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Abstract This review paper attempts to position the area

of Artificial Immune Systems (AIS) in a broader context of

interdisciplinary research. We review AIS based on an

established conceptual framework that encapsulates math-

ematical and computational modelling of immunology,

abstraction and then development of engineered systems.

We argue that AIS are much more than engineered systems

inspired by the immune system and that there is a great

deal for both immunology and engineering to learn from

each other through working in an interdisciplinary manner.
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1 Introduction

Artificial Immune Systems (AIS) is a diverse area of

research that attempts to bridge the divide between

immunology and engineering and are developed through

the application of techniques such as mathematical and

computational modelling of immunology, abstraction from

those models into algorithm (and system) design and

implementation in the context of engineering. Over recent

years there have been a number of review papers written on

AIS with the first being [25] followed by a series of others

that either review AIS in general, for example, [29, 30, 43,

68, 103], or more specific aspects of AIS such as data

mining [107], network security [71], applications of AIS

[58], theoretical aspects [103] and modelling in AIS [39].

In the context of this paper, we feel that it would not be

appropriate to attempt to reproduce the effort of those

papers. Rather, the aim of this paper is to draw together

ideas from the majority of these papers into a single review

which forms a current opinion and review of the state of

AIS research. Therefore this paper is not an extensive

bibliography of all AIS research, as this has been done by

the other review papers, but we hope a good resource for

researchers new to the area of AIS, and existing practi-

tioners of AIS. For information, a good resource of the

latest developments in AIS is the International Conference

on Artificial Immune Systems (ICARIS http://www.

artificial-immune-systems.org) conference series dedi-

cated to AIS [9, 31, 63, 85, 104, 105] where there are an

extensive number of papers on all aspects of AIS.

AIS has become known as an area of computer science

and engineering that uses immune system metaphors for

the creation of novel solutions to problems. Whilst this

forms the majority view, we argue that the area of AIS is

much wider and is not confined to the development of new
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algorithms. In a recent paper, Cohen [19] concurs with this

view and in fact goes onto define three types of AIS sci-

entists. The first are those of the ‘‘literal’’ school that build

systems in silico to try and do what the actual immune

system does (e.g. build computer security systems that

discriminate between self and non-self); those of the

‘‘metaphorical’’ school that look for inspiration from

the immune system and build computational systems with

the immune system in mind (so the application may be far

from analogous to what the immune system does) and a

third school of people who aim to understand immunity

through the development of computer and mathematical

models. It is in this vein that our paper is written, but we

would like to broaden the understanding of what AIS is

about, thus driving the area into a true interdisciplinary one

of genuine interaction between immunology, mathematics

and engineering.

Cohen [19] discusses the notion of the immune system

using a ‘‘computational strategy’’ to carry out it’s functions

of protecting and maintaining the body. An interesting

analogy is made to the universal Turing machine that

transforms input, which is represented as a sequence of

information on a tape, to output, again information on a

tape, and this machine operates to a set of rules. He raises

interesting questions as to ‘‘what does the immune system

compute’’ and ‘‘what might we gain from thinking about

immune computation?’’. Cohen’s main argument is that the

immune system computes the state of the organism, based

on a myriad of signals, which endows the immune system

the ability to maintain and protect the host. Cohen [19]

urges the immunological community to embrace working

with computational scientists to aid the understanding of

the nature of immune computation: this is, in part, the same

spirit of this paper. In recent years, the area of AIS has

begun to return to the immunology from which the initial

inspiration came. For example, works by Stepney et al.

[96], Twycross and Aickelin [109], Andrews and Timmis

[3], Bersini [8] and Timmis [103], all advocate a deeper

understanding of the immune system, in part through the

use of modelling techniques, which will lead to the

development of richer, more effective immune inspired

engineered systems. This theme underpins our review

paper, as we have attempted to structure it in such a way as

to reflect the nature of AIS research today, that is one that

encompasses (or can encompass) a range of activities from

modelling immune systems to engineering systems. To this

end our paper is structured as follows: Sect. 2 describes the

conceptual framework that we will use as a structure for the

paper and discusses the process of going from immunology

to engineered systems (indeed, the conceptual framework

[96] can be seen as a methodology for the development of

bio-inspired systems); Sect. 3 provides a brief overview of

the immunology that, has to date, provided the inspiration

to AIS ranging from clonal selection theory to danger

theory and immune cognition; Sect. 4 provides an over-

view of mathematical and computational modelling

approaches employed to understand the immune system

covering topics from differential models, to p-calculus, to

state charts, discussion is given as to how this can benefit

the development of engineered systems; Sect. 5 provides

an introduction to the basics of AIS through a simple

engineering framework and we provide an overview of the

most common immune algorithms in use at the moment;

Sect. 6 reflects on the current opinion in the AIS commu-

nity and finally Sect. 7 reviews various comments on future

directions for AIS research.

2 A framework for thinking about artificial

immune systems

As we have outlined in Sect. 1 there has been a gradual

shift in AIS towards paying more attention to the under-

lying biological system that serves as inspiration, and

taking time both to develop abstract computational models

of the immune system (to help them understand computa-

tional properties of the immune system) and work closer

with immunologists to better understand the biology

behind the system. This does not mean to say that AIS

researchers are now only focussed on the biology, but it

would be fair to say that AIS is becoming a more inter-

disciplinary topic where people are working more on the

biological aspects and others on the more engineering

aspects. To highlight this, in a recent paper by Stepney

et al. [97] (extended in [96]) suggest a methodology that

takes this shift into account. We will discuss that meth-

odology here, however we also propose that this

methodology is a good way to describe AIS in its current

form, and indeed has formed the general structure for this

paper. In addition, concurring with a view of Andrews and

Timmis [3], Bersini [8] makes the argument that the AIS

practitioner should take more seriously the role of model-

ling in the understanding and development of immune

inspired solutions, and adopt a more ‘‘artificial life’’

approach. Indeed, Bersini makes a compelling argument

for undertaking such an ‘‘Alife’’ approach based on peda-

gogy and the study of emergent phenomena and qualitative

predictions, all of which are beneficial to the immunologist

and ultimately engineers. Whilst we have a great deal

of sympathy with this view, and indeed advocate the

approach, we feel this needs to be tempered by the con-

sideration of the engineering aspects, as after all, it is better

engineered solutions that are the driving force behind the

vast majority of research being undertaken in AIS. This is

to say that we feel both the approach encouraged by Bersini

and the problem oriented approach proposed by Freitas and
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Timmis [41] can sit together, and this can be achieved via

the conceptual framework approach [96, 97].

In their paper, Stepney et al. [97] propose that bio-

inspired algorithms, such as AIS, are best developed in a

more principled way than was currently being undertaken

in the literature. To clarify, the authors suggested that many

AIS developed had drifted away from the immunological

inspiration that had fueled their development and that AIS

practitioners were failing to capture the complexity and

richness that the immune system offers. In order to remedy

this, the authors suggest a conceptual framework for

developing bio-inspired algorithms within a more princi-

pled framework that attempts to capture biological richness

and complexity, but at the same time appreciate the need

for sound engineered systems that need to work. This

should avoid the ‘‘reasoning by metaphor’’ approach often

seen in bio-inspired computing, whereby algorithms are

just a weak analogy of the process on which they are based,

being developed directly from (often naive) biological

models and observations. One of the main problems

involved in designing bio-inspired algorithms, is deciding

which aspects of the biology are necessary to generate the

required behaviour, and which aspects are surplus to

requirements. Thus, the conceptual framework takes an

interdisciplinary approach, involving the design of AIS

through a series of observational and modelling stages in

order to identify the key characteristics of the immuno-

logical process on which the AIS will be based. The first

stage of the conceptual framework, as outlined in Fig. 1,

aims to probe the biology, utilising biological observations

and experiments to provide a partial view of the biological

system from which inspiration is being taken. This view is

used to build abstract models of the biology. These models

can be both mathematical and/or computational, and are

open to validation techniques not available to the actual

biological system. From the execution of the models and

their validation, insight can be gained into the underlying

biological process. It is this insight that leads to the

construction of the bio-inspired algorithms. This whole

process is iterative, and can also lead to the construction of

computational frameworks that provide a suitable structure

for specific application-oriented algorithms to be designed

from.

As noted by Stepney et al. [97] each step in the standard

conceptual framework is biased, be it modelling some

particular biology mechanism or designing an algorithm

for which there is an intended end product or specific

concept. The first instantiations of the conceptual frame-

work will produce models specific to certain biological

systems and algorithms for solutions to specific problems.

One could attempt to produce a computational framework

based on some biology without a particular end algorithm/

application in mind, that is examining biology and hoping

to come across something applicable to a generic compu-

tational problem. This, however, would seem to be a very

difficult task and one has to ground the development of AIS

in some form of application at some point. Therefore, it is

far easier to orient these steps towards some particular

problem giving necessary focus to the modelling work

[41].

3 A guide to the immunology of AIS

AIS have been inspired by many different aspects of the

human immune system. One of the first questions that

might be asked is why, as engineers and mathematicians,

are we interested in the immune system? The answer is that

the immune system exhibits a number of computationally

appealing properties such as pattern recognition, learning,

memory and self-organisation. In this section we present an

overview of much of the immunology that has inspired AIS

to give the reader a better appreciation of the discussions

on AIS that follow. It is noted that we do not provide a

fully comprehensive background on immunology, for that

the reader is referred to [46, 66].

Fig. 1 The Conceptual Framework [96]. This can be seen as a methodology to develop novel AIS allowing true interaction between disciples

where all can benefit, and, a way of thinking about the scope of AIS and how that has broadened over the years once again
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There are a number of competing theories in immu-

nology as to how the immune system actually achieves host

protection and maintenance. In this section we review the

majority of these theories and focus primarily on the ones

that have acted as inspiration to the development of

immune-inspired engineered systems. We do not pass

judgement here as to which theory is correct or not, these

are widely debated issues in immunology, nevertheless,

each theory is interesting and useful from a computational

and engineering perspective.

3.1 Overview of the immune system

The immune system is typically described as a defence

system that has evolved to protect its host from pathogens

(harmful micro-organisms such as bacteria and viruses)

[46]. It comprises a variety of specialised cells and mole-

cules along with immune organs that provide a place for

the immune cells to mature and function. The interactions

between immune cells and other cells of the body create a

rich and complex set of immune behaviours, resulting in

the recognition of pathogens and the evocation of a suitable

pathogen ridding response.

The vertebrate immune system can be split functionally

into two components, the innate immune system and the

adaptive (or acquired) immune system. The innate immune

system incorporates general pathogen defence mechanisms

that have evolved over the germline of the organism. These

mechanisms remain essentially unchanged during the life-

time of an individual and include the inflammatory response,

phagocytosis (ingestion of pathogens by specialised immune

cells), and physiologic barriers such as temperature. The

mechanisms of the adaptive immune system also develop as

the organism evolves, however they also have the ability to

change somatically (i.e. during the lifetime of an individual).

