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1 Introduction

The post-genome era proved that DNA sequence data [11, 26] with structural
and functional analysis on genes archived in many data bases can support in
developing new bio-engineering technologies and can drive systemic views for
biological systems. However, the post-genome era also proved that sequence
data alone is not sufficient, but revealed that higher knowledge of the function
of proteins is indispensable. Personalized medicine required not only sequence
data, but further knowledge such as SNP (single nucleotide polymorphism)
and of functioning of proteins and its deployment to interacting systems such
as gene networks, giving birth of a new territory called proteome.

Considering such trends in the post-genome era, we propose possible
directions for immunity-based systems (IMBS). One such approach is a con-
structive systems approach, taking fundamental properties of the component
and trying to construct a fundamental function. The synthetic approach has
been extensively studied [3, 5, 18, 24], to mention but a few). A constructive
approach that assumes an intrinsic character of the components (such as anti-
bodies), and constructs the fundamental function of the immune system from
the component. Although it should not be limited to two, another possible
direction of next generation immunity-based systems is to extend and enhance
models and simulations to be operational: that is, involving medications as
a control to the systems with the immune system and pathogen interactions.
This would be made possible by using post-genome genetic data. The oper-
ational models and simulations allow, for example, involving the immune
system in personalized medicine. Information of disease agents, medicine, and
host agents are required for personalized medicine.

When functions are focused and more pathways are revealed, biological
systems will be studied as a system of interacting components and processes.
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Restricting discussions on immunity-based systems, the post-genome era nat-
urally proceeds to study immune systems focusing not only on discovery of
genes related to the immune system such as MHC (major histocompatibil-
ity complex), but also its systemic organization and the knowledge of the
organism [9]. While on the other hand, studies on the immune system are
indispensable for personalized medicine, since the immune systems is one
important component for personalization of medicine, and such personal dif-
ferences are integrated in the immune system. The other two components for
personalized medicine are: pathogens and medications.

Too close mimicking and superficial analogy could be misleading, not only
for biologically inspired systems but also for computing (circuits) that use
biological system components. Biological systems can be neither simple nor
optimal. One reason for apparently complex and roundabout implementations
is that biological systems have large-scale interactions in a spatio-temporal
sense. In space, they interact with an environment that includes not only
nonself but self. In time, they undergo an adaptation within an individual
time scale, as well as evolution in a species time scale. Thus, it is suggested
that a superficial analogy could be misleading in mimicking biological systems;
biological mimicking should not be done at a phenomenological level, but
instead on a principle level.

Another reason for the complexity and intangibility of biological systems
seems largely due to the feature of the material they comprise – namely, pro-
teins. This would suggest that a constructive systems approach to biological
mimicking systems can be not only an alternative to modeling and simula-
tions but also a complementary tool supporting and guiding the modeling
and simulation. The huge information available in post genome era allows
a systems approach to biology, and this trend is accelerated for immunol-
ogy as well. Next generation immunity-based systems may depend not only
on a modeling/simulation approach, but also on a constructive approach that
might bridge between the material and experimentally-based immunology and
model/simulation-based informatics on bio-systems.

In summary, next generation immunity-based systems should focus on the
following:

• A constructive systems approach to computational intelligence and artifi-
cial systems by assuming material similar to the real biological systems

• Extension and enhancement of models and simulations so that several
operations are possible, involving genome data in the post-genome era,
and targeting bioinformatics incorporating the immune system (such as
personalized medicine involving the immune system).

This Chapter explores the first issue – that is, we consider next genera-
tion immunity-based systems by first revisiting conventional immunity-based
systems (focusing on recognition capability), and next by extending them by
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restricting antibodies (or peptides in general) as a base material for a con-
structive systems approach to immunity-based systems. Another Chapter in
this volume explores the models without recognition – that is, all the agents
mounting only effectors but without sensors (see Chap. 4). In this Chapter,
each agent is assumed to be capable of recognizing the state of other agents.

This Chapter is organized as follows: Sect. 2 focuses on the preliminary
problem of whether recognition is indeed needed, focusing on the specific
task of abnormal state eradication on a simple network. Section 3 addresses
the problem of networked recognition that involve action counterpart, hence
agents can not only recognize but also be recognized. Section 4 further intro-
duces adaptation by assuming agents can not only reproduce but also mutate
in the receptor counterpart. Section 5 considers arrayed recognition, which
is the very first step, even before networked recognition; however, it assumes
specific recognition capability of antibody-antigen recognition.

2 Impact of Recognition

It is still controversial whether the immune system actually needs to discrimi-
nate ‘self’ and ‘nonself’ in order to eliminate nonself [20], however, elimination
is actually done, and hence the double-sided property that elimination could
be directed not only towards nonself, but also to self. Thus, the immune system
is a double-edged sword.

