5.2.1.2 Coutinho and Varela’s Idiotypical Network

In Coutinho and Varela’s model (Coutinho, 1993; Varela and Coutinho, 1991), both 
idiotypes bound to a cell surface and free antibodies are considered. Th e  concept 
of network sensitivity for an idiotype is introduced and defi ned as a  function of the 
affi  nity between such idiotype and the network antibodies. Here, mij denotes the 
affi  nity between two idiotypes of type i and j. Th e network sensitivity for the ith 
idiotype is denoted by σi(t) and it is thereby defi ned as

 

�i ij j
j

N

t m f t( ) ( )�
�1

∑
 

(5.5)

fj(t) is the amount of free idiotypes of type i. After a maturation process, specifi c 
B cells generate free antibodies. Th us, a diff erential equation that describes the 
change in the concentration of free antibodies is defi ned as

 

df t
dt

k b t mat t k f t t k f ti
i i i i i i
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(5.6)

bi(t) is the number of idiotypes attached to the surface of B cells.

 

db t
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i i i

( )
( ) ( ( )) [ ] ( )4 5� � �r �

 
(5.7)

Mat() is the lymphocyte maturation function. Prol regulates the probability of 
 proliferation, and meta[i] represents the metadynamics that results from  adding 
resting lymphocytes into the active IN. Both mat() and prol() functions are 
 considered as bell-shaped.

5.2.1.3 Farmer, Packard, and Perelson’s Idiotypical Network

Th is IN model considers the microdynamics of the antibodies and antigens inter-
action. In this case, the model keeps track of the proportions of each type of anti bodies 
among the population. An antibody is considered as a pair of paratope and epitope 
(p, e), which are explicitly represented by binary strings (Farmer et al., 1986).

Th e affi  nity measure takes into account all possible matching by shifting 
 antibody j. Each shift of antibody i is matched against antibody j. Th erefore, the 
matching affi  nity mij between antibodies i and j is defi ned as

 

m G e l k p lij i
l

d

j
k

r

� � � �
��

( ) ( ) 1
11

∑∑ ∧






s
 

(5.8)
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where pj(l) denotes the lth element of the string p representing antibody j (paratope j); 
ei(l + k) denotes the lth element of the kth shift of the bit string e representing anti-
body i (epitope i) (see Figure 5.5). Th e Exclusive OR (XOR) operator is denoted by 
∧; in fact, the ∧ operator is used to compute the Hamming distance between two 
binary strings; d is the minimum distance between the lengths of the two bit strings 
e and p; also, r = d − s. A threshold function is defi ned by G, G(x) > 0 if x > 0, and 
0 otherwise. Note that the affi  nity defi ned in Equation 5.8 is not symmetric.

Th is model (Farmer et al., 1986) defi nes a set of diff erential equations for 
 predicting the concentration of antibodies, based on the interaction between them 
and with foreign antigens. Let N be the number of diff erent antibody types present 
in the IN; similarly, let n be the number of antigen types. Th en the change in the 
concentration of antibodies of type i denoted by xi is defi ned as

dx
dt

c m x x k m x x m x y ki
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(5.9)

Th e fi rst two terms model the interaction among antibodies; particularly, the fi rst 
term represents the stimulation of the paratope of a type i antibody by the  epitope 
of a type j antibody, whereas the second term represents the suppression of a type i 
antibody when its epitope is recognized by the paratope of a type j antibody.

In the third term, yj represents the concentration of antigen of type j. Th e last 
term models the tendency of cells to die when no interaction with other antibodies 
occurs, and k2 is the cell death rate.

An important aspect of this model is that the number of antigen and antibody 
types is considered dynamic. To update the total number of antigen and antibody 
types, a threshold on all their concentrations is defi ned. Th us the interaction of 
an antibody with all other antibodies and antigens is eliminated when the con-
centration drops below such threshold. Th e generation of new antibodies is done 
by applying genetic operators to the paratope and epitope strings using crossover, 
inversion, and point mutation. Th is process is closer to a model of genetic changes 
that occur during cloning than to the one that occurs when new types of antibodies 
are produced in the bone marrow.

Figure 5.5 pj(l) is the lth element of string p representing antibody j (paratope j); 
ei(l + k) is the lth element of the kth shift of the bit string e representing antibody 
i (epitope i); d = 8.

0 0 1 1 0 1 1 0

1 1 1 1 1 10 0 0

k k + l

Antibody

Antibody
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Farmer et al. (1986) reported that the antibodies whose paratopes match 
 epitopes are amplifi ed at the expense of other antibodies. If the suppression and 
stimulation rate are the same (equal to 1 in their work) and k2 > 0, then every 
antibody type will eventually die due to the damping term. However, if k1 < 1, it 
favors the formation of reaction loops; thus, the numbers of loop can gain concen-
tration, fi ghting the damping term. Th e number and lengths of the loops increase 
as N increases. Antibodies that do not recognize other elements are eventually dis-
carded. Farmer et al. (1987) introduced an equation to describe the change in the 
concentration of antigen of type i:
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(5.10)

Th us, Equation 5.10 describes the dynamics of intrinsic antigen elimination.

5.2.1.4 Parisi’s Idiotypical Network

To study immunological memory, a simple IN model, which captures most of the 
qualitative features, was introduced by Parisi (1990). Parisi’s model focuses on the 
behavior of the immune system in the absence of external antigens and attempts to 
fi nd a global functional description of the IN.

Parisi’s model assumes that auto-antibodies of a given antibody are a very large 
set of low responder clones and the connectivity of the IN is very high, and this 
network cannot be partitioned into subnetworks. Th is immune model seems to 
have similarity with the Hopfi eld model (Hopfi eld, 1982). Here, a fully connected 
network is considered, and a connection weight vector that represents the infl uence 
of antibodies on one another is defi ned. Th e concentration of any antibody, in the 
absence of external antigens, is considered to have only two values, either 0 or 1, 
and that the value is greater than 1 in the presence of stimulating antigen. Th e 
dynamics of the network in discrete time is further analyzed.

A matrix Jik, which codes the eff ect of the kth antibody on the ith antibody 
is considered, similar to the synaptic weight matrix in a Hopfi eld network. Th e 
stimulatory eff ect of the network on the ith antibody is thus given by

 

h t s J x ti ij j
j
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(5.11)

with xk(t) = θ[hi(t)], where θ(h) is a step function defi ned as 0 if h is negative, 
otherwise it will be 1. If Jik is positive, then antibody k triggers the production of 
antibody i. In contrast, if Jik is negative, then antibody k suppresses the production 
of antibody i.
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Th e explanation of immunology memory is as follows: assuming that antibody 
Ab1 is produced by modeling the stimulating antigen, the production of Ab1 is 
increased in the presence of Ab2. Th at is, the lifetime of Ab1-producing cells is 
increased and so the population of Ab1-specifi c helper T cells is also increased. 
Th us, Ab2, considered as the image of the stimulating antigen, remains after the 
antigen is removed; thus, the presence of Ab2 induces the survival of memory B 
cells.

5.2.1.5 Stewart and Carneiro’s Idiotypical Network

In addition to the immune elements considered in the earlier models, this model 
introduces T cell cooperation (Stewart and Carneiro, 1999). Th erefore, at a given 
time, the variables considered are

zi—the concentration of T lymphocyte clones of type i, for i = 1, 2, …, L
bi—the concentration of antibody of B lymphocyte clones of type i, for 
i = 1, 2, …, M
fi—the concentration of Ig molecules (free antibodies) they produce, for 
i = 1, 2, …, N
yi—the eff ective concentration of antigens of type i, for i = 1, 2, …, R

Th e following set of diff erential equations, which describe the dynamic behavior of 
the IN are defi ned.

 

dz
dt

k z k z i Li
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(5.12)

where k1 is the natural T cell death rate; α(•) the amount of activated T cells, which 
is a function of both excitatory (πi) and inhibitory signals (ηi) received by T clones; 
and �i(•) the (thymic) production of T cell clones of type i.

Also, two sets of diff erential equations are introduced to describe the dynamic 
behavior of both bound antibodies and free antibodies. Accordingly, the change 
in antibodies bound to the surface of B cells follow the following diff erential 

equation:

 

db
dt

k b k bi
i i i i i� � � �3 4� � � �( , , )

 
(5.13)

where β(•) denotes the number of activated B cells in the clone, which is a function 
of the amount of both induction signals (σi) and the number of specifi c activated 
T lymphocytes available for cooperation (τi); k4 is the natural B cell death rate; and 
�i(•) represents the (thymic) production of T cell clones of type i.

�
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Also, the change in the concentration of Ig molecules is defi ned as

 

df
dt
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(5.14)

where the fi rst term represents the growth (at the rate k5) of the amount of soluble Ig 
molecules as a proportion to the number of Ig-producing (activated) B cells (note that 
the function β is the same as in Equation 5.14); k6 is the rate at which antibodies pro-
duced by clone i decreases; the factor (k7σi) is the change rate at which Ig molecules 
produced by clone i are removed due to the formation of complexes with available 
legends.

5.2.2 Discrete Immune Network Models
Diff erent variations of discrete IN models have been studied; each model is 
 distinguished by the abstractions of the network structure, its dynamics and 
 metadynamics, and data representation.

5.2.2.1  Hunt and Cooke’s Immune Network Model 
and Its Variation

Th e fi rst AIN model (Hunt and Cooke, 1996) considers an IN of B cells that 
interact with one another according to their affi  nities. B cells are represented as 
binary strings, following some earlier works (Farmer et al., 1986); thus the affi  nity 
between B cells is defi ned based on the Hamming distance. If B cell stimulation by 
foreign antigens is above a certain threshold, then they will undergo cloning and 
mutation. Cloning produces a certain number of exact copies of a B cell. Th e num-
ber of copies, however, depends on the stimulation level of the B cell. Finally, in 
the simple substitution operator, a small (less than half) portion of the substring 
representing a B cell is replaced by the corresponding elements of another randomly 
selected B cell. Also, three types of mutation operators are introduced: multipoint 
mutation, substring regeneration, and simple substitution; however, at each time, 
only one of these operators is applied to a clone at random. In multipoint mutation, 
each element of the antibody is mutated with a certain probability. In substring 
regeneration, a substring of the antibody’s paratope is selected at random to be 
replaced by a randomly generated string.

Th e training process is performed in an iterative fashion; at the end of each 
iteration, a proportion of the less-stimulated B cells are removed and replaced with 
newly generated B cells, which are incorporated in the network. A variation of 
this model is called artifi cial immune network (AINE), which was introduced by 
Timmis et al. (2000). In this model, B cells are represented by real-valued vectors, 
instead of binary strings. A similarity measure is then defi ned by the Euclidean 
distance between two B cells. Th e dynamics of the network is similar to Hunt and 
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Cooke’s model. Also, the concept of a network affi  nity threshold (NAT) is intro-
duced as a mechanism to control the density of the connections among antibodies 
of the IN; therefore, only the strongest connections between them are considered. 
In their model, affi  nity measure values are normalized to be in [0, 1]; then, if the 
affi  nity measure is less than the NAT, the original similarity measure is considered; 
otherwise, the lowest similarity value between two antibodies (i.e., 1) is assigned. 
Th us, a stimulation level (sl) is defi ned as
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(5.15)

if sl(xi) > θ, then xi = xi + k(sl), else xi = xi.
Th e fi rst two terms in Equation 5.15 represent the interaction of a type i anti-

body with other antibodies. Th e fi rst and second terms represent the inhibitory and 
excitatory signals from other antibodies, respectively. Th e last term represents the 
eff ect of antibody stimulation by foreign antigens. Here the NAT value is dynami-
cally adjusted.

Th e AINE model was later modifi ed to alleviate some diffi  culties such as popu-
lation control and the calculation of the NAT. Th e modifi ed model was called 
resource-limited AIN (RAIN), and the concept of artifi cial recognition ball (ARB), 
which is a representation of a number of identical B cells instead of a single B cell, 
was introduced. In this model, there is a resource pool (B cells) with centralized 
control and the ARBs compete for allocating such resources. Unlike AINE, in 
RAIN, those ARBs having zero resources are removed from the network, and the 
NAT is time-independent and derived from antigen dataset. Th e RAIN algorithm 
is presented in Figure 5.6.

Self-stabilizing artifi cial immune system (SSAIS). Neal (2002) proposed SAIS, which 
is based on RAIN for continuous analysis of time-varying data. Also, SSAIS 
does not consider B cell suppression while calculating the stimulation level.

Meta-stable memory IN. Neal (2003) proposed a modifi ed version of SSAIS for 
data analysis, clustering, and immune memory. In this model, each ARB 
stimulation is done by foreign antigens and those neighbors, which are in a 
Euclidean space. Here, the cloning process is employed only during the pri-
mary response, which is mediated by the NAT, but it does not consider muta-
tion operator. In this model, ARBs having resources less than the defi ned 
mortality threshold are removed from the network.

5.2.2.2 Fractal Immune Network

Th is version (Bentley and Timmis, 2004) uses the concept of ARB and coined a 
new term “fractal recognition space” (FRS). Here, interactions among self-elements 
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are done by artifi cial cytokines, which are represented by a single clone of the 
 transmitting FRS. Th e signal is received by a fractal receptor (a clone of the  receiving 
FRS) and then, the distance is calculated. If the distance is below a  certain threshold 
and FRS is mature, then the transmitting FRS is stimulated. Th is stimulated FRS is 
cloned with a fi xed probability and it is merged with the antigen by the merge process 
of fractal proteins. If there exists no such FRS, a new one is created at the antigen 
point as a primary response, like its parent model. At each iteration, based on the 
stimulation level, the FRS concentration is increased. If this concentration is below a 
mortality threshold, the element is removed from the network.

Figure 5.6 Details of the RAIN algorithm.

algorithm is presented next.

1. Initialization 

Create an initial network, select the initial set of B cells as a subset of the antigens 

2. Antigenic presentation 

While not stopping criterion met do 

          for each antigen do 

2.1. compute network stimulation levels and clonal selection 

for each B cell do

    compute stimulation level 

2.2. metadynamics 

Remove B cells with low stimulation level, via the resource  

allocation mechanism 

2.3. clonal expansion 

Select most stimulated B-cells and reproduce them in proportion to  

their stimulation level 

2.4. somatic hypermutation 

Mutate each clone inversely proportional to its stimulation level 

2.5. network update 

select mutated clones to be incorporated in the network 

RAIN( )
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5.2.3 AiNet and Its Variations
Th is model is similar to RAIN and is proposed by De Castro and Von Zuben 
(2001). Th e main diff erence is that AiNet does not consider the stimulation con-
cept, rather uses the affi  nity concept. Part of the network adaptation process is 
inspired by the clonal selection principle (Burnet, 1959). In AiNet, each network 
element corresponds to an antibody molecule. Th e affi  nity is used to remove redun-
dant information from the network—if the affi  nity between two antibodies is 
greater than the suppression threshold, one of them is removed from the network. 
Figure 5.7 shows the AiNet algorithm.

Th e number of clones generated for one B cell (denoted as Nc ) in the presence 
of an antigen is computed as

 

N round N d Nc
i

N

ij� �
�

( )
1

∑
 

(5.16)

with N as the number of B cells in the population, dij the distance between the 
ith B cell and jth antigen, and round(⋅) is used to round a value to its closest 
integer.

5.2.3.1 Opt-aiNet

De Castro and Timmis (2002a,b,c) uses a version of AiNet for solving optimiza-
tion problems, which is called opt-aiNet. Th is work assumes B cell clusters as an 
 optimization problem (De Castro and Von Zuben, 2002a), where the center of 
a cluster corresponds to a local optimum of the fi tness function (De Castro and 
 Timmis, 2002a). Th us, clusters are expected to form around points with high fi tness 
values.

In opt-aiNet (De Castro, 2003), B cells are encoded as real-valued vectors in 
a Euclidean space. Also, a fi tness function to evaluate each B cell is defi ned based 
on an objective function to be optimized (either minimized or maximized). 
A population of B cells, considered as candidate solutions to the function being 
optimized, evolves in AiNet. Such B cells undergo a process of evaluation against 
the objective function, clonal expansion, mutation, selection, and evaluation of 
their affi  nities with other B cells in the population. Accordingly, opt-aiNet fi nds 
a B cell memory set that represents good values of the objective function. Th e 
network trains until it reaches a stable state, measured through the average fi tness 
of the B cells (Figure 5.8).

If c is the cell to be mutated, then the resulting mutated cell c′ (after affi  nity 
proportional mutation) is computed as

 c′ = c + αε (5.17)
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Figure 5.7 The AiNet algorithm.