This results in the ability of the adaptive immune system to

recognise previously unseen pathogens (learning) and to

remember them for future encounters (memory). The innate

and adaptive immune systems typically operate over dif-

ferent timescales. The innate operates on a small time scale

often initiating a reaction either instantly or within a matter

of minutes, whilst the adaptive immune system operates

over a longer time period, taking of the order of days to

initiate a reaction. It is the combination and interaction of

both the innate and adaptive immune mechanisms that

provides us with an effective immune system.

3.2 Immune cells, molecules and organs

Each of the innate and adaptive immune systems have

specialised cells which communicate through direct cell-

to-cell interactions and through immune messenger pro-

teins called cytokines. This communication is conveyed via

special protein molecules called receptors that are expres-

sed on the surface of cells in order to bind extra-cellular

molecules. When a sufficiently strong chemical bond

occurs between a receptor and another receptor or mole-

cule, a signal is passed into the cell, providing a mechanism

for recognition at the molecular level. Receptors of the

innate immune system recognise very specific molecules,

whilst receptors exist on adaptive immune cells that differ

in what molecules can bind in order to recognise previously

unseen pathogen related molecules. These receptors are

called antigen receptors and any molecule that binds to

them is called an antigen.

The innate immune systems contains many specialised

cells such as macrophages and dendritic cells. Many of

these cells are phagocytic, being able to ingest and kill some

pathogens such as bacteria. Additionally, many can act as

antigen presenting cells (APCs), whereby portions of the

ingested pathogen are displayed on their cell membrane as

antigens to be recognised by T-cells [46]. T-cells, along

with B-cells, are the main actors of the adaptive immune

system. They are named after the thymus and bone marrow,

which are their respective places of maturation. Collec-

tively B and T-cells are called lymphocytes. Lymphocytes

are the only cells that produce antigen receptors, with each

lymphocyte producing an antigen receptor that differs from

all others. The antigen receptors of B-cells are called anti-

bodies, whereas the antigen receptors of T-cells are called

T-cell receptors (TCR). These receptors are generated via a

stochastic process utilising gene libraries to provide a

massive potential repertoire of receptors. The specific por-

tions of an antigen to which lymphocyte receptors bind are

called epitopes. The ability of a receptor to bind with a

single epitope is defined as the receptor’s specificity. The

strength of this binding is measured in terms of an affinity,

whereby a high affinity between receptor and epitope results

from a tight molecular binding [46].

The antibodies of B-cells can either be attached to the

surface of the B-cell, or be secreted from the cell to bind to

antigens free in solution, thus marking them for deletion by

other immune cells. A B-cell that has not yet encountered

any antigen that binds its antibody is called a naive B-cell.

Once antigen binding occurs, the naive B-cell is activated,

initiating a process of cellular proliferation and differenti-

ation into effector B-cells. This results in the production of

a population of clones of the original B-cell, which can

secrete large numbers of antibodies. Some B-cells also

differentiate into long lived memory cells, providing pro-

tection from future infection by the same pathogen whose

antigen activated it [46]. Unlike antibodies, TCRs only

recognise antigens that are bound to a protein receptor

called major histocompatability complex (MHC). MHC
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exists in two different forms, the first is expressed on the

surface of most cells in the body, whereas the second is

only expressed by APCs. T-cells that bind to the MHC of

APCs are called T helper (TH) cells, whereas T cytotoxic

(TC) cells bind to the other MHC type. The job of TH cells

is to activate other immune cells such as B and TC cells.

The role of TC cells is to kill other cells to which their

TCRs bind, these are typically virus infected cells

and tumour cells [46]. T-cells follow the same cellular

activation, proliferation and differentiation mechanisms

described above for B-cells.

As previously mentioned, cytokines are the messenger

molecules of the immune system. Different cytokines are

produced and received by immune cells at different rates

dependent on the cell types and cell states involved. Over

50 different cytokine types are mentioned by Janeway et al.

[64], however, there is no one-to-one relationship between

cytokine and effect with many different cytokines per-

forming similar, or different, functions depending on

cellular states. One role of cytokines is to help control an

immune reaction by providing amplificatory or suppressive

effects.

The immune system incorporates a number of organs

distributed around the body. These are classified into two

groups, the central (or primary) immune organs, and the

peripheral (or secondary) immune organs. The central

immune organs include the bone marrow, which is the site

of immune cell production, and the thymus whose main

purpose is to provide an environment where T-cells can

mature and be selected to provide appropriate immune

reactivity. The secondary immune organs include the

lymph vessels, which provide a transport mechanism for

immune cells, and lymph nodes, which provide the

immune cells with a place to interact. Many of the immune

system’s functions such as classification and adaptation are

carried out by immune cells in the lymph nodes.

3.3 Clonal selection theory

It was highlighted above that the antigen receptors of

lymphocytes differ. The body contains millions of different

lymphocytes, thus millions of different receptors with

different specificities are expressed, the combination of

which is known as the receptor repertoire of the individual.

According to Burnet’s 1959 clonal selection theory [12],

this repertoire undergoes a selection mechanism during the

lifetime of the individual. The theory states that on binding

with a suitable antigen, activation of lymphocytes occurs.

Once activated, clones of the lymphocyte are produced

expressing identical receptors to the original lymphocyte

that encountered the antigen. Thus a clonal expansion of

the original lymphocyte occurs. This ensures that only

lymphocytes specific to an activating antigen are produced

in large numbers. The clonal selection theory also stated

that any lymphocyte that have antigen receptors specific to

molecules of the organism’s own body must be deleted

during the development of the lymphocyte [66]. This

ensures that only antigen from a pathogen might cause a

lymphocyte to clonally expand and thus elicit a destructive

adaptive immune response. In this sense, the immune

system can be viewed as a classifier of antigens into either

self antigen or non-self antigen, with non-self antigen

assumed to be from a pathogen and thus needs to be

removed from the body.

The process of deleting self-reactive lymphocytes is

termed clonal deletion and is carried out via a mechanism

called negative selection that operates on lymphocytes

during their maturation. For T-cells this mainly occurs in

the thymus, which provides an environment rich in APCs

presenting self-antigens. Immature T-cells that strongly

bind these self-antigens undergo a controlled death

(apoptosis). Thus, the T-cells that survive this process

should be unreactive to self-antigens. The property of

lymphocytes not to react to the self is called immunolog-

ical tolerance [28].

During the clonal expansion of B-cells (but not T-cells),

the average antibody affinity increases for the antigen that

triggered the clonal expansion. This phenomenon is called

affinity maturation, and is responsible for the fact that upon

a subsequent exposure to the antigen, the immune response

is more effective due to the antibodies having a higher

affinity for the antigen. Affinity maturation is caused by a

somatic hypermutation and selection mechanism that

occurs during the clonal expansion of B-cells. Somatic

hypermutation alters the specificity of antibodies by

introducing random changes to the genes that encode for

them. This hypermutation mechanism is proportional to the

affinity of the antigen-antibody binding, so that the higher

the antibody affinity the less mutations it suffers. After the

mutations have occurred, the B-cells that produce higher

affinity antibodies are preferentially selected to differenti-

ate into effector and memory cells, thus over the course of

an immune response, the average population affinity of

antibodies increases [28, 46].

3.4 Immune network theory

In 1974, Jerne [67] proposed an immune network theory to

help explain some of the observed emergent properties of

the immune system, such as learning and memory. The

premise of immune network theory is that any lymphocyte

receptor within an organism can be recognised by a subset

of the total receptor repertoire. The receptors of this rec-

ognising set have their own recognising set and so on, thus
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an immune network of interactions is formed. To formalise

this [67] made use of the following terminology:

• Epitope: also known as the antigenic-determinant is the

particular portion of an antigen to which the antibody

binds.

• Paratope: the portion of the immune receptor which

binds to a particular epitope complementarily.

• Idiotype: the set of epitopes displayed by a set of

antibody molecules.

• Idiotope: a single idiotypic epitope.

Following this terminology, immune networks are often

referred to as idiotypic networks (Fig. 2). In the absence of

foreign antigen, Jerne concludes that the immune system

must display a behaviour or activity resulting from

interactions with itself, and from these interactions immu-

nological behaviour such as tolerance and memory emerge.

A history of the first 21 years of network theory is provided

by [21], it documents that the development of network

theory has been hampered from a lack of biological

evidence and an immunological field sold on clonal

selection theory. However [21] states that network theory

has undergone a revival and provides perhaps the best

explanations for immune self-tolerance, with idiotypic

networks providing an internal image of self [7].

3.5 Danger theory

In [76], Matzinger explains how the clonal selection theory

placed the antigen-specific cells of adaptive immunity

(most notably the TH cell) at the centre of the decision of

whether or not to initiate an immune response. This deci-

sion was achieved through the deletion of the self-reacting

lymphocytes, so that responses will only be initiated

against non-self. It was discovered, however, that TH cells

themselves require a co-stimulatory signal from non-anti-

gen-specific APCs in order to initiate an effective adaptive

immune response. As a consequence, it could not be

assured that immunity only be directed against non-self, as

APCs express on their surfaces both self and non-self

antigens. To address this, Janeway [65] proposed the

infectious–non-self model that suggested APCs could

discriminate between self and non-self by detecting, via

the use of germline encoded receptors, evolutionarily

conserved pathogen-associated molecular patterns unique

to bacteria.

As an alternative explanation, Matzinger [75] proposed

the danger theory in 1994, which has gained much popu-

larity amongst immunologists in recent years as an

explanation for the development of peripheral tolerance

(tolerance to agents outside of the host). The danger theory

states that APCs are themselves activated via an alarm:

danger signals. These activated APCs will then be able to

provide the necessary co-stimulatory signal to the TH cells

that subsequently control the adaptive immune response.

The danger signals are emitted by ordinary cells of the

body that have been injured due to attack by pathogen.

For example, the intra-cellular contents released due to

uncontrolled (necrotic) cell death could provide such sig-

nals. These signals are detected by specialised innate

immune cells called dendritic cells that seem to have three

modes of operation: immature, semi-mature and mature

[74]. In the dendritic cell’s immature state it collects

antigen along with safe and danger signals from its local

environment such as: pathogen-associated molecular pat-

terns (PAMPS) and inflammatory cytokines. The dendritic

cell is able to integrate these signals [82] to decide whether

the environment is safe or dangerous. If safe the dendritic

cell becomes semi-mature and upon presenting antigen to

T-cells the dendritic cell will cause T-cell tolerance. If

dangerous the dendritic cell becomes mature and causes the

T-cell to become reactive on antigen-presentation. Through

this process the dendritic cell contributes to immune

homeostasis [74]. The transition from immature to semi-

mature is illustrated in Fig. 3.