This Section considers the impact of recognition in a simple model. To
observe the impact, a simplified problem of network cleaning is considered. In
information systems, the repairing units can repair others simply by copying
their content, but could have spread contamination when the repairing units
themselves are contaminated. We consider the possibility of cleaning up the
network by mutual copying. However repair by copying in information systems
is also a ‘double-edged sword’, and it needs to be identified when the network
can really eradicate abnormal elements from the system.

The self-repairing network consists of units capable of repairing other con-
nected units. We call the connected units as neighbor units based on the
terminology of cellular automata (CA). Although mutual repair and other
interactions involved may be done in an asynchronous manner, our model
considers synchronous interactions for simplicity. Each unit tries to repair the
units in its neighborhood, however whether it can really repair or not depends
on several factors: the state of the repairing unit and the success rate of the
repair.

In a mathematical formulation, the model consists of three elements
(U,T,R) where U is a set of units, T is a topology connecting the units,
and R is a set of rules of the interaction among units. In the simulations to
come, a set of units is a finite set with N units, and the topology is restricted
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Fig. 1. One-dimensional lattice with the neighborhood radius r; the next state of
the cell will be determined by 2r + 1 nodes in the neighborhood

to the one-dimensional lattice as shown in Fig. 1. The network structure could
be an n-dimensional array, complete graph, random graph, or even a scale-
free network. In our one- or two-dimensional lattice, each unit has S neighbors
and the lattice with a boundary condition – in other words, the structure of
the lattice is a ring with unit 1 adjacent to the unit N in the case of a one-
dimensional lattice. Also, we restrict our discussion to cases where each unit
has a binary state: normal (0), and abnormal (1).

2.1 An Impact of Recognition is a Double-Edged Sword

Our model also involves recognition of the states (normal or abnormal) of a
target node before trying to repair it. For simplicity, frequency of recognition
is controlled by a recognition rate γ. When recognition is undertaken (with
a probability γ), successful recognition occurs with a recognition success rate
γ0 when performed by normal nodes, and γ1 by abnormal nodes. If the target
node is identified as ‘abnormal’, repair action take place. When recognition
does not occur (with a probability 1− γ), the repair action takes place with
the probability µ. Thus, if recognition is completely suppressed (γ = 0), this
new model reverts to the original model. Figure 2 shows the procedure of
recognition and repair.

Computer simulations are conducted in a one-dimensional array with a
ring structure (periodic boundary condition). The parameters listed in Table 1
are fixed throughout the simulations. Other parameters: γ, γ1, µ, andα1 are
varied to observe the impact of recognition.

We are concerned with the problem: “Is recognition really necessary?”
Moreover, if ‘yes’, then when and how should the recognition should be incor-
porated? In the following simulations, we pursue the problem of identifying
an appropriate level of recognition (namely, γ) when the adverse effect of
abnormal units (that is, γ1 and α1) is given.

When the rate of successful repair by abnormal nodes (that is, α1) is given,
what is the minimum level of recognition (namely, γ) required for abnormal
node eradication? Figure 3 plots the minimum level of γ. As observed and
already reported, we do not care about the level of repair and/or recognition
when α1 exceeds a threshold (0.4 in this simulation). However, when α1 is less
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Fig. 2. Recognition carried out prior to repair

Table 1. Parameter list for the simulations

Description Value

N number of nodes 500
Nf (0) initial number of failure nodes 250
r neighborhood radius 1
T number of time steps for each trial 5000
NT average number of trials 10
α0 repair success rate by normal nodes 1
γ0 recognition success rate by normal nodes 1

than the threshold, recognition is needed (γ is positive) to eradicate abnormal
nodes. Furthermore, the smaller the level of repair (µ), the smaller the level
of recognition (γ) can be.

In this simulation (and with the specific model parameters as indicated),
only repair by copying suffices for abnormal node eradication when the rate of
successful repair by abnormal nodes exceeds some level. However, recognition
before repair is required when the rate does not exceed this level.

3 Immunity-Based Systems: Evolved Recognitions

3.1 Definition of Immunity-Based Systems

Although recognition may not be needed under an optimistic situation in
a simple network model, as in the previous Section, immunity-based systems
(IMBS) [13] assume each agent mounts receptor counterpart. IBMS as a design
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Fig. 3. Minimum level of γ to eradicate abnormal nodes when α1 is given

paradigm has the following three properties:

1. a self-maintenance system with monitoring not only of the nonself but also
of the self

2. a distributed system with autonomous components capable of mutual
evaluation

3. an adaptive system with diversity and selection

In the following Sections, networked recognition focuses on the first two,
while adaptive recognition involves the third one of these.

3.2 Networked Recognition

[17] proposed the immune network. In network theory, the immune system
is not merely a ‘firewall’ but a network of antigen-antibody reactions. That
is, when an antigen is administered, it stimulates the related cells and causes
them to generate antibodies. However, the generated antibodies themselves
are antigens to other cells, and consequently result in another antibody gen-
eration. The antigen-antibody reaction percolates like a chain reaction and
hence requires a regulation mechanism. An analogy of this problem in engi-
neering design is the ‘alarm problem’ of placing mutually activating and
non-activating alarms whose sensitivity must be appropriately set to avoid
false negative and false positive.