AiNet ()

1. Initialization 

Create an initial network of antibodies 

2. Antigenic presentation

While not stopping criterion met do 

          for each antigenic pattern do

2.1. compute affinities with current antigen 

for each antibody do

    compute affinity with current antigen 

2.2. clonal selection 

select a number of elements with high affinity and 

reproduce (clone) them proportionally to their affinity 

2.3. metadynamics 

remove memory clones whose affinity with current 

antigen is less than a predefined threshold 

2.4. clonal interactions 

determine the network interactions (affinity) among 

elements in the clonal memory set 

2.5. clonal suppression 

remove memory clones whose affinity with each other 

is less than a pre-specified threshold 

2.6. network update 

incorporate remaining clones of the clonal memory

with all network antibodies 

3. Compute antibody interactions 

o network stimulations 
             compute similarity between each pair of network antibodies 

o network suppressions 
            eliminate all network antibodies whose affinity is less 

            than a pre-specified threshold 

o diversity handling 
            introduce a set of new randomly generated antibodies 

            into the network 
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1. Initialization 

Create a random initial population of B cells (initial immune network) 

2. Immune Network Dynamics 

while not stopping criterion met do 

2.1. compute B cell fitness

          for each B cell do 

compute the fitness of current B cell 

                normalize  vector of all B cell fitnesses 

          2.2. clonal expansion 

for each B cell do

generate Nc clones of current B cell   

                add new clones to current B cell population 

        2.3. somatic mutation 

for each B cell clone do

                mutate each clone proportionally to the parent B cell’s fitness         

2.4. fitness re-evaluation 

 for each B cell do

compute fitness of current B cell 

2.5. clonal selection 

select fittest clones and discard clones with the lowest fitness

         2.6. compute average fitness 

         2.7. network supression 

         suppress B cells whose affinities are below the suppression 

         threshold �s 

2.8. memory cell differentiation 

          determine memory cells after suppression. 

          2.9. metadynamics  

          introduce a percentage d of new randomly generated B cells into the network  

original opt-aiNet()

Figure 5.8 The orginal opt-aiNet algorithm.
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with ε (a Gaussian random variable with zero mean and standard deviation) equal 
to 1 (i.e., ε ∼ N(0,1)) and α = (1/ε)e– f is a factor that decays exponentially with the 
value of the B cell fi tness f, which has been normalized to [0,1] and β is a parameter 
that controls the decay of the exponential function. In addition, a mutation can 
only be accepted if c′ falls in the feasible space.

Th e opt-aiNet termination criterion is based on the size of the memory-cell 
population after network suppression. If the number of memory cells does not vary 
between subsequent network suppressions, then it is assumed that the network has 
reached stability and, therefore, the current population of memory cells gives a set 
of solutions of the problem at hand.

A feature of opt-aiNet is that it considers the interaction of the network cells with 
the environment (fi tness) and with one another (affi  nity), allowing dynamical control 
of the size of the population. In opt-aiNet, new cells are allowed to enter the popula-
tion only after the current cell population cannot signifi cantly improve its average 
fi tness. Opt-aiNet uses a Gaussian mutation that is inversely proportional to the 
normalized fi tness of each parent cell. It also presents some general features similar 
to evolutionary strategies (ES). Selection mechanism is similar to a (µ + λ) − ES, 
in which a population of size µ parents generate λ off spring; the population formed 
by parents and off spring undergoes a selection process to reduce it to µ individuals 
again. Parents survive, unless they are suppressed by one of the off spring. In opt-
aiNet, parameters µ and λ become N and Nc, the number of clones of each indi-
vidual and size of the population, respectively.

Both opt-aiNet and ES use Gaussian mutation; however, opt-aiNet uses an affi  n-
ity proportional to Gaussian mutation, whereas mutation used in ES is not based 
on fi tness. Another important diff erence is that opt-aiNet allows variable population 
size, and the size of the population is dynamically adjusted through the introduc-
tion of diversity (network metadynamics) and discarding the least-fi t B cells through 
network suppression. In contrast, the size of the population in ES is fi xed.

Another model (IPD aiNet) was proposed by Alonso et al. (2004), which is a 
modifi cation of aiNet model representing antigens and B cells as iterated prisoner’s 
dilemma (IPD) strategies. Th e main modifi cation is that if a B cell is added to 
memory, it will never be removed. Th e immune agent perceives the opponent’s 
strategy and tries to fi nd a strategy (most stimulated B cell), in the immune mem-
ory, which provides it the highest payoff  to confront the playing opponent.

5.2.3.2 Dynamic Optimization AiNet

Olivetti et al. (2005) proposed a modifi cation of opt-aiNet to deal with dynamic 
environment. Particularly, the following modifi cations are proposed:

Th e use of a separate memory subpopulation
A procedure to adjust the parameter that controls the decay of the inverse 
exponential function, denoted by β

�
�
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Introduction of two new mutation operator schemes
A B cell linear suppression mechanism
A limited population size

Dynamic optimization aiNet (dopt-aiNet) handles two separate populations: 
 current- and memory subpopulation to control the growth of the population and 
avoid a decay in the performance due to an excessive growth of the population. Th e 
current subpopulation is the same as in opt-aiNet, new cells are incorporated into 
this subpopulation. However, the memory subpopulation represents local optima 
to which some cells converge. All B cells keep a rank value that is decremented 
whenever a mutation does not improve its corresponding fi tness function value or 
otherwise, it gets incremented. If a cell’s rank value reaches zero, then it becomes 
part of the pool of memory cells. B cells in memory population undergo special 
mutation operations as described as follows. After a B cell becomes a memory cell, 
it goes through a similar process (using a rank value) starting with a new rank value 
and after this new rank value gets to zero, a memory cell does not undergo any 
additional mutation.

A method called the golden section (Bazaraa et al., 1993) is used to fi nd the best 
value of the parameter β, for each Gaussian random vector generated. Th is method 
divides an interval into two sections and determines which of the two is most prom-
ising and discards the other one. Such subinterval is then subdivided into two sec-
tions and the same process is subsequently repeated. Th is process continues until 
the remaining promising interval reaches a prespecifi ed small length. An impor-
tant parameter for this method is a ratio known as golden number or golden ratio 
(Bazaraa et al., 1993), which needs to be considered carefully while moving along 
the interval to fi nd an optimum value of β; this method assumes that the function 
is continuous, convex, and unimodal, which is a very restrictive assumption for the 
fi tness function, especially when dealing with real-world problems and given that 
opt-aiNet does not assume any additional information about the objective function.

To overcome this problem, the authors proposed a simple heuristics, which 
divides the interval into four subintervals, instead of only two. Th en, the golden 
 section method is applied to each subinterval separately, and the best result 
 determines the current value of β.

Moreover, two new mutation operators introduced in dopt-aiNet are described 
in the following text. A one-dimensional mutation operator is used, which performs 
Gaussian mutation only in one dimension at a time. Supposedly, this will provide 
a fi ner search around a point. However, in high dimensions, this method presents 
slow convergence toward local optima. Th e other mutation operator introduced is 
called gene duplication, to emulate the process of gene duplication that sometimes 
occurs during chromosome transcription. Th us, a coordinate xi is randomly chosen 
and copied into another coordinate xj of the same B cell; and this change is taken if it 
improves the fi tness of the B cell. In addition, the one-dimensional mutation operator 
is applied before applying gene duplication.

�
�
�
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Also, a modifi cation to the cell-suppression mechanism used in opt-aiNet is 
introduced. Th e new mechanism, termed “cell-line suppression,” is proposed to 
reduce the probability of having more than one cell located at each peak of the 
fi tness landscape. Th is suppression mechanism not only uses information of the 
domain space but also information of the fi tness function as follows. When a B cell 
suppresses another B cell, instead of considering the distance between the points 
x1 and x2 that represent the two B cells, points of the form (x, f(x)) are used, which 
is described as follows. Let P1 = (x1, f(x1)), P2 = (x2, f(x2)), and P′ = projection of 
P1/2 onto P2, where P1/2 = (P1 + P2)/2 (Figure 5.9). Th e suppression between the 
B cells with values x1 and x2 is computed based on the distance between P1/2 and a 
point P, which is computed as

P
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( 5.18 )

where v = P2 − P1 and w = P1/2 − P1. Accordingly, if dist(P1/2,P′) is below a thresh-
old value σs, then the B cell with the worst fi tness between the two is removed.

To limit the growth of the population, a maximum number of cells is prespeci-
fi ed in such a way that when the B cell population reaches this value, B cells with 
the worst fi tness are deleted from the population.

Th e dopt-aiNet algorithm is summarized in Figure 5.10.
Vargas et al. (2003) proposed the CLARINET model, which combines  learning 

classifi er systems, evolutionary algorithms, and AIN where classifi er systems are 

.
P1(x1,f (x1))

P2(x2,f (x2))
P1/2(x1/2,f (x1/2))

f (x)

x

P ′

Figure 5.9 B cell suppression. Here P′ is used to determine the suppression 
distance between the two points.
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dopt-aiNet()

1. Initialization

Create a random initial population of B cells 

(initial immune network) 

2. Immune Network Dynamics

while not stopping criterion met do 

2.1. compute B cell fitness

          for each B cell do

compute the fitness of current B cell 

          normalize  vector of all B cell fitnesses 

         2.2. clonal expansion and somatic mutation  

for each B cell do

generate Nc clones of current B cell   

                add new clones to current B cell population 

 for each B-cell do

                if mutated B-cell c ′ is better than original B cell c then 

c.rank = c.rank+1

c=c ′

                else

c.rank = c.rank−1

                if c.rank = 0 then  

                     make c part of the B-cell memory pool  

for each B-cell do

if c.rank > 0 then 

                     apply one-dimensional mutation to current B-cell 

                     apply gene-duplication mutation to mutated B-cell 

if mutated B-cell m is better than the original then

m.rank = m.rank+1

else

m.rank = m.rank −1

        2.3. compute average fitness 

         compute average fitness of the B-cell population 

2.4. network supression and metadynamics

         if average error stagnates apply B-cell suppression mechanism using 

         suppression threshold �s and introduce a percentage d of new 

         randomly generated B-cells into the network 

2.5. population control 

if average error stagnates and the number of B-cells exceeds 

           the maximum number of B-cells

then

remove a percentage of less fit B-cells

Figure 5.10 The dopt-aiNet algorithm.
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regarded as B cells that are interacting with one another through stimulation and 
suppression functions. Training algorithm uses same operations as defi ned in the 
earlier model.

5.2.3.3 Fuzzy Immune Network Model

Nasraoui et al. (2002) proposed an IN model that deals with uncertainty and 
 fuzziness inherent in the matching process between antibodies and antigens, which 
is called a fuzzy artifi cial immune system (AIS), and is based on the AINE model 
of Timmis et al. (2002). In AINE, an IN consists of a set of interconnected ARBs, 
where each ARB is composed of identical B cells. Also, each ARB represents a 
single n-dimensional data item that may be stimulated by an antigen or another 
ARB. A link between two ARBs is created if the affi  nity between them is below a 
NAT, which is defi ned as the average distance between all the antigen items in the 
dataset provided as input to the training process. Antigen-ARB matching and the 
matching between ARBs are computed using an Euclidean distance. Also, when an 
ARB gets stimulated above the threshold, it undergoes some cloning and mutation 
processes. In addition, in AINE, the ARBs compete for a fi nite number of resources 
(B cells); thus, resources are allocated to ARBs as a function of their stimulation 
levels. Besides, ARBs that are not given any resources (i.e., have low stimulation 
level) are removed from the network. Th e purpose of the ARB concept is to reduce 
the granularity of the model. However, the ARB population grows at a prolifi c rate 
and it tends to converge rather prematurely to a network where a small number of 
internal images of the antigens overtake the entire population due to the resource 
allocation mechanism (Nasraoui et al., 2002).

In contrast to ARB, a fuzzy ARB does not represent a single data item but 
a fuzzy set over a universe of discourse defi ned by the input training data. Th e 
 membership function associated to the fuzzy set is a radial-basis-type of function, 
which decreases with the distance to the point that represents the center of the 
ARB. In contrast to AINE, each fuzzy ARB is allowed to have its own radius of 
infl uence, denoted as σ. Particularly, the membership function associated to an 
ARB i is defi ned as

 f x ei
d x,ci i( )

2 22� � ( )( ) ( )�

 
(5.19)

where ci is the center of the ARB, x an antigen, and d(x,ci) the distance from x 
to ci. Th us, the stimulating level of ARB i produced by an antigen set X, denoted 
as si(X ), is computed as
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i
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(5.20)

CRC_AU6545_C005.indd   139CRC_AU6545_C005.indd   139 7/25/2008   5:58:12 PM7/25/2008   5:58:12 PM



140 � Immunological Computation: Theory and Applications

where X denotes an input antigen set, which generally consists of foreign antigens 
and other ARBs. Th erefore, antigens closer to the center of the ARB will  stimulate 
it more. In this fuzzy AIS (Figure 5.11), the value of the radius of infl uence of each 
ARB is also adapted at each iteration to maximize the ARB stimulation level and, 
hence, the ARB probability of survival. Th is is done by merging neighboring ARBs, 
when they are very close to other ARBs infl uence regions, which also help in limiting 
the growth of the population. Besides, some suppression eff ect among neighboring 
ARBs is introduced in the model. In this case, the infl uence of an ARB is adjusted by 
subtracting a suppression factor, due to neighboring antibodies, from the stimulation 
caused by the antigen set; and then this value is scaled accordingly. Th ereby,
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where A is the set of all the ARBs in the IN.
It is important to note that in the cloning process, the value of σ is inherited 

from the corresponding parent ARB. As mentioned earlier, the ARBs compete for 
a fi nite number of resources (B cells) and that the resources allocated depend on 
the fuzzy ARB stimulation levels. Th erefore, to avoid this in the resource alloca-
tion process, the best ARBs overtake the whole population; the algorithm limits 
the infl uence of the best ARBs; and thus, the number of allocated resources r is 
computed in proportion to the total stimulation level sl as

 r = k · sl (5.22)

where k is a constant.
In addition, to limit the growth of the population, if two fuzzy ARBs represent 

identical data (i.e., have identical centers) after cloning and mutation, then, they 
are merged into a single ARB. Accordingly, in fuzzy AINE, a postprocessing stage 
takes place to consolidate the fi nal population of fuzzy ARBs as outlined in the 
pseudocode shown in Figure 5.12.

In this postprocessing process, crossover operation can be easily designed by 
 randomly exchanging information of the centers of the two ARBs selected to be 
merged, or by computing the center of the new fuzzy ARB as a convex  combination of 
the centers of the original fuzzy ARBs, if a real-vector representation is being used.

In experiments reported by Nasraoui et al. (2002), note that at the  beginning 
of the evolution process, denser cluster dominate; but as the process goes on, those 
ARBs around less populated clusters start to increase their stimulation levels, until 
reaching the same stimulation levels as other ARB clusters. Th is is due to the way 
stimulated levels are computed today. Specifi cally, the penalization of  neighbor 
fuzzy ARBs due to suppression, combined with the cloning mechanism that 
 promotes the proliferation of highly stimulated fuzzy ARBs, prevents very good 
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Figure 5.11 The fuzzy AINE algorithm.

Fuzzy AINE() 

1. Initialization 

Create an initial network, create initial set of ARBs with their particular �i  based 

on the input antigen (data) set 

2. Antigenic presentation 

While not stopping criterion met do 

          for  each antigen do 

2.1.compute network stimulation levels and  

clonal selection 

for each fuzzy ARB do

    compute ARB stimulation level 

    update �i 

2.2.metadynamics 

Allocate B cells to fuzzy ARB’s based on stimulation level 

Remove fuzzy ARBs with low stimulation level 

2.3.clonal expansion 

Select most stimulated fuzzy ARBS and reproduce 

them in proportion to their stimulation level 

2.4.somatic hypermutation 

Mutate each fuzzy ARB inversely proportional to its 

stimulation level 

2.5.network update 

select mutated fuzzy ARBs to be incorporated in the 

network
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fuzzy ARBs from dominating the least-stimulated ARBs, because their stimula-
tion cannot go beyond certain limit. Th is process can be thought of as a niching 
 mechanism to maintain diversity in the population of fuzzy ARBs.

5.2.3.3.1 The Dynamic Weight B Cell Model

Nasraoui et al. (2003b) proposed a modifi cation of the fuzzy IN model to perform 
dynamic unsupervised learning. Th is model was proposed as an attempt to solve 
the scalability problems present in most IN problems, which in general need to 
manipulate a large number of antibodies (or B cells) and links that represent the 
interactions among them. Th is model is also intended to deal with dynamic envi-
ronments. Th ereby, antigens are presented to the IN one at a time. Accordingly, 
the stimulation levels and radius of infl uence of each ARB are updated after the 
presentation of each antigen.