The danger theory presents a number of important

consequences for the field of immunology. Firstly, with

the danger signals arising from normal cells of the body,

an immune response is no-longer initiated by the specia-

lised cells of the immune system. Secondly, the adaptive

immune response is itself controlled by the action of

innate immune cells, thus blurring the distinction between

the adaptive and innate arms of the immune system.

Fig. 2 Eigen-behaviour of the immune system [67]. Epitope E of an

antigen is presented to the immune system, the is a set p1 of paratopes

recognising E which has an associated set i1 of idiotopes. Set p1 also

recognises a set i2 of idiotopes, this can be thought of as an internal

image from epitope E. Set i1 is recognised by internal paratope set p3,

which represent an anti-idiotypic set. There is also a set of paratopes

px which display idiotopes i1 but do not fit the foreign epitope. The

internal image has a stimulatory effect on the recognising set, whereas

the anti-idiotypic has a inhibitory
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Lastly, the notion of self–non-self discrimination is

replaced with a danger–non-danger metaphor, whereby

foreign non-self no longer necessarily initiates an immune

response.

3.6 Competing immune theories

By the 1970s the immune self had become the defining idea

in immunology with the field itself being referred to as the

science of self–non-self discrimination [102]. It is evident,

however, that in recent years this view has changed. In the

editorial summary to an issue of the journal Seminars in

Immunology that examined competing theories of the

immune system, Langman and Cohn [72] state:

There is an obvious and dangerous potential for the

immune system to kill its host; but it is equally

obvious that the best minds in immunology are far

from agreement on how the immune system manages

to avoid this problem.

On examination of the articles presented in the journal

issue [2, 11, 17, 51, 73, 79, 95, 102], the extent to which

many immunologists differ in their views becomes clear. In

his commentary on the models proposed by the other

immunologists in the journal issue, Tauber [102] believes

that they all fall to various degrees between the ideas of

Burnet (clonal selection theory) and Jerne (immune net-

work theory), and are thus a continuation of the arguments

between these two points of view.

As an example of a competing immune theory, we

highlight details of the ideas presented by Cohen [17]. In a

major departure from the classical immune system view,

Cohen’s model removes the requirement of self–non-self

discrimination entirely. Instead, all immune cells recognise

both self and non-self antigens and form an immune dia-

logue with the body’s tissues in order to fulfil the role of

body maintenance. In order to achieve body maintenance,

the immune system must select and regulate the inflam-

matory response according to the current condition of the

body. This condition is assessed by both the adaptive and

innate immune agents, which are required to recognise both

the presence of pathogens (non-self antigens) and the state

of the body’s own tissues (self antigens). The specificity of

the immune response, therefore, is not just the discrimi-

nation of danger, or the distinction of self–non-self, but the

diagnosis of varied situations, and the evocation of a

suitable response. In summary, Cohen’s maintenance role

of the immune system requires it to provide three proper-

ties [18]:

Safe Signals

Danger Signals
PAMPS

Inflammatory CKs
Collect antigen
Receive signals
Location: tissue

IMMATURE

SEMI-MATURE

MATURE

Present antigen
Produce costimulation
Provide tolerance cytokines
Location: lymph node

Present antigen
Produce costimulation
Provide reactive cytokines
Location: lymph node

Fig. 3 Dendritic cell

differentiation from immature to

semi-mature, mature. Diagram

reproduced from [49]
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• Recognition: to determine what is right and wrong,

• Cognition: to interpret the input signals, evaluate them,

and make decisions,

• Action: to carry out the decisions.

These properties are provided via a cognitive strategy in

which self-organisation of the immune system is used

make deterministic decisions. It is the outcome of these

decisions that are proposed to perform body maintenance.

Self-organisation of the adaptive immune system occurs in

the construction of the T-cell and B-cell antigen receptor

repertoires. In the innate immune system self-organisation

takes place in the generation of the actual response

repertoire of the immune system via the fine tuning of

the set of innate immune responses. This determines the

types of response that will be connected to the signals

perceived by the lymphocyte receptor repertoire. As we

discussed in Sect. 1, Cohen’s new ideas extend this notion

of cognition into a computational paradigm where the

immune system computes the state of the body in order to

achieve maintenance [19].

4 Modelling the immune system

Within the context of the conceptual framework (Sect. 2)

modelling plays an important role in the understanding of

the computational aspects of the immune system. There is a

vast range of modelling approaches available, each with

their own advantages and disadvantages operating at dif-

ferent levels of abstraction [39]. What we present in this

section is an overview of some of the techniques that are

common place in the immunological world and help us,

from a computational and engineering background, under-

stand how the immune system computes.

A recent paper by Forrest and Beauchemin [39] provides

an excellent review of modelling approaches in immunol-

ogy (and further discussions on engineering immune

systems for computer security). The authors highlight that

there are a number of ways in which one can model the

immune system, with each approach offering different

perspectives to the modeller. Within the paper [39], the

authors focus more on Agent Based Modelling (ABM) as a

tool where cells might be represented as individual agents,

rather (as in the more traditional differential equations) than

as a population of cell types. An agent in the system may be

a certain type of cell that is encoded with simple rules that

govern its behaviours and interactions. Within ABM it is

possible to observe quite easily the dynamics of the agent

population that arise as a result of the interactions between

the agents. One difficult aspect of ABM is defining the right

level of abstraction for each agent in the model, as this will

clearly affect how the simulation operates. Forrest and

Beauchemin [39] argue that ABM might be a more

appropriate tool for modelling immunology due to the ease

of which one can incorporate knowledge into the model that

might not be able to be expressed mathematically and that

multiple tests (or experiments) can be run with great ease,

thus allowing the experimental immunologist a chance to

perform experiments (albeit ones at a certain level of

abstraction) in silico. This concurs with the view of Bersini

[8] who advocates the use of object oriented (OO) tech-

nologies, and indeed ABM is a natural implementation of

the OO paradigm. Another modelling approach is one of

state charts first proposed by Harel [53] as a mechanism for

representing computational processes by means of states

and events that cause a transition between states. Such state

charts can be developed to model complex interactions

between elements and have demonstrated themselves to be

useful in the context of immunological modelling [8, 39].

It seems clear that there is a great deal to be learnt from

the examination of the immune system in more computa-

tional terms. Indeed, our position is to concur with Forrest

and Beauchemin [39], Andrews and Timmis [3], Stepney

et al. [96], Bersini [8], Timmis [103] and Cohen [19] that

there is a great benefit from the AIS practitioner engaging

with the immunological modelling community to help not

only the engineers but also the immunologists. Having now

motivated the study of immunological modelling, and the

role it can play in not only understanding the immune

system, but also its potential role in the development of AIS,

we briefly review immunological modelling in terms of

mathematical models (the more traditional differential

equation type models), and computational models, with a

focus on p-calculus and state chart modelling. We have

chosen these topics because from the mathematical side, the

differential models are still very prevalent in the literature

and have held to shape, to some degree, the nature of AIS to

date. From a computational modelling perspective, we

focus on p-calculus as this is potentially a very powerful

tool from computer science that can be used to model highly

complex and parallel systems with large scale (something

that simple OO methods would struggle at) and state charts,

as these are simple tools that can be used to capture quite

complex interactions between components in a visual

manner (thus making them more understandable to the non-

mathematician). However, for a full review of this topic, the

reader is directed to Forrest and Beauchemin [39].

4.1 Mathematical modelling of different immune

networks

In this section, we have decided to focus on two different

aspects of immunology that have been modelled using

differential equations. We begin our discussions by

examining the seminal work of Farmer et al. [37] on
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idiotypic immune networks (Sect. 3.4). We have selected

this area to focus on due to the impact that it had on the

early development of AIS and it still continues to influence

the thinking of AIS practitioners. We then move to mod-

elling a different type of immune network: cytokine

networks. This work by Hone and van den Berg [61] is an

interesting recent addition to the modelling literature and

presents a network that exhibits decision making proper-

ties, that could be useful in an engineering context.

4.1.1 Idiotypic networks

The seminal work of Farmer et al. [37] investigated Jernes’

work [67] in great depth and provided insights into some of

the mechanisms involved in the production and dynamics

of the immune network, that up to that point had been only

discussed. The authors created a simplistic model to sim-

ulate the immune system which ignored the effect of

T-cells and of macrophages in an attempt to capture the

essential characteristics of the immune network. Central to

their work was the calculation of the dynamics of B-cell

population related to a B-cell’s stimulation level. The

authors proposed a simple equation that they consider takes

into account the three main contributing factors to B-cell

stimulation level, these are: (i) the contribution of the

antigen binding (ii) the contribution of neighbouring

B-cells and (iii) the suppression of neighbouring B-cells.

The rate of change of antibody concentration is given by:

_xi ¼ c
XN

j¼1

mj;ixixj � k1

XN

j¼1

mi;jxixj þ
XM

j¼1

mi;jxiyj

" #
� k2xi

ð1Þ

where the first term represents the stimulation of the par-

atope of an antibody type i by the epitope of an antibody j.

The second term represents the suppression of antibody of

type i when its epitope is recognised by the paratope of

type j. The parameter c is a rate constant that depends on

the number of collisions per unit time and the rate of

antibody production stimulated by a collision. Constant k1

represents a possible inequality between stimulation and

suppression. The stimulation of a B-cell cloning and

mutation were included in the model to create a diverse set

of B-cells. The amount by which any one B-cell cloned

was in relation to how stimulated the B-cell was. The more

stimulated a B-cell, the more clones it produces.

4.1.2 Cytokine networks

Moving away from idiotypic networks, Hone and van den

Berg [61] define a generic dynamical model for the

interaction of cytokines and immune cells in which they

determine an Artificial Cytokine Network (ACN). The

model describes a network of n cytokines with concentra-

tions u1,..., un which are produced by m cell types with

densities v1,..., vm within a medium, all cells and cytokines

are considered to be diffuse and well mixed (as is the case

with all differential models which can be seen as a limi-

tation of the approach as biological systems are not really

well mixed at all). The cell types are acted upon by r

external stimuli s1,..., sr. The amount of any cytokine

produced by a given cell type is a function of the con-

centrations of cytokines, external stimuli and the density of

that T-cell type. A change in the cell types density is a

function of cytokine concentrations, external stimuli and

the cell type’s current density. It is described by the

following:

_uk ¼
Xm

‘¼1

w‘kðu1; . . .; un; s1; . . .; srÞv‘ � mklk ð2Þ

_v‘ ¼ u‘ðu1; . . .; un; s1; . . .; srÞ � l‘ð Þv‘ ð3Þ

where k = 1,..., n; ‘ = 1,..., m; the function w‘ k [ 0

expresses the effect of the cytokines and external stimuli on

the production of cytokine k by cell type ‘; mk is the rate of

degradation of the kth cytokine; the function u‘[ 0

expresses the effect of the cytokines and external stimuli on

the proliferation rate of a cell of type ‘.