There is a variety among immune system models, even if we restrict our-
selves to those by differential equations. If they were to be described by a single
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equation with xi: the number of recognizing (or recognized) sets (T -cells, B-
cells, antibodies, and antigens) and aij : interactions between type i and type j
(positive for stimulation and negative for suppression), the equation would be:

dxi(t)
dt

= F ({xi(t)}, {aij(si(t), sj(t), affij(t))}) (1)

where si denotes the state of the type i entity (for example, activated/inac-
tivated, virgin/immune, and so on); and affij the affinity between these two
types. The dimension of xi (the number of types) can vary, since a new type
can be born, mutated from other types, or just injected in the case of antigens.

So far, this is not much different from the population dynamics of gen-
eral ecological systems described by the Lotka-Volterra equation, for example.
What makes this equation peculiar to the immune system is that interactions
aij vary depending on the states of type i and type j entities, as well as the
affinity between them. It is this affinity that models of the immune system
devised by several techniques, such as the ‘shape-space’ model [23], where
antigens and antibodies are expressed as points in the space, which allows the
affinity between them to be measured as a distance between the points. Sev-
eral spaces such as continuous and discrete ones are considered, hence several
distances too (such as Euclidean and Hamming distance).

In such dynamical models, immunological concepts such as immune mem-
ory and tolerance are mapped to attractors of the dynamical systems. Within
the context of problem solving, attractors of the system are mapped to solu-
tions, thus the perturbed state (nonself) will be attracted to the solution
(self), and hence nonself will be eliminated and self will be preserved. Positive
and negative regulation will be interpreted as reinforcement and elimination.

Let us consider a credit assignment problem where high credit should be
assigned to the self and low credit to nonself. Weighting the vote and propa-
gating the information correctly identifies the abnormal agents. A continuous
dynamic network is constructed by associating the time derivative of the state
variable with the state variables of other agents connected by the evaluation
chain. Further, considering not only the effect from evaluating agents, but also
that from evaluated agents leads to the following dynamic network:

dri(t)
dt

=
∑

j

TjiRj +
∑

j

TijRj − 1/2
∑

j∈{k:Tik �=0}(Tij+1)

(2)

where Ri(t) = 1
1+exp (−rj(t))

and

Tij =

⎧⎪⎪⎨
⎪⎪⎩

−1 if evaluating agent i is normal and evaluated agent j is faulty

1 if both agents i and j are normal

±1 if evaluating agent i itself is faulty

0 if there is no evaluation from agent i to agent j
(3)
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In evaluating agents, agent j will stimulate (inhibit) agent i when Tji = 1(−1).
We call this model the black-and-white model, meaning that the network tries
to separate an abnormal agent clearly from a normal agent; namely, the cred-
ibility (which differs from the probabilistic concept of reliability) of an agent
tends to be 1 (fully credible) or 0 (not credible), not an intermediate value.
Moreover, we have proposed several variants of this dynamic network, such as
the skeptical model and the gray model for different engineering needs. The
results presented in this Chapter are generated only from the black-and-white
model.

Figure 3 shows an example of the evaluation chain of mutual voting. The
pattern associated with the evaluation arc shows a case when agents 4 and 5
are faulty. A positive arc from agent i to agent j indicates that agent i voted
positively for agent j (in other words, considered ‘normal’), and a negative
arc negatively (that is, considered ‘abnormal’). Formally, evaluation results
are assumed to give the following pattern:

Tij =

⎧⎪⎪⎨
⎪⎪⎩
−1 if evaluating agent i is normal and evaluated agent j is faulty
1 if both agents i and j are normal
∓1 if evaluating agent i itself is faulty
0 if there is no evaluation from agent i to agent j

(4)
Simple voting at each agent does not work, since three agents (2, 3, and 5)

are all evaluated as ‘faulty’ by two other agents, and hence cannot be ranked
in terms of credibility. Since an abnormal agent may give faulty results, these
votes should be weighted. Next, let us introduce a binary weight for each agent:
0 (inactive or abnormal) when the sum of votes for the agent is negative, and
1 (active or normal) when the sum of votes for the agent is zero or positive.
Starting with all agents active, evaluating the weight would synchronously
result in the sequence of credibility vector (R1R2R3R4R5), as shown on the
right of Fig. 4.

-

-
- -

-

+

32 4

1

5

+

+

(R1, R2, R3, R4, R5)
(  1,   1,   1,   1,   1)
(  1,   0,   0,   0,   0)
(  1,   1,   1,   0,   0)

Fig. 4. An example evaluation chain of mutual voting (left), and the credibility
vector sequence (right)
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Example: Application to Automobile Engine Sensor Diagnosis [12]

A dynamic relational network can be built in roughly two steps:

1. Line up candidates of relational arcs: find causally related sensors by inves-
tigating correlation by checking indices such as coefficient of correlation.