In this model, the concept of a dynamic weighted B cell (D-W-B cell) is 
 introduced. Th is is based on the concept of a fuzzy ARB, but instead of only 
 considering a function to model the infl uence zone of an antigen, it also  introduces 
a temporal aspect in the model. Th en, the main assumption here is that more  current 
data will have a higher infl uence on the network dynamics as compared to less 
current or older data. Th us, the membership function defi ned in Equation 5.22, 
after J antigens have been presented, becomes
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where d(x,ci) is the distance between the center of the ith D-W-B cell and antigen xj, 
which is the jth antigen encountered by the IN. Accordingly, the stimulation level 
of the IN, after J antigens have been presented, is defi ned as
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consolidating final fuzzy ARB population() 

Antigenic presentation 

for each pair of ARB’s do  

          if affinity between two current ARB’s is less than ε then

               merge two ARB’s in a single fuzzy ARB 

Figure 5.12 A subfunction of fuzzy AINE.
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where xj denotes the jth antigen presented to the IN. Hence, information about 
all the antigens that have been presented earlier to the network is used to compute 
the current stimulation level of each D-W-B cell. Also, corresponding equations to 
update the infl uence radii can be derived by making
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where W f xi J i j, ( )� �1 ∑ ,  wij denotes fi(xj), and σi,J the radio of infl uence of ith 
D-W-B cell after presenting (J − 1) antigens, which is defi ned as
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where diJ denotes the distance from D-W-B cell i to the Jth encountered antigen.
In this model, a dynamic stimulation factor α(t) is also incorporated in the 

 calculation of the D-W-B cell stimulation level. Th is is done by allowing groups of 
D-W-B cells to have a stimulation coeffi  cient that will cause the formation of sub-
networks of D-W-B cell that can self-sustain, even after the antigen that caused their 
creation disappears from the environment. However, a limit should be specifi ed on the 
time span that these patterns would contribute to the network dynamics so as to avoid 
the imposition of any additional superfl uous (computational and storage) burden on 
the IN by such patterns. Th us, an annealing schedule is proposed for this stimulation 
factor, that is, this stimulation coeffi  cient decreases with the age of the subnet.

In the absence of a recent antigen that succeeds in stimulating a given subnet, 
the age of the D-W-B cell increases to 1 with each antigen presented to the immune 
system. However, if a new antigen succeeds in stimulating a given subnet, then its 
age is reset to 0. Th erefore, those subnets that are very old will gradually die, unless 
they become restimulated by recent relevant antigens. Incorporating a dynamic 
suppression factor in the computation of the D-W-B cell stimulation level is also 
a more reasonable way to take internal interactions into account. Th e suppression 
factor is not intended to control the proliferation and redundancy in the population 
of the D-W-B cells. It is important to note that the eff ect of positive stimulation 
is to provide a memory mechanism to the IN; however, suppression provides a 
mechanism to have the D-W-B cells compete to avoid redundancy.
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Th is algorithm also proposes a hierarchical organization of the IN. Hence, 
the goal is to keep a small network organized in subnetworks. An interaction 
 occurring between an external agent and any D-W-B cell in the IN is called an 
external interaction. However, those interactions occurring among D-W-B cells is 
called internal interactions. Th e main idea is then to cluster D-W-B cells to form 
 subnetworks. Hence, if high-level (coarse) interactions are considered, then, inter-
subnetwork interactions should be considered. Accordingly, in the case of external 
interactions, contacts between antigens and subnetworks are taken into account, 
instead of considering interactions of the antigen with all the D-W-B cells in the 
IN. Th is is intended to reduce the number of computations, because when external 
stimuli appear, only some subnetworks are stimulated. Figure 5.13 illustrates the 
 hierarchical organization of the D-W-B cell network model and external and inter-
nal interactions. In contrast, if low-level relations are considered, then interactions 
among all the D-W-B cells in the network should be evaluated.

Clustering of D-W-B cells in subnetworks is done by associating a centroid 
to each cluster defi ned as the centroid of all the D-W-B cells in the cluster. Th us, 
the network is characterized by such centroid, which is used to compute the 
 contributions of the D-W-B cells in internal and external interactions.

It is important to note that by clustering the D-W-B cells, a signifi cant  reduction 
on the computation may be achieved as follows. Assume that the network consists 
of N D-W-B cells. Th en, the number of internal interactions is O(N  2 ). For the sake 
of a general analysis, assume that the IN consists of K subnetworks of equal size. 
Th ereby, the number of interactions of a D-W-B cell reduced to those interactions 
in the corresponding subnetwork (intra-network interactions) is O(N  2/K ); also, the 
number of inter-subnetwork interactions is K − 1.

5.3 A General Model of Artifi cial Immune Network
González et al. (2005) proposed an algorithm, which presents common features of 
various AIN models. Th is general AIN (GAIN) algorithm is shown in Figure 5.14. 
Th e fi rst step of this algorithm creates an initial set of B cells denoted by B. Th e 
second step calculates the stimulation for each of the antigen and B cell. Th is can 
be represented as follows:

 
f stimulation

A : A B� → ℜ
 

In some models, the stimulation is the function of affi  nity, which is given as 
follows:

 
f a b g f a bstimulation

A
affinity( , ) : ( ( , ))�
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Interactions

Interactions

Interactions

External/antigenic

External/antigenic

Internal
Antigen

Antigen

B cell

B cell

Inter−subnet

Inter−subnet

Intra−subnet

Intra−subnet

(a) (b)

(c)

Figure 5.13 Hierarchical organization of D-W-B cell IN. (a) Network 
 interactions without considering formation of subnetworks, (b) hierarchical 
organization of the IN, (c) internal IN interactions when a hierarchical structure 
is considered.

CRC_AU6545_C005.indd   145CRC_AU6545_C005.indd   145 7/25/2008   5:58:13 PM7/25/2008   5:58:13 PM



146 � Immunological Computation: Theory and Applications

GAIN (General Artificial Immune Network) 

Input: ‘A’ as a set of antigens 

Output: Immune network consisting of ‘B ’ as a set of B-cells and connections between 

them 

1: Initialization 

1.1: Assign B an initial set of B-cells  

1.2:  Initialize network structure L 

2: Repeat until a stop criteria is met 

2.1:  Antigen presentation: 

        Antigen/ B-cell affinity 

2.1.1:  Calculate faffinity (a,b) ∀ a ∈ A, b ∈ B 

       Antigen/ B-cell stimulation 

2.1.2:               Calculate f A
stimulation (b,a) ∀a ∈A, b ∈B 

2.2:  B-cell interaction: 

                  B-cell /B-cell stimulation/suppression

2.2.1:  Calculate f B
stimulation (b ′,b) and f B

suppression (b′,b)∀b′,b ∈B

2.3:   Affinity maturation: 

            Total stimulation 

2.3.1:            Calculate F (b):=                        f A
stimulation (a,b) + f B

stimulation (b′,b) + f B
suppression (b ′,b)

2.3.2:  Create fcloning (b) clones to the B-cell b and mutate then  

2.3.3:  Calculate stimulation of all new B-cells 

2.4:  Metadynamics:  

                 Detection/creation of B-cells and links 

2.4.1:  Update network structure L 

            Return immune network 

3: Return (B,L)

a∈A,b ′∈B,b ′   b
Σ

Figure 5.14 A GAIN algorithm. (From González, F., J. Galeano and A. Veloza, in 
Proceedings of the 2005 Conference on Genetic and Evolutionary  Computation 
(GECCO’05), ACM Press, Washington, 2005, 361–368.)
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where faffi  nity is the measure of the similarity and complementarity between
elements in the shape–space and is given as faffi  nity: B ∪ A × B ∪ A → R.

Now, the amount of stimulation produced by an antigen with a given affi  nity 
with the B cell is g: R → R.

Th en, the 2.2 step calculates the B cell interaction by calculating the stimula-
tion and suppression eff ects between them. Th ese functions are given as follows:

 
f stimulation

B :B B� → ℜ
 

and

 
f suppression

B :B B� → ℜ
 

Th en, the 2.2.1 step calculates the stimulation and suppression of B cell/B cell 
in the similar manner of antigen/B cell stimulation. Th en, the total stimulation 
F: B → R is calculated by adding all the eff ects caused by the antigen and network 
connection, which is F(b) (given in step 2.3.1).

Now, some of the B cells are selected and fcloning(b) copies of each selected B cell, 
b are created. Now, mutation is done on these selected B cells. Th is mutation is var-
ied from AIN model to model. After this, some of the B cells are deleted and some 
are again created randomly in the network and the connection or links between 
them are again created. Finally, this algorithm stops when the stopping criterion is 
met and returns the current network.

5.4 Summary
Th is chapter describes immune algorithms primarily based on clonal selection 
principle and idiotypic INs, particularly, the ClonAlg algorithm and its varia-
tions, which are based on the clonal selection and affi  nity maturation principles. 
Th e ClonAlg is similar to mutation-based evolutionary algorithms and has several 
interesting features: (i) dynamically adjustable population size, (ii) exploitation and 
exploration of the search space, (iii) location of multiple optima, (iv) capability of 
maintaining local optima solutions, and (v) defi ned stopping criterion.

Th e IN theory and continuous and discrete models are described. Th e derived 
computational algorithms are discussed in detail. Particularly, Hunt and Cooke 
(1996) proposed a supervised machine-learning algorithm based on IN model to 
classify DNA sequences as either promoter or nonpromoter classes. Timmis and 
Neal (2001) introduced another algorithm similar to it, but domain-independent, 
called AINE. Th is network constitutes a reduced version of the original data that 
can be used for data clustering or compression.

A major drawback of AINE is the explosion in B cell population. Th us, an 
enhanced algorithm called RAIN was developed (Timmis et al., 2000). Th e 
main  diff erence between AINE and RAIN is that the basic element of the RAIN 
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 algorithm is not the B cell but the ARB or cluster. Another model called aiNet, 
which shares some characteristics of Timmis’ AINE, was proposed (De Castro and 
Von Zuben, 2001). Th is work emphasizes its self-organizing ability, that is, the use 
of minimal number of control parameters; several versions of AiNet with diff er-
ent enhancement are subsequently developed (De Castro and Timmis 2002a,b,c; 
De Castro and Von Zuben, 2002a,b; De Castro, 2003). Timmis and Edmonds (2004) 
have done further analysis of Opt-AiNet and commented on its implementation.

Nasraoui et al. (2002, 2003a) introduced an IN-based algorithm (called 
FuzzyAIS) that uses a fuzzy set to model the area of infl uence of each B cell. Th is 
improves the expression of earlier models and makes it more robust to noise and 
outliers.

In their recent work, González et al. (2005) developed a general model of AiNet 
(Figure 5.15), which provides a common notation and description of AiNet and its 
variation. Many applications of immune network models are reported in the litera-
ture (Ishiguro et al., 1994, 1996; Luh and Liu, 2004; Michelan and Zuben, 2002; 
Mitsumoto et al., 1996; Secker et al., 2003; Timmis and Edmonds, 2004; Timmis 
et al., 2004; Timmis and Neal, 2001).

Jerne
Varela

Perelson
Farmer

Hunt and Cooke

AINE

RLAIS

SSAIS

Metastable
IN

Fractal
IN

Fuzzy AIS

TECNO-STREAMS

Other models

AISECTshiguro

Reactive
IN

Michelan and
Von Zuben

CLARINET

aiNet

aiNet
hierarchy

IPD aiNet

opt-aiNet

Figure 5.15 Chronological tree of AIN models. RLAIS, Resource limited 
artifi cial immune system; AISEC, Artifi cial immune system for e-mail 
 classifi cation. (From González, F., J. Galeano, and A. Veloza in Proceedings 
of the 2005 Conference on Genetic and Evolutionary Computation (GECCO’05), 
ACM Press, Washington, 2005, 361–368.)
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5.5 Exercises
 1. Find specifi c behavior for some of the IN models based on diff erential 

 equations for some particular values of the parameters.
 2. Design a specifi c learning rule for a parallel distributed processing (PDP) IN.
 3. Use a specifi c learning algorithm to design a specifi c PDP IN.
 4. Defi ne IN basic elements such as shape–space and affi  nity measures for 

 specifi c problems.
 5. Ask some specifi c questions about particular diff erential equation models, 

such as under what conditions is stability reached? What is the behavior of 
the system in the absence of antigen? What are the attractors of the  dynamical 
system? Also, answer specifi c questions such as the number of equilibrium 
points and limit cycle.

 6. For AIN discrete models, also suggest some minor modifi cations to some 
of the models and fi nd out how such changes modify the behavior of the 
network.

 7. Design some specifi c AINs to solve toy problems such as
 a. Optimization of real value functions on 1D, 2D, or 3D
 b. Discrete optimization problems
 c. Small classifi cation problems

5.6 General Questions
 1. What is the general model of an IN, also including B cell–T cell 

cooperation?
 2. How to model an AIN structure? (A straightforward way representing it as a 

graph in which nodes will correspond to antibodies)
 3. How to characterize the diff erent states of an antibody?
 4. How to model an antigen?
 5. How to specify the concept of an IN state?
 6. How to model, in a general fashion, the process(es) that occur after the 

 interaction with either antigens or antibodies (immune response) in such a 
way that the model conveys all diff erent IN models? Describe the adaptation 
process that occurs?

 7. Like neural networks, an IN dynamics should be characterized by a learn-
ing (adaptation) process that is typically a result of a stimulation process by 
a set of antigens. How does an antibody send signals to other antibodies as a 
result of the IN dynamics? How to express the total stimulation received by 
an antibody?

 8. Explain diff erent variations of clonal selection.
 9. Distinguish between fuzzy AIS and a nonfuzzy version of AIN.
 10. Describe the GAIN algorithm.
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Chapter 6

Latest Immune Models 
and Hybrid Approaches

Th is chapter covers some immune-computing concepts, which have not been well 
developed yet but appear to have potential in providing more insights of immune 
processes. One such model, which has gained a lot of attention recently is the so-
called danger theory (DT) (Matzinger, 1994, 2002). Th us, this chapter introduces 
the main ideas behind DT and briefl y describes some computational models based 
on the DT inspired by dendritic cells (DCs) functionalities. Other recent works 
presented include a multilevel immune algorithm, major histocompatibility com-
plex (MHC)-based approaches, and cytokine networks. Th e last section discusses 
a hybrid approach, which combines negative selection (NS) and neural network 
methods to design a classifi cation algorithm.

6.1 The Danger Theory
Th e DT (Matzinger, 1994) states that the immune system is activated on receipt 
of molecular signals, which indicate damage (or stress) to the body rather than by 
pattern matching of “nonself” versus “self.” Accordingly, distressed cells and tissues 
transmit danger signals, which results in capturing antigens by antigen-presenting 
cells (APCs) such as macrophages; APCs then travel to the local lymph node and 
present the antigen to lymphocytes. Essentially, a danger zone exists around each 
danger signal. Th erefore, only those B cells whose antibodies match antigens in the 
danger zone will get stimulated and then will undergo clonal expansion. Figure 6.1 
illustrates immune response described by the DT.

CRC_AU6545_C006.indd   153CRC_AU6545_C006.indd   153 7/5/2008   3:29:20 PM7/5/2008   3:29:20 PM



154 � Immunological Computation: Theory and Applications

Th e danger model can be seen as an extension of the two-signal model proposed 
by Bretscher and Cohn (1970). Two signals considered in this model are antigen rec-
ognition and costimulation. In DT, a costimulation signal indicates that an antigen 
is dangerous. To understand lymphocyte behavior, DT introduces the following 
three laws of lymphocytes (Matzinger, 1994):

Law 1. A lymphocyte becomes activated if and only if it receives both signal 
1 and signal 2. In the absence of one of these signals, lymphocytes remain 
inactive.
Law 2. A lymphocyte accepts signal 2 only from APCs (or, in the case of B 
cell, it gets from T helper (Th) cells). B cells can act as APCs only for experi-
enced (memory) T cells. It is also important to note that signal 1 may come 
from cells other than just APCs.
Law 3. Once activated, lymphocytes do not need signal 2; they revert to a 
resting state after a short period of time.

Th ese rules usually apply to all mature lymphocytes, so immature cells are unable 
to accept signal 2 from any source. Th us, some screening by the NS process occurs 
fi rst. Also, activated (eff ector) cells respond only to signal 1, ignoring signal 2, and 
revert to the resting state shortly afterward. Figure 6.2 illustrates diff erent models 
using immune signals and progression in the development of DT.

In Burnet’s (1959) original immune model, only signal 1 was considered, which 
is shown in Figure 6.2a. In this model, the only signaling occurs between infectious 
agents and lymphocytes (B cells and T killer cell, Tk). Consideration of a second 
signal was introduced by Bretscher and Cohn (1970) as shown in Figure 6.2b; here 
signal 2 comes from a Th cell after receiving signal 1 from a B cell. Particularly,
B cell presents an antigen to a Th cell and waits for a confi rmation signal. If the Th 
cell recognizes the antigen (as nonself or dangerous), then an immune response is 

�

�

�

Cells

Damaged cell

Antigens

Antibodies

Stimulation

Danger
zone

Danger signal

Match, but
too far
awayNo match

Figure 6.1 Illustration of the DT (the fi gure indicates the danger zone, danger 
signal, etc.).
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triggered. Another work (Laff erty and Cunningham, 1975) proposed that the Th 
cell itself needs to be activated by signal 1 and signal 2 coming from APCs (see 
Figure 6.2c). It is important to note that Th cells receive signal 1 from two sources: 
B cells and APCs.

Th e next model introduced by Janeway (1992) used the notion of INS, such as 
bacteria, which “primes” APCs causing the production of signal 2; in Figure 6.2d, 
priming signal is labeled as signal 0.

However, Matzinger (1994) proposes that the priming of APCs is due to 
a danger signal from stressed tissues or cells (Figure 6.2e). She also proposed 
extending the effi  cacy of Th cells by routing signal 2 through APCs. Th is signal 
is marked as “signal 3” in Figure 6.2f. According to her, the antigen seen by the 
Tk cell does not need to be the same as the Th; the only requirement is that both 
must be presented by the same APC. Th is allows Th cells to prime many more Tk 
cells than they would otherwise have been able to. Th e DT can be seen as a natu-
ral extension of immune signal models proposed earlier. Figure 6.3 exhibits the 
partitioning of the antigen universe based on three models: self/nonself (SNS), 
INS, and DT (Matzinger, 2002).