There is a difference in time scales between the degra-

dation of cytokines and cells, the cytokines should degrade

at a much higher rate than cells. As a consequence [61] are

able to discuss the stability of potential specifications of w‘
k with the assumption that v‘ðtÞ � �v; that is the cell density

is constant from the point of few of the cytokines.

Hone and van den Berg [61] present numerical results of

an ACN, performed with two cytokines n = 2; one cell type

m = 1; and a single external stimulus s(t). It is assumed that

wj,j = 1, 2 are sigmoid functions S(x) [[0, 1] for all x 2 R:

The model is constructed such that the proliferation of cells

is encouraged by cytokine u2 and the external stimulus s,

whereas the cytokine measured by u1 will tend to decrease

cell proliferation, wj and u are defined as:

wjðu1; u2; sÞ ¼ wjS
X

k¼1;2

Wjkuk � ~hj

 !
;

uðu1; u2; sÞ ¼ su2e�cu1

ð4Þ

for j ¼ 1; 2; c[ 0; SðxÞ ¼ 1=ð1þ e�xÞ; wj is the maxi-

mum secretion rate of cytokine j; W is an interaction matrix

that determines how cytokine j affects the production of

cytokine k; ~hj represents a stimulation threshold of the cell

by the cytokine j. In order to better understand the model,

we have plotted a numerical run of the equations (Fig. 4).

With just 2 cytokines and one cell type the ACN
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demonstrates a complex variety of behaviours, as demon-

strated by other parameter choices given in [61].

4.2 Computational modelling

In the introduction to Sect. 4 we discussed that there is a

large literature on the computational modelling of the

immune system. Here we focus mainly on one technique

the p-calculus [81]. We focus on this technique primarily

as this one has not been covered in previous review papers

on immunological modelling, specifically it is not covered

by the review by Forrest and Beauchemin [39] and the

technique has a great deal to offer both the immunologist

and the engineer and can be seen as an excellent bridge

between the two areas. We also briefly discuss the role of

UML in modelling immune systems, the use of design

patterns and alternative ways of modelling immune net-

works as these are now beginning to find favour in the AIS

community once again.

4.2.1 p-calculus

p-calculus is a formal language used to specify concurrent

computational systems. Its defining feature that sets it apart

from other process calculi is the possibility of expressing

mobility. This allows processes to ‘‘move’’ by dynamically

changing their channels of communication with other

processes, thus one can model networks that reconfigure

themselves. The p-calculus allows composition, choice,

and restriction of processes which communicate on

potentially private complementary channels. There is a

growing similarity between the parallelism and complexity

of computer systems today and biological systems. As

noted by [88] computational analysis tools such as the

p-calculus are just as applicable to biology as they are to

computing.

Regev et al. [91] apply the p-calculus to model a signal

transduction pathway, the authors note that the p-calculus

allows the model to be mathematically well-defined, and

remain biologically faithful and transparent. The authors

also note that the p-calculus only allows qualitative anal-

ysis of a biological system. For quantitative analysis

Stochastic p-calculus (Sp) [89] is needed. Sp extends the

p-calculus by adding a rate parameter r to interactions, this

defines an exponential distribution, such that the proba-

bility of an interaction occurring within time t is F(r, t) = 1

-e-rt. Thus the average duration of an interaction is the

mean 1/r. The purpose of the conception of Sp is to allow

performance analysis of concurrent computational systems,

as a consequence [89] demonstrates how it is possible to

turn a system described in Sp to a continuous time Markov

chain. Priami et al. [90] follows the work [91] and applies

Sp to quantitatively examine biological pathways.

The mathematical nature of p-calculus, stochastic or

otherwise, can render it inaccessible to non-computer sci-

entists and potentially unwieldy or at least non-intuitive

when modelling biological systems. To address this issue

Philips et al. [88] define a Graphical Stochastic p-calculus

(GSp) which represents a Sp specification as a graph of

typed nodes with labelled edges. The authors prove this to

be reduction equivalent to Sp to ensure that they both have

the same expressive power. A number of advantages to

GSp are discussed in [88], including the ease with which

one can discover cycles in a system (cycles are an impor-

tant facet found at all levels of biological systems) and the

ability to provide a frontend to an Sp simulator. Clearly the

ability to simulate systems specified in Sp is essential to

understanding its behaviour, to this end there are number of

stochastic simulators, for example, BioSpi [90] and SPiM

[88]. Both make use of the Gillespie Algorithm [45] to

simulate bio-molecular interactions. However SPiM would

seem to have some advantages over BioSpi, first, it is

proved to be a correct simulation of Sp. Second, it is

optimised for the simulation of biology, it does this by

noting that most biological simulations contain many

thousands of the identical processes, i.e. many thousands of

the same protein. Third, it provides visualisation through

GSp and through an animated 3D visualisation of Sp.
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Fig. 4 Behaviour of the ACN defined by (2), (3) and (4) with

parameters: secretion rates w1;w2 ¼ 1; decay rates m1 = 6, m2 = 5,

l = 2; threshold values ~h1 ¼ 3; ~h2 ¼ 6; interactions W11 = -1, W12

= 1, W21 = 1, W22 = 0. The stimulus is set such that there is a weak

stimulus s(t) = 3 for 0 B t \ 0.2 and a short strong stimulus s(t) = 70

for 1.0 B t \ 1.01. Starting from initial values u1 = 6.5, u2 = 12.5 and

v = 12.5. Two stimuli are applied, a long weak stimulus s(t) = 3 for

0 B t \ 0.2 and a short strong stimulus s(t) = 70 for 1.0 B t \ 1.01.

The initial long weak stimulus primes the system, the second short

stimulus induces a large proliferation of cells. It is important to note

that it is not just the larger size of second stimulus which produces the

result, the size of the second peak of v is reduced if the time interval

between the stimuli is reduced
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A final point raised in [91] highlights that the tools of

p-calculus can aid the understanding of biology. For

example bisimulation allows formal comparison between

two p-calculus programs by an equivalence relation in

terms of their behaviour. This may allow abstraction of

concepts common to many biological systems. Such ideas

have an interesting instantiation here, it may be possible to

use them to pin down what in a biological system is

necessary for its behaviour and what is superfluous, and

thus be a great benefit to the AIS practitioner as they will

better understand why the biology behaves as it does. This

will give more considered steps on the route through the

conceptual framework towards bio-inspired algorithms.

4.2.2 Higher levels of abstraction

Work already briefly discussed by Bersini [8] advocates an

object oriented approach incorporating tools such as UML

[38], design patterns [42] and state charts [53]. Indeed, with

regards to the use of state charts a small amount of work

had been already undertaken by Cohen and Harel, see [20]

for a good review of their work. Let us return to the work

of Bersini [8] in the use of UML and design patterns. UML

is a standardised specification language that can be used for

general purpose modelling allowing for the creation of an

abstract model of the system under study. Contained

within UML is a wide variety of notions and figures that

allow for the construction of the model. Design patterns are

designs that are reused (or can easily be repeated) to a

certain problem, and are widely used in the software

engineering domain. These design patterns can be thought

of as a template of a solution that are reused over and over

again in different circumstances.

How do these two tools relate to modelling immunology?

By adopting such approaches it makes the modelling of a

complex system that much more comprehensible, adaptable

and effective [8] and the fact that the modelling language is

visual can act as an aid to interaction between the biologist

and computational scientist (as advocated by Cohen [19]).

Bersini [8] develops a simple UML class and state diagrams

of a clonal selection model. Here he illustrates the use of the

‘‘state’’ design pattern and the ‘‘template’’ design pattern

which illustrate how it is possible to encapsulate certain

design information easily, but also how it is possible to

isolate functionality within the model. Such techniques

allow us to understand the operation of such complex sys-

tems and the very act of designing such a model prompts us

to ask questions of the system under study that we might

have never asked. Indeed, other work such as Mendao et al.

[80] also advocate a UML type approach and in their paper

take ideas from Cohen [18], with a focus on degeneracy, to

create a simple clonal selection model based on degenerate

receptors (receptors that are structurally similar, but can be

functionally different). This was based on earlier work by

Andrews and Timmis [5] where a simple model of a lymph

node was developed incorporating the notion of degenerate

receptors, and recognition of antigenic patterns was dem-

onstrated to occur. Both these works can be seen as initial

stages in the development of alternative immune inspired

algorithms with UML acting as a natural bridge between the

immunology (as diagrams are an easy way to communicate

complex ideas) and the engineering (as UML naturally

lends itself to computational settings).

Following on from our discussions on modelling

immune networks (Sect. 4.1.1), recent work by Hart and

collaborators [54, 55] has investigated, in depth, immune

networks from a more computational perspective. The

work of Hart et al. attempts to understand the evolution of

immune networks and how the topology emerges from the

interactions within the network. Their initial studies would

indicate the main effect on immune network algorithms

may well be the way in which interaction is defined, i.e.

through the definition of affinity. Through the development

of a simple model Hart and Ross demonstrate the evolution

of various immune network structures which are consid-

erably affected by the choice of affinity measures between

two B-cells, which in turn affects how B-cells interact with

each other and how the boundary of tolerance of self/non-

self emerges through the interactions of the network, thus

producing an internal image of the environment. Such

measures considered were single and multiple-site binding,

complimentarily binding and non-symmetrical binding and

they were found to affect such things as network stability

and tolerance of non-self agents [56]. The role of such

modelling is now starting to be useful in the understanding

of the dynamics of immune networks thus enabling the AIS

practitioner to more readily make use of the metaphor.

4.3 On the use of metaphors

Now we have reviewed the immune system and techniques

that can be used to aid our understanding of that system, we

feel it necessary to address a fundamental issue within AIS.

In a recent book chapter, Neal and Trapnel [83] discussed

the role of drawing separation between subsystems within

biological systems. Of most interest to us here is their

arguments concerning the separation of innate and adaptive

immunity. They argue that drawing separations between

these two systems (as is prevalent in the AIS literature, and

indeed to some degree even this review paper) might not be

that helpful, as the two systems are so intertwined, sepa-

ration is not really possible (or sensible). Neal and Trapnel

go onto argue that such a separation, and indeed the sep-

aration of those systems into further systems could be
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problematic. They argue that types of systems identified by

researchers can often be biased by the actual research

interests of the people undertaking the decomposition, e.g.

the bias may often be medical and biased towards patho-

logical cases [83] and the break up of systems that arises

from such a bias may not necessarily be the best way

of splitting up the system. The authors state a set of

assumptions that they argue, ‘‘afflicts most computer

scientists’’:

1. The sub-systems and components as described by

biologists are circumscribed by ‘‘natural’’ boundaries

and by implication have some degree of functional

separability over and above that likely to be found for

similar sized arbitrary sets of linked components

selected at random.