2. Narrow down the above candidates: remove those arcs from sensor A to B
if the test from sensor A to B generates false positives or false negatives.

A time series analysis is carried out for step 1 (using mutual correlation
matrix), and/or for step 2 (prediction by the models of time series analysis).
As reported below in the case of both the combustion control system of an
automobile engine and for a particular fault in an air-flow sensor, a statisti-
cal analysis of up to step 1 for building the network suffices. However, time
series analysis (with the VAR model) is used to determine the sign of an arc
(evaluation from node i to node j) in online diagnosis.

In this Section, a case study with statistical analysis for building the rela-
tional network is reported. Sa indicates the data from sensor A. In step 1,
arcs between A and B are added if | coefficient of correlation between Sa and
Sb |≥ 0. Figure 5 shows a network built when θ = 0.4 and only step 1 in the
algorithm is used. The network turned out to be complete. Signs are a snap-
shot of evaluation based on the sensor data. Gray level in the nodes indicates
credibility. Dark nodes correspond to high credibility, while light nodes to low
credibility (that is, evaluated as ‘faulty’) [14]. The signs of arcs in the network

Fig. 5. A network with arcs added when | coefficient of correlation |≥ 0.4 in cruise
phase (EngRev: engine revolutions; Battery: battery voltage) [14]
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change dynamically in online diagnosis; Fig. 5 shows only a snapshot of signs.
The network structure does not change during the diagnosis.

It should be noted that the above calculation is done using only normal
sensor data. Figure 6 shows the time evolution of credibility calculated by
the time series analysis stated above. The dotted line shows the time evolu-
tion of sensor credibility. Only the credibility of the faulty sensor (Air Flow)
becomes 0, hence the diagnosis is successful.

As heuristics for solving problems by the networked recognition, the
following remarks apply:

• Signals from different agents should be related by signal processing mod-
els and statistical analysis [14] to map from the signals to evaluations
(positive/negative sign of the network as in Fig. 5).

• Interactions among agents should be designed so that attractors of the
entire network correspond to solutions to be obtained

Compared with the Bayesian Network [22], the above networked recogni-
tion is not able to obtain probabilities of events, however the problem solving
mechanism can be directly embedded in the system where many agents are
able to relate with each other. When applied to the signal processing domain,
as in the above example, networked recognition is able to utilize the informa-
tion embedded in the relations between the signals, as well as the information
embedded in each signal itself – that is, both absolute and relative informa-
tion in multiple signals can be involved. Networked recognition can be applied
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not only to signal processing domain but also to other domains, such as data
mining, and search engines, if distributed agents are involved and mutually
related.

3.3 Adaptive Recognition

[4] speculated on clonal selection theory based on antibody production. An
immune algorithm for a population of agents is proposed based on the clonal
selection concept [16]. The most naive immune algorithm has the following
three steps carried out in parallel by agents distributed over the system. In the
algorithm, agents (corresponding to the immune cells) have not only recog-
nition and communication capabilities, but also reproduction capability with
possible mutation.

1. Generation of diversity: diverse agents with distinct specificity of the
receptor and the effector are generated;

2. Establishment of self-tolerance: agents are adjusted to be insensitive to
‘known patterns’ (self) during the developmental phase;

3. Memory of nonself: agents are adjusted to be more sensitive to ‘unknown
patterns’ (nonself) during the working phase.

Figure 7 shows a process which basically mimics the affinity maturation;
affinity will increase by exploring diverse agents with slightly varied receptors.
Diversity is generated by recombination of genetic counterpart, which is due to

DDiivveerrssiittyy GGeenneerraattiioonn

SSeellffSSSSeeeellllffffEEssttaabblliisshhmmeenntt ooff SSeellff

SSeennssiittiizzaattiioonn bbyy NNoonnsseellff

RReepplliiccaattiioonn wwiitthh MMuuttaattiioonn

NNoonnsseellffNNNNoooonnnnsssseeeellllffff
RReeffeerreennccee

RReeffeerreennccee

Fig. 7. Utilizing diversity for affinity maturation by agent filtering and agent
sensitization [13]
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the finding by [25]. In using diversity for exploring further possibility of affinity
increase, slight variations of not only structure but also function (affinity)
can contribute. For the immune system, the environment with which it must
interact is not only the nonself from the outer world, but also the self from
the internal world.

Immune algorithms are meant for specific problems where self-nonself dis-
crimination and openness to the environment are critical. Further, the immune
algorithm assumes ‘agents’ as a primitive to build immunity-based systems.
In summary, the significance of the immune system used by the immune
algorithm is:

• indirect information transfer from the environment by ‘selection’, as oppos-
ed to ‘instruction’;

• adaptive character driven by continuous diversity generation;
• involvement of self-reference as well as nonself-reference.