According to Matzinger (2007), there is a category of damage-associated molec-
ular patterns (DAMPs) that encompasses both pathogen-associated molecular pat-
terns (PAMPs) and alarm signals. Th e ultimate control lies with the tissues in which 
the response occurs, rather than with the pathogen against which it is directed. 
Particularly, tissues use all sorts of mechanisms to keep the cells and molecules trig-
gering immune responses in order to control the invaders. Many of these cells also 
seem to recognize stress-induced “self” molecules rather than foreign pathogens.

According to this view, at least some immune responses are initiated by tissue-
derived signals that activate and educate APCs to control the eff ector class of an 
immune response. Accordingly, some danger signals such as tissue damage trigger 
a myriad of immune reactions and responses.

One of the problems of DT, however, is that the exact nature of danger signals 
is unclear. Also, there are some danger signals that should not trigger an immune 
response such as cuts or transplants. In addition, DT is not able to explain autoim-
mune diseases.

6.1.1 Danger Theory–Based Algorithms
Aickelin and Cayzer (2002) include the following aspects of the DT in their artifi -
cial immune system (AIS) design principles:

Appropriate APCs to present danger signals need to be modeled.
A danger signal can be either positive or negative, which means the presence 
or absence of the signal.
Although in biology the danger zone is spatial, in computation model other 
notions of proximity, such as temporal proximity, may be used.

�
�

�
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158 � Immunological Computation: Theory and Applications

In biology, sometimes killer cells cause a normal cell death; however, this 
should not generate further danger signals.
Models should appropriately consider priming killer cells via APCs for greater 
eff ect.
Antibody migration rules should specify how many antibodies receive signal 
1 and signal 2 from a given APC. DT relies on concentrations of diff erent 
kinds of immune cells.

Th ese aspects of DT are being used to build better AISs for anomaly detection. In 
this case, nonself patterns do not trigger an immune response without a danger signal 

�

�

�

Infection
(PAMPs)

Dangerous

a c d e f b

NonselfSelf

Responses to
each set
predicted by
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a b c d e f
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+

Universe of antigens according to three models

SNS: self and nonself (a and b)

INS: noninfectious self (a); infectious nonself (f)

Danger Theory (DT): dangerous entities (c, d, e)
 and harmless ones 

Figure 6.3 Partition of the antigen universe based on three models: SNS, INS, 
and DT. (From Matzinger, P., Science, 296, 301, 2002.)
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(Aickelin et al., 2003). Th e authors subsequently developed two algorithms—the den-
dritic cell algorithm (DCA) (Greensmith et al., 2006) and the toll-like receptor (TLR) 
algorithm (Twycross, 2007). Th ese algorithms focus on diff erent aspects of innate 
immunity to develop the basis of computation models.

6.1.2 Combining Dendritic Cells and Danger Theory
Yeom (2007) used a similar approach of combining the DT and DCs to form a 
schema for the signal precategorization. Th is categorization is based on the follow-
ing principles:

PAMPs are proteins expressed exclusively by bacteria, which can be detected 
by DCs indicating an anomalous situation.
Danger signals are produced as a result of unplanned necrotic cell death. 
On damage to a cell, the chaotic breakdown of internal components forms 
danger signals, which accumulate in tissue. DCs are sensitive to changes in 
danger signal concentration. Th e presence of danger signals may or may not 
indicate an anomalous situation; however, the probability of an anomaly is 
higher than under normal circumstances.
Safe signals are produced through the process of normal cell death. Cells 
must die for regulatory reasons, and the tightly controlled process results 
in the release of various signals into the tissue. Th ese “safe signals” result in 
immune suppression. Th e presence of safe signals almost certainly indicates 
that no anomalies are present.
Infl ammatory cytokines can be released as a result of injury, although the 
process of infl ammation is not enough to stimulate DCs alone, it can amplify 
the eff ects of the other three categories of signal.

DCs can stimulate naive T cells and have a number of functional properties
(Yeom, 2007).

DCs’ fi rst function is to instruct the immune system to act when the body is 
under attack, policing the tissue for potential sources of damage.
DCs perform diff erent functions based on their state of maturation. Modula-
tion between these states is facilitated by the detection of signals within the 
tissue, namely, danger signals, PAMPs, apoptotic signals (safe signals), and 
infl ammatory cytokines.
In tissue, DCs collect antigen (regardless of the source) and experience  danger 
signals from necrosing cells and safe signals from apoptotic cells. Maturation 
of DCs occurs in response to the receipt of these signals.

According to Yeom (2007), if there is a concentration of danger signals in the 
tissue at the time of antigen collection, the DCs become fully mature DCs with 
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160 � Immunological Computation: Theory and Applications

license (LmatDCs), and express LmatDCs cytokines. Conversely, if the DC is 
exposed to safe signals, the cell matures diff erently and becomes an unlicensed 
mature DC, expressing ULmatDCs cytokines. Th e LmatDCs cytokines activate 
T lymphocytes expressing complimentary receptors to the presented antigen. Any 
peripheral cells expressing this antigen type are removed through the activated T 
lymphocyte. Th e ULmatDCs cytokines suppress the activity of any matching T 
cell, inducing tolerance to the presented antigen.

6.2 Multilevel Immune Learning Algorithm
A multilevel framework that combines both B- and T cell recognition mechanisms 
was proposed, and called the Multilevel Immune Learning Algorithm (MILA), 
which is inspired by the interaction and processes of T cell–dependent humoral 
immune response (Dasgupta et al., 2003). In biological immune systems, some B 
cells recognize antigens through immunoglobulin receptors on their surface, but 
they are unable to proliferate and diff erentiate unless prompted by the action of 
lymphokines secreted by Th cells.

Moreover, for Th cells to become stimulated to release lymphokines, they must 
also recognize specifi c antigens. However, although Th cells recognize antigens 
through their receptors, they can only do so in the context of MHC molecules. 
Antigenic (Ag) peptides are extracted by APCs through a process similar to feature 
extraction, called Ag presentation. Under certain conditions, however, B cell activa-
tion is suppressed by T suppressor (Ts) cells, but specifi c mechanisms for such a 
suppression are still unknown. Th e activated B and T cells migrate to the primary 
follicle of the cortex in lymph nodes, where a complex interaction and kinetic pro-
cess of proliferation (cloning), mutation, selection, diff erentiation, and death of B 
cells take place in germinal center chambers. Th ese antibodies function as eff ectors 
to the humoral response by binding to antigens and facilitating their elimination.

In MILA, an abstraction of these complex immunological events is incorpo-
rated to develop a multilevel change detection algorithm. Accordingly, the algo-
rithm consists of initialization, recognition, evolutionary, and response (as shown 
in Figure 6.4).

In the initialization phase, the detection system is “trained” by giving the 
knowledge of “self.” Th e outcome of the initialization is used to generate sets of 
detectors, analogous to the populations of Th-, Ts-, and B cells, which participate in 
humoral response. It is important to note that a multilevel (multiresolution) detec-
tion is considered; specifi cally, three levels of detection were introduced:

APC level, which corresponds to the highest level
B cell level, the intermediate level, is used for global pattern
Th cell, the lowest level, or bit level, for local patterns

�
�
�
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Th e operators used to combine diff erent pattern recognition mechanisms can be 
chosen in diff erent ways either to achieve more fault-tolerant recognition or sen-
sitivity to small changes. MILA used an rcb-like matching rule in a real-valued 
representation, which may be thought of as a partial euclidean distance. A Th cell 
uses a slide window to get the w elements. However, a B cell uses randomly chosen 
w elements. Th e concept of permutation mask and crossover closure from string 
presentation can be used the way these w elements are chosen for B cells.

Another feature of MILA is the implementation of positive selection by the so-
called Ts cells (positive detectors), which are based on self-samples. An evolutionary 
phase in MILA is a process of refi ning the detector set if the earlier detection rates 
can be evaluated (verifi ed). Th is phase involves cloning, mutation, and selection; 
however, cloning in MILA is a targeted one (not blind), only those detectors that 
are activated in the recognition phase can be cloned.

6.3 Major Histocompatibility Complex–Based Systems
To detect virus-infected cells that have been damaged internally, MHC molecules 
provide a mechanism to see what happened inside a cell because under normal 
circumstances, one cell cannot look inside another. Th e primary role of MHC is to 
display antigen fragments to T cells, particularly, MHC class I binds to CD8 on 
cytotoxic (or killer) T cells, whereas MHC class-II proteins present antigen frag-
ments on an APC surface for binding to the CD4 receptor on the Th cells. By 
allowing T cells to examine the internal state of other cells, the MHC mechanism 
acts as a kind of cell-level anomaly detector that allows the immune system to 
uncover virus-infected cells. A similar analogy of cells with running programs, 
and MHC peptides with short sequences of system calls was fi rst proposed in 1996 
(Forrest et al., 1996), which could detect malicious “running” programs such as 
viruses and worms.

All biological systems maintain a stable internal state by monitoring and 
responding to internal and external changes. Th is self-monitoring is one of the 
defi ning properties of life and is known as “homeostasis.” Homeostatic mechanisms 
are usually autonomic, and the purpose is to minimize variations in the internal 
state of an organism. Somayaji and Forrest (2000) developed  process homeostasis 
(pH), a Linux kernel extension that delays the execution of unusually behaving 
processes. Th e delay mechanism of pH was a predecessor to the network-level virus 
throttling (Twycross and Williamson, 2003), where the rate of network connec-
tions was throttled to limit the spread of malicious programs (Somayazi, 2007).

6.4 Cytokine Network Model
Various immune cells in the biological immune system mutually infl uence one anoth-
er’s activities through hormonelike intercellular messenger molecules called cytokines. 
Th e cytokines produced by one cell can modulate the production and secretion of 
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cytokines by other immune cells. Th ese interactions form a lymphoid endocrine  system 
called the cytokine network. Th e immune cells in the cytokine network  perform a dual 
role, producing cytokines and carrying out the immune response (acting as eff ector 
cells). Th e cytokines produced by the network regulate the development and growth 
of the responding immune cells.

From a computational point of view, the input in the cytokine network has the 
state of disease (extent and severity) and the state of the ongoing responses (extent 
and effi  cacy), whereas the output includes the proliferation of selected eff ector cells 
and the organization of new responses.

Th e model of the cytokine network proposed by Horne and van den Bergt 
(2007) considered an intercellular medium in which n distinct chemical species of 
cytokines diff use and are well mixed. Both the input and output are encoded by the 
concentrations of the various cytokines. Th e artifi cial cytokine network includes 
the following elements:

Cytokine concentrations
Cytokine types
External stimuli
Th e density of cell for each type

Cytokine production by a cell of any one of these types depends on external stimuli 
as well as the cytokines themselves. Th e system as a whole is functional, mapping 
the external stimuli into a cytokine profi le. Th e kinetics of the cytokine network 
is divided into two types: the dynamics of the cytokines and the dynamics of the 
cytokine-producing cells. Th e following equation was used to calculate the dynam-
ics of the cytokines:

 

u u u s s uk lk
l

m

n r l k
i � �

�

ψ
1

1 1∑ ( , , , , , )… … � � k
 

where u is the cytokine concentration and s is the external stimuli. Function
ψlk > 0 expresses the eff ect of the cytokines and external stimuli on the produc-
tion of cytokine k by a cell of type l; υk > 0 is the rate of degradation of the kth 
cytokine.

Th e dynamics of the cytokine-producing cells was measured by the following 
equation:

 
� �i

l l n r l lu u s s� �( ( , , , , , ) )� �1 1… …
 

where �l > 0 expresses the eff ect of the cytokines and external stimuli on the pro-
liferation rate of a cell of type l and µl > 0 is the death rate of cells of type l.

�
�
�
�
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Th e results from the simulation with only two cytokines and one type of cell 
show that the stronger second stimulus produces a stronger response than the fi rst, 
in terms of the increased concentration of cytokine-producing cells (Horne and van 
den Bergt, 2007).

6.4.1 Phylogenies of T Cells
Cytokines play an important role in T cell–mediated cellular immunity, which kills 
virus-infected cells and tumor cells. Diff erent populations of T cells are regulated 
through signal transduction antigen-receptor-mediated pathways (Figure 6.5).

T-delayed hypersensitivity (TDH) lymphocyte, also known as the Th 1, CD4+ 
T cell produces lymphokines to direct the cell-mediated immune response. 
It produces IL2 (T cell growth factor) that all T lymphocytes must have to 
respond to antigen.
Th lymphocyte (TH), also called Th 2, CD4+ T cell helps stimulate the B cell 
response.
T cytotoxic lymphocyte (Tcy) is a CD8+ lymphocyte that kills vital infected 
cells and tumor cells.
T memory cells (Tm) remember immune response, which are of CD4+ or 
CD8+ types depending on the memory.

�
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??
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Figure 6.5 Cytokine network in T cell phylogenesis.
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Ts cells suppress humoral-immune response by suppressing the TH. If TDH 
cell is suppressed, then there is no cellular immune response. If Tcy is sup-
pressed, then tumor and viral immunity is aff ected.

In innate immune response, some cytokines such as IL2, IL4, IL12, and IFNγ are 
produced by macrophages; these cytokines can determine the generation of diff er-
ent types of T cells.

Although there is no computational model yet published on T-cell phylogen-
esis, this provides another area of further research in immunological computation.

6.5  Combining Negative Selection 
and Classifi cation Techniques

In many anomaly detection applications, only positive (normal) samples are avail-
able at the training stage. However, most conventional classifi cation algorithms 
need both self- and nonself samples.

To allow conventional algorithms to be used when only samples from one class 
are provided, a hybrid algorithm was proposed (González et al., 2002), which is 
able to create synthetic nonself samples from a set of self-samples. Th e algorithm 
generates a set of detectors (points) that cover the nonself space using NS, and then 
these points are used as samples of the nonself class, allowing the use of conven-
tional classifi cation algorithms (Figure 6.6).

�
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selection
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New
samples

Normal Abnormal
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Anomaly
detection
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Training
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algorithm

Figure 6.6 Combining NS-SOM in generating classifi er dataset.
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Particularly, this approach uses the positive (normal) samples to generate nega-
tive samples. Th en samples from both the classes are used (as training data) for a 
neural network, particularly, for a self-organizing map (SOM). Figure 6.7 shows the 
algorithmic steps of this hybrid NS-SOM approach. An SOM, composed of nodes 
or neurons (that are able to recognize diff erent types of inputs), is a type of artifi cial 
immune network that is trained to produce a low-dimensional representation of the 
input space or self-/nonself feature space of the training samples called “map.”

González et al. (2005) extended their earlier works of combining NS algo-
rithm and the SOM for producing the visual representation of the self-/nonself 
feature space. Th is representation provides the understanding of the structure of 
self-/nonself space by producing a visual discrimination of the normal, known 
abnormal, and unknown abnormal regions. Th is model produces a network that 
can discriminate normal samples from abnormal samples and can learn from 
the encounters with antigens to improve specifi city of response. Th is NS-SOM 
anomaly model has three phases: self-tolerization, primary response, and second-
ary response. Th ese three phases are illustrated in Figure 6.7.

Th e fi rst phase, self-tolerization, uses NS algorithm to produce the artifi cial 
anomalies and then, these anomalies are used to produce an anomaly classifi er by 
using an SOM training algorithm instead of using classifi er training algorithm. 
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Unknown anomaly

Unknown
anomaly

Known anomaly

Normal

New samplesNew samplesNormal samples

Secondary responsePrimary response

Normal Known
anomaly

Unknown
anomaly

Self-tolerance

Negative
selection

Artificial
anomalies

SOM
training algorithm

labeling

Maturation

Afinity

Figure 6.7 NS-SOM model structure. The model consists of three phases: self-
tolerization, primary response (affi nity maturation), and secondary response. 
The squared arrangement of nodes corresponds to an SOM, where black, gray, 
and white labels represent normal, unknown anomaly, and known anomaly 
respectively. (From González, F. J., Galeano, A. Veloza and A. Rojas. Pro-
ceedings of the 2005 Conference on Genetic and Evolutionary Computation 
(GECCO’05), ACM Press, New York, 2005.)
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Th is SOM training algorithm produces a network where nodes in SOM represent 
the structure of normal and abnormal samples for training, and nodes are labeled 
on the basis of this representation. Most importantly, the fi rst phase uses NS algo-
rithm for generating normal space and this normal space is used to train an SOM 
to produce a map that only refl ects the self-space leaving the nonself space.

During the second phase, primary response, if unlabeled nodes are present, the 
network can classify them as normal or abnormal on the basis of fi nding the node, 
which is present near the input (the winner code) where the inputs are classifi ed on 
the basis of the label of this node. Node labels are assigned by fi nding the closest 
labeled sample for each node and assigning the sample’s labels for the correspond-
ing node. Th is strategy would generalize k-nearest neighbor classifi cation.