2. That sub-systems and components as identified by the

biologists will be of interest and utility to computer

scientists seeking inspiration.

3. That biologists really believe that they have identified

the important features of the immune system when

describing these sub components.

4. That it is valid to make computational simplifications

and caricatures by using ‘‘off the shelf’’ components

when building computational analogues of the sub-

systems and their components.

Neal and Trapnel [83] argue that if none of these

assumptions were ever valid undertaking the development

of bio-inspired systems would be ‘‘essentially meaning-

less’’. However, they counter that if one is prepared to

accept (1) and (2) most of the time, to talk to biologists in

order to ascertain when (3) holds and to guard against (4)

by maintaining sufficient complexity and constantly re-

examine the biology to avoid over-simplification then both

activities (the biology and the engineering) maintain value.

They go onto argue that (1) current technology does not

afford us the chance to prove beyond doubt for many

systems, so acting in good faith seems a reasonable thing to

do, however the ‘‘blind acceptance’’ of (2) is problematic.

This, as argued by Neal and Trapnel, is because that what

appear to be ‘‘clever’’ techniques in the biology might not

necessarily translate to a ‘‘clever’’ computer solution: great

care is needed to ensure that the analogy is suitable and not

mearly manufactured. Finally, they argue that coping with

(3) and (4) is more manageable and to some degree, work

by Stepney et al. [96] guards against that.

5 Artificial immune systems

In this section AIS are reviewed in detail, providing a

description of the main types of AIS and the applications to

which they have been applied. It does not provide a

comprehensive summary of all AIS, but provides a simple

overview of the main aspects of AIS.

5.1 The structure of AIS

In [28], de Castro and Timmis propose a layered frame-

work for engineering AIS. This framework succinctly

demonstrates the general structure of most AIS, and so is

used here as a template for this description of the main AIS

types. The layered framework takes the application domain

of the AIS as its starting point, followed by three layers to

be considered before the required AIS is engineered. These

layers are:

• Component Representations: how the components of

the system are to be represented.

• Affinity Measures: how the interactions between the

components of the system are to be quantified.

• Immune Algorithms: how the components of the

systems are going to interact to determine the system

dynamics.

The immune algorithms are typically inspired by the

immune processes covered in Sect. 3.1, and fall into one of

four groups: negative selection, clonal selection, immune

networks and danger theory. Each of these will be

discussed in detail below, along with examples of specific

AIS implementations. The representations and affinity

measures used in AIS tend to be applicable to any type of

immune algorithm, and so will be discussed in general

terms here.

The most influential concept to affect the representation

of components in AIS was introduced by Perelson and

Oster [87], who defined the notion of shape space. Their

theoretical investigation into how large an antibody rep-

ertoire must be in order to provide effective defence,

viewed the immune system as a molecular recognition

device designed to identify foreign shapes. For an anti-

body, they define the relevant antigen combining region in

terms of N shape parameters (the authors do not list these

parameters, but suggest that they may include geometric

quantities specifying molecular sizes and shapes, or

molecular charges). Likewise, an antigen that binds this

antibody combining region can be described by the same N

parameters. By combining these N parameters into a vec-

tor, both the antibody and antigen can be represented as

points Ab and Ag respectively in an N-dimensional vector

space called shape space, S. Following on from this, Per-

elson and Oster [87] state that the antibody and antigen

bind perfectly when Ab = Ag if the fact that the shapes of

the antibody and antigen are complementary is ignored.

The antibody-antigen complementarity can, therefore, be

measured as the distance between Ab and Ag using a
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suitable metric in S. If all of the N parameters contribute

equally to the antibody specificity, then a metric such as

Euclidean distance can be used. A volume, V, can then be

defined in S as the volume in which the possible repertoire

of antibodies and antigens can fall. For each individual

antibody, a small region Ve can also be defined, where e is a

distance threshold in S. Any antigen that falls within the Ve

of an antibody is said to be bound by that antibody. Per-

elson and Oster [87] note that this strict threshold could be

replaced with a probability of binding that decreases with

distance from the antibody, however, this was not inves-

tigated. They also note that previous work by Edelstein and

Rosen [33] showed that the shape of an antibody could be

defined by a continuous function instead of a point vector.

Even though the work of Perelson and Oster [87] used

antibodies and antigens, de Castro and Timmis [28] point

out that this shape space representation can be applied to

any type of receptor and molecule that binds it.

Within the majority of AIS that utilise immune receptor

and antigen components, the notion of shape space is

employed. Thus, the AIS components will typically be

represented as attribute strings of N parameters, for

example an antibody component would be represented as

the vector Ab = hAb1, Ab2 ,..., AbNi. The choice of these

vector attributes will determine the shape space type. de

Castro and Timmis [28] highlight three main types that can

be used in AIS (but this list is not exhaustive):

• Real-Valued Shape Space: attributes of all the compo-

nents are real numbers.

• Hamming Shape Space: attributes of all the components

are from a finite alphabet.

• Symbolic Shape Space: attributes can be of any type,

including symbols such as age and name.

The choice of attribute types used in the AIS components

will naturally determine the metric in S that can be used to

measure the similarity (affinity) between these compo-

nents. It is normal in AIS that each of the N attributes in the

component contribute equally to the affinity measure. For

real valued shape spaces, this affinity measure is typically

Euclidean distance, although similar measures such as

Manhattan distance are equally applicable. The affinity

measures used for the Hamming shape spaces are deter-

mined by the alphabet used. Two of the most popular

affinity measures for the binary alphabet are the Hamming

distance and the r-contiguous bit rule. The Hamming

distance is simply calculated by applying the XOR operator

to the two components that are being measured. The r-

contiguous bit rule calculates the affinity as the length of

the largest contiguous region between the two components.

The affinity measures used for symbolic shape spaces are

very much dependent on the nature of the symbols that

make up the attribute strings, and thus defining this

measure can be a non-trivial task. For all affinity measures,

a recognition threshold akin to the shape space parameter e
described above, can be set to determine whether recog-

nition between components has occurred. As a small aside,

it should be noted that affinity measures such as r-

contiguous do not satisfy the triangle inequality and

therefore can not be strictly considered to be a distance

metric in the mathematical sense.

5.2 Negative selection algorithms

Negative selection algorithms are inspired by the main

mechanism in the thymus that produces a set of mature T-

cells capable of binding only non-self antigens. The first

negative selection algorithm was proposed by Forrest et al.

[40] to detect data manipulation caused by a virus in a

computer system. The starting point of this algorithm is to

produce a set of self strings, S, that define the normal state

of the system. The task then is to generate a set of detec-

tors, D, that only bind/recognise the complement of

S. These detectors can then be applied to new data in order

to classify them as being self or non-self, thus in the case

of the original work by Forrest et al. [40], highlighting

the fact that data has been manipulated. The algorithm

of Forrest et al. [40] produces the set of detectors via

the process outlined in Algorithm 1.

The negative selection algorithm formed the foundation

of a significant development within AIS, that being the

work of Hofmeyer and Forrest [60] where they proposed an

architecture for an AIS as applied to network security. This

remains one of the most influential works in the area to

date, spawning a whole avenue of AIS research with

examples including [6, 26, 47, 48, 69]. On more theoretical

aspects, work by Esponda et al. [34, 35] showed a con-

nection between the boolean satisfiability problem (SAT)

and a negative database. In work by Stibor et al. [101] and

further in Stibor’s thesis [98] the authors specialised the

approach presented in by Esponda et al. in that they

showed that the problem of generating r-contiguous

detectors can be transformed in a k-CNF satisfiability

problem. This is further extended by Stibor [99] where he

showed that generating such detectors is hardest in the

input : Sseen = set of seen known self elements
output: D = set of generated detectors
begin

repeat
Randomly generate potential detectors and place them in a set P
Determine the affinity of each member of P with each member of
the self set Sseen

If at least one element in S recognises a detector in P according to a
recognition threshold, then the detector is rejected, otherwise it is
added to the set of available detectors D

until Until stopping criteria has been met
end

Algorithm 1 Generic negative selection algorithm
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‘‘phase transition’’ region depending on the parameter

settings of size of self and of r. It was concluded that it is

either very easy or very hard to generate detectors, with

most interesting problems being in the very hard domain,

thus reducing the applicability of such an approach.

Through such theoretical approaches we can begin to

understand in a deeper way, issues surrounding the gen-

eration of detectors using the r-contiguous matching rule

and the problems inherent in that process.

5.3 Clonal selection algorithms

The clonal selection theory has been used as inspiration for

the development of AIS that perform computational opti-

misation and pattern recognition tasks. In particular,

inspiration has been taken from the antigen driven affinity

maturation process of B-cells, with its associated hyper-

mutation mechanism. These AIS also often utilise the idea

of memory cells to retain good solutions to the problem

being solved. In [28], de Castro and Timmis highlight two

important features of affinity maturation in B-cells that can

be exploited from the computational viewpoint. The first

of these is that the proliferation of B-cells is proportional

to the affinity of the antigen that binds it, thus the higher

the affinity, the more clones are produced. Secondly, the

mutations suffered by the antibody of a B-cell are inversely

proportional to the affinity of the antigen it binds. Utilising

these two features, de Castro and Von Zuben [14] devel-

oped one of the most popular and widely used clonal

selection inspired AIS called CLONALG, which has been

used to performed the tasks of pattern matching and multi-

modal function optimisation.

When applied to pattern matching, a set of patterns, S, to

be matched are considered to be antigens. The task of

CLONALG is to then produce a set of memory antibodies,

M, that match the members in S. This is achieved via the

algorithm outlined in Algorithm 2.

The algorithm shares many similarities with evolution-

ary algorithms [84], although importantly the selection and

mutation mechanisms are influenced by the affinities of

antibody-antigen matching [28]. Other AIS that have been

inspired by the adaptive immune mechanisms of B-cells

are AIRS [113], a supervised learning algorithm (or more

recently described as an instance creation algorithm [93],

and the B-cell algorithm [70], an optimisation algorithm

with a unique contiguous hypermutation operator. Like

negative selection, clonal selection has proven to be very

popular in the AIS community spawning a great deal of

research with recent examples including [23, 62, 77].

From a theoretical perspective, given the stochastic

nature of the algorithms, it should be possible to consider,

in particular with clonal selection algorithms, the evolution

of a population belonging to a discrete state space and

changing according to probabilistic rules [106]. As long as

the probabilities for transitions to a new state depend only

on the current state of the system (and not on the previous

history), all the properties of a Markov chain are satisfied,

so it is natural to describe AIS clonal selection algorithms

in these terms [106]. Indeed, there has been limited work

by Villalobos-Arias et al. [111], which used Markov chain

theory to prove convergence of MISA [22] (a clonal

selection based algorithm), with the proviso that an elitist

memory set must be maintained. Other work by Clark et al.

