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Abstract In this position paper, we argue that the field of artificial immune systems
(AIS) has reached an impasse. For many years, immune inspired algorithms, whilst
having some degree of success, have been limited by the lack of theoretical advances,
the adoption of a naive immune inspired approach and the limited application of
ALS to challenging problems. We review the current state of the AIS approach, and
suggest a number of challenges to the AIS community that can be undertaken to help
move the area forward.
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Introduction

The UK research community has proposed a number of Grand Challenges for
Computer Science research' and ambitious plans for the development of a variety of
research areas. Grand Challenge 7 (GC-7)* (Stepney et al. 2003) addresses the area
of Non-Classical Computation, which includes exploring areas of both biologically
inspired paradigms, and the exploitation of the natural world (for example, DNA
computing and quantum computing) in order to develop new areas of computation.
GC-7 consists of a number of journeys of which one is concerned with artificial
immune systems (AIS). In the spirit of GC-7, this position paper proposes a number
of challenges to the AIS community, and initial thoughts on how we might go about
addressing those challenges. We begin by providing a brief description of AIS in
terms of a simple framework (as defined by de Castro and Timmis (2002)). We then

! http://www.nesc.ac.uk/esi/events/Grand_Challenges/

2 http://www.cs.york.ac.uk/nature/gc7/index.htm
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explore the current immunological mind set of the AIS practitioner with a simple
overview of the immunology that has served as inspiration to date, combining that
with brief discussions on how those theories have helped to shape the development
of AIS over the past 10 years. We then take a moment to reflect on the area of AIS
as a whole and argue that there has been a lack of consideration of a number of
issues, specifically: a lack of thought regarding the application areas of AIS, a lack of
theoretical work, a limited view of the immune system, and we comment on the
methodology employed in the development of AIS. We then conclude with a
number of challenges to the AIS community. It should be said, that many of these
ideas are not new, nor all my own, but have come from many discussions with people
in the AIS community. This paper is intended to be both a review and position paper
that will hopefully draw together many ideas and stimulate further discussion and
research.

Artificial immune systems

In an attempt to create a common basis for AIS, work in de Castro and Timmis
(2002) proposed the idea of a framework for AIS. The authors argued that in the
case of other biologically inspired approaches, such as artificial neural networks
(ANN) and evolutionary algorithms (EAs) such a basic idea of a framework exists,
and helps considerably with the understanding and construction of such systems. For
example, (de Castro and Timmis 2002) consider a set of artificial neurons which can
be arranged together so as to form an artificial neural network. In order to acquire
knowledge, these neural networks undergo an adaptive process, known as learning
or training, which alters (some of) the parameters within the network. Therefore, the
authors argued that in a simplified form, a framework to design an ANN is composed
of: a set of artificial neurons, a pattern of interconnection for these neurons, and a
learning algorithm. Similarly, the authors argued that in EAs there is a set of
artificial chromosomes™, representing a population of individuals, that iteratively
suffer a process of reproduction, genetic variation, and selection. As a result of this
process, a population of evolved artificial individuals arises. A framework, in this
case, would correspond to the genetic representation of the individuals of the pop-
ulation, plus the procedures for reproduction, genetic variation, and selection.
Therefore, the authors adopted the viewpoint that a framework to design a bio-
logically inspired algorithm requires, at least, the following basic elements:

““~ A representation for the components of the system

— A set of mechanisms to evaluate the interaction of individuals with the
environment and each other. The environment is usually simulated by a set of
input stimuli, one or more fitness function(s), or other mean(s) and

— Procedures of adaptation that govern the dynamics of the system, i.e. how its
behavior varies over time (de Castro and Timmis 2002).”