In the third phase, secondary response, new unlabeled nodes are classifi ed on 
the basis of winner node. In this phase, the network is supposed to work more pre-
cisely by producing a specifi c response and by identifying more accurately about the 
normal or specifi c kind of anomaly.

Th e fi rst stage is executed only once, but the second and third phases are repeated 
until there are new samples available. A visual representation of the feature space 
can be generated by a two-dimensional (2-D) grid corresponding to the network 
and by assigning diff erent colors to each node depending on the category it repre-
sents. González et al. (2005) experimentally showed that this model can capture 
the structure of the normal samples used for training and by the third phase, it was 
seen that this model incredibly improved the discrimination by the affi  nity matura-
tion process that is carried on the second phase of the model.

6.6 Summary
Th is chapter fi rst discusses the DT, then DT- and DC-based methods are described. 
Other recent works presented include a multilevel immune algorithm, MHC-based 
approaches, and cytokine networks. Recent works in immunology show that as 
the antigen evolve toward imitating self-molecules, antigens became invisible to 
the antibodies’ defense mechanisms pointing to the necessity of other means of 
protection probably constituted by T cells (Dasgupta, 2007). Moreover, the phy-
logenies of immune system (Warr and Cohen, 1991), the evolutionary development 
of immune functions play an  important role in keeping diversity. Th e last section 
discusses a hybrid approach, which combines NS and neural network methods to 
design a classifi cation algorithm.

6.7 Review Questions
 1. Explain the main ideas behind DT.
 2. How can a danger zone be defi ned?
 3. Illustrate with diagrams self-nonself (SNS), infection/noninfectious (INS), 

and danger signal models.
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 4. Why is a danger model seen as an extension of the two-signal model?
 5. Explain lymphocyte behavior in the DT.
 6. Based on the laws of lymphocytes, explain why immature cells are unable to 

accept signal 2 from any source?
 7. Briefl y explain why the DT can be seen as an extension of immune signal 

models.
 8. Draw fl ow diagram to explain the role of danger signal in the BIS.
 9. Why is the DT not able to explain autoimmune diseases? Illustrate with an 

example.
 10. What are the unique features of dentritic cell–based algorithm?
 11. How are MHC-based and pH methods used for computer security?
 12. What are the phases of MILA? State the T cell types that are being used in 

MILA.
 13. Explain cytokine network model; identify its uniqueness and usefulness in 

real world applications.
 14. Why do most conventional classifi cation algorithms need both self- and non-

self samples?
 15. Briefl y explain the idea behind NS-SOM (González et al., 2005) algorithm 

to create synthetic nonself samples from a set of self-samples.
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Chapter 7

Real-World Applications

Immunological computation (IC) techniques (or artifi cial immune systems) have 
been used as a problem solver in a wide range of domains such as optimization, clas-
sifi cation, clustering, anomaly detection, machine learning, adaptive control, and 
associative memories. Th ey have also been used in conjunction with other methods 
(hybridized) such as genetic algorithms (GAs), neural networks, fuzzy logic, and 
swarm intelligence. IC includes real-world applications of computer security, fraud 
detection, robotics, fault detection, data mining, text mining, image and pattern 
recognition, bioinformatics, games, scheduling, etc.

First, a general description of the solution process of using immune-based mod-
els is presented followed by some general-purpose applications. Next, some applica-
tions of AISs are briefl y described to exhibit how these techniques can be used in 
real-world problem solving.

7.1  Solving Problems Using 
Immunological Computation

To apply an immunity-based model to solve a particular problem in a specifi c 
domain, one should select the immune algorithm depending on the type of prob-
lem that needs to be solved. Accordingly, the fi rst step should be to identify the 
elements involved in the problem and how they can be modeled as entities in a 
particular AIS. To encode such entities, a representation scheme for these elements 
should be chosen, such as a string representation, real-valued vector, or hybrid rep-
resentation. Subsequently, appropriate affi  nity/distance measures, which are to be 
used to determine corresponding matching rules, should be defi ned. Th e next step 
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should be to decide which AIS will be better to generate a set of suitable entities that 
can provide a good solution to the problem at hand. Figure 7.1 shows the necessary 
steps to solve problems using an immunological approach.

7.2 Applications in Computer Security
Computer security seems to be analogous to the biological defense in many respects 
(Forrest et al., 1996, 1997); thus we can learn a lesson from the immune system to 
develop digital immunity. Majority of AIS works have been devoted to using some 
immunological metaphor for developing digital defense systems (Aicklen et al., 2003; 
Dasgupta, 1999; D’haeseleer et al., 1996). AISs used varied notions of data protection 
and anomaly to provide a general-purpose protection system to augment current com-
puter security systems. Th e security of computer systems depends on activities such as 
detecting unauthorized use of computer facilities, maintaining the integrity of data 
fi les, and preventing the spread of computer viruses. Th is  immunity-based system is 
much more sophisticated.

Forrest et al. (1994) fi rst proposed the usage of negative selection (NS) in com-
puter security. Th ey assumed the problem of protecting computer systems from 
harmful viruses as an instance of the general problem of distinguishing “self” 
(legitimate users, uncorrupted data, etc.) from the dangerous “other” (unauthorized 
users, viruses, and other malicious agents). Th is method was intended to be comple-
mentary to the more traditional cryptographic and deterministic fi le- authentication 
methods on the problem of computer virus detection.

7.2.1 Virus Detection
In this application, the NS algorithm (discussed in Section 4.2) was used to detect 
changes in the protected data and program fi les. Experiments were performed 

Application domain

Representation

Affinity measures

Immune algorithms

Solution

Immune entities

Figure 7.1 Solving a problem using IC.
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in a Disk Operating System (DOS) environment with diff erent viruses, includ-
ing fi le-infector and boot-sector virus samples, and the reported results showed 
that the method could detect modifi cations in the data fi les due to virus infection. 
When compared to other virus detection methods, this algorithm exhibits several 
advantages over the existing change detection methods: it is probabilistic and tun-
able (the probability of detection can be traded off  against central processing unit 
[CPU] time), it can be distributed (providing high system-wide reliability at low 
individual cost), and it can detect novel viruses that have not been identifi ed previ-
ously (Forrest et al., 1994).

However, because the stored information in a computer system is volatile in 
nature, the defi nition of self in computer systems should be more dynamic than 
the biological notion of self. For example, computer users routinely load in updated 
software systems, edit fi les, or run new programs. Th erefore, this implementation 
seems to have limited use (only to protect static data fi les or software).

7.2.2 An Alternative Approach to Virus Detection
Kephart (1994) proposed a diff erent immunologically inspired approach (based 
on instruction hypothesis) for virus detection. In this approach, known viruses are 
detected by their computer-code sequences (signatures) and unknown viruses by their 
unusual behavior within the computer system. Th is virus detection system continually 
scans a computer’s software for typical signs of viral infection. Th ese signs trigger the 
release of “decoy programs” whose sole purpose is to become infected by the virus.

Specifi cally, a diverse suit of decoy programs are kept at diff erent strategic areas 
in the memory (e.g., home directory) to capture samples of viruses. According to 
the author, decoys are designed to be as attractive as possible to trap those types 
of viruses that spread most successfully. Each of the decoy programs is examined 
from time to time to see if it has been modifi ed. If one or more have been modi-
fi ed, it is almost certain that an unknown virus is loose in the system, and each 
of the modifi ed decoys contains a sample of that virus. Particularly, the infected 
decoys are processed by “the signature extractor” to develop a recognizer for the 
virus. It also extracts information from the infected decoys about how the virus 
attaches to its host program (attachment pattern of the virus), so that infected 
hosts can be repaired. Th e signature extractor must select a virus signature (from 
among the byte sequence produced by the attachment derivation step) such that 
it can avoid both false-negatives and false-positives while in use. In other words, 
the signature must be found in each instance of the virus, and it must be very 
unlikely to be found in uninfected programs. Once the best possible signature 
is selected from candidate signatures of the virus, it runs against a half-gigabyte 
corpus of legitimate programs to make sure that they do not cause a false-positive. 
Th e repair information is checked by testing on samples of the virus, and further 
by a human expert.
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Finally, the signature and the repair program are stored in an archive of the 
anti-virus database, and the updated (new) version needs to be distributed to the 
customers (Figure 7.2).

In another work, Lamont et al. (1999) proposed a computer virus immune 
system (CVIS), which uses hierarchical intelligent agent architecture for identify-
ing, attacking, and eradicating viruses from computers and networks. Particularly, 
coordination among intelligent agents is accomplished at three levels: local, net-
work, and global. Th e functions of agents at each level are shown in Figure 7.3. 
For example, an agent at local level monitors an individual computer (or node)
for potential viruses, where each node uses decoy program as described earlier 
(Kephart, 1994). Agents at the network level keep track of viruses in network traffi  c 
and inform at the local level, whereas agents at the global level involve in generating 
and adapting virus-fi ghting resources.

An automated detection and response system for identifying malicious self-
 propagating code and to stop its spread, called Cooperative Automated worm 
Response and Detection ImmuNe Algorithm (CARDINAL), was proposed by 
Kim et al. (2005). Th is method was based on the concepts of diff erentiation states 
of T cells. Particularly, three key properties of T cells have been identifi ed: T cell 
proliferation to optimize the number of peer hosts polled, T cell diff erentiation to 

Detect anomaly

Scan for known viruses

Capture samples using decoys

Segregate
code/data

Algorithmic
virus analysis

Extract signature(s)

Add removal info
to database

Add signature(s) to databases

Send signals to
neighbor machines

Remove virus

Figure 7.2 Flow diagram shows Kephart’s approach in virus detection.
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assess attack severity and certainty, and T cell modulation and interaction to bal-
ance local and peer information. Th e goal of this work was to use diverse T cell 
types to operate as a cooperative automated worm detection and response system.

7.2.3 UNIX Process Monitoring
Forrest et al. (1996) applied an NS algorithm to monitor UNIX processes in a 
dynamic computer environment in such a way that the defi nition of self is sensi-
tive to malicious attacks. Th is work is based on the assumption that the system 
calls of root processes are inherently more dangerous in causing damage than user 
processes. Also, root processes have a limited range of behavior, and their behav-
ior is relatively stable over time; accordingly, the “normal (or self)” is defi ned by 
short-range correlations in a process’ system calls (called trace). Th ey experimented 
with several common intrusions involving “sendmail,” such as traces of successful 
sendmail attacks, traces of sendmail intrusion attempts that failed, and traces of 
error conditions.

System level 
      Status collection 
      Metric generation
      Information sharing 
      Resource warehouse

Network level 
      Control local activites 
      Collect local status
      Dispense vaccinations
      User interface

Local level 
      Virus detection 
      System response
      System memory

Messages 
      Resource 
      Virus alert

Messages 
   Resource request 
   User interaction 
   Virus alert

Messages 
   Resource request 
   Status

Messages 
      Resource

Messages 
      User interaction 
      Virus alert

Figure 7.3 Multilevel model for virus detection. (From Lamont, G. B.,
R. E. Marmelstein and D. A. Van Veldhvizen. New Ideas in Optimization
(edited volume), McGraw-Hill, 1999, 167–184.)

CRC_AU6545_C007.indd   175CRC_AU6545_C007.indd   175 7/22/2008   5:04:48 PM7/22/2008   5:04:48 PM



176 � Immunological Computation: Theory and Applications

7.2.4 Immunity-Based Intrusion Detection Systems
Further works by Hofmeyr et al. (1998) in computer security led to the develop-
ment of host-based intrusion detection systems, which construct a database that 
catalogs the normal behavior over time in terms of the system calls made, etc. As 
this record builds up, the database may be monitored for any system calls that are 
not found in normal behavior patterns. Hofmeyr et al. argued that while simplis-
tic, this approach is not computationally expensive and has the advantage of being 
platform and software independent.

Hofmeyr and Forrest (1999, 2000), Somayaji et al. (1998), and Warrender et al. 
(1999) conducted extensive research on an artifi cial immune system called ARTIS 
architecture, which could tackle the issue of protecting networks of computers. 
Th is is achieved in a similar way in monitoring network services, traffi  c and user 
behavior, and attempts to detect misuse or intrusion by observing departures from 
normal behavior. Each computer runs a broadcaster, which broadcasts the source 
and destination of each TCP SYN packet it sees, to other computers running LISYS 
(a version of ARTIS). Particularly, a detection node processes the information from 
the broadcasters. Each detection node receives data from broadcasters and mails it 
to the administrator if it detects a novel TCP connection. A detection node has an 
array of detectors that as a group determine if a packet is anomalous. Detectors 
are randomly generated, with each one sensitive to a particular random source and 
destination address, and port as well as near matches to it. For a newly generated 
detector, if it sees a packet that matches its template, a new randomly generated 
detector will replace it. For a detector over a week old, if it recognizes a packet, 
it will send a mail to the administrator for inspection. By having this weeklong 
“tolerization” period for the new detectors, they can generate detectors randomly 
and only let the ones that do not send false-positives for a week “survive.” When the 
user receives an alarm signal from a detector, if the user does nothing, the detec-
tor that fl agged the connection as anomalous will disappear and not bother the 
user any more. If the user chooses to confi rm or “costimulate” the anomaly, the 
detector that fl agged the anomaly will become a permanent part of the program’s 
repertoire and will alert the user whenever this TCP connection is being requested 
in the future (shown in Figure 7.4).

Balthrop et al. (2002) used a version of LISYS for monitoring network traffi  c. 
Th e system used an NS algorithm (to mature 49-bit binary detectors, that is, trip-
lets representing Transmission Control Protocol [TCP] connections), which was 
tested against connections collected during a training period. Matured detectors 
were then distributed in each host on a live network (see Figure 7.5). Diversity was 
created through each host independently reacting to its self and nonself (normal 
and abnormal). Th e matching function used was r-contiguous, and the detectors 
were improved through affi  nity maturation. It used a distributed detection strategy 
wherein each detection node, through a diff erent representation fi lters incoming 
strings through a randomly generated permutation mask. Th is technique of having 
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Figure 7.4 Shows the fl ow diagram of detector tolerization process.
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Figure 7.5 Illustrates the distributed detection scheme, where each host con-
tains different detector sets. Each detector is a binary triplet representing TCP 
connections.
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diff erent representations for each detection node is equivalent to multiple detector 
shapes (hence changing the shape of the detectors), while keeping the “shape” of 
the self-set constant.

7.2.5 Immune Agent Architecture
An immune agent architecture was introduced by Dasgupta (1999) where 
 immunity-based agents roamed in the machines (nodes or routers) and monitored 
the situation in the network (i.e., looked for changes such as malfunctions, faults, 
abnormalities, misuse, deviations, and intrusions). Th ese agents could mutually 
recognize each other’s activities and took appropriate actions according to the 
underlying security policies. Specifi cally, their activities were coordinated in a hier-
archical fashion while sensing, communicating, and generating responses. Th ese 
agents simultaneously monitored the networked computer’s activities at diff erent 
levels (such as user level, system level, process level, and packet level) to make 
robust decision on intrusions or anomalies. Some agents used B cell mechanism, 
some used T cell, and some had limited life cycle (time-dependent functional-
ities). Such architecture appears to be fl exible and extendible, where an agent can 
learn and adapt to its environment dynamically and can detect both known and 
unknown intrusions.

7.2.6 Immunogenetic Approaches in Intrusion Detection
Gonzalez (2002) proposed negative selection with detector rules (NSDR) to detect 
attacks by monitoring network traffi  c. A real-valued representation was used for 
evolving hyper-rectangular-shaped detectors, interpreted as “if-then rules,” for 
high-level characterization of the self/nonself space (i.e., normal and abnormal traf-
fi c). Experiments were performed using the 1999 Defense Advanced Research Proj-
ects Agency (DARPA) intrusion detection evaluation dataset. Th is data represents 
normal and abnormal information collected in a test network, in which simulated 
attacks were performed. Th e immunogenetic approach was able to produce detec-
tors that gave a good estimation of the amount of deviation from the normal.

Further works extended the NSDR algorithm to use fuzzy detection rules, and is 
called NSFDR. Th is improves the accuracy of the method and produces a measure 
of deviation from the normal that does not need a discrete division of the nonself 
space. It provides a better defi nition of the boundary between normal and abnor-
mal. Th e earlier approach used a discrete division of the nonself space, whereas the 
new approach does not need such a division because the fuzzy character of the rules 
provides a natural estimate of the amount of deviation from the normal. It shows 
an improved accuracy in the anomaly detection.

In another work, Kim and Bentley (2001) used three evolutionary stages: gene 
library evolution, negative selection, and clonal selection with the goal of designing 
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eff ective network intrusion detection systems. Here, detectors (in the form of classi-
fi ers) are evolved using the clonal selection algorithm wherein the evolving popula-
tion of detectors is clustered into “niches,” which help to distinguish between self 
and nonself in network traffi  c data.

7.2.7 Danger Theory in Network Security
Aicklen et al. (2003) fi rst proposed to use the danger theory (DT) concept in intru-
sion detection. Th eir system behaves like the dendritic cells (DC) looking for danger 
signals such as sudden increases in network traffi  c or unusually high numbers of error 
messages. If these signals increase above a preset threshold, it triggers an alert. Sub-
sequently, two algorithms were developed based on the DT, the dendritic cell algo-
rithm (DCA; Greensmith et al., 2006), and the Toll-like Receptor algorithm (TLR; 
Twycross, 2007). Th ese algorithms focus on diff erent aspects of innate immunity to 
develop the AIS models; a brief description is provided in the following.