[15], who after modelling the hypermutation operator

associated with the B-cell algorithm [70], adopted the same

method of proof and simplified it in order to prove con-

vergence, in the sense that it finds (at least one) global

optimum solution with probability one, in the limit as

t??, for the case of the B-cell algorithm [70].

Work by Cutello et al. [24] adapts the criteria of

Rudolph [92] to the setting of a generic clonal selection-

type algorithm, called the Immune Algorithm (IA). This IA

includes the possibility of a variety of different schemes for

hypermutation, aging and so on, and two sufficient condi-

tions for convergence are given in [24]. In particular, it

appears that the convergence of the B-cell Algorithm can

also be proved by minor modifications of the approach in

that paper [106].

5.4 Immune network algorithms

Immune network models fall into two distinct categories,

the continuous models and the discrete models. The con-

tinuous models are based on ordinary differential equations

and are typically used by theoretical immunologists to

explore the perceived behaviour of real immune networks.

Examples include the models by Farmer et al. [37] and

Varela and Coutinho [110]. These continuous models have

been subsequently used as inspiration for the discrete

immune network models found in AIS. The behaviour of

these discrete models are based on iterative procedures of

input : S = set of patterns to be recognised, n the number of worst
elements to select for removal

output: M = set of memory detectors capable of classifying unseen patterns
begin

Create an initial random set of antibodies, A
forall patterns in S do

Determine the affinity with each antibody in A
Generate clones of a subset of the antibodies in A with the highest
affinity. The number of clones for an antibody is proportional to its
affinity
Mutate attributes of these clones inversely proportional to its
affinity. Add these clones to the set A, and place a copy of the
highest affinity antibodies in A into the memory set, M
Replace the n lowest affinity antibodies in A with new randomly
generated antibodies

end
end

Algorithm 2 Generic clonal selection algorithm
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adaptation and they are applied to problem solving rather

than understanding immune concepts. This produces one of

the major differences between the discrete and continuous

models, as discrete models interact with their environment

(i.e. antigens), whereas the continuous models typically do

not [28]. Farmer [36] outlined the link between immune

network models, neural networks, autocatalytic networks

and classifier systems in terms of connectionism. This was

the first attempt at positioning the idea of immune networks

as an adaptive learning system, and these ideas have been

pursued by AIS researchers.

The main difference between immune network algo-

rithms and other immune algorithms is that the components

of the system not only interact with antigenic components,

but with the other components in the AIS. Two examples of

immune network algorithms are AINE [108] and aiNet

[13], which attempt to utilise the basic concepts of immune

network theory to solve problems such as pattern recog-

nition and data clustering. For example, aiNet was

originally designed for the task of data clustering [13], and

consists of a network of antibody components that adapt to

match a population of input components (antigens) to be

clustered. aiNet is a modified version of CLONALG

(described above) with an added mechanism of suppressive

interactions between the antibody components, and is

outlined in Algorithm 3.

The resulting set of network antibodies, N, represents an

internal image of the antigens to which they have been

exposed [28] as a reduced number of elements. There is less

theoretical work on the analysis of immune network algo-

rithms, but one recent paper by Stibor and Timmis [100] has

shown that aiNet suffers problems when clustering non-

uniformly distributed data. This is primarily because of the

way the suppression mechanism operates in the algorithm

(via a distance metric) and it leads to either insufficient

retention of information in the clusters from when it started

(so the data has been compressed, but significant informa-

tion has been lost), or the algorithm actually produces more

elements to represent the input space than it began with.

However, aiNET has found itself widely used, particularly

in the area of optimisation, where it performs very well with

such examples include [4, 10, 16].

5.5 Danger theory algorithms

Danger theory is a relatively new addition to the field of

immunology, and thus danger theory inspired algorithms

are still in their infancy. In a summary of danger theory

inspired approaches, Garrett [43] states that these algo-

rithms should provide an alternative to the negative

selection approach, as danger theory has a number of

appealing properties from a computational perspective. For

example, ideas from danger theory should focus events on

what is harmful instead of just non-self, reporting only the

detection of something dangerous. A number of proposed

danger theory inspired AIS have been presented by Secker

et al. [94], Aickelin et al. [1] and Greensmtih et al. [49,

50]. Secker et al. [94] explores the relevance of danger

theory to web mining by investigating the use of danger

signals to provide context for searches. The second looks at

the possibility of an intrusion detection system based on

danger theory by investigating how various intrusion sce-

narios can be detected via the use of different computer

danger signals. This work was later extended by Green-

smith et al. [49, 50] with the dentritic cell algorithm (DCA)

(Algorithm 4), which introduced the notion of danger sig-

nals, safe signals and PAMP signals which all contribute to

the context of a data signal at any given time. This context

input : S = set of patterns to be recognised, nt network affinity threshold,
ct clonal pool threshold, h number of highest affinity clones, a
number of new antibodies to introduce

output: N = set of memory detectors capable of classifying unseen patterns
begin

Create an initial random set of network antibodies, N
repeat

forall patterns in S do
Determine the affinity with each antibody in N
Generate clones of a subset of the antibodies in N with the
highest affinity. The number of clones for an antibody is
proportional to its affinity
Mutate attributes of these clones inversely proportional to its
affinity, and place the h number of highest affinity clones into a
clonal memory set, C
Eliminate all members of C whose affinity with the antigen is
less than a pre-defined threshold (ct)
Determine the affinity amongst all the antibodies in C and
eliminate those antibodies whose affinity with each other is less
than a pre-specified threshold (ct)
Incorporate the remaining clones in C into N

end
Determine the affinity between each pair of antibodies in N and
eliminate all antibodies whose affinity is less than a pre-specified
threshold nt
Introduce a number (a) of new randomly generated antibodies into
N

until until a stopping condition has been met
end

Algorithm 3 Generic immune network algorithm

input : S = set of data items to be labelled safe or dangerous
output: L = set of data items labelled safe or dangerous
begin

Create an initial population of dendritic cells (DCs), D
Create a set to contain migrated DCs, M
forall data items in S do

Create a set of DCs randomly sampled from D, P
forall DCs in P do

Add data item to DCs’ collected list
Update danger, PAMP and safe signal concentrations
Update concentrations of output cytokines
Migrate dendritic cell from D to M and create a new DC in D if
concentration of costimulatory molecules is above a threshold

end
end
forall DCs in M do

Set DC to be semi-mature if output concentration of semi-mature
cytokines is greater than mature cytokines otherwise set as mature

end
forall data items in S do

Calculate number of times data item is presented by a mature DC
and a semi-mature DC
Label data item as safe if presented by more semi-mature DCs than
mature DCs otherwise label as dangerous
Add data item to labelled set M

end
end

Algorithm 4 Dendritic cell algorithm (adapted from [49])

Evol. Intel. (2008) 1:5–26 19

123



is integrated via a process inspired by the role of dendritic

cells (a specialised APC of the innate immune system).

This removes the need to define what self is, but adds the

necessity to define the danger, safe and PAMP signals,

guidance on this is given in [50].

5.6 Applications of AIS

Although not as widely used as other bio-inspired para-

digms, such as evolutionary algorithms and neural

networks, the body of work describing the practical

applications of AIS has become substantial over the last

decade. Accordingly, Hart and Timmis [59] have investi-

gated the application areas of AIS, and considered the

contribution AIS have made to these areas. Their survey of

AIS is not exhaustive, but attempts to produce a picture of

the general areas to which they have been applied. Over

100 papers were classified into 12 categories that were

chosen to reflect the natural groupings of the papers. Some

of these categories are broad, whereas some are narrow,

as a new category was created when there was more than

one paper reporting a particular application area. The 12

identified categories, in the order of most papers first, were:

clustering/classification, anomaly detection (e.g. detecting

faults in engineering systems), computer security, numer-

ical function optimisation, combinatoric optimisation (e.g.

scheduling), learning, bio-informatics, image processing,

robotics (e.g. control and navigation), adaptive control

systems, virus detection and web mining. The authors go

on to note that these categories can be summarised into

three general application areas of learning, anomaly

detection and optimisation.

6 Reflections on artificial immune systems

After reviewing the more technical side of AIS, we now try

and bring together ideas from other review papers that have

taken a more reflective standpoint. This will allows us to

reflect on the progress made so far within AIS, identify

common themes that are emerging within the literature and

identify areas where things can be improved and maybe

where future focus should be concentrated.

A review paper by Garrett [43] aimed to assess the

usefulness of different types of AIS requires the definition

of the term usefulness with respect to a computational

method, followed by a set of criteria to enable its mea-

surement. It is argued that a ‘‘useful’’ algorithm is both

‘‘distinct’’ from other algorithms, and ‘‘effective’’ at per-

forming its required function. Thus, ‘‘distinctiveness’’ and

‘‘effectiveness’’ are the metrics chosen to measure the

‘‘usefulness’’ of different AIS types. In order to determine

the distinctiveness and effectiveness of these AIS, two sets

of questions are asked. The distinctiveness questions,

quoted verbatim from [43], are:

1. Does the new method contain unique symbols, or can

the features of this method be transformed into the

features of another method, without affecting the

dynamics of the new method?

2. Are the new method’s symbols organised in novel

expressions, or can its expressions be transformed to

become the same as some other method, without

affecting its dynamics?

3. Does the new method contain unique processes that

are applied to its expressions, or can its processes be

transformed to become identical to some other method,

without affecting its dynamics?

A method is deemed distinctive if the answer to at least one

of these questions is ‘‘yes’’. Likewise, a method is deemed

effective if the answer to at least one of the following

questions, quoted verbatim from [43], is ‘‘yes’’:

1. Does the method provide a unique means of obtaining

a set of results?

2. Does the method provide better results than existing

methods, when applied to a shared benchmark task?

3. Does the method allow a set of results to be obtained

more quickly than another method, on a benchmark

test?

A truly useful AIS is, therefore, considered by Garrett [43]

to be one which has been classified as being both

distinctive and effective.

After outlining the above criteria, Garrett [43] proceeds

to assess the usefulness of AIS via an empirical process

based on observations in the body of AIS literature. This

process is carried out separately for the three main types of

AIS described in the last chapter: negative selection, clonal

selection and immune network models. For each of these, a

description is given of the major developments within the

area along with an identification of the state of the art and

some typical applications. Based on this analysis, the dis-

tinctiveness and effectiveness questions described above

are applied. For the distinctiveness questions, all three AIS

types Garret answers ‘‘no’’ to the first two question and

‘‘yes’’ to the last, thus all are identified as being distinctive

as they contain unique algorithmic processes. For the

effectiveness questions, negative selection AIS answer

‘‘yes’’ to only the first question having been identified as

providing unique results, and so are classified as effective.