The framework for AIS can be thought of as a layered approach (Fig.1). In order
to build a system, one typically requires an application domain or target function.
From this basis, the way in which the components of the system will be represented
will be considered. For example, the representation of network traffic may well be
different than the representation of a real time embedded system. In AIS, the way in
which something is represented is known as shape space (Perelson 1989). There are
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Fig. 1 AIS layered framework adapted from de Castro and Timmis (2002)

many kinds of shape space, such as Hamming, Real valued and so on, each of which
carries it own bias and should be selected with care (Freitas and Timmis 2003). Once
the representation has been chosen, one or more affinity measures are used to
quantify the interactions of the elements of the system. There are many possible
affinity measures (which are partially dependent upon the representation adopted),
such as Hamming and Euclidean distance metrics. Again, each has its own bias, and
the affinity function must be selected with great care as it can affect the overall
performance (and ultimately the result) of the system (Freitas and Timmis 2003).
The final layer involves the use of algorithms, which govern the behavior (dynamics)
of the system. Here, in the original framework proposal, algorithms based on the
following immune processes were presented: negative and positive selection, clonal
selection, bone marrow, and immune network algorithms. Work by Garrett (2005)
outlines criteria for assessing AIS in terms of effectiveness, usefulness and distinc-
tiveness, and attempts to draw some conclusions about how AIS can be said to differ
from other biologically inspired approaches. In this paper, we will not revisit that
discussion as this is done elsewhere (Hart and Timmis 2005).

The immune system: from an AIS perspective

The vast majority of developments within AIS focussed on three main immuno-
logical theories: clonal selection (Burnet 1959), immune networks (Jerne 1974)
and negative selection. Researchers in AIS have concentrated, for the most part,
on the learning and memory mechanisms of the immune system (typically taking
clonal selection and immune network theories as a basis) and the selection of
detectors for identifying anomalous entities (typically undertaken with negative
selection theory).

It is becoming increasingly apparent that the biological inspiration behind AIS
has been somewhat naive and that the mechanisms and processes within the immune
system (not to mention the role of the immune system) exploited by the AIS
community has taken a limited perspective. Indeed, as argued by Stepney et al.
(2005) AIS, and the majority of bio-inspired paradigms, have been guilty of a rea-
soning by metaphor approach. We would agree with this, and despite the success to
date of AIS (and this should not be ignored) the restricted view of the immune
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system adopted by the AIS practitioners will, in our opinion, limit the success of
AIS.

In this section, we review the immunology that has served as the foundations for
much of AIS. We outline the main immunological theories that have acted as a
source of inspiration, notably: clonal selection, immune networks and negative
selection theories, and provide a brief explanation of how these have been exploited
within AIS. It is not our intention to provide a detailed description of these algo-
rithms here, a full review of these can be found in de Castro and Timmis (2002).

Immunity

The vertebrate immune system is composed of diverse sets of cells and molecules
that work together with other systems, such as neural and endocrine, in order to
maintain a steady state within the host. One traditionally held view on the role of the
immune system is to protect our bodies from infectious agents such as viruses,
bacteria, fungi and other parasites, however, not everyone would agree with that
statement (Cohen 2000). On the surface of these agents are antigens that allow the
identification of the invading agents (pathogens) by the immune cells and molecules,
thus provoking an immune response. There are two basic types of immunity, innate
and adaptive. Innate immunity is not directed towards specific invaders, but against
general pathogens that enter the body (Janeway and Medzhitov 2002). The innate
immune system plays a vital role in the initiation and regulation of immune
responses, including adaptive immune responses. Specialized cells of the innate
immune system evolved so as to recognize and bind to common molecular patterns
found only in microorganisms. However, the innate immune system is by no means a
complete solution to protecting the body.

Adaptive or acquired immunity, allows the immune system to launch an attack
against any invader that the innate system cannot remove (Janeway and Travers
1997). The adaptive system is directed against specific invaders and is modified by
exposure to such invaders. The adaptive immune system mainly consists of lym-
phocytes, which are white blood cells, more specifically B and T-cells. These cells aid
in the process of recognizing and destroying specific substances. Any substance that
is capable of generating a response from the lymphocytes is called an antigen, or
immunogen. Antigens are not the invading microorganisms themselves, they are
substances such as toxins or enzymes in the microorganisms that the immune system
considers foreign. Adaptive immune responses are normally directed against the
antigen that provoked them and are said to be antigen-specific.