An outline of the immune algorithm is depicted in Fig. 7. The algorithm is
described in a general context – it is for any adaptive system for self-nonself.

This action part formalized as an immune algorithm has been used for noise
cancelation, where noise corresponds to the nonself and the control signal to
the self. Since the signal is not labeled beforehand, agents must discriminate
the self signal from the nonself one by the specific features of these signals.
Further, the cancelation signal from agents must be discriminated for other
agents. Although the noise cancelation can apply even to the unknown noise,
it must deal with self-reactive agents (that try to cancel the control signal) as
if auto-immune disease could happen to the immune system.

Example: Noise Neutralization by Agents

Agents with diverse receptors are first needed. As a set of gene data for initial
agents, primitive ones such as shown in Fig. 8 can be used. Diversity may be
provided by genetic operations such as recombination. In the simulation, how-
ever, ten different gene data with different base lengths but identical heights
are used. Since genes will change by adaptation to the noise in the immune
algorithm, the initial set of genes may be arbitrary as long as they have vari-
ations. However, primitive genes are required so they can approximate many
shapes of disturbance signal. During adaptation in the memory of nonself step,
genes mutate and higher affinity is attained.

To observe immunologic memory, a noise is first imposed, then the different
noise imposed at 15,000 step. Finally, the first noise is again imposed at 30,000
step. Figure 9 shows the response (output from the system) to this noise
imposition. It is known that the neutralizer more efficiently neutralizes the
noise in the second encounter, if we compare the responses at the initial and
second (after 30,000 step imposition of other disturbances) encounter. This
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Fig. 8. Initial gene data; ten different base lengths are prepared initially [15]
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step 15,000 to 30,000 [9]

comes from the adaptation of the agent: memory attained by elongation of
the lifespan in this case.

For observing the step of ‘Establishment of Self-Tolerance’ in the immune
algorithm, a sine wave is imposed to the reference input, then agents can-
not discriminate whether the signal is disturbance or the reference input.
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Fig. 10. Response from the system during 100 steps in the early phase (left) and
the final phase (right) in a 30,000-step simulation when the self-reactive agents are
not filtered
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Fig. 11. Response from the system during 100 steps in the early phase (left) and
the final phase (right) in a 30,000-step simulation when the self-reactive agents are
filtered

In this and the next simulation, a training phase is added before the noise
neutralization.

During the training phase, only the reference input is imposed without
noise. In this simulation, agents are not filtered in the training phase. Figure 10
shows the response during 100 steps in the early phase (left: from 9,700 to
9,800 steps) and that in the final phase (right: from 29,700 to 29,800 steps)
in a 30,000-step simulation in the noise neutralization phase after training.
Noise is not well neutralized due to the self-reactive agents.

In another simulation, the self-reactive agents are removed at the training
phase. After this training phase, the neutralizer is placed at the same envi-
ronment as the previous simulation. Figure 11 shows responses both in the
early and final 100, as in Fig. 10. In the final phase (righthand plot of Fig. 11),
it is observed that the noise is well canceled while preserving the self (that
is, the target signal). We also observe, however, that the self-reactive agents
will appear after long time steps, due to the affinity increasing by mutation
of existing agents. This would suggest that the self-reactive agents should
not only be removed during the training phase, but also memorized at this
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phase so that agents similar to the memorized one (hence self-reactive) will
be removed whenever they appear by mutation.

In this simulation, one extreme of the IMBS is used – that is an adaptive
system (open to the environment) where agents will evolve by adapting to the
exogenous nonself. However, agents could form a network by communication
and cooperation both in elimination of the disturbance and in memorizing the
disturbance pattern.

For example, if the neutralizing signal can affect the other agents, then it
would be close to the network model (networked recognition). Further, if the
neutralizing signal from agents can be an error signal to other agents, then
agents may be connected by signal similarly to Jerne’s network [17].

As heuristics for solving problems by adaptive recognition, the following
remarks apply:

• Signals (phenotype) should be mapped to gene data (genotype) by decom-
posing and expressing signals as a primitive signal such as a triangular
(Fig. 8) or any other form (such as those found in wavelets), allowing
coding of signals where genetic operations are possible;

• Reference to the self as well as nonself should be carefully designed,
allowing for the possibility of either or both changing.

Compared with other population-based methods, adaptive recognition can
handle not only changing nonself but changing self. This feature also leads to
the risk of ‘auto-immune disease’. As an application to intrusion detection,
adaptive recognition can handle intrusion from both inside as well as outside,
by preparing and diversifying profiles for legitimate users as well as illegitimate
ones. That is, profiles of legitimate users within the firewall can be taken and
processed not only to identify legitimate users (the self) but also to identify
illegitimate masqueraders, by diversifying the profiles and even synthesizing
the profiles of non-legitimate users (by mutating and recombining available
profiles). Here, profiles are any signature that can be obtained by monitoring
activities during login. This would provide the possibility of trade-off between
internal masqueraders and external masqueraders, other than that between
false positive and false negative. Intrusion detection (or equivalently legiti-
mate user identification) becomes more important in the era of ubiquitous
computing.