Clonal selection AIS answer ‘‘no’’, ‘‘sometimes’’ and ‘‘not

yet clear’’ respectively to these questions, and are therefore

deemed to be effective only sometimes. Immune network

AIS answer ‘‘yes’’ to the first two questions, so are also

deemed effective.
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In conclusion, Garrett [43] states that the AIS paradigm

has provided three distinct types of method that can in some

cases produce effective results. However, these two prop-

erties have not been combined in a reliable way. Although

this process of reflection is vital part to the scientific pro-

cess, a number of flaws seem apparent in Garrett’s approach

to assessing the usefulness of AIS. Firstly, all AIS approa-

ches have been grouped into one of the identified general

types of AIS to be assessed for their usefulness. This does

not seem to be helpful, as too many generalisations and

assumptions have to be made about specific AIS approa-

ches. For example, two AIS inspired by the clonal selection

algorithm, such as CLONALG [14] and the B-cell Algo-

rithm [70], may possess very different, but equally useful

properties. By considering them as the same type of algo-

rithm, these properties may by lost for the purposes of

evaluation. Secondly, as the distinctiveness and effective-

ness questions are answered via an empirical investigation,

it can be argued that the answers to these question are

entirely subjective, depending on the level of abstraction at

which the AIS are examined. For example, the third of the

distinctiveness questions looks at the distinctiveness of the

processes in the algorithm. On one level, it could be argued

that evolutionary algorithms and clonal selection algorithms

do not contain distinct processes as both are population

based algorithms with mutation and selection mechanisms.

Garrett [43] argues differently, stating that they are distinct

as these mechanisms in clonal selection algorithms are

unique, being related to fitness of the solution. However, by

this argument two evolutionary algorithms with slightly

different mutation and selection mechanism to each other

could also be defined as distinct. In the end, this becomes

simply a process of arbitrary classification, and it is not

clear how this can benefit the future development of AIS.

Hart and Timmis [59] state that unlike the field of

evolutionary algorithms, there are few exemplars that stand

out in the AIS literature where AIS have been successfully

applied to hard real-world problems, or used in industry

(one exception with use in industry is work by De Lemos

et al. [32] on automated teller machines). It is important,

therefore, that effort be made to establish a distinctive

niche for AIS. Thus, in a similar vein to Garrett [43], Hart

and Timmis [59] argue that for a paradigm such as AIS to

be considered useful, it is not sufficient for it to simply

outperform other algorithms, but it should contain features

not contained within other paradigms. It is these features

that make a paradigm distinctive and that Hart and Timmis

attempt to identify for AIS in [59]. The way forward for

AIS should therefore involve the selection of application

areas that map the problem features to mechanisms

expressed by the immune system. In addition, they argue

that this needs to be backed up by more theoretical research

into the workings of AIS.

For each of the three identified AIS application areas

highlighted in Sect. 5.6, Hart and Timmis [59] review

whether or not applying AIS to these areas brings any

benefits that could not have been gained via alternative

methods. As a guide, their review considers the list of

immune system features computationally relevant to AIS

that were identified by Dasgupta [25]: recognition, feature

extraction, diversity, learning, memory, distributed detec-

tion, self-recognition, thresholds, co-stimulation, dynamic

protection and probabilistic detection. The purpose of

anomaly detection techniques is to decide whether an

unknown data item is produced by the same probability

distribution as a training set of data, so as to classify this

unknown data item. Thus, immune inspired anomaly

detection techniques (typically negative selection AIS)

attempt to generate detectors capable of detecting when the

normal state of a system has changed. Theoretical and

empirical investigations by Stibor [98] have highlighted,

however, that both real-valued and hamming shape space

versions of negative selection AIS are problematic for real-

world anomaly detection problems. In addition, they

compare negative selection to a support vector machine

approach and conclude that results for support vector

machines are as good, if not better than the immune-

inspired approach of negative selection. Thus, for anomaly

detection, Hart and Timmis [59] conclude that, at that

point, immune inspired approaches do not seem to offer

anything over alternative approaches, this concurs to some

degree with Garret [43] but as Garret points out the fact

that the subsets of the detectors generated via this approach

can be easily distributed might offer an argument for being

unique (according to Garret’s criteria). Work by Esponda

et al. extended the ideas of negative selection to that of

negative information [34] that can be applied to a security

context. Recent work by Greensmith et al. [49, 50] offer an

alternative to the negative selection approach for anomaly

detection. Their basic system is outlined in Sect. 5.5 and

from initial investigations seems to be performing well in

terms of identification of anomalies.

Most AIS designed for optimisation, Hart and Timmis

[59] note, are based on the clonal selection principle, and

are applied to static optimisation problems. These algo-

rithms require only two of the features highlighted by

Dasgupta [25], a diversity mechanism and a memory

mechanism. These mechanisms are common to many other

optimisation techniques such as evolutionary algorithms. In

fact, clonal selection algorithms are considered by many to

be a form of evolutionary algorithms. Thus, for static

optimisation functions, Hart and Timmis [59] conclude that

AIS provide no added value. They state, however, that

immune approaches may be more applicable to dynamic

optimisation, whereby a solution must be found and

tracked in a continuously moving environment. Despite
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this, they conclude that the immune system is not a suitable

model for the inspiration of optimisation methods. Like

optimisation AIS, the majority of clustering and classifi-

cation AIS have been applied to problems with static data

sets. Of Dasgupta’s list [25], these AIS require feature

extraction, recognition and learning. According to Hart and

Timmis [59], these features are also key to all machine-

learning algorithms, and so again there are no unique

features in AIS indicating they offer anything over other

machine-learning techniques. Again, however, AIS may be

more applicable to dynamic clustering or classification in

which patterns and trends are tracked in data over time. To

be effective, this should require a form of memory, one of

the highlighted properties of AIS. Thus, AIS may be able to

outperform machine-learning methods that do not possess a

memory mechanism for this task of dynamic clustering/

classification. This view of applying AIS to such dynamic

problems was echoed in discussion sessions at the recent

(at the time of writing this paper) ICARIS conference [31]

where it was felt that in order for AIS to compete, or maybe

more importantly to offer something unique, AIS would be

better suited to dynamic problems as inherent in many AIS

is the ability to continually learn, forget and adapt.

In a recent position paper, Timmis [103] states that the

area of AIS has reached ‘‘an impasse’’ and is being ham-

pered by the lack of attention being payed to the underlying

biological system (both in terms of immunology and

interactions with other systems), the lack of theoretical

foundations being laid and the lack of challenging appli-

cation areas to drive forward the engineering aspect to AIS.

This paper takes a slightly different perspective to that of

Garrett [43] in so much that Timmis argues there are a

number of factors, which when combined, are affecting the

progression of AIS from yet another evolutionary tech-

nique to something that is, to use Garret’s terms, useful and

distinctive. Garrett attempts to assign some meaning to the

usefulness and distinctive criteria, but this, as we have

discussed, is potentially problematic and by it’s very nat-

ure, subjective. To address some of the concerns of Timmis

[103], we can look at the papers of Bersini [8], Forrest and

Beauchemin [39] and Cohen [19] and conclude that mod-

elling and greater interaction with immunologists can help

the development of AIS in bringing greater understanding

of the immune system. Through this interaction it may well

be possible to begin the development of new, useful and

distinctive algorithms and systems, that go way beyond

what engineering has to offer to date. Indeed, at the recent

ICARIS conference a number of papers were dedicated to

this and explore the usefulness of tunable activation

thresholds [52, 86], Cohen’s cognitive model [27, 112] and

immune networks [57, 78]. However, there is one word of

caution in the excitement of modelling, and we echo the

concerns of Neal and Trapnel [83] (Sect. 4.3) in that just

because the immune system does a certain task in a certain

way, it does not mean that an AIS can do the same task in

the same way: immune and engineered systems are fun-

damentally different things. What is key, is to abstract out

the computational properties of the immune system, and by

seeing the immune system as a computational device [19],

this may be the key to future development. It would be

primarily logical properties that would be extracted, but in

contrast to [41] who advocate only logical principles, it is

possible that there are physical properties that can be used

as inspiration (such as the physical structure of lymph

nodes), but being mindful that physical properties are dif-

ficult to translate from natural to artificial systems. A

greater collaboration with immunologists should help us

understand in a better way the intricate interaction both

within and outside of the immune system: as outlined in

another challenge by Timmis [103]. Neal and Trapnel [83]

outline such interactions within the immune system and it

is clear from this simple view, that the interactions are

complex and effective tools are going to be needed for us to

even begin to understand such interactions, let alone

abstract useful and distinctive computational properties for

our artificial systems.

7 Comments on the future

It is always dangerous to pass comments on what you think

will happen in 5 or 10 years time in any area, however a

certain amount of speculation is healthy from the point of

view of stimulating discussion and debate: as not everyone

will agree with your opinion about the future direction of

the research area. In suggesting the way forward for AIS,

Hart and Timmis [58] state that considering the application

areas to date, AIS have been reasonably successful, but as

yet, do not offer sufficient advantage over other paradigms

available to the engineer. To address this and therefore tap

the unexploited potential of AIS, they identify three key

ideas mostly missing in the AIS domain. Firstly, the innate

immune system has been mainly ignored by AIS practi-

tioners so far (with the recent exceptions of danger theory

inspired AIS). This last decade, however, has seen a

resurgence of interest in the mechanisms of the innate

immune system, such as signalling, by immunologists [44],

and its role in controlling the adaptive response. Secondly,

the immune system does not operate in isolation. Through

the interactions of the immune, neural and endocrine sys-

tems, organisms achieve a steady internal state in varying

environments, a process called homeostasis. This type of

property would be useful in many applications such as

anomaly detection and maintenance of engineered systems

as outlined by Owens et al. [86]. Third and finally, life-

long learning is a key property of the immune system, but
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true life-long learning whereby a system is required to

improve its performance as a consequence of its lifetime’s

experience, has not been utilised in AIS. In summary, Hart

and Timmis propose a list of features they believe AIS will

be required to possess a combination of, if the field of AIS

is to carve out a computational niche. These future AIS

features, quoted verbatim from [59], are:

1. They will exhibit homeostasis.

2. They will benefit from interactions between innate and

adaptive immune models.

3. They will consist of multiple, interacting components.

4. Components can be easily and naturally distributed.

5. They will be required to perform life-long learning.

As for the future roles of AIS, Garrett [43] states that the

biggest difficulty facing AIS is the lack of application areas

to which it is clearly the most effective method. It is

suggested that hybrid AIS may help to provide more

powerful methods to solve certain problems. The current

types of AIS used are also classified by Garrett into those

that detect antigens (negative selection and danger theory

models), and those that focus on destroying them (clonal

selection and immune network models). It is pointed out,

however, by Garrett [43] that the immune system has more

to offer than this, with the mechanisms of the innate

immune system and the view that the immune system is a

homeostatic control system being highlighted as future

areas for AIS to exploit, and indeed this call seems to be

taken up in a small part in recent times [27, 52, 86].