Clonal selection

A large part of AIS work has been based on the clonal selection theory. When
antibodies on a B-cell bind with an antigen, the B-cell becomes activated and begins
to proliferate. New B-cell clones are produced that are an exact copy of the parent
B-cell, that then undergo somatic hypermutation (Berek and Ziegner 1993) and
produce antibodies that are specific to the invading antigen. The clonal selection
principle (Burnet 1959) is the term used to describe the basic properties of an
adaptive immune response to an antigenic stimulus. It established the idea that only
those cells capable of recognizing an antigenic stimulus will proliferate, thus being
selected against those that do not. Clonal selection operates on both T-cells and
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B-cells. The B-cells, in addition to proliferating or differentiating into plasma cells,
can differentiate into long-lived B memory cells. Memory cells circulate through the
blood, lymph and tissues.

In order for the immune system to be protective over periods of time, antigen
recognition is insufficient. In the normal course of the evolution of the immune
system, an organism would be expected to encounter a given antigen repeatedly
during its lifetime. The initial exposure to an antigen that stimulates an adaptive
immune response (an immunogen) is handled by a small number of B-cells, each
producing antibodies of different affinity. Storing some high affinity antibody
producing cells from the first infection, so as to form a large initial specific B-cell
sub-population (clone) for subsequent encounters, considerably enhances the
effectiveness and speed of the immune response to secondary encounters. Rather
than starting from a tabula rasa every time, such a strategy ensures that both the
speed and accuracy of the immune response becomes successively stronger after
each infection.

Computationally, this has led to the development of population-based algorithms
inspired by this clonal selection process. A great number of the approaches in the
literature have focussed on developing optimization approaches, such as the work on
CLONALG by de Castro and Von Zuben (2002), the work by Cutello et al. (2004)
and the work by Garrett (2004) on parameter free clonal selection. Clonal selection
has also formed the basis of learning algorithms (mainly supervised) such as AIRS
by Watkins (2001) and a parallel and a distributed version of AIRS (Watkins and
Timmis 2004), a distributed version of CLONALG by Watkins et al. (2003), the
work with DynamicCS applied to computer security by Kim and Bentley (2002),
work by Secker et al. (2003) on email filtering, and many, many more. From a
computational perspective, application of the clonal selection theory leads to algo-
rithms that evolve (through a cloning, mutation and selection phase), candidate
solutions in terms of optimization, or pattern detectors in terms of learning. Each of
these algorithms have populations of B-cells (candidate solution) that match against
antigens (function to be optimized). These B-cells then undergo cloning (usually in
proportion to the strength of the match) and mutation (usually, inversely propor-
tional to the strength of the match). High affinity B-cells are then selected to remain
in the population, some low affinity cells are removed and new random cells are
generated. In essence, this is a high level abstraction of the clonal selection process.
Through this process, good solutions can be found, and in terms of dynamic envi-
ronments (such as Kim and Bentley (2002), Secker et al. (2003)) these solutions can
be maintained over long periods of time. However, as argued by Newborough and
Stepney (2005), at a certain level are such population-based algorithms like clonal
selection ones that can be considered the same as genetic algorithms and other EAs.
Figure 2 outlines the basic process in a clonal selection algorithm (CLONALG).

Immune networks

In a landmark paper for the time Jerne (1974) proposed that the immune system is
capable of achieving immunological memory by the existence of a mutually rein-
forcing network of B-cells. This network of B-cells occurs due to the ability of
paratopes, located on B-cells, to match against idiotopes on other B-cells. The
binding between idiotopes and paratopes has the effect of stimulating the B-cells.
This is because the paratopes on B-cells react to the idiotopes on similar B-cells, as it
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Fig. 2 Flowchart of a typical clonal selection algorithm

would an antigen. However, to counter the reaction, there is a certain amount of
suppression between B-cells, thus giving rise to a regulatory mechanism. This
interaction of B-cells contributes to form a stable memory structure, and can account
for the retainment of memory cells, even in the absence of antigen. This theory was
refined and formalized in successive works by Farmer et al. (1986), Perelson (1989)
and Bersini and Varela (1994). It is worth noting, however, that the immune network
theory has not found a great deal of favor with other immunologists, being labeled as
strongly as absurd by some (Langman and Cohn 1986). Indeed, talk to many
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experimental immunologists today and they are of the opinion that, whilst this
theory is interesting, there is little experimental evidence to suggest that it is true.