7.2.7.1 Dendritic Cell Algorithm

It is an abstraction of DC functions, which is based on the premise that “suspects” 
in the form of antigen can be paired with “evidence” in the form of signals to iden-
tify potential sources of anomaly or intrusion. A general overview of the DCA is 
provided by Greensmith et al. (2006). Th e DCA is implemented using the libtissue 
framework to facilitate the creation and updating of cells and tissue attributes. A 
schematic diagram of the DCA is presented in Figure 7.6. Th e algorithm processes 
two input streams consisting of signals and antigens (data to be correlated). Par-
ticularly, the signal stream contains a specifi ed number of input signals, which are 
prenormalized and categorized as pathogen-associated molecular pattern (PAMP), 
danger signal, safe signal, or infl ammation. A storage facility for incoming signals 
and antigen is provided and forms the “tissue” for the DCs. Th e DCA can be 
described on two levels: fi rst, at the level of an individual DC and second, at the 
level of the DC population. Similar to the biological immune system, DCs exist in 
one of the following three states—immature, semimature, or mature.

7.2.7.2 TLR Algorithm

Algorithmic steps of TLR algorithm (as described in Aickelin and Greensmith, 
2007), which is primarily designed or anomaly detection in computer networks are 
provided as follows:

 1. Record set of system calls (low-level instructions in computing) made in 
training data.

 2. Record signal values experienced in training data.
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 3. Compute complement set to 1 and 2.
 4. Create immature DCs (iDCs) with signal receptors randomly drawn from 

the complement signal set and with antigen receptors randomly drawn from 
the complement system call set.

 5. Create naive T cells (nTCs) with antigen receptors randomly drawn from 
complement system call set.

 6. iDCs are continually exposed to sample signals and antigens, respectively.
 7. If during its lifetime an iDC’s signal receptor matches a signal, it becomes a 

mature DC (mDC) and migrates.
 8. If an iDC has not migrated at the end of its lifetime, it becomes a semimature 

DC (smDC) at the end of its lifetime and migrates.

Input data

Signal matrix Antigen

Immune dendritic

More danger signals
More safe signals

Maturation phase

Semimature

Mature

Analysis

Data sampling phase

Figure 7.6 Schematic overview of the DCA.
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 9. Migrated smDCs and mDCs present their antigen and try and match 
nTCs.

 10. If an mDC expresses an antigen that matches an nTC receptor, then this 
turns the nTC into an activated T cell (aTC) and we have an anomaly.

 11. If an smDC expresses an antigen that matches an nTC receptor, then this 
kills the nTC to reduce false-positives.

 12. Migrated smDCs and mDCs and killed nTCs are replaced with new cells as 
per points 4 and 5 (Figure 7.7).

Th ere are some similarities between the DCA and TLR algorithms; both perform a 
type of temporal correlation between signals and an antigen. However, TLR defi nes 
interactions between both T cells and DCs, which is more complex than the single 
cell and multiple-signal model employed by the DCA.

Yeom (2007) extended a DT-based approach for network anomaly detection, 
where input signals are combined with some information such as data length, name 
or identifi cation (ID), or process/program service ID. Here, data is combined with 

Signals 
antigen

Signals Signals 

smDC mDC 

Match antigen Match antigen

nTC nTC 

If  Match If  Match

nTC 

iDC
UnseenSeen

aTC 

Figure 7.7 Systematic overview of the TLR algorithm.
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context information received during the antigen collection process. Diff erent combi-
nations of input signals result in two diff erent antigen contexts: “unlicensed mature 
antigen” context implied that antigen data was collected under normal conditions, 
whereas a “mature antigen” context signifi ed a potentially anomalous data.

In this algorithm, antigen was used only for the labeling and tracking of data 
and hence, represented as a string of either integers or characters. Signals were rep-
resented as real-valued numbers that are proportional to values derived from the 
context information of the dataset in use. For example, a danger signal may be an 
increase in CPU usage of a computer. Th e value for the CPU load can be normal-
ized within a range and converted into its real-valued signal concentration value.
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(7.1)

In Equation 7.1, the signal values are combined using a weighted function, where 
Cx is the input concentration and Wx is the weight. Input signals are categorized 
either as PAMPs (P), safe signals (S), danger signals (D), or infl ammatory cytokines 
(IC), and are represented as a concentration of signals. Th ey are transformed to 
output concentrations of costimulatory molecules (csm), ULmatDCs cytokines, 
and LmatDCs cytokines.

To detect port scan attacks, three diff erent signals—PAMPs, danger, and safe—
are used, where PAMPs indicated the number of “unreachable destination” errors. 
When the port scan process scans multiple Internet Protocol (IP) addresses indis-
criminately, the number of these errors increases. Danger signals are indicative of 
the number of outbound network packets per second. An increase in network traf-
fi c could imply anomalous behavior. Th e safe signals are the inverse rate of change 
of network packets per second. Th is is based on the assumption that if the rate of 
sending network packets is highly variable, the machine is behaving suspiciously 
(Figure 7.8 shows the pseudocode for this DC approach).

7.3 Applications in Fraud Detection
An immune-based system called JISYS was applied to fraud detection (Hunt and 
Cooke, 1995; Hunt and Fellows, 1996; Hunt et al., 1999). Th is system forms a net-
work of B cell objects where each B cell represented a loan application. Advances were 
made in the follow-on work by Hunt et al. (1999) where results for fraud detection 
were presented. Work presented by Neal et al. (1998) discusses an immune-inspired 
supervised learning system called “Immunos-81.” Two standard machine-learning 
datasets were used to test the system’s recognition capabilities. Th ey use software 
abstractions of T cells, B cells, antibodies, and their interactions. Artifi cial T cells 
control the creation of B cell populations (clones), which compete for recognition 
of “unknowns.” Th e B cell clone with “simple highest avidity” (SHA) or “relative 
highest avidity” (RHA) is considered to have successfully classifi ed the unknown. 
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Research by Carter (2000) attempted to create an inductive computation algorithm 
based on metaphors taken from immunology. Th ey describe an evolutionary search 
algorithm based on the model of immune network dynamics.

7.4 Application in Robotics and Control
Robot control works by Ishiguro et al. (1996, 1998), Wantanabe et al. (1998, 1999), 
and Lee et al. (1999) focused on the development of a dynamic decentralized 
 consensus-making mechanism based on the “immune network theory.” Th ey 
attempted to create a mechanism by which a single, self-suffi  cient autonomous 
robot, called the immunoid, could perform the task of collecting various amounts of 
garbage from a constantly changing environment. Th e authors used the metaphors of 
antibodies, which were potential behaviors of the immunoid; antigens corresponded 
to environmental inputs such as existence of garbage, wall, and home bases (Figure 7.9).
For the immunoid to make the best decision, it detects antigens and matches the 
content of the antigen with a selection of all the antibodies that it possesses. Th eir 
model included the concepts of “dynamics,” responsible for the variation of the

∋

PROCEDURE InitializationOfStatus()
While (size of AB < a threshold)

If (detector expresses NOSYMTOMS in network)
create new antibody (ab) from log file
add newly generated antibody (ab) to AB
For (ab   AB)

∋FOREACH (ag   AG)
∋FOREACH (ab   AB)

clone and mutate ab to maximize affinity with ab
add best n clones to AB

PROCEDURE Continuous_adaptation()
antigen_count ← 0
LOOP

receive incoming network packets
ag ← preprocess packets into antigen
antigen_count ← antigen_count +1

  IF (antigen_count = K )
AG ← last K antigens
Update_Population(AG)
antigen_count ← 0 

AG ← all packets in the danger zone 

compute degree of danger()
WHILE(danger is high)

compute temporal danger zone

compute affinity (ab,ag)
high_aff ← highest affinity value
IF (high_aff > a threshold)

block the scanned port

Figure 7.8 The pseudocode for detecting scan probes.
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concentration level of antibodies, and “metadynamics,” which maintained the 
appropriate repertoire of antibodies. Th is work was then extended by the authors to 
attempt in creating a more emergent behavior within the network of robots ( Kondro 
et al., 1998) by the introduction of genetic operators.

KrishnaKumar et al. (1995) and KrishnaKumar and Neidhoefer (1997a, 1997b, 
1999) proposed an “immunized computational systems” (ICS). Th ey successfully 
tested ICS on an autonomous aircraft control problem. Ootsuki and Sekiguchi 
(1999) suggested a method for determining control sequences of a sequential con-
trol plant based on the immune system. Th ey used Petri nets with control sequences 
equal to the fi ring sequences of a Petri net.

Attempts have been made to apply the immune network idea to control large 
populations of robots to have some form of a self-organizing group behavior. Toma 
et al. (1999) attempted to create a group of robots, which self-organized to search 
for food without any global control mechanism. Th e authors used B cells to rep-
resent a robot and its stimulation is calculated according to its performance. Each 
robot carried a record of its degree of success in collecting food, while neighboring 
robots compared their success and strategies and stimulated and suppressed each 
other accordingly. Th is work was advanced by Mitsumoto et al. (1996) with the 
introduction of the idea of B cell cloning to represent messages to other robots. 
If a robot is achieving the work, then it receives more stimulation. After a certain 
stimulation threshold, it produces clone B cells. Also, Mitsumoto et al. (1997) and 
Lee and Sim (1997) used metaphors based on T cell behavior in robotics.

Paratope Idiotope

Interacting antibodies
and degree of interaction

Action
Desirable
condition

Battery chargeGarbage can

Near

Middle

Garbage

Far

Robot

(a)

(b)

Figure 7.9 (a) Environment for testing the consensus-making algorithm based 
on immune networks, (b) defi nition of antibody.
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Wantanabe et al. (1998) developed a work on decentralized adaptive-control 
mechanism for the walking behavior of a six-legged robot. By using the idea of B 
cells and immune networks, where a B cell is considered to be a leg in the robot and 
the immune network a mechanism by which legs communicate with each other, 
they proposed a system that can learn how to control the walking motion of the 
robot. Each B cell records the level of antibody concentration. Th e B cell with the 
highest concentration is the leg that swings forward.

Singh and Th ayer (2001) proposed Immunology-derived Distributed Autono-
mous Robotics Architecture (IDARA)—a self-optimizing and dynamic robot con-
trol architecture. IDARA distributes tasks so that routine actions are refi ned and 
followed by more specifi c responses. Th ey use a multitiered response layer equating 
it to the response pattern of the innate immune system. Th erefore, initial agents can 
fail and pass on because they fail to successive levels of control, then a more suitable 
agent is evolved. Basically, the idea is that many agents respond to one problem and 
the failure of one helps improve the next agent—the idea of innate immunity before 
the optimum agent can be evolved. Traditional communication in distributed sys-
tems has a signifi cantly high cost. Th ey use computer simulation of a “self-healing” 
mobile minefi eld having up to 7500 mines and 2750 robots and use a multitiered 
response layer equating it to the response pattern of the immune system.

Lau and Ko (2007) proposed a robotic search and rescue system based on an 
immune-control framework, called general suppression control framework (GSCF). 
GSCF is based on the suppression mechanism of immune cells. A decentralized 
system based on GSCF to assist a search and rescue a robot system to communicate 
and navigate in unstructured disaster-aff ected areas is developed. Th e robot system 
consists of two robots and one operator console, but can be extended to a higher 
number of robots. GSCF is a modular system that consists of fi ve major compo-
nents: affi  nity evaluator, cell diff erentiator, cell reactor, suppression modulator, and 
the local environment. Th us, autonomous T cells that continuously react to the 
changing environment and aff ect other cells in the environment are modeled.

Lee et al. (2007) used clonal selection algorithms in controlling autonomous 
underwater vehicles. Particularly, clonal selection is used to tune control param-
eters—Kp, KD, and KI  — of proportional integral derivative (PID) controllers. Th e 
proposed approach was compared with the Ziegler–Nichols (Z–N) technique with 
respect to the settling time, overshoot and an affi  nity in submerging underwater, 
and turning the yaw angle through simulation. Th e immune approach is more effi  -
cient than the Z–N technique in submerging and turning the yaw angle.

7.5 Application in Fault Detection and Diagnosis
Th e fi eld of fault diagnosis needs to accurately predict or recover from faults occur-
ring in plants, machines such as refrigeration systems, communications such as 
telephone systems, and transportations such as aircrafts. Bersini and Varela (1990) 
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used learning vector quantization (LVQ) to determine a correlation between two 
sensors from their outputs when they work properly. Each sensor is equated to a B 
cell in an immune network, and sensors test one another’s outputs to see whether or 
not they are normal using the extracted correlations. Here, reliability of the sensor 
is used in lieu of the similarity to neighbors.

In the fi eld of diagnosis, there has also been some interest in creating distributed 
diagnostic systems. Kayama et al. (1995) initially proposed a parallel-distributed 
diagnostic algorithm. Th e authors compared their algorithm to that of an immune 
network due to its distributed operation, and the systems emergent cooperative 
behavior between sensors. Th is work was then continued by Ishida (1990, 1996). 
Active diagnosis continually monitors for consistency between the current states 
of the system with respect to the normal state. Each sensor can be equated with 
a B cell, connected through the immune network with each sensor maintaining 
a time-variant record of sensory reliability, thus creating a dynamic system. Th is 
work diff ers from the aforementioned in the way in which the reliability of each 
sensor is calculated.

An AIS technique was applied to refrigerated cabinets in supermarkets to 
detect the early symptoms of icing up. Taylor and Corne (2003) used in- cabinet 
 temperature data to predict faults from the pattern of temperature over time.
Th is technique used r-bits matching rule in conjugation with a specialized diff eren-
tial encoding of data to spot fault patterns in a time-series temperature data from 
supermarket freezer cabinets.

An aircraft fault-detection system, called multilevel immune learning detection 
(MILD), was developed (Dasgupta et al., 2004) to detect a broad spectrum of known 
as well as unforeseen faults. Empirical study was conducted with datasets collected 
through simulated failure conditions using National Aeronautics and Space Admin-
istration (NASA) Ames C-17 fl ight simulator. Th ree sets of in-fl ight sensory informa-
tion—namely, body-axes roll rate, pitch rate, and yaw rate were considered to detect 
fi ve diff erent simulated faults: one for engine, two for the tails, and two for the wings. 
Th e MILD implemented a real-valued negative selection (RNS) algorithm, where a 
small number of specialized detectors (as signatures of known failure conditions) and 
a set of generalized detectors (for unknown or possible faults) are generated. Once 
the fault is detected and identifi ed, an adaptive control system would use this detec-
tion information to stabilize the aircraft by utilizing available resources (control sur-
faces). Experiments were performed with datasets collected under normal and various 
simulated failure conditions using a piloted motion-based NASA simulation facility.
A snapshot of a running MILD is shown in Figure 7.10.

An artifi cial immune regulation (AIR) scheme was proposed and integrated 
into an immune model-based fault detection approach for fault diagnosis (Luh 
et al., 2004). Th is system generated residuals that contained information about 
the faults. However, various disturbances and errors caused residuals to become 
nonzero, thus interfering with detection of faults. Th e AIR scheme produced a set 
of memory B cells whose amount depended on several chemical rate constants.
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Th is helped in classifying the residuals into distinct patterns, denoting diff erent 
faulty situations.

An algorithm was proposed by Pinto et al. (2005) for detecting faults in telephone 
systems based on DT in immunology, which is guided by the principle that the pres-
ence or absence of secondary signals determines responsiveness or tolerance. Each 
call in this fault-detection system is represented by an antigen composed of linear 
attributes: origin, destination, duration of calls, and a nominal attribute. Two signal 
levels were identifi ed: signal 1 for perceiving the presence of the antigen and signal 2 
for costimulation by using the noncompleted call rate. Signal 2 was responsible for 
alarming a danger situation. Detector death, detector deactivation, detector popula-
tion renewal, and a voting routine were signifi cantly employed in this work.

Guzella et al. (2007) presented an immune-inspired approach for fault detec-
tion called dynamic eff ector regulatory algorithm (DERA). Th e proposed approach 
integrates the role of regulatory T cells in control and signaling between cells. In 
DERA, new components of the immune system such as cytokines and  regulatory 
cells are incorporated in the model. DERA uses a population of regulatory and 

Figure 7.10 The performance of MILD when tested with “full-tail failure” data, 
where this type of fault is manifested in pitch error rate (starting at the 1200th 
time step). The graph also shows the number of detectors activated (lower-bar 
chart) as signifi cant deviations in data patterns appear. The bar chart shows the 
arrangement of the detectors with increased radius.
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eff ector cells and combines both positive and negative detection; it also keeps 
track of the concentration of two cytokines in the environment. It is based on the 
assumption that there must be an interaction between cells in the population before 
determining whether an antigen belongs to self or nonself. Th e system possesses a 
memory that is represented by cytokine concentrations such that the classifi cation 
of an antigen depends on the responses against recently classifi ed instances. Th e 
system does not include clonal selection, thus the memory is not antigen specifi c. 
Unlike NS algorithms, which look for a total coverage of the nonself space, DERA 
searches for an appropriate distribution of eff ector and regulatory cells throughout 
the space. By combining both regulatory and eff ector cells, to recognize normal 
and abnormal operation, respectively, DERA’s dynamic behavior mediated by cyto-
kines is able to indicate the severity of a fault. Th e proposed approach was tested 
on the DADAMICS fault-detection benchmark problem, and it was able to attain 
considerably lower false-positives than other approaches, because regulatory cells 
suppress the activation of eff ector cells.