Concurring with the above, Bersini [8] argues that the

immune system is much more than a simple classifier and

performs much more than ‘‘pattern matching’’ and urges

people in AIS to think about applications that are far

removed from such applications which are the dominant

force in AIS [39]. This challenges the community to find

that niche application that AIS alone can tackle. This may

come in the form of certain engineering type applications

such as robotics and real-time systems where the system is

embodied in the world and needs to be able to cope with

extreme challenges that are constantly changing.

However, it is not only about the application area,

serious developments in theory are required to fully

understand how and why the algorithms work they way

they do and there are many advances that can be made with

respect to modelling the immune system. As a final point

we would like to advocate the application of the conceptual

framework as a methodology for the development of new

immune-inspired systems. The conceptual framework

facilitates a truly interdisciplinary approach where exper-

tise from engineering can inform immunology and

immunology can inform engineering. We have used this

framework as a structure for our paper to highlight the

interdisciplinary nature of AIS and through interactions

across a variety of disciplines we should begin to harvest

the complexity of the immune system into our engineering

and, at the same time, develop new insights into the

operation and functionality of the immune system. Indeed

we concur with Cohen [19] in that a great deal can be learnt

on all sides and maybe through the use of the conceptual

framework the ‘‘literal’’ and ‘‘metaphorical’’ school may

gain a greater understanding and appreciation of the

underlying immunology so as to build better immune-

inspired systems and the ‘‘modelling’’ school may develop

richer and more informative models so as to further our

understanding of this amazing complex system. This is not

easy and will take the effort of many people over many

years, but it is one that we will learn many lessons along

the way in our quest to create AIS.

Acknowledgements The authors would like to thank many people

in the AIS community who have engaged in many interesting dis-

cussions over the years, and in particular at the recent 2007 ICARIS

conference who include: Emma Hart, Jorge Carnerio, Hugues Bersini,

Rob de Boer, Uwe Aickelin, Julie Greensmith and Leandro de Castro.

We would like to thank the reviewers for their many comments and

suggestions.

References

1. Aickelin U, Bentley P, Cayzer S, Kim J, McLeod J (2003)

Danger theory: the link between AIS and IDS? In: Timmis J,

Bentley P, Hart E (eds) Proceedings of the 2nd International

Conference on Artificial Immune Systems (ICARIS 2003),

LNCS 2787. Springer, Berlin, pp 147–155

2. Anderson CC, Matzinger P (2000) Danger: the view from the

bottom of the cliff. Semin Immunol 12(3):231–238

3. Andrews PS, Timmis J (2005) Inspiration for the next genera-

tion of artificial immune systems. In: Jacob C, Pilat M, Bentley

P, Timmis J (eds) Proc of the 4th International Conference on

Artificial Immune Systems (ICARIS), Lecture Notes in Com-

puter Science, vol 3627. Springer, Berlin, pp 126–138

4. Andrews PS, Timmis J (2005) diversity and artificial immune

systems: incorporating a diversity operator into aiNet. In: Pro-

ceedings of the International Conference on Natural and

Artificial Immune Systems (NAIS05), LNCS, vol 391. Springer,

Berlin, pp 293–306

5. Andrews PS, Timmis J (2006) A computational model of

degeneracy in a lymph node. LNCS, Springer, Berlin, pp 164–

177

6. Balthrop J, Esponda F, Forrest S, Glickman M (2002) Coverage

and generalisation in an artificial immune system. In: Genetic

and evolutionary computation, pp 3–10

7. Bersini H (2002) Self-assertion versus self-recognition: a tribute

to Francisco Varela. In: Timmis J, Bentley PJ (eds) Proceedings

of the 1st International Conference on Artificial Immune Sys-

tems (ICARIS 2002). University of Kent Printing Unit, pp 107–

112

8. Bersini H (2006) Immune system modeling: the OO way. In:

Bersini H, Carneiro J (eds) Proceedings of the 5th International

Conference on Artificial Immune Systems, LNCS, vol 4163.

Springer, Berlin, pp 150–163

9. Bersini H, Carneiro J (eds) (2006) Proceedings of the 5th

International Conference on Artificial Immune Systems, LNCS,

vol 4163. Springer, Berlin

Evol. Intel. (2008) 1:5–26 23

123



10. Bezerra G, Barra T, de Castro LN, Von Zuben F (2005)

Adaptive radius immune algorithm for data clustering. In: Jacob

C, Pilat M, Bentley P, Timmis J (eds) Proc of the 4th Interna-

tional Conference on Artificial Immune Systems (ICARIS),

Lecture Notes in Computer Science, vol 3627. Springer, Berlin,

pp 290–303

11. Bretscher P (2000) Contemporary models for peripheral toler-

ance and the classical ‘historical postulate’. Semin Immunol

12(3):221–229

12. Burnet FM (1959) The clonal selection theory of acquired

immunity. Cambridge University Press, Cambridge

13. de Castro LN, Von Zuben FJ (2000) An evolutionary immune

network for data clustering. In: Proceeding of the IEEE Bra-

zilian Symposium on Artificial Neural Networks, pp 84–89

14. de Castro LN, Von Zuben FJ (2002) Learning and optimization

using the clonal selection principle. IEEE Trans Evol Comput

6(3):239–251

15. Clark E, Hone A, Timmis J (2005) A markov chain model of the

b-cell algorithm. In: Jacob C, Pilat M, Bentley P, Timmis J (eds)

Proc of the 4th International Conference on Artificial Immune

Systems (ICARIS), Lecture Notes in Computer Science, vol

3627. Springer, Berlin, pp 318–330

16. Coelho G, Von Zuben FJ (2006) Omni-ainet: an immune-

inspired approach for omni optimization. In: Bersini H, Carneiro

J (eds) Proceedings of the 5th International Conference on

Artificial Immune Systems, LNCS, vol 4163. Springer, Berlin,

pp 294–308

17. Cohen IR (2000) Discrimination and dialogue in the immune

system. Semin Immunol 12(3):215–219

18. Cohen IR (2000) Tending Adam’s garden: evolving the cogni-

tive immune self. Elsevier, Amsterdam

19. Cohen IR (2007) Real and artificial immune systems: computing

the state of the body. Imm Rev 7:569–574

20. Cohen IR, Harel D (2006) Explaining a complex living system:

dynamics, multi-scaling and emergence

21. Coutinho A (1995) The network theory: 21 years later. Scand J

Immunol 42:3–8

22. Cruz Cortes N, Coello Coello C (2003) Multiobjective optimi-

sation using ideas from the clonal selection principle. In: Cantu-

Paz E (ed) Genetic and Evolutionary Computation (GECCO),

vol 1, pp 158–170

23. Cutello V, Nicosia G (2004) The clonal selection principle for in

silico and in vitro computing. In: de Castro LN, von Zuben FJ

(eds) Recent Developments in Biologically Inspired Computing.

Idea Group Publishing, Hershey, PA

24. Cutello V, Nicosia G, Oliveto P, Romeo M (2007) On the

convergence of immune algorithms. In: Proc of Foundations of

Computational Intelligence, pp 409–416

25. Dasgupta D (ed) (1999) Artificial immune systems and their

applications. Springer, Berlin

26. Dasgupta D, Krishna Kumar K, Wong D, Berry M (2004)

Negative selection algorithm for aircraft fault detection. In:

Nicosia G, Cutello V, Bentley PJ, Timmis J (eds) Proceedings of

the 3rd International Conference on Artificial Immune Systems

(ICARIS 2004), LNCS 3239. Springer, Berlin, pp 1–14

27. Davoudani D, Hart E, Paechter B (2007) An immune-inspired

approach to speckled computing. In: de Castro LN, Von Zuben

FJ, Knidel H (eds) Proceedings of the 6th International Con-

ference on Artificial Immune Systems, Lecture Notes in

Computer Science, vol 4628. Springer, Berlin, pp 288–299

28. de Castro LN, Timmis J (2002) Artificial immune systems: a

new computational intelligence approach. Springer, Berlin

29. de Castro LN, Von Zuben FJ (1999) Artificial immune systems:

Part I—basic theory and applications. Tech Rep DCA-RT 01/99,

School of Computing and Electrical Engineering, State Uni-

versity of Campinas, Brazil

30. de Castro LN, Von Zuben FJ (2000) Artificial immune systems:

Part II—a survey of applications. Tech Rep DCA-RT 02/00,

School of Computing and Electrical Engineering, State Uni-

versity of Campinas, Brazil

31. de Castro LN, Von Zuben FJ, Knidel H (eds) (2007) Proceed-

ings of the 6th International Conference on Artificial Immune

Systems, Lecture Notes in Computer Science, vol 4628.

Springer, Berlin, pp 119–130

32. de Lemos R, Timmis J, Forrest S, Ayara M (2007) Immune-

inspired adaptable error detection for automated teller machines.

IEEE Trans Syst Man Cybern C Appl Rev 37(5):873–886

33. Edelstein L, Rosen R (1978) Enzyme-substrate recognition.

J Theor Biol 73(1):181–204

34. Esponda F (2005) Negative representations of information.

Ph.D. thesis, University of New Mexico

35. Esponda F, Ackley ES, Forrest S, Helman P (2005) On-line

negative databases (with experimental results). Int J Uncon-

ventional Comput 1(3):201–220

36. Farmer JD (1990) A rossetta stone for connectionism. Physica D

42:153–187

37. Farmer JD, Packard NH, Perelson AS (1986) The immune sys-

tem, adaptation, and machine learning. Physica D 22:187–204

38. Folwer M (2004) UML Distilled. Addison-Wesley, Reading,

MA

39. Forrest S, Beauchemin C (2007) Computer immunology.

Immunol Rev 216(1):176–197

40. Forrest S, Perelson A, Allen L, Cherukuri R (1994) Self–nonself

discrimination in a computer. In: Proceedings of the IEEE

Symposium on Research Security and Privacy, pp 202–212

41. Freitas A, Timmis J (2007) Revisiting the foundations of arti-

ficial immune systems for data mining. IEEE Trans Evol Comp

11(4):521–540

42. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design pat-

terns. Addison-Wesley, Reading, MA

43. Garrett S (2005) How do we evaluate artificial immune systems?

Evol Comput 13(2):145–177

44. Germain RN (2004) An innately interesting decade of research

in immunology. Nat Med 10:1307–1320

45. Gillespie D (1977) Approximate accelerated stochastic simula-

tion of chemically reacting systems. J Phys Chem 81(25):2340–

2361

46. Goldsby RA, Kindt TJ, Osborne BA, Kuby J (2003) Immunol-

ogy, 5th edn. W. H. Freeman and Company, San Francisco
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