However, this lack of adoption in immunology circles of the immune network
theory, has not stopped people from the area of AIS adapting it for their own use.
Indeed, from a computational perspective, this has led to the development of a
number of immune network algorithms, all of which vary somewhat, making general
statements difficult. Work by Ishida (1997) on the application of immune network to
diagnostic problems, work by Cooke and Hunt (1995), Hunt and Cooke (1996), Hunt
et al. (1998) on the development of an immune network approach to DNA classi-
fication and mortgage fraud detection, and work on aiNET by de Castro and Von
Zuben (2001), de Castro and Timmis (2002) all attempt to extract properties such as
adaptation, self-organization and plasticity from the immune network theory. The
work by Hunt et al. (1998) proved a useful basis for the refining and extending of
their work into an unsupervised system by Timmis et al. (2000), Timmis and Neal
(2001), which itself was then adopted for continuous learning by Neal (2002),
Wierzchon and Kuzelewska (2002). There is little to unify these immune network
algorithms, but an abstracted outline of one is presented in Fig. 3. The main unifying
theme is that they are all, in one way or another, based on the ideas of clonal
selection (as outlined above). This was observed by Garrett (2003) where the author
proposed a general artificial immune network, however, this was mainly conceptual
and was never extended further. The main addition to immune network algorithms
(in general) is that the candidate solutions (or detectors) interact based on stimu-
lation and suppression mechanisms employed from the immune network. Immune
network algorithms have tended to suffer a great deal from a large overhead of
computational complexity and a lack of understanding of their dynamics, which has
made their applicability to date, rather limited (Hart and Ross 2004).

Negative selection

Negative selection is a process of selection that takes place in the thymus gland.
T-cells are produced in the bone marrow and before they are released into the
lymphatic system, undergo a maturation process in the thymus gland. The matura-
tion of the T-cells is conceptually very simple. T-cells are exposed to self-proteins in
a binding process. If this binding activates the T-cell, then the T-cell is killed,
otherwise it is allowed into the lymphatic system. In addition, their is an initial
positive selection process that removes T-cells with the correct set of receptors that
can recognize the MHC molecules responsible for self-recognition. This process has
largely been ignored by AIS researchers, although some initial experiments have
been undertaken in Stibor et al. (2005) where a tendency to overfit the data was
reported, but reasons as to why were not given.

The negative selection principle inspired work such as Forrest et al. (1994, 1997)
to propose and develop a negative selection algorithm to detect data manipulation
caused by computer viruses. The basic idea is to generate a number of detectors in
the complementary space and then to apply these detectors to classify new (unseen)
data as self (no data manipulation) or non-self (data manipulation). The negative
selection algorithm proposed by Forrest et al. is summarized in the following steps.
We can define self as a set S of elements of length / in shape-space. Then generate a
set D of detectors, such that each fails to match any element in S. With these
detectors, monitor a continual data stream for any changes, by continually matching
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Fig. 3 Flowchart of a typical immune network algorithm

the detectors in D against the stream. This work spawned a great deal of investi-
gations into the use of negative selection for intrusion detection, with early work
meeting with some success (Forrest et al. 1997), and more recently (Esponda et al.
2004). Figure 4 outlines the basic negative selection approach. However, building on
the work of Esponda et al. (2004), work by Stibor et al. (2004), Stibor et al. (2005)
begins to show (from a theoretical and practical perspective) potential problems of
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Fig. 4 Negative selection algorithm by Forrest et al. (1994)

scalability and coverage of the problem space when employing the negative selection
approach. However, we feel it is unclear from this research whether the negative
selection approach, overall, is problematic. From the results, it would seem that the
problem is directly associated with the representation and affinity metric issues.
Affinity metrics such as r-contiguous bits and r-chunk have been tried with binary
shape space, and Euclidean distance with real-valued shape space, it may be possible
that alternative representations and metrics could be used with negative selection
with more success.