7.6 Application to Scheduling
Creating optimal schedules in a constantly changing environment is not easy. Th e 
purpose of scheduling is to allocate a set of limited resources to tasks over time.
Ishida (1997) and Mori et al. (1994) proposed and developed an immune algorithm 
that can create adaptive scheduling system based on the metaphors of somatic hyper-
mutation and immune network theory. Mori et al. (1994) built on this immune 
algorithm by addressing the issue of batch sizes and combinations of sequence 
orders, which optimized objective functions. In these works, antigens are consid-
ered as input data or disturbances in the optimization problem, and antibodies are 
considered as possible schedules. Proliferation of the antibodies is controlled by an 
immune network metaphor where stimulation and suppression are modeled in the 
algorithm. Th is assists in the control of antibody (or new solution) production. Th e 
T cell eff ect in this algorithm is ignored. Th e authors claim that their algorithm 
is an eff ective optimization algorithm for scheduling and was shown to be good 
at fi nding optimal schedules. Th e application of this algorithm to a dynamically 
changing environment has been attempted by Mori et al. (1998). Here, the authors 
considered antibodies as a single schedule and antigens to be possible changes to 
the schedule. Th eir system produced a set of antibodies (schedules) that can cover 
the whole range of possible changes in the antigen set.

An AIS was utilized by Coello et al. (2003) to solve job-shop scheduling prob-
lems (JSSP) using clonal selection, hypermutation, and an antibody library to con-
struct solutions. Th e purpose of JSSP is to fi nd an optimum schedule that gives the 
minimum duration to complete all the jobs (n jobs for m machines). It is an opti-
mization problem for particular objectives where certain criteria are met during the 
assignment. A permutation representation (extensions of CLONALG) is adapted 
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wherein an antibody represents schedule, whereas an antigen holds information on 
the set of expected arrival dates for each job to the shop. A library of antibodies 
builds new solutions to the problem.

Ong et al. (2005), in a similar work called “ClonaFLEX,” intends to solve the 
fl exible JSSP with recirculation. It employs self-initiated antibody initialization, 
suitable antibody mutation rates based on their affi  nities, and a novel distribution 
of elite pools to produce antibodies. Th e possible job schedules are modeled as 
antibodies. Th e search process is repeatedly carried out and the information gained 
in each generation is used as feedback to conserve and propagate good features. 
ClonaFLEX also employs parallel search for optimizing time.

7.7 AIS in Data Mining
Timmis and Knight (2001) wrote a chapter on the concepts of artifi cial immune 
systems, particularly on artifi cial immune networks (AINE), which is a machine-
learning algorithm, based on immune network theory as applicable to the fi eld of 
data mining. Th e self-organizing nature of B cell network can be used as an effi  -
cient clustering tool. Th e idea of repertoire completeness is achieved by making a 
certain receptor surface match not only to an exact complementary string, but also 
to some variations of it, that is, a ball of recognition. Th e B cell receptors can serve 
as cluster centers, which will suitably self-organize.

Hunt and Cooke (1996) attempted to apply an immune-based model to data 
mining by creating a system that could help in the customer-profi ling domain. 
Each B cell object contained customer profi le data such as marital status, owner-
ship of cars, and bank account details.

Serapião et al. (2007) used an artifi cial immune system for the classifi cation of 
petroleum well drilling operations. Particularly, two approaches based on CLON-
ALG and parallel AIRS2 were developed. Th ey implemented a system, which takes 
advantage of information collected by mud-logging techniques during well-drilling 
operations. Mud-logging systems operations collect two types of information: forma-
tion samples (shale-shaker samples) and mechanical parameters related to the drill-
ing operation. AIRS2 is a bone marrow clonal selection type of immune algorithm. 
AIRS2, as in CLONALG, develops a set of memory cells that represents the training 
data environment. Also, AIRS2 uses affi  nity maturation and somatic hypermutation. 
It works on two stages: evolving candidate memory cells and determining whether 
they should be added to the pool of memory cells or not. Once the training routine is 
performed, AIRS2 classifi es instances using k-nearest neighbor (k-NN) on the set of 
developed memory cells. Th us, AIRS2 fi rst learns the input space through a cluster-
ing process and then uses k-NN on the cluster representatives for classifi cation. Th e 
reported results showed that imbalanced real mud-logging data has large impact on 
the classifi cation performance of the AIS classifi ers; they achieve high precision on 
predominant classes, but lower classifi cation precision on classes with fewer samples.
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7.7.1 Applications in Web Mining
In a conceptual paper, Secker et al. (2003) investigated the relevance of DT to 
Web mining. An adaptive mailbox fi lter is presented, which essentially employs a 
dynamical classifi cation task. Th is system accepts or temporarily ignores incom-
ing e-mails depending on an importance measure decided by the user at a specifi c 
instant of time. An antigen represents a processed original e-mail along with its 
class. Clonal selection and mutation evolve the antibody set, which change and 
update (including culling) over time refl ecting users’ changing preferences and the 
changing nature of received e-mails. Th e authors state the ultimate idea inspired by 
the combined artifi cial tissues capable of releasing artifi cial danger signals.

Nasraoui et al. (2002) proposed the fuzzy artifi cial recognition ball (ARB), 
which represents a fuzzy set over the domain of discourse consisting of the training 
dataset, as an improvement of the original ARB. Th e fi nal fuzzy ARB population 
can be consolidated by a crossover of randomly exchanging chromosomes, or by 
any other reasonable aggregation such as arithmetically averaging. Synthesized data 
and Web usage data are mined as the target of this method. For Web usage, the 
fi nal merged ARBs correspond to typical profi les for the users accessing a given 
Web site. Th e average attributes refl ect the relevance of the individual URLs to the 
combined ARBs.

Nasraoui et al. (2006) proposed a scalable immune-inspired clustering meth-
odology to continuously learn and adapt to new incoming patterns in Web mining. 
In this work, the Web server plays the role of the human body, and the incoming 
requests play the role of foreign antigens/bacteria/viruses that need to be detected 
by the proposed immune-based clustering technique. Hence, this immune algo-
rithm is used to continuously perform clustering of the incoming noisy data. Th e 
authors claim that the proposed approach exhibits superior learning abilities while 
requiring modest memory and computational costs. An important advantage of 
this method is its adaptation to the dynamic environment that characterizes several 
applications, particularly in mining data streams. Th e performance of the proposed 
approach is tested on mining user profi les from Web clickstream data in a single 
pass under diff erent usage trend-sequencing scenarios.

7.7.2 Application in Anomaly Detection
Dasgupta and Forrest (1996) and Dasgupta and Gonzalez (2002) propose the use 
of the NS algorithm to the application of detecting anomalies in general time series 
data. A number of experiments were performed using Mackey–Glass time series 
and other datasets (algorithmic steps in Figure 7.11).

In most of the works on anomaly detection, a sliding window scheme was used 
for data preprocessing, which is illustrated in Figure 7.12.

Gonzalez et al. (2002) implemented an RNS and compared against an unsu-
pervised learning algorithm using diff erent datasets in anomaly detection. A further 
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improved version called randomized RNS (RRNS; Gonzalez et al., 2003) produced 
a good estimate of the optimal number of detectors with maximization of the non-
self coverage done through an optimization algorithm with proved convergence 
properties. Th is was based on a type of randomized algorithms called “Monte Carlo 
methods.” Specifi cally, it uses Monte Carlo integration and simulated annealing.

1. Collect sufficient
time series data to 
exhibit the normal
behavior of a system

2. Determine the range of 
variation of data and 
perform a binary
encoding according to 
the desired precision

7. While monitoring the 
system, use the same encoding
scheme for the new data
patterns. If a detector is
activated, a change in behavior
has occurred and an alarm
might signal

3. Select a suitable window
(concatenation of a fixed
number of data points) size
which captures the 
regularities of interest

4. Slide the window along
the time series, in non-
overlapping steps, and store
the encoded string for each
window as self, from which
detectors will be generated

5. Generate a set of
detectors that do
not match any of
the self strings

6. Once a unique set of 
detectors is generated
from the normal
database of patterns, it
can probabilistically
detect any change (or
abnormally) in patterns
of unseen data

Figure 7.11 Different steps in implementing anomaly/novelty detection.
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Slide window (of size l, shift k )
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...

01010

Figure 7.12 Preprocessing of time series date in anomaly detection.
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A framework called multilevel immune learning algorithm (MILA) is proposed 
by Dasgupta et al. (2003). Th e novelty is twofold: (1) More mechanisms of natural 
immune system are utilized in this algorithm, including T helper cells, T suppres-
sor, B cells, and antigen-presenting cells (APCs). Th is makes it diff erent from other 
models using only the concept of either B cells or T cells. (2) Th is algorithm detects 
in a multilevel, multiresolution fashion, making large space to explore effi  ciently for 
anomaly-detection applications.

7.8 Solving Optimization Problems
Hajela and Lee (1996), Hajela et al. (1997), and Hajela and Yoo (1999) described 
the implementation of a constrained genetic search to simulate the mechanics of an 
immune-inspired algorithm to solve engineering-optimization problems.

Coello and Cortes (2002) used NS algorithm to handle the problem of infea-
sible solution. Accordingly, they assumed

Feasible individuals = Ag and infeasible individuals = Ab
Antigen–antibody interaction (clone mutate and increase affi  nity) used to 
make infeasible individuals move to feasible solution space

Endoh et al. (1998) and Toma et al. (1999) proposed an adaptive optimization algo-
rithm for the traveling salesman problem. Th is approach is based on the immune 
network model and major histocompatibility complex (MHC) peptide presenta-
tion. Here, the immune network principles were used to simulate adaptive behavior 
of agents, various concepts such as MHC to induce competitive behavior among 
agents, T cells as control behavior, and B cells as produce behavior (Table 7.1 shows 
the specifi c mappings and the schematics diagram [Figure 7.13] illustrates the cor-
responding components).

�
�

Table 7.1  Immune Cells and Molecules and Their Roles 
in the n-TSP Problem Solving

Immune System Role in the n-TSP problem

Antigen Contains information about the cities 
and salesmen

Macrophage Selects the city number that the 
salesman agent must visit

T cells Help the activation of B cell
B cells Produce antibodies
Antibody Performs the behavior of an agent
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7.9 Other Applications
7.9.1 Developing Associative Memories
Researchers (Smith et al., 1996) argued that the immunological memory is a mem-
ber of the family of sparsely distributed memories, and it derives associative and 
robust properties from a sparse and distributed nature of sampling.

Figure 7.14 illustrates the formation of immune memory (as the concentration 
level of various immune cells) during the primary and secondary responses.

AINs have been applied to create an associative memory model (Singh and 
Th ayer, 2001). Associative memory is used to remember patterns and enable fast 
and eff ective recall of those patterns. Th e authors implemented two mechanisms 
defi ned by Abbattista et al. (1996), namely, the immune system metadynamics and 
the immune recruitment mechanism. A population of points in the space is defi ned, 
which compete to recruit items from the training population. Th ese result in cluster-
ing areas on the surface space that, in eff ect, store the patterns being learned.

7.9.2 Applications in Games
Many AIS researchers (Varela et al., 1988) talked about the inherent capability of the 
immune networks for machine learning. Perelson (1989) and Cooke and Hunt (1995) 

IA n-TSP

Problem presentation
Define the information
of salesmen and cities

Making initial salesman
The salesmen are made at
random or using a memory

of previous results

Making behaviors
Candidate behaviors
are made at random

Evaluation of a behavior
If the salesman has the applicable

behavior, then it can act. If the target
city has already been visited by other

salesman, then each action is 
defined by the MHC

Definition of problem
parameters such as the

cities and salesmen

Initialization of each
immune cell set

Deletion and addition of
immune cell sets on

each salesman agent

Selection of next cities
by salesman agents

Proposed immune algorithm (IA) for solving the n-travelling salesman problem (TSP). Each
immune cell set is composed of three kinds of cells, called a macrophage, a B, and a T cell.

Figure 7.13 Corresponding components of immune algorithm and n-TSP.
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made some of the earliest attempts to use immune system metaphors in machine learn-
ing. Th ey applied AINE (described in Chapter 5) to the problem of playing knots and 
crosses. In this system, each B cell corresponded to a particular board state containing 
a nine-digit antibody. Th e good moves from one state to another meant that those 
two B cells would have strong affi  nity or a connection in the B cell network. Later, 
this group also applied this algorithm to the domain of case-based reasoning. In this 
system, each case is represented by a B cell object and the case memory is built with 
the B cell network, with similar cases being linked together. Th e memory was self-
organizing in nature.

7.9.3 Applications in Software Testing
May et al. (2007) presented an immune-inspired system based on CLONALG for 
software test data. Generated test datasets are evaluated using the mutation testing 
adequacy criteria and are used to direct the search of new tests. Mutation testing 
generates versions of a program containing simple faults and then fi nds tests to 
indicate the program’s symptoms. Th e developed immune system for mutation test-
ing is based on the clonal selection algorithm. A modifi ed version of CLONALG 
to adapt it to the mutation testing problem, removing the concept of a memory 

Figure 7.14 Modeling immune memory as associative memory. (From Smith
D. J., S. Forrest and A. S. Perelson, Artifi cial Immune Systems and Their 
 Applications, 1999, The International Conference on Multi-Agent Systems, 
Workshop Notes, Kyoto, 1996, 62–70.)

(d)

(b)(a)

(c)
These cell cause an associative recall

Cells involved in the 
immune response

Memory cells

Ball of stimulation

B or T cells
Primary antigen

Secondary antigen
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individual per antigen, and allowing many memory individuals to contribute to 
antigen recognition are developed. Th is immune approach is compared with a 
genetic-based approach, and it showed to be consistently more effi  cient, generating 
higher mutation scoring test sets at a less computational cost.

7.10 Hybrid Approaches
7.10.1 Application in Neural Networks
In Dasgupta and Forrest (1999a, 1999b), ongoing work using simulated annealing 
and immune metaphors applied to the problem of fi nding good initialization vec-
tor for neural networks is presented. Th e strategy needs no prior knowledge about 
the problem except the assumption that the error surface has multiple local optima. 
But a good region to search needs to be sampled for a good solution. In simulated 
annealing for diversity (SAND), an antibody is a possible solution for the weight 
vector of a given neuron in a single layer of the network. Antigens (the training 
data) are ignored here. Th e goal is to maximize the Ab–Ab distance so that similar-
ity in the population is reduced. Affi  nity is measured as the Euclidean proximity 
between two points in an n-dimensional shape space. Th e energy measure to be 
optimized is the sum of the Euclidean distances among all vectors that represent 
the Ab population. Th ey stop the search process whenever the distribution of the 
Ab population reaches a close-to-uniform distribution.

7.10.2 Applications in Genetic Algorithms
To address the issue of designing a GA with improved convergence characteristics, 
particularly in the fi eld of design constraints, Slavov and Nikolaev (1998) proposed 
a GA simulation of the immune system. GAs have been found to be very sensitive to 
the choice of algorithm parameters when applied to design constraints. Th e authors 
used the idea of antibody–antigen binding. Th e fi tness of a solution is not only 
dependent on the objective function value and the design constraints, as it would be 
in a traditional GA, but also on how well the solution matches the best solution. Th e 
algorithm then selects these better solutions to adapt, thus leading to a higher con-
vergence rate when compared to a traditional GA. Hajela et al. (1997) adopt a more 
generic approach to the adaptive problem solving by the use of the immune net-
work metaphor such as B cells, T cells, macrophages, and the MHC. Th e immune 
algorithm is used to produce adaptive behaviors of agents. Hajela et al. also experi-
mented by removing the interaction of the T cell in the searching algorithm, and 
present convincing results that the eff ect of the T cell on performance is signifi cant 
as the solutions found with using the T cell result in lower-cost solutions overall.

Other similar applications of the immune network metaphor for multimodal 
function optimization can be found in Toma et al. (2000), Fukuda et al. (1999), 
and Mori et al. (1998). Here, the authors use somatic hypermutation and immune 
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network theory to create and sustain a diverse set of possible solutions in the search 
space and combine it with traditional GAs.

Endoh et al. (1998) used immune system ideas to handle constraints in GAs. 
Traditionally, the way to implement the constraints true to real life has been the 
use of penalty functions to the fi tness evaluation process so that the solutions are 
guided away from infeasible regions of the solution landscape. However, good pen-
alty factors are diffi  cult to defi ne. Th is technique is based on the NS algorithm. It 
generates a random population and denotes the feasible individuals as the antigens 
and the infeasible individuals as the antibodies. Th e idea is that antibodies learn 
from antigens to be closer to them or the infeasible individuals are motivated to 
become feasible by their exposure to the feasible part of the population. Th e evolu-
tion is carried out using standard GA operators.