4 Antibody-Based Computing: Arrayed Recognition

[1] demonstrated that Hamiltonian circuits can be achieved by DNA-based
computing. Many researchers established that not only DNA but also other
macro molecules could have computational capability comparable to DNA. For
example, protein-based computing had been proposed by [10] and extended
by [2].
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Antibody-based computing has a possibility of extension to an immunity-
based problem solver that incorporates not only specific recognition of anti-
bodies but adaptive nature supported by diversity generation, selection, and
reinforcement of the selected antibodies.

4.1 Definition of Antibody-Based Computing

The immune system is capable of recognizing even artificially synthesized
substances. Also, it can further classify substances into the self (those derived
from the individual) and oneself. Among those bearing recognition capabili-
ties, antibody is no doubt bearing important component and has been studied
in great detail.

Similarly to the DNA-based computing, antibody-based computing uti-
lizes affinity between macro molecules: antibodies. Since the computational
capabilities that DNA-based computing could be inherited to antibody-based
computing, we rather focused on the difference between them.

Affinity between antigens and antibodies can be measured and their
intensities can be ordered (as formatted in an affinity matrix). That is,
in contrast to Matching(DNAi,DNAj) = 1 (matched) 0 (not matched),
Affinity(Antigeni,Antibodyj) can vary from 0 (no agglutination) to 1 (highest
agglutination). This difference would suggest that antibody-based comput-
ing could be more general in expressing and solving problems. Also, error
tolerance that could be implemented more directly than the DNA-based
computing.

4.2 Solving a Combinatorial Problem: The Stable Marriage
Problem

The stable marriage problem (SMP) [8] assumes n men and n women, with
each member having preference lists of members of the opposite sex. A pair of
a man Mi and a woman Wj is called a blocking pair if they are not pair in the
current solution, but Mi prefers Wj to their current partner, and Wj prefers
Mi to their current partner as well. A matching between men and women with
no such blocking pair is called stable.

Let us consider the stable marriage problem by antibody-based computing.
The stable marriage problem can be mapped to antigen-antibody reaction so
that preference order of each person in SMP will be reflected in the affinity
level between an antibody and an antigen. It should be remarked that aggluti-
nation process could be any agglutination (not necessarily between antibodies
and antigens) if their affinity levels are measurable and ordered. After agglu-
tinogen and agglutinin are adequately arranged, the solution of SMP will
emerge by observing concentration of the agglutination.
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Although obtaining a stable matching shows some computational power, it
can be solved in O(N2) time, where N is the size of men (and women). A well-
known algorithm exists for giving stable matching for man-oriented matching
or woman-oriented one [7, 12]. By further assuming that the concentration
observed at a cross-point can reflect the amount of antibodies imposed, the
array is capable of obtaining any stable matching in the array from the man-
oriented (man optimal and woman pessimal) matching to the woman-oriented
(woman optimal and man pessimal) one. By regulating the quantities of all
the antibodies AbMi(i = 1...n) (or equivalently antigens AgWj(j = 1...n),
from a unit to α, the matching would become close to the man-oriented one.
Similarly, increase of AbWi(i = 1...n) will bias the matching towards the one
of woman-oriented one.

4.3 Mapping the Stable Marriage Problem to Antibody-Based
Computing

Mapping a combinatorial problem to antibody-based computing can be done
by composing antigen-antibody compounds corresponding to a problem entity.
As for the stable marriage problem, the entity is an individual corresponding
to a man or a woman. Antibodies and antigens for a compound corresponding
to a particular individual will be determined by considering her(his) preference
list over men(women).

Let us consider a scheme for synthesizing antigen-antibody compounds
that realize mapping from given preference lists to the compounds. If the
woman Wi prefers the man Mj to other men, the compound corresponding
to Wi must contain antibody AbWi and the compound corresponding to Mj

contains antigen AgMj that satisfies Aff(AbWi,AgMj) being highest among
other AgMj(j = 1...n). If Mj is second in the preference list of Wi, then
Aff(AbWi,AgMj) must be second highest, and so on. AgMj must realize the
order from women Wk other than Wi, hence the affinity Aff(AbWk,AgMj)
must realize the order accordingly (if AgMj alone cannot realize the order,
then new antigen realizing the order must be added to the corresponding
compound). Constraints for selecting antibodies and antigens for a compound
corresponding to a person can be summed up as follows:

• Aff(AbWi,AgMj) > Aff(AbWi,AgMk) if the woman Wi prefers Mj

to Mk in her preference list; and
• Aff(AbMi,AgWj) > Aff(AbMi,AgWk) if the man Mi prefers Wj to

Wk in his preference list.