Building AIS

When constructing an AIS, there are many computational and practical issues to
consider. The first is computational complexity of the approach. This relates to the
time and space required to generate a suitable number of detectors (members of a
population) that are required for the job (Timmis et al. 2002). For example, there
are a number of works that outline the unacceptable computational complexity of
the negative selection approach in AIS (Kim and Bentley 2002; Stibor et al. 2004,
2005) as there is an exponential relationship between the size of the data set to be
used and the number of detectors that it is possible to generate. The second aspect to
consider is the data to be used. When one abstracts away from the underlying data
representation (e.g. real values from a sensor) then one has to be careful that there is
an accurate mapping between the higher level representation and the actual system,
and ensure that the representation adequately scopes the space to be immunized.
Consideration here also has to be given to the way in which data is represented. The
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shape space paradigm proposes varying ways of data representation and interaction.
However, when dealing with discrete values, such as those found in embedded
systems, the method of defining affinity (i.e. seeing how similar one item is to an-
other) is not as clear-cut as it may seem. This is coupled with the fact that mutation,
even what might be thought of as a small amount, could have a huge impact on the
meaning of the data. Should a binary shape space be employed, the mere flipping of
one bit could indicate a huge shift in meaning of the state, rather than the small shift
that may be desired. In both of these situations, domain knowledge can play a
pivotal role in the success or failure of such as system (Timmis et al. 2002). For
example, recent studies by Hart and Ross (2004), Hart (2005) point out that the main
effect on immune network algorithms may well be the way in which interaction is
defined. Through the development of a simple model Hart and Ross demonstrate
the evolution of various immune network structures which are considerably affected
by the choice of affinity measure between two B-cells, which in turn affects how
B-cells interact with each other. Whilst no concrete conclusions are drawn here, the
message is clear: think before you design.

Challenges for AIS

In this section, we now present a number of challenges for the AIS community, we
then explore how we might begin to address them.

Methodology and beneficiaries

Challenge: To Develop Novel and Accurate Metaphors and be a Benefit to
Immunology. Typically naive approaches to extracting metaphors from the
immune system have been taken. This has occurred as an accident of history,
and AIS has slowly drifted away from its immunological roots. Time is now
ripe for greater interaction with immunologists and mathematicians to
undertake specific experimentation and create useful models, all of which can
be used as a basis for abstraction into powerful algorithms.

In the beginning, AIS were developed with an interdisciplinary slant. For
example, Bersini (1991, 1992); Bersini and Varela (1994) pays clear attention to
the development of immune network models, and then applies these models to a
control problem characterized by a discrete state vector in a state space. There
are other examples of interdisciplinary work, such as the development of immune
gene libraries and ultimately a bone marrow algorithm employed in AIS
(Hightower et al. 1995), and the development of the negative selection algorithm
and the first application to computer security (Forrest et al. 1994). However, in
more recent years, work on AIS has drifted away from the more biologically
appealing models and attention to biological detail, with the focus on more
engineering-oriented approach. This has led to systems that are examples of
reasoning by metaphor (Stepney et al. 2005). These include simple models of
clonal selection, immune networks and negative selection algorithms as outlined
above. For example, the CLONALG, whilst intuitively appealing, lacks any
notion of interaction of B-cells with T-cells, MHC or cytokines. In addition, the
large number of parameters associated with the algorithm, whilst well understood,
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make the algorithm less appealing from a computational perspective. aiNET,
again, whilst somewhat affective, does not employ the immune network theory to
a great extent. Only suppression between B-cells is employed, whereas in the
immune network theory, there is suppression and stimulation between cells. With
regards to negative selection, the simple random search strategy employed,
combined with using a binary representation, makes the algorithm computation-
ally so expensive that it is almost unusable in a real world setting (Stibor et al.
2005).