Mori et al. (1998) looks at applying immune system metaphors to extended 
GAs for search optimization problems. Here, the authors propose an extension to 
a standard GA by the inclusion of immune system metaphors of B cells by using 
a combination of memory and suppression cells. Th is variation of the algorithm 
creates a memory of the best cases for searching, allowing the reinforcement of 
good solutions within the search space, and to use those good solutions for further 
exploration. Th is work was then extended by Coello and Cortes (2002).

7.11 Summary
IC emerged in the 1990s as a new paradigm in artifi cial intelligence (AI), and has 
earned its position on the map of soft computing. Th is chapter summarizes the appli-
cations of artifi cial immune systems in various science and engineering domains.
A survey of some of the applications in this emerging fi eld of artifi cial immune sys-
tems has been reported, which include computer security, anomaly detection, pattern 
recognition, data mining, adaptive control, fault detection, and many others.

To apply an immune model to solve a particular problem from a specifi c domain, 
one should select the immune algorithm according to the type of problem that is 
being solved. Th en, identify the elements involved in the problem and how they can 
be modeled as entities in the particular immune model. To model such entities, a 
representation for each of these elements should be chosen, specifi cally, a string rep-
resentation: integer, real-valued vector representation, or a hybrid representation. 
Subsequently, appropriate affi  nity (distance) measure to determine corresponding 
matching rules should be defi ned. Th en the immune algorithm that will be used to 
generate a set of suitable entities providing a good solution to the problem at hand 
should be selected.

Th e following issues concerning the type of the problems and the property of 
the training data are important in any analysis of NS algorithms:

Frequency-refl ecting data. Th e distribution probability of data is crucial to 
evaluate the success of the learning algorithm.

�
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Noisy data. Is there a need of mechanisms to deal with noise and outliners, or 
any other “bad” self-samples? In real applications, it seems necessary in most 
scenarios.
Recognizing each abnormal data or reacting only when the same anomaly 
happens multiple times. Th e latter is more reasonable in applications such as 
network intrusion detection or fault detection.
Completeness of the self-samples. If all self-patterns are represented in the train-
ing data, we call it “complete.” It is usually not the case for real-valued repre-
sentation, but it is true for many applications using string representation.
Dynamic data. Th is refers to the training data that are not stationary (self-set 
changes over time).
Distributed data. In this case, the self-set is distributed or too large to observe 
completely.

Forrest et al. (1994) mentioned that the method relies on the fact that the data is 
not corrupted when the detectors are generated. Th is refl ects the idea that the self-
samples are at least considered correct regardless of whether they are complete or 
not. Even if the self-samples are complete as well as correct, NS algorithms are still 
probabilistic in most methods, implying that they may not achieve perfect cover-
age. Th e goal is to have a small number of detectors that are capable of detecting a 
relatively large portion of nonself space. In brief, the algorithms should depend on 
the data properties as little as possible, but the common assumptions are important 
for a plausible comparison.

7.12 Review Questions
 1. Order and explain the steps necessary to apply an immunological model to 

solve a particular problem.
a. Identify the elements involved in the problem
b. Identify how elements can be modeled as entities
c. Choose a representation for each one of the elements involved in the 

problem
d. Defi ne appropriate affi  nity measures
e. Decide what immune algorithms will be used

 2. Develop an immunity-based multiagent system to play robot soccer. Describe 
the original solution based on the steps shown in Figure 7.1.

 3. Explain the advantages of using AINEs over other techniques in each of the 
following applications:
a. Machine learning
b. GAs
c. Robot behavior and control
d. Fault diagnosis

�

�

�

�

�
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e. Scheduling
f. Computer security
g. Anomaly detection
h. Neural networks
i. Data mining

 4. Study other research areas where AINEs have been successfully used. Identify 
the main features of these approaches.
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Appendix: Indexed 
Bibliography

Artifi cial Immune Systems
Th e fi eld of Artifi cial Immune Systems (AIS) is becoming more popular and AIS-
based works spanning from theoretical modeling and simulation to a wide variety of 
applications. In particular, some of the references are of synthetic approaches to under-
stand and simulate the biological immune system, and others that develop computa-
tional methodologies inspired by the immune system to solve real-world problems. 
Th e AIS research group at the University of Memphis headed by Professor Dipankar 
Dasgupta has been publishing the updated AIS bibliography since 1997. Although 
this bibliography has been compiled with the utmost care and we tried to make it a 
 complete review of the references in the fi eld, there may be errors in the references we 
cited and we may have left out some important citations. In either case, we will appre-
ciate any help you give us to update the future versions. All comments, suggestions, 
and additions are welcome to improve this bibliography. Please send your contributions 
to Professor Dipankar Dasgupta (dasgupta@memphis.edu). Th e compilers are also 
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Last compiled: December 2007 (Regularly updated, and available at: http://ais.cs.memphis.
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Links to AIS-Related Web Sites (Last Access 
Date December 30, 2007)

� People

  � Uwe Aickelin: http://www.cs.nott.ac.uk/~uxa/
  � Jason Brownlee: http://www.ict.swin.edu.au/personal/jbrownlee/
  � D. Dasgupta: http://www.msci.memphis.edu/~dasgupta
  �  P. D’haeseleer: http://www-cmls.llnl.gov/?url=about_cmls-scientifi c_staff -dhaeseleer_p
  � S. Forrest: http://www.cs.unm.edu/~forrest
  � Fabio A. González: http://dis.unal.edu.co/~fgonza/
  � P. Hajela: http://www.rpi.edu/~hajela
  � E. Hart: http://www.dcs.napier.ac.uk/~emmah/ 
  � S. A. Hofmeyr: http://www.cs.unm.edu/~steveah
  � G.Nicosia: http://www.dmi.unict.it/~nicosia/intro.html
  � N. I. Nikolaev: http://homepages.gold.ac.uk/nikolaev/
  � F. Nino: http://dis.unal.edu.co/~lfnino
  � L. Nunes de Castro: http://www.dca.fee.unicamp.br/~lnunes
  � Mihaela Oprea, http://www.santafe.edu/~mihaela
  � S. Perelson: http://www.t10.lanl.gov/asp/
  � L. Segel: http://www.wisdom.weizmann.ac.il/~/NoMoreUsers/lee/
  � D. J. Smith: http://www.santafe.edu/~dsmith
  � S. Th ayer: http://www.ri.cmu.edu/people/thayer_scott.html
  � J. Timmis: http://www-users.cs.york.ac.uk/jtimmis/
  � F. J. Von Zuben: http://www.dca.fee.unicamp.br/~vonzuben
  � Y. Watanabe: http://www.nsc.nagoya-cu.ac.jp/profi le/watanabey-e.html

� Organizations

  � CytoCom Network: http://www.csc.liv.ac.uk/~cytocom/index.html
  � IBM Antivirus Research: http://www.research.ibm.com/antivirus/
  � ISYS Project: http://www.aber.ac.uk/~dcswww/ISYS
  � Primary Response: http://www.sanasecurity.com/ 

AIS-Related Events

� 2008 Events

  �  Th e Seventh International Conference on Simulated Evolution And Learning 
(SEAL'08) 7–10 December 2008 Melbourne, Australia. 

  �  Th e 12th International Conference on Knowledge-Based & Intelligent Informa-
tion & Engineering Systems (KES2008), 3–6 September 2008, Zagreb, Croatia. 

  �  Th e 4th International Conference on Natural Computation (ICNC’08) and 
the 5th international Conference on Fuzzy Systems and Knowledge Discovery 
(FSKD’08), 25th–27th August, 2008, jointly held in Jinan, China.
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  �  7th International Conference on Artifi cial Immune Systems (ICARIS 2008),
10th–13th August, Phuket, Th ailand.

  �  Th e Twenty-Th ird AAAI Conference on Artifi cial Intelligence, July 13th–17th, 
2008 Chicago, Illinois.

  �  A recombination of 17th International Conference on Genetic Algorithms (ICGA) 
and the 13th Annual Genetic Programming Conference (GP), 12th–16th July, 
2008, Atlanta, Georgia, USA.

  �  International Conference on Artifi cial Intelligence and Pattern Recognition, 
7th –10th of July 2008 in Orlando, FL, USA.

  �  IEEE Congress on Evolutionary Computation (CEC), June 1–6, 2008 in Hong 
Kong.

  �  16th International Conference Intelligent Information Systems (IIS), Zakopane, 
Poland, June 16–18, 2008.

  �  Th e IASTED International Conference on Artifi cial Intelligence and Applications 
(AIA), Innsbruck, Austria, February 11–13, 2008.

� 2007 Events

  �  3rd Indian International Conference on Artifi cial Intelligence (IICAI) 17–19 
 December, 2007 in Pune, India.

  �  19th IEEE International Conference on Tools with Artifi cial Intelligence (ICTAI) 
29–31 October, 2007 in Patras, Greece. 

  �  2nd International Symposium on Intelligence Computation and Applications 
(ISICA) 21–23 September, 2007 in Wuhan, China. 

  �  IEEE Congress on Evolutionary Computation (CEC), 25–28 September, 2007 in 
Singapore.

  �  6th International Conference on Artifi cial Immune Systems (ICARIS), 26–29 
August, 2007 in Santos/SP, Brazil. 

  �  Th e 3rd International Conference on Natural Computation (ICNC) and the 4th 
international Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 
24th–27th August, 2007, jointly held in Haikou, China.

  �  World Conference of STRESS, HANS SELYE 1907–2007, 23–26 August, Budapest 
in Hungary.

  �  Th e Twenty-Second AAAI Conference on Artifi cial Intelligence, July 22–26, 2007 
in Vancouver, British Columbia, Canada.

  �  7th Symposium on Abstraction, Reformulation, and Approximation (SARA), 
18–21 July, 2007 in Vancouver, Canada. 

  �  International Conference on Artifi cial Intelligence and Pattern Recognition, 9–12 
of July 2007 in Orlando, FL, USA.

  �  Th e Th ird IASTED International Conference on Computational Intelligence, 2–4 
July 2007 in Banff , Alberta, Canada.

  �  A recombination of 16th International Conference on Genetic Algorithms (ICGA) 
and the 12th Annual Genetic Programming Conference (GP) (GECCO’06), 7–11 
July, 2007, London, England.

  �  Th e First IEEE Symposium on Foundations of Computational Intelligence (FOCI) 
1–5 April, 2007 Hawaii, USA. 
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  �  Th e IASTED International Conference on Artifi cial Intelligence and Applications 
(AIA), February 12–14, 2007 in Innsbruck, Austria 2007.

  �  Twentieth International Joint Conference on Artifi cial Intelligence, 6–12 January, 
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  �  Tenth International Conference on Knowledge-Based & Intelligent Information 
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 September 2006, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
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  �  Th e IASTED International Conference on Computational Intelligence (CI) 17–19 
July, 2006. Calgary, Alberta, Canada.
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 Vancouver Wall Centre Hotel, Vancouver, Canada. 

  �  Artifi cial Immune Systems at Genetic and Evolutionary Computation Conference 
(GECCO’06), 8–12 July, 2006, Seattle, W.A., USA.

  �  Workshop on Artifi cial Immune Systems and Immune System Modelling (AISB’06: 
Adaptation in Artifi cial and Biological Systems), 4th April 2006, University of 
Bristol, Bristol, England.

  �  International Conference on Natural Intelligence, ICNI 2006, 24–26 February, 
2006 Czech Republic, Prague.

  �  Second Indian International Conference on Artifi cial Intelligence (IICAI),
20th–22nd December, 2005, Pune, India.

  �  Fourth Mexican International Conference on Artifi cial Intelligence, 14th–18th 
November, 2005. Monterrey, Nuevo Leon. Mexico.

  �  A Special Session on “Immunity-Based Systems” under Information Sciences 
 Sessions at SAE World Aerospace Congress, 4th–6th October, 2005. Grapevine, 
Texas, USA.

  �  Ninth International Conference on Knowledge-Based Intelligent Information & 
Engineering Systems (KES), 14–16 September, 2005, Melbourne, Australia.

  �  International Conference on Evolvable Systems (ICES), 12th–14th September, 
2005, Sitges, Barcelona, Spain.

  �  Recent Development in Artifi cial Immune Systems at IEEE Congress on Evolu-
tionary Computation (CEC), 2nd–5th September, 2005, Edinburgh, U.K.
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  �  Sixth International Workshop on Information Processing in Cells and Tissues (IPCAT), 
August 30–September 1, 2005, St William’s College, York, United Kingdom.

  �  International Conference on Natural Computation (ICNC), 27th–29th August, 
2005, Changsha, China.

  �  International Conference on Intelligent Computing (ICIC), 23rd–26th August, 
2005, Hefei, China.
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August, 2005, Banff , Alberta, Canada.
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INTELLIGENT INFORMATION SYSTEMS 2005, IIS’05 Gdansk, Poland, 
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Science and Technology, 25–27 May 2005, Muroran, Japan.

  �  3rd International Conference on Artifi cial Immune Systems, 13–16 September, 
2004, Catania, Italy.

  �  International Workshop on “Computational Intelligence Applied to Tutoring 
 Systems,” August 30 to September 03, 2004, Maceió, Brazil.

  �  Special Track on Artifi cial Immune Systems at Genetic and Evolutionary Compu-
tation Conference (GECCO), June 26–30, 2004. Seattle, Washington, USA. 

  �  Special Session on Artifi cial Immune Systems at the Congress on Evolutionary 
 Computation (CEC), June 20–23, 2004, Portland, Oregon, USA.

  �  Tutorial on Immunological Computation at Mexican International Conference on 
Artifi cial Intelligence (MICAI), April 26–30, 2004, Mexico City, Mexico.

  �  AISB 2004 Symposium on Th e Immune System and Cognition (ImmCog-2004), 
30th–31st March, 2004, Leeds, U.K.

  �  Special Session on Artifi cial Immune Systems at the Congress on Evolutionary 
 Computation (CEC), December 8–12, 2003, Canberra, Australia.

  �  Special Session on Immunity-Based Systems at Seventh International Conference 
on Knowledge-Based Intelligent Information & Engineering Systems (KES), 
September 3–5, 2003, University of Oxford, U.K. http://www.kesinternational.org/kes
2003/ http://web.comlab.ox.ac.uk/oucl/conferences/kes2003/Invited_Sessions.html

  �  Second International Conference on Artifi cial Immune Systems (ICARIS), 
 September 1–3, 2003, Napier University, Edinburgh, U.K.

  �  Tutorial on Artifi cial Immune Systems at First Multidisciplinary International 
 Conference on Scheduling: Th eory and Applications (MISTA), 12 August 2003, 
Th e University of Nottingham, U.K.
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  �  Tutorial on Immunological Computation at International Joint Conference on 
 Artifi cial Intelligence (IJCAI), 10 August 2003, Acapulco, Mexico. 

  �  Special Track on Artifi cial Immune Systems at Genetic and Evolutionary Compu-
tation Conference (GECCO), July 12–16, 2003, Chicago, USA.

  �  9th International Conference on Neural Information Processing, 4th Asia-Pacifi c 
Conference on Simulated Evolution and Learning, 2002 International Conference 
on Fuzzy Systems and Knowledge Discovery, November 18–22, 2002, Singapore. 
http://www.ntu.edu.sg/home/nef/

  �  Fifth International Conference on Cellular Automata for Research and Industry, 
October 9–11, 2002, Switzerland. Th is conference invites papers on immune sys-
tems as well. http://cui.unige.ch/acri2002/

  �  IEEE 2002 Systems, Man and Cybernetics conference, October 6–9 Tunisia. 
http://smc02.ec-lille.fr/home.html

  �  KES’2002 Special Session on Immunity-Based Systems held as part of 6th Inter-
national Conference on Knowledge-Based Intelligent Information Engineering 
 Systems, 16–18 September 2002, Podere d’Ombriano,Crema,Italy. http://www.
dc.fi .udc.es/lidia/kes2002.html

  �  1st International Conference on Artifi cial Immune Systems (ICARIS-2002) Uni-
versity of Kent, September 9–11, 2002, Canterbury. http://www.aber.ac.uk/icaris-
2002/icaris-2002.htm

  �  Special track on Artifi cial Immune Systems held at the 2002 Congress on Evolu-
tionary Computation as part of the 2002 IEEE World Congress on Computational 
Intelligence, May 12–17, 2002, Honolulu, HI. http://www.wcci2002.org/

  �  Congress On Evolutionary Computation, (CEC 2001): http://cec2001.kaist.ac.kr/
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ge.uiuc.edu:8080/GECCO-2001/
  �  IEEE International Conference on Systems, Man, and Cybernetics ’97, Special 
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  �  IEEE International Conference on Systems, Man, and Cybernetics ’98, Special 
Track on Artifi cial Immune systems: http://www.msci.memphis.edu/~dasgupta/
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2001): http://ipcat.etro.vub.ac.be/IPCAT2001/welcome.html

Journal Articles, Conference Papers and Technical Reports

A
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 2. Adnan Acan. Clonal Selection Algorithm with Operator Multiplicity. In the pro-
ceedings of Congress on Evolutionary Computation (CEC). Portland, Oregon USA, 
June 19–23, 2004.
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