Let us next consider how to solve SMP with an array format. In the array
shown in Table 2, row i and column j correspond to the compound for man i
(namely, AbMi and AgMi), and that for woman j (that is, AbWj and AgWj).
In other words, at the cross-point ij, two antigen-antibody reactions between
AbMi and AgWj (reflecting man i’s preference), and between AbWj and AgMi

(reflecting woman j’s preference) will take place.
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Table 2. Arrayed compounds to solve the stable marriage problem: Mi(Wi) stands
for the compound for a man i (woman j), the symbol * at the ij cross-point indicates
that Mi and Wi is selected as a stable pair due to a high affinity (each row and each
column has only one pair [15])

Compounds M1 M2 · · · Mi · · · Mn

W1

W2

...
Wj *
...
Wn

Table 3. Landsteiner’s ABO blood group system [15]

Blood Type A B AB O

Antigen A B A,B none
(agglutinogen)

Antibody β α none α, β
(agglutinin)

Under the assumption that the concentration observed at each cross-
point is proportional to both Aff(AbMi,AgWj) and Aff(AbWj,AgMi),
the array can find a stable matching by selecting one cross-point with
highest concentration from each row and column. This matching is cer-
tainly stable one, for suppose otherwise there must be a blocking pair Mk

and Wl such that Aff(AbMk,AgWl) > Aff(AbMk,AgWp(Mk)) and
Aff(AbWl,AgMk) > Aff(AbWl,AgMp(Wl)), where p(Mk) denotes a
partner of Mk in the current matching. Then both concentration at the cross-
point kl is higher than those of kp(Mk), and those of p(Wl)l reflecting the
affinity level.

Example: A Trivial two-by-two Stable Marriage Problem

Landshteiner’s ABO blood group system [19] may be used as an example of
antibody-based computing. His blood type system is based on antigens (as
agglutinogen) on red blood cells and antibodies (as agglutinin) in the blood
serum. Table 3 shows agglutinogen and agglutinin of each blood type. Affinity
between antibody and antigen is shown in Table 4. Table 5 indicates the
well-known incompatible transfusion among the blood type A, B, AB, and O.
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Table 4. Affinity matrix: a circle indicates that the antibody-antigen reaction would
occur if the antibodies in the column meet with antigens in the row

Antigen; A B
Antibody

α(anti-A) O
β(anti-B) O

Table 5. Agglutination when the blood type in the column is transfused with the
blood type to the row: a circle indicates that the blood type of the column when
transfused to that of the column would agglutinate (a double circle indicates an
agglutination higher than circles)

Blood A B AB O
Type

A O O
B O O
AB O O �
O

Table 6. A trivial preference list for the two-by-two stable marriage problem

M1 M2 W1 W2

W1 1 2 M1 1 2
W2 2 1 M2 2 1

In this example, we map the relation the woman Wi (the man Mi) prefers
the man Mj (the woman Wj) to other to the relation that if the blood of
Wi (Mi) would be agglutinate when the blood of Mj (Wj) were transfused.
That is, if the woman Wi prefers the man Mj most, the blood type should
be so assigned that the type for Wi comprises of antibody AbWi and antigen
AgWi; and that for Mj of antibody AbMj and antigen AgMj and the affinity
Aff(AbWi,AgMj) are highest.

For the trivial case when the preference lists of men and women are as per
Table 6, simple assignment would suffice: a man to type A and another man
to type B; for the woman who prefers a man with type A to type B, and for
another woman type A (Fig. 11). It should be noted that assignment to A for
two men and to B for two women would not work, since the assignment does
not reflect the preference of men and women.

In the nontrivial preference list shown in Table 7, one assignment would
be type O to both M1 and W1, type A to M2, and type B to W2 (Fig. 13).
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Table 7. A non-trivial preference list for the two-by-two stable marriage problem
[23]

M1 M2 W1 W2

W1 2 1 M1 2 1
W2 2 1 M2 2 1

M1 A B W1

M2 W2B A

Fig. 12. A blood type assignment reflecting the preference [15]

M1 O O W1

B W2M2 A

Fig. 13. A blood type assignment reflecting the preference of Table 7 [23]

For other two preference lists (with a different graph topology than that of
Figs. 12 and 13), it is not possible to map the blood type with the above
correspondence, and other compounds should be synthesized for realizing the
preference lists.

We have shown that antibodies, a macro molecule of the immune sys-
tem, with specific recognition capability could be used for computation as
DNA are used for DNA computing. We suggest a possibility of extending
antibody-based computation to the solver, rather than showing its computa-
tional capability or universality. The application aims not at replacing current
electronic computers, but rather at being a supportive tool for bioinformatics.