However, in the past year or so, work by the Danger Team? has started to address
this imbalance. For example, recent work by Greensmith et al. (2005) has begun
initial explorations into the use of dendritic cells (which are a type of cell found in the
innate immune system), as a mechanism for identifying dangerous (or anomalous)
events in a data stream. Whilst that work is still preliminary and works only on static
data at the moment, there appears to be some promise, and may go some ways
towards making a real breakthrough in the intrusion detection area of AIS research.
Work linked to that is by Bentley et al. (2005) proposes an artificial tissue which is a
type of representation of the data space that can evolve and adapt over time. Again,
this is very preliminary work, but could prove useful bridge between the data and the
immune algorithm itself.

Work in Stepney et al. (2005) proposes a conceptual framework that allows for
the development of more biologically grounded AIS, through the adoption of an
interdisciplinary approach. Metaphors employed have typically been simple, but
somewhat effective. However, as proposed in Stepney et al. (2005), through
greater interaction between computer scientists, engineers, biologists and mathe-
maticians, better insights into the workings of the immune system, and the
applicability (or otherwise) of the AIS paradigm will be gained. These interac-
tions should be rooted in a sound methodology in order to fully exploit the
synergy. Modeling techniques can be employed such as Cellular automata (Sie-
burg and Clay 1991) and process calculi such as n-calculus (Kuttler et al. 2004),
and stochastic n-calculus (Phillips and Cardelli 2004). Here, in order to develop
any AIS, it is necessary to first develop mathematical and/or computational
models of the immune system (focussing on aspects that you are interested in as
an AIS developer). This process necessitates the interaction of a number of
disciplines, which may naturally lead to an increased synergy of AIS and
immunology: something that is lacking. There is great potential for AIS to make
a contribution to the world of immunology through this process. Of course,
modeling immune systems is nothing new, in fact, AIS arose to some degree from
this area itself. What is new here is that by following this process, first, questions
may be asked on the immunology that would not necessarily be asked—computer
scientists like to ask naive questions about immunology that can cause immu-
nologists to think in a slightly different way, and second, algorithms that have
been developed through this process should, in theory at least, exploit more fully
the underlying principles on which they have been developed. At present, one
such project we are involved in is trying to adopt this approach*: time will tell to
see if we can get it to work.

3 http://www.dangertheory.com

4 http://www.cs.kent.ac.uk/projects/biasprofs/
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Problem oriented perspective

Challenge: Consider the Application of AIS. Work to date in the realm of AIS
has mainly concentrated on what other paradigms do, such as simple optimi-
zation, learning and the like. This has happened as an accident of history and
whilst productive, the time is here to look for the killer application of AIS, or, if
not that radical, then applications where the benefit of adopting the immune
approach is clear.

Work in Freitas and Timmis (2003) outlines the need to consider carefully the
application domain when developing AIS. They review the role AIS have played in
the development of a number of machine learning tasks, including that of classifi-
cation. However, Freitas and Timmis point out that there is a lack of appreciation for
possible inductive bias within algorithms and positional bias within the choice of
representation and affinity measures. Indeed, this observation is reinforced by the
work of Hart and Ross (2004), Hart (2005) with the development of their simple
immune network simulator with various affinity metrics. They make the argument
that seemingly generic AIS algorithms, are not so generic after all, and each has to
be tailored to specific application areas. This may be facilitated by the development
of more theoretical aspects of AIS, which will help us to understand how, when and
where to apply various AIS techniques.