5 Toward a General Problem Solver: Immunity-Based
Problem Solver

Problem solving by Means-Ends Analysis (MEA) [21] organizes a search in a
dynamically constructed search space of problem-subproblem decomposition.
It embodies and simulates human problem solving by the recognition-action
cycle shown in Fig. 14, where solid arcs are recognitions and white arcs are
actions. An important feature of MEA is that application of operators is not
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Current State  

Goal State 

-

difference  

Operation

Association of  difference s 

and operator  

Fig. 14. Problem solving by Means-Ends Analysis (MEA) [15]

very rigid: if an operator selected in the heuristics part is not directly appli-
cable to the current problem, the problem will be divided into subproblems.
This flexibility allows a certain degree of freedom in identifying the heuristics,
and further contributes to generality in the problems that MEA can handle.
In fact, MEA had been implemented as General Problem Solver (GPS) that
can deal with many well-known puzzles [6].

As an intermediate stepping stone from general problem solving by MEA
to immunity-based problem solving, let us briefly investigate more general
biological problem solving. It should be first emphasized that the following
discussions and Fig. 15 is for bridging purposes between MEA and immunity-
based problem solving, and hence may be rough and approximate. Here solid
arcs are recognitions, and white arcs actions; recognition action cycles are
iterated until there is no difference between the goal state and the current
state. One difficulty is that a unit of biological system such as DNA, cells,
individuals, and species do not constitute a usual hierarchical system under-
stood in component-system relation found in most artificial systems. Another
difficulty, hence making the biological problem solving remarkable, is that
biological systems use concepts distinct from those used in artificial systems
to realize robustness (robustness is a solution implemented and embedded in
the system by a biological problem solving to challenges to system survival).
Biological problem solving utilizes the variations for implementing robustness,
although artificial problem solving considers the variations as disturbance and
trying to prevent them from occurring and minimizing the effect. Thus, the
‘difference’ in Fig. 15 of biological problem solving can be quite different from
that shown in Fig. 14.

The third difficulty that makes biological problem solving more compli-
cated and entangled is that the given problem is a challenge to the survival
of the problem solver (the biological system) itself. This self-referential aspect
must be paid attention in capturing the immunity-based problem solving
shown in Fig. 16.
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Fig. 15. Problem solving by Means-Ends Analysis (MEA)

Selection 

Amplification  

Inhibition

Nonself 

-

difference  

Heuristics for  

Appropriate Actions 
Antibodies 

Self 

Fig. 16. The immune system as a problem solver: only antibodies are focused

Throughout Fig. 14 (MEA), Fig. 15 (biological problem solving) and Fig. 16,
the framework for problem solving is to recognize differences and deploy
actions based on these differences. However, actions are oriented toward the
system itself for both biological and current immunity-based problem solv-
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ing, hence the process is intrinsically adaptation (or in Fig. 15, evolution).
Figure 16 and the following discussion focuses only on the immune system,
involving antibodies, hence that of adaptive immunity.

In means-ends analysis on the one hand, the problem solving process con-
stitutes an intrinsic part of the solution. That is, the order of operator applied
is a critical part of the solution of a given puzzle. Thus, the problem is fixed
throughout the problem solving; hence, the solver deals with a static problem.

On the other hand, in immunity-based problem solving, the problem itself
undergoes changes, because the environment, including the nonself, is chang-
ing and the solver involving the self must change accordingly. Therefore, there
is no complete solution and there will always be a gap between the current
solution and the current problem. However, the current solution can be used
for the next problem when the next problem (the change) also evolved from
the current problem. Problem solving does not have a beginning and an end.
The current solution is not good for the current environment because the
latter is ever changing; therefore the gap between these two must be com-
pensated for the next solution. However, the next solution is not built from
scratch but rather from the current solution. The solution must always chase
the environment, which is an online and dynamical adaptation to the dynami-
cal environment. In immunity-based solving, the typical environmental change
is either a challenge from the outside (for example, bacteria and viruses) or
from inside (say, cancer). To deal with these challenges, the solver (a collec-
tion of agents) must prepare a diverse set for being selected by these problems
(challenges) and the selected agents must be further increased. Since there is
always a difference from the current solution and the current environment,
there must be a diversification of agents.

6 Conclusion

This Chapter has explored the possibility of antibody-based computing that
use antibodies or peptides in general. We first investigate several types of
recognitions by revisiting immunity-based systems. The very primitive form
of arrayed recognition is shown to have a computational capability compa-
rable of DNA based computation by taking an example of a combinatorial
problem: the Stable Marriage Problem. This would suggest that more sophis-
ticated forms of recognition such as networked or selected recognition will
have computational capabilities not only in a static context but in a more
dynamic context as seen in the environments which the immune systems face.
Thus, main feature of the antibody-based computing is that allows extension
to a problem solver, since the immune system is a problem solver embedded
in individuals, taking care of challenges to the individuals.
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