It should be noted that there have been some previous attempts at providing
design principles for immune systems, such as work by Segal and Cohen (2001) and
Bersini and Varela (1994). However, work by Segal, whilst extremely interesting,
focussed primarily on network signaling and did not provide a comprehensive set of
general design principles, or provide any test application areas for those principles.
Work by Bersini, focussed on the immune network and self assertion ideas of the
immune system to create his design principles and whilst being more concrete, are
still quite high level:

— Principle 1: The control of any process is distributed around many operators in a
network structure. This allows for the development of a self-organizing system
that can display emerging properties.

— Principle 2: The controller should maintain the viability of the process being
controlled. This is keeping the system within certain limits and preventing the
system from being driven in one particular way.

— Principle 3: While there may be perturbations that can affect the process, the
controller learns to maintain the viability of the process through adaptation. This
learning and adaptation requires two kinds of plasticity: a parametric plasticity,
which keeps a constant population of operators in the process, but modifies
parameters associated with them; and a structural plasticity which is based on the
recruitment mechanism which can modify the current population of operators.

— Principle 4: The learning and adaptation are achieved by using a reinforcement
mechanism between operators. Operators interact to support common opera-
tions or controls.

— Principle 5: The dynamics and metadynamics of the system can be affected by the
sensitivity of the population.

— Principle 6: The system retains a population-based memory, which can maintain
a stable level in a changing environment.
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These are potentially useful principles, that should be refined in light of immu-
nological advances and possibly taken on board (to some degree) by the community.
These need to be tested in various application areas, and refined to allow for the
creation of not only a generic set of AIS design principles that are useful to the
community, but also specific ones for specific application areas. With this may come
a better understanding of how to apply AIS, and not fall into the traps highlighted by
Freitas and Timmis (2003). A recent paper by Hart and Timmis (2005) highlight the
fact that to date, the development of AIS has been scattergun i.e. many applications
have been tried without a great deal of thought. Indeed, this paper provides a
detailed overview of the many application areas that AIS have tried, and this will not
be repeated here: the interested reader should consult that paper. The authors go on
to propose a number of properties that they feel any AIS should have, and that these
properties may help guide the type of application they could be applied to:

(X3

— They will exhibit homeostasis

— They will benefit from interactions between innate and adaptive immune models
— They will consist of multiple, interacting, communicating components

— Components can be easily and naturally distributed

— They will be required to perform life-long learning (Hart and Timmis 2005).”

Theoretical aspects of AIS

Challenge: To Develop a Theoretical basis for AIS. Much work on AIS has
concentrated on simple extraction of metaphors and direct application. Despite
the creation of a framework for developing AIS, it still lacks significant formal
and theoretical underpinning. AIS have been applied to a wide variety of
problem domains, but a significant effort is still required to understand the
nature of AIS and where they are best applied. For this, a more theoretical
understanding is required.

There is very limited work on the more theoretical aspects of AIS. To our knowl-
edge, only two works exist on any kind of formal proofs of AIS algorithms. In
Villalobos-Arias et al. (2004), the authors present a complete proof for a specific
multi-objective CLONALG using markov chains (Grimmett and Stirzaker 1982).
Work by Clark et al. (2005) has developed a Markov Chain model of the B-cell
algorithm (Kelsey and Timmis 2003) showing a convergence proof (within infinite
time), and also a mathematical model of the mutation operator, which allows for an
assessment of the bias of the operator, which can prove to be exceptionally
insightful. According to a paper by Hone and Kelsey (2004) a useful and valued
avenue to explore would be into the dynamics of immune algorithms based on
nonlinear dynamical systems inspired by biological models (Farmer et al. 1986), and
stochastic differential equations (Brzezniak and Zastawniak 1999). Given the use of
clonal selection based algorithms within AIS, a great deal could be gained by the
community with further theoretical investigations such as, the role of mutation
operators, which could be used to provide information for optimal mutation rates for
specific functions. There is some advancement in the theoretical aspects of negative
selection, with a firmer understanding of the role of affinity measures such as r-chunk
matching and the scalability issues relevant to certain shape-spaces employed
with negative selection (Esponda et al. 2004; Stibor et al. 2004, 2005). At a more
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conceptual level, work by Newborough and Stepney (2005) propose that all popu-
lation based algorithms are essentially the same: immune or evolutionary. In that
paper, the authors abstract to a high level to introduce various operators (such as
selection and mutation), and demonstrate how these can be interchanged between
various algorithms. All it lacks now is the theoretical underpinning.

The immune system is not an island

Challenge: To Consider the Integration of Immune and Other Systems. The
immune system does not work in isolation. Therefore, attention should not
only be paid to the potential of the immune system as inspiration, but also
other systems with which the immune system interacts, in particular the neural
and endocrine systems. This will pave the way for a greater understanding of
the role and function of the immune system and develop a new breed of
immune inspired algorithms.

Homeostasis is the ability of an organism to achieve a steady state of internal body
function in a varying environment (Besendovsky and del Ray 1996). This is achieved
via complex interactions between a number of processes and systems within the
organism, in particular the immune, neural and endocrine systems. We propose that
by examining these systems, and their interactions, it should be possible to gain
insight into how organisms achieve homeostasis, and therefore exploit these inter-
actions in the realm of computer science and engineering. There is a large body of
work investigating the interactions of these systems, but little work specifically in the
area of AIS has paid any attention to this’. However, for a more detailed overview
and for some initial ideas see Neal and Timmis (2004).

Whilst the immune system is clearly an interesting system to investigate, if viewed
in isolation, many key emergent properties arising from interactions with other
systems will be missed. Such systems do not operate in isolation in biology, there-
fore, consideration should to be given to the interactions of the immune, neural and
endocrine systems, and how, together, they allow for emergent properties to arise
(Smith 1983; Liu and Deng 1991; Sieburg and Clay 1991). Immune, neural and
endocrine cells express receptors for each other. This allows interaction and com-
munication between cells and molecules in each direction. It appears that products
from immune and neural systems can exist in lymphoid, endocrine and neural tissue
at the same time. This indicates that there is a bi-directional link between the ner-
vous system and the immune system. Therefore, it would seem that both endocrine
and neural systems can affect the immune system. There is evidence to suggest that
by stimulating areas of the brain it is possible to affect certain immune responses,
and also that stress (which is regulated by the endocrine system) can suppress im-
mune responses: this is also reciprocal in that immune cells can affect endocrine and
neural systems. The action of various endocrine products on the neural system is
accepted to be an important stimulus of a wide variety of behaviors. These range
from behaviors such as flight and sexual activity to sleeping and eating (Neal and
Timmis 2004).

> This is not to say there does not exist a huge literature in the modeling community on this matter, it
is just the AIS people have not seen it!
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Computationally then, what does this have to say to AIS? It should be possible to
explore the role of interaction between these three systems. One interesting avenue
would be to design an AIS to help select the types of components which will be most
useful when added to an artificial system at any moment (differentiation) and to
remove components when they are proving harmful to the control system (apop-
tosis). The biological immune system cells select which action to perform by
detecting properties of the cells and chemical environment through molecular
interactions at membrane receptors. In an artificial system, similar properties can be
detected by looking at activation states of artificial neurons and endocrine cells as
well as global state information such as fuel consumption and battery levels. Thus
the artificial immune system components can make similar decisions within the
artificial context.

Conclusion

This paper has been an (incomplete) attempt at summarizing the current state of
research in the area of AIS. By taking a holistic view, such as we have tried here, we
hoped to gain a general impression of how well (or not) the area of AIS has been
progressing. To be sure, there has been some significant developments over the
years, and there is no doubt that the area has received a great deal of interest
recently, and people have shown an interest in not only developing systems, but have
started to think more carefully about why and how they both develop and apply
these immune inspired ideas. We think a certain amount of reflection is good for any
area, all too easily we can rush into developing novel, maybe even cool ideas, but we
can get carried away! We have now had time to pause, think and reflect: now is the
time to do something about it. It is clear, that it will not be possible to address these
challenges in one day, or even one year, but it is our hope, that this paper has set the
seeds for new ideas and some exciting research in the future